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�� Introduction

Ordinary LP solves problems by representing problem�solving procedures by means of clauses

of the form

H � L� � � � � � Lm

with m � �� H an atom and each Li a literal� Variables in H and Li are implicitly universally

quanti�ed with scope the entire clause� H is called the head and L� � � � ��Lm is called the body

of the clause� Clauses of this form are used backwards to unfold atoms in goals �existentially

quanti�ed conjunctions of literals�� Negation is interpreted as negation as failure 	
��

CLP� ALP and SQO are extensions of ordinary LP� each of which is oriented towards a

di�erent application area�

CLP 	�� extends LP with constraint predicates� such as �� which are not processed as

ordinary LP predicates by unfolding but are checked for satis�ability and simpli�ed by means

of a built�in� �black�box� constraint solver�

Example ���� �CLP�

The logic program

order�X�M� P�M� X�M� P�M�� X�M � P�M � X�M

order�X�M� P�M� X�M� P�M�� X�M � P�M � X�M

represents the problem of ordering two operations �on the same machine M� with starting times

X�M� X�M and processing times P�M� P�M� respectively� This problem is characteristic of job�shop

scheduling� Given a constraint solver for linear �in�equations� the goal

order�X��� �� X��� �� � � � X�� � � � � � X�� � �

fails� since if X�� � � � X�� then X�� � �� and if X�� � � � X�� then X�� � �� However� the goal

order�X��� �� X��� �� � � � X�� � � � X�� � �

succeeds with computed answer X�� � � � X�� � � � X�� � � � X�� � �� Note that ordinary LP

would require an explicit de�nition of � in clausal form� The PROLOG built�in de�nition for

� would be inadequate�

Our generalisation of CLP� ALP and SQO is similar to Fr�uhwirth�s 	�� �no�box� approach to

CLP� in which the constraint solver is �programmed� explicitly by means of constraint handling

rules� In the above example� these rules might take the form

X � Y � Y� C � Z� X� C � Z

X � Y � Y � X� false�

Then� given the goal

X�� � � � X�� � � � X�� � � � � � X�� � �

the �rst constraint handling rule adds � � X�� as a conjunct to the goal and the second adds

false� �Similarly false is added to the goal X�� � � � X�� � � � X�� � � � � � X�� � ��� More�

over� given the goal

X�� � � � X�� � � � X�� � � � X�� � �

the �rst constraint handling rule adds to the goal the conjunct � � X��� which is part of the

answer�
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ALP 	�� �� extends LP to perform abductive reasoning� given a logic program P and a

goal �observation� G� ALP aims to �nd an �explanation� � of G� i�e� a set � such that

�A� � contains abducible atoms only� i�e� atoms from a given set of candidate hypotheses�

�A��� P together with � �entails� G� and

�A�� P together with � �satis�es� a given set of integrity constraints IC�

The notion of entailment depends upon the chosen semantics for negation as failure� For

negation�free logic programs� entailment is truth in the minimal Herbrand model of the pro�

gram �see 	�� ���� Similarly� the notion of integrity constraint satisfaction can be understood

in di�erent ways� The weakest of these is the consistency view� i�e� the union of P � � and IC is

consistent� The strongest is the theoremhood view� i�e� IC is entailed by the the union of P and

��

Example ���� �ALP�

Consider the logic program

bird � albatross

bird � penguin

with penguin� albatross and flies abducible� and the integrity constraint

penguin � flies � false�

Let the goal G be bird � flies� Then the explanation �� � falbatross� fliesg satis�es

�A���A�� under the consistency view whereas the explanation �� � fpenguin� fliesg does

not� Note that ordinary LP would fail to generate any answer for G as it fails on unde�ned

predicates �like flies� albatross and penguin��

SQO 	�� is aimed at optimising query answering in deductive databases� i�e� logic programs

whose predicates are partitioned into extensional predicates� de�ned by unit clauses �clauses

with m � ��� and intensional predicates� de�ned by non�unit clauses �clauses with m � ��� The

extensional part of the database might be very large and queries to it might be computationally

explosive� SQO uses the intensional part of the database together with integrity constraints�

expressing �properties� of the database� to optimise queries before they are actually executed�

This pre�processing might limit greatly or even avoid entirely the need to access the extensional

part of the database�

Example ���� �SQO�

Let DB be a deductive database de�ning extensional predicates employee� position and bonus�

and let

position�X�manager� � bonus�X�B� � B	� � false

be an integrity constraint expressing the property of DB that no manager can have a null bonus�

Then� given the query

employee�X� � position�X�manager� � bonus�X�B� � B	�

SQO uses the integrity constraint to show that the query has no answers� without accessing DB�

If ordinary LP were used to answer the query directly� every individual employee record would

need to be accessed�
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We de�ne an extension of LP generalising CLP� ALP� and SQO� We distinguish between

ordinary predicates �as in LP� and external predicates �corresponding to abducible predicates in

ALP and extensional predicates in SQO�� Constraint predicates in CLP are treated as ordinary

predicates� Conceptually� all predicates� including both ordinary and external predicates� are

de�ned by logic programs� We assume that the given logic programs are locally strati�ed 	�� so

that they admit a unique perfect model 	���� Consequently� entailment is understood as truth in

the perfect model� As in ordinary LP� logic programs are executed backwards� to unfold atoms

using their de�nitions�

As in SQO� the logic program de�ning the external predicates is not accessible� Instead�

integrity constraints expressing properties of the inaccessible logic program may be used as

approximations to the de�nitions� Integrity constraints are implications which are executed in

a forward direction� if the condition holds� then derive �or propagate� the conclusion� Such

integrity constraints are similar to condition�action �production� rules in arti�cial intelligence�

In LP� atoms of ordinary predicates might unify non�deterministically with the heads of

several clauses� In such a case� as in SQO� propagating with carefully chosen integrity constraints

instead of unfolding with logic programs might be able to reduce the amount of non�determinism�

For this purpose� it is useful to suspend atoms 	��� �
� ��� ��� to prevent their being unfolded�

In our framework� an atom is suspended either if it is external or if it is an ordinary atom which

non�deterministically uni�es with the head of more than one clause� The notion of suspended

atom generalises the notions of abducible atom in ALP� extensional atom in SQO� constraint

atom in CLP as well as �frozen� atom in some variants of ordinary LP�

We allow di�erent clauses for the same predicate to be written as one i��de�nition� with

disjunctions in the body� to control suspension and to allow a limited amount of user�controlled

non�deterministic search� In example �� the atom order�X��� �� X��� �� can be unfolded using

two program clauses� If we rewrite the program in the form

order�X�M� P�M� X�M� P�M�� X�M � P�M � X�M � X�M � P�M � X�M

then the atom is an instance of the head of only one de�nition�

We allow multiple i��de�nitions with the same predicate in the head� For example� the

predicate � can be de�ned by means of

� � X� true

s�X� � s�Y�� X � Y�

We assume that the heads of i��de�nitions de�ning the same predicate do not unify�

The use of i��de�nitions also allows a direct representation of disjunction in goals giving

a declarative representation to alternative branches in the search tree of ordinary LP goals

�similarly to Muse Prolog 	����

The paper is organised as follows� Section � presents the framework� called Suspended Logic

Programming �SLP�� and discusses its use for problem solving and knowledge representation�

Section � presents the basic proof procedure for SLP� Section 
 describes applications� Section �

discusses possible extensions of the basic proof procedure� Section � relates SLP to other ap�

proaches� Section � reports results using existing prototypes of SLP for some applications and
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concludes�

�� The framework

An SLP knowledge base consists of a set of i��de�nitions and a set of integrity constraints� as

de�ned below� We assume that the set of atoms� de�ned as usual� includes two special atoms�

true and false�

De�nition ���� An i��de�nition is a formula of the form

H � D� � � � � �Dn� n � 

where H is an atom �but not true or false� and each Di �called a disjunct� is a conjunction

of literals �called conjuncts�� Variables in H are implicitly universally quanti�ed with scope the

entire de�nition� whereas variables in any disjunct Di but not in H are existentially quanti�ed

with scope Di�

H is called the head and D� � � � � �Dn is called the body of the i��de�nition�

If H is the atom p�t�� for some tuple of terms t� then the i��de�nition is said to de�ne

or to be an �i���de�nition for p�t�� Note that there may be zero� one or several i��de�nitions

for di�erent atoms of the same predicate� We impose the restriction that the heads of di�erent

i��de�nitions are not only di�erent� but do not unify �see de�nition ��� below��

We will illustrate the framework by means of the n�queens problem� thus highlighting at the same

time the use of the framework for representing �and solving� constraint satisfaction problems�

In the n�queens problem� n queens have to be placed on an n�n chessboard� so that if a queen

is placed at coordinates �A�B� and the rules of chess allow this queen to �move� from �A�B� to

�C�D�� then there is no queen placed at coordinates �C�D�� First we de�ne the predicate move�

Example ���� �move in chess� i��de�nitions�

The following set of i��de�nitions speci�es the notion of queen move in chess�
move��A�B���C�D��� �A� n � �B� n � �C� n � �D� n �

move
row
col
diag��A�B���C�D��

move
row
col
diag��A�B���C�D��� 	not A�C � B	D� �

	not B�D � A	C� �

	C	A�X � D	B�X � not X� ���

Note that the given set of i��de�nitions in this example is similar to part of the Clark

completion 	
� of the normal logic program consisting of the �rst i��de�nition with � replaced

by � and

move
row
col
diag��A�B���C�B��� not A�C

move
row
col
diag��A�B���A�D��� not B�D

move
row
col
diag��A�B���A�X�B�X��� not X� ��

In general� in the Clark completion of a logic program� i��de�nitions are in homogenised form

�i�e� all terms in the head are mutually distinct variables� and there is exactly one de�nition per

predicate� Instead� in SLP� i��de�nitions do not have to be in homogenised form and there may

be multiple i��de�nitions for the same predicate�
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Example ���� The set of i��de�nitions in example �� could be replaced by the set of i��

de�nitions

move�������������� true

move�������������� true
���

In example ��� the i��de�nitions de�ning move �and the subsidiary predicate

move
row
col
diag� rely upon de�nitions of the predicates ���� CLP distinguishes between

domain�speci�c predicates� like move� and constraint predicates� like ���� We treat constraint

predicates as ordinary predicates� de�ned by i��de�nitions� We will assume that � belongs to

the set of ordinary predicates� de�ned by t	t � true� for all variable�free terms t�

In addition to ordinary predicates� SLP allows external predicates� whose i��de�nitions are

inaccessible� External predicates correspond to abducibles in ALP and extensional predicates in

SQO� We regard i��de�nitions for external predicates as inaccessible rather than as non�existent�

in the same way that SQO regards de�nitions for extensional predicates as inaccessible during

the query optimisation process�

Example ���� �n�queens problem� external predicates�

The placement of a queen at coordinates �A�B� can be represented by the atom queen�A�B�� A

possible i��de�nition for queen� for n � 
� is

queen�X� Y�� �X � � � Y � �� � �X � � � Y � �� � �X � � � Y � �� � �X � � � Y � ���

An alternative i��de�nition is

queen�X� Y�� �X � � � Y � �� � �X � � � Y � �� � �X � � � Y � �� � �X � � � Y � ���

Each such de�nition is a solution to the 
�queens problem� and should be thought of as inacces�

sible� In other words� the predicate queen is external�

De�nition ���� Given two disjoint sets of predicates �ordinary and external predicates� re�

spectively� with � belonging to the set of ordinary predicates� an SLP theory is a set T of

i��de�nitions whose heads do not unify and such that T � To 	 Te� with To and Te de�ning the

ordinary and external predicates� respectively�

To is called the accessible part of T �

Te is called the inaccessible part of T �

The assumption that the set of external predicates is disjoint from the set of ordinary predicates

is analogous to the assumption in ALP that the set of abducible predicates is disjoint from the

set of ordinary predicates� Note that this assumption can be made without loss of generality� as

for ALP 	�� ���

Since we assume that heads of i��de�nitions do not unify� every �ordinary� atom is an instance

of the head of at most one �accessible� i��de�nition�

De�nition ���� We call an atom A reducible if there exists exactly one accessible de�nition such

that A is an instance of the head of the de�nition� Otherwise� we call the atom A suspended�
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Therefore� external atoms are always suspended� Ordinary atoms are suspended whenever no

de�nition exists whose head uni�es with the given atom �analogous to failure in ordinary LP� or

multiple de�nitions exist whose head uni�es with the given atom �analogous to non�determinism

in ordinary LP��

Suspension is an important feature of concurrent LP languages 	��� and concurrent CLP

	�
� ���� where it is often used to eliminate search non�determinism entirely� The concept of

suspension is also related to delay mechanisms in NU�PROLOG 	���� In this and several other

PROLOG dialects �including CHIP 	���� a control statement of the form

delay p�a�� � � � � an�

where each ai is either a ��� or a �
�� speci�es that an atom p�t�� � � � � tn� can be selected only

if all arguments corresponding to a ��� are variable�free� Suspension in most concurrent LP

languages and in SLP is more general�

In SLP� a controlled form of search non�determinism is allowed by the use of disjunction

in the bodies of i��de�nitions� The user can control the extent of search non�determinism by

controlling the form in which the i��de�nitions of ordinary predicates are written� In particular�

if a predicate is de�ned by a single i��de�nition in homogenised form� then all atoms of the

predicate are reducible� On the other hand� if a predicate is de�ned by a set of i��de�nitions

each with a variable�free head� then all non�variable�free atoms of the predicate are suspended�

Constraint predicates are ordinary predicates� We assume� as given� a set Tc � To of i��

de�nitions for the constraint predicates� such that� for any constraint predicate c� the atom

c�t� is suspended whenever accessing the i��de�nitions for c in Tc would be combinatorially ex�

plosive� For example� accessing any correct de�nition for � � X would generate in�nitely many

�combinatorially explosive� alternative instantiations of X� X	�� X	�� � � � � We will assume that

Tc is such that atoms such as X � �� � � X� X � Y and plus���X�Y� � are suspended� whereas

such atoms as � � ��� � � �� plus�������� plus�����X�� plus�X����� and plus���X�� are

reducible�

Similarly to SQO and ALP� SLP uses integrity constraints as approximations of the i��

de�nitions whenever the i��de�nitions can not be used� either because they are inaccessible

�as in the case of external predicates� or more generally because it would be combinatorially

explosive to execute them�

De�nition ���� An integrity constraint is a formula of the form

L� � � � � � Ln � A

where n � �� each Li is a literal� di�erent from �not� false and �not� true� and A is an atom�

di�erent from true� All variables are implicitly universally quanti�ed with scope the entire

formula�

L�� � � ��Ln is called the condition and A is called the conclusion of the integrity constraint�

Note that the empty condition is allowed� For example� the integrity constraint queen�����

forces a queen to be located at ������ Note also that true is not allowed as conclusion of an

�Note that any formula F�X�Y� can be rewritten in terms of a relational representation using the predicate

plus�
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integrity constraint� Indeed� we will see in section � that any integrity constraint with true as

conclusion would be of no use�

Example ���� �n�queens problem� integrity constraints�

The kernel of the n�queens problem can be expressed by a single integrity constraint

queen�A�B� � queen�C�D� � move��A�B���C�D�� � false

where queen is an external predicate �as in example ���� and move is an ordinary predicate �as

in example ����

Integrity constraints provide useful approximations not only for �inaccessible� external pred�

icate de�nitions but also for �accessible� ordinary predicate de�nitions� to process atoms that

are suspended� For example� the integrity constraint

X � Y � Y � Z � X � Z

can be used to add the reducible atom � � � to the goal

�� � Y � Y � ��

consisting of suspended atoms only� The newly added reducible atom can then be reduced to

false�

As mentioned in the introduction� we will assume that the ordinary logic program obtained

from the given theory by rewriting each i��de�nition as a set of ordinary clauses is locally

strati�ed 	�� Such locally strati�ed logic programs admit a unique perfect model 	���� To

guarantee that integrity constraints are sound approximations of the given theory� we will assume

they are true in the perfect model of the theory� de�ned as the perfect model of the logic program

obtained from the theory by rewriting each i��de�nition as a set of ordinary LP clauses� The

perfect model can be regarded as an extensional representation of the meaning of the theory�

De�nition ��	� An SLP knowledge base is a pair hT � ICi where T is a locally strati�ed SLP

theory and IC is a set of integrity constraints such that T j� IC and T j� CET �the Clark

Equality Theory 	
��� where T j� A means that A is true in the perfect model of T �

Note that T j� CET follows from the assumption that t	t� true belongs to T for all variable�

free terms t�

In any given application it is necessary to decide what knowledge should be represented in

the form of i��de�nitions and what should be represented by means of integrity constraints� This

problem is partly addressed by the di�erent semantics of de�nitions and integrity constraints�

de�nitions de�ne predicates� whereas integrity constraints are true properties of the predicates

so de�ned�

The problem can also be addressed procedurally� given a desired algorithmic behaviour�

de�nitions can be used to obtain the backward�reasoning� goal�reduction component of the

behaviour� whereas integrity constraints can be used to obtain the forward�reasoning component�

The proof procedure de�ned in the next section combines backward and forward reasoning

to derive a sequence of goals starting from an initial goal�
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�� The basic proof procedure

De�nition ���� An SLP initial goal is a conjunction of literals� All variables in an initial goal

are free�

Example ���� �n�queens problem� initial goal�

The initial goal

queen���X�� ����� queen�n�Xn�

stands for the problem of placing a queen in some column Xi of every row i�

The proof procedure derives a sequence of goals starting from the given initial goal� with

the aim of deriving a goal which is disjunction of �answers�� These answers might or might not

determine values for the free variables of the initial goal� The disjunction of answers is equivalent

to the initial goal in the sense that� in the perfect model of T � the initial goal and the disjunction

are satis�ed by the same assignments to the free variables�

To simplify the treatment of quanti�ers� both i��de�nitions and integrity constraints are

assumed to be range�restricted� i�e� all variables in the head�conclusion must appear in at least

one atom in the body�condition� and this atom must not be an equality between two variables�

This guarantees that every variable in goals derived by the proof procedure is free or existentially

quanti�ed�

In the simplest �and most common� case� goals derived by the proof procedure are disjunc�

tions of ��at goals��

De�nition ���� A �at goal is a conjunction

G � C� � � � � � Cn �D� � � � � �Dm

where n�m � � and n�m � �� the Ci are atoms or �implications� �called the global constraints

of G�� and the Di are disjunctions of conjunctions of atoms and �implications� �called the local

constraints of the disjunct to which they belong�� �

Note that every initial goal is a �at goal�

Negative literals not p which are not in the condition of an implication are treated as im�

plications p� false� Therefore� implications are either obtained from negative literals� or are

integrity constraints in IC� or are obtained from them by any number of applications of the

inference rules of the proof procedure� given in de�nition ��� below�

Flat goals are a declarative representation of and�or trees of depth two� with atoms or

implications as leaves of the trees� Until section �� we will allow goals derived by the proof

procedure to be more general formulae� corresponding to and�or trees of any depth� with atoms

or implications as leaves�

The proof procedure is a rewriting procedure� consisting of a number of inference rules� each

of which replaces a goal Gi by a goal Gi�� which is equivalent to Gi in the theory T of the

given SLP knowledge base hT �ICi� Each inference rule of the proof procedure is applied to a

sub�formula of Gi which is a conjunction of atoms and implications�

�Implications have the same syntax of integrity constraints� except that in addition to universally quanti�ed

variables� they can also contain existentially quanti�ed or free variables� occurring elsewhere in the same goal�
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De�nition ���� A derivation of a goal Gn from an initial goal G� is a �nite sequence of goals

G�� G�� � � � � Gn where G� � G� � IC and� for � � i � n� Gi�� is obtained from Gi by applying

one of the following inference rules to a sub�formula S of Gi which is a conjunction of atoms

and implications�

� Unfolding� given a reducible atom A in S

and an accessible de�nition H � D� � � � � �Dm in T

such that A � H� for some substitution �� then


 if A is a conjunct of S then� Gi�� is Gi with A in S replaced by �D� � � � � �Dm���


 if A is a conjunct in the condition of an implication L� � � � ��A� � � ��Lk � C in S�

then Gi�� is Gi with the implication in S replaced by

	L� � � � � �D�� � � � � � Lk � C� � � � �� 	L� � � � � �Dm� � � � � � Lk � C�

� Propagation� given implications

C� � p�t�� � � � � tn� with C� a �possibly empty� conjunction of suspended atoms

and p�s�� � � � � sn� � C� � B� both of which are conjuncts in S�

then Gi�� is Gi with the resolvent C� � s� � t� � � � � � sn � tn � C� � B added as a

conjunct of S�

� Logical equivalence transformations� Gi�� is Gi with

	A �B� �C replaced by 	A � C� � 	B �C� �called splitting�

not A� � � � � � not An � B replaced by B �A� � � � � �An �called negation rewriting�

A � false replaced by false

A � false replaced by A� etc�

� Equality rewriting� implementing the uni�cation algorithm of 	�� and the application of

substitutions�

These inference rules are similar to those of the IFF proof procedure of Fung and Kowalski

	�� and SLDNFA of Denecker and De Schreye 	��� Unfolding and propagation are similar to

unfolding and propagation in the IFF procedure� Logical equivalence and equality rewriting are

as in the IFF procedure� The IFF procedure has two additional inference rules �see section ���

As in ordinary LP� unfolding is a form of backward reasoning� However� whereas in ordinary

LP atoms and heads of de�nitions in the logic program are uni�ed� in SLP atoms need to be

instances of heads of accessible i��de�nitions� Therefore� unfolding in SLP is a form of one�way

uni�cation� Note that atoms are suspended i� they cannot be unfolded�

Propagation is a form of resolution� Like resolution� it is used to test formulae �in our case�

goals� for satis�ability �or consistency�� Consequently� there is no guarantee that propagation

will always terminate� However� restrictions can be placed upon propagation to increase the

likelihood of termination and to eliminate redundancies� The most natural restriction is to

apply propagation only when C� is empty� This is a form of forward reasoning �also called

P��resolution�� Note that the equalities in the implication resulting from propagation may allow

instantiation of suspended atoms in C� so that they become reducible�



R�A� Kowalski� F� Toni� G� Wetzel  Executing SLP ��

Logical equivalence transformations are used to simplify goals� Splitting is a declarative

representation of branching in ordinary LP�

Equality rewriting can be regarded� conceptually� as propagation with CET and unfolding

with the i��de�nitions t	t� true� for all variable�free terms t� augmented with garbage collec�

tion of redundant equalities� Moreover� equality rewriting applies substitutions� for example by

rewriting an implication X � a� p�X�� with X universally quanti�ed with scope the implication�

as p�a��

Repeated applications of unfolding can generate multiple nestings of disjunctions� For ex�

ample� consider the i��de�nition

even�X� � X	� � �X	s�X�� � even�X���

and the initial goal even���� � G�� for some conjunction of literals G�� Then� repeatedly un�

folding gives

� ��	� � ���	s�X�� � even�X��� � � G�

� ��	� � ���	s�X�� � � X�	� � �X�	s�X��� � even�X���� �� � � G�

���

It is easy to re�ne the notion of derivation to ensure that every goal in a derivation is a disjunction

of �at goals� Indeed� it is su cient to impose the restriction that every unfolding step is followed

by a splitting step� The de�nition above of unfolding atoms in the condition of implications

implicitly incorporates a logical equivalence transformation step� to guarantee that the formulae

replacing the original implication are implications in turn�

In the previous section �� we have assumed� as given� a set Tc � To of i��de�nitions for the

constraint predicates� However� rather than provide Tc explicitly� we may assume� equivalently�

that a submodel Mc of the perfect model of T is given as their �de�nition�� Thus� for any

constraint predicate p� the atom p�t� is unfolded to true if t is variable�free and p�t� is

true in Mc� p�t� is unfolded to false if t is variable�free and p�t� is false in Mc� p�t� is

unfolded to a conjunction of equalities � for the variables in t if p�t�� is the unique instance

of p�t� that is true in Mc� and p�t� is suspended otherwise� For example� � � �� and � �

� are unfolded to true and false� respectively� and X � �� � � X and X � Y are suspended�

Furthermore� plus�������� plus�������� plus�����X�� plus�X����� and plus���X�� are

unfolded to false� true� X	�� X	� and X	�� respectively� and plus���X�Y� is suspended�

De�nition ���� A successful derivation for an initial goal G� is a derivation G�� � � � � Gn �

D �Rest such that D �false and such that no inference rule can be applied to D� �

Given a successful derivation G�� � � � � Gn � D � Rest for an initial goal G�� then the set of

all atoms and denials �implications with false as conclusion� in D is a computed answer to G��

Suspension is used not only to control non�determinism� but also to stop the computation at a

point where the derived answer is more compact and more informative than it would be if it

were unfolded further� For example� the answer ��X��� is more compact than the disjunction

�Here we intend that in a successful derivation any application of propagation to a pair of implications is

performed at most once�
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of the answers X	�� � � � � X	��� The IFF proof procedure of 	�� de�nes a computed answer for

G� to be the set of all atoms in a disjunct D with all variables in D instantiated to variable�free

terms in such a way that all denials in D are satis�ed� We do not instantiate variables in answers

because this would lead to less informative answers� As a consequence� we also keep denials as

part of the answer�

The proof procedure is sound in the following sense�

Theorem ���� If D is a computed answer for the initial goal G� then

�S� D is a conjunction of suspended atoms and denials �with only suspended atoms in their

condition�

�S�� T j� !�	D � G�

�S�� IC 	 CET 	 !�D is consistent	

Condition �S� holds trivially by de�nition of computed answer� Condition �S�� follows from the

assumption that T j� IC and from the fact that each of the inference rules preserves equivalence

with respect to the given SLP theory T � Condition �S�� follows from the fact that propagation

veri�es consistency�

Condition �S� generalises condition �A� in ALP� that abductive explanations consist of

abducible �external� atoms only� However� whereas abducible atoms in abductive answers must

be variable�free� answers in SLP can contain variables� Condition �S�� generalises condition

�A�� in ALP� that the goal is entailed by the given theory extended with the abductive answer�

Condition �S�� is a weak version of the �consistency view� of integrity satisfaction in condition

�A�� of ALP� that the union of the given theory� the integrity constraints and the abductive

answer is consistent� Indeed� the direct generalisation of �A�� in SLP would be that T 	CET 	

IC 	 !�D is consistent� or equivalently� since T j� IC and T j� CET � that

�S��� T 	 !�D is consistent�

However� this condition is too strong for our proof procedure because suspended atoms are

tested for consistency relative to the integrity constraints� which only approximate the theory�

For example� given the goal

X��� � X���

and no integrity constraints� the computed answer is the goal itself� which is inconsistent with

every correct theory for ��

Condition �S��� is guaranteed to hold� however� if the integrity constraints provide a complete

axiomatisation of the theory �in CLP terminology� they are satisfaction complete�� This is not

usually the case�

�� Applications

Possible applications of SLP include constraint satisfaction problems �such the already discussed

n�queens problems�� con�guration problems� operations research problems �such as job�shop
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scheduling and warehouse location problems�� and temporal reasoning and theories of action in

arti�cial intelligence�

Example ���� �Con�guration�

Consider the problem of con�guring a computer system� The possible choices for the components

�processor� monitor� memory� operating system� etc�� can be speci�ed by i��de�nitions� e�g�

processor�X� � X 	 pentium � X 	 sparc � � � �

operating system�X� � X 	 os� � X 	 unix � � � �

These de�nitions might be accessible or not� System constraints and personal preferences can

be represented by integrity constraints� in the form of both positive requirements and denials�

e�g�

processor�sparc� � operating system�unix�

processor�sparc� � operating system�os�� � false�

If the de�nition of processor is accessible� then the query

processor�X� � operating system�os��

results in the computed answer X	pentium� The query

processor�sparc� � operating system�os��

results in no computed answer� If the de�nition of processor is inaccessible� then the query

processor�sparc�

results in the computed answer processor�sparc� � operating system�unix��

Example ���� �Job�shop scheduling�

An operation corresponds to the execution of a job on a machine� The problem of ordering two

operations �on the same machine M� with starting times X�M and X�M and with processing times

P�M and P�M� respectively� can be expressed by the i��de�nition

order�X�M� P�M� X�M� P�M�� � X�M � P�M � X�M � � � X�M � P�M � X�M ��

Suppose there are two jobs and two machines� and therefore four operations ������ ������ �����

and ������ Suppose the operations have starting times X��� X��� X��� X�� and processing times ��


� �� �� respectively� Finally� suppose that � is the latest starting time for operation ������ �

is the earliest starting time for ������ � is the earliest starting time for ����� and operation

����� must be executed before operation ������ Then� the problem of ordering the operations

can be expressed by the initial goal

order�X��� �� X��� �� � order�X��� �� X��� � � C

where C is

X�� � � �  � X�� � � � X�� � X�� � � � X���

Let IC be

C� � X � X� C� � Y� C� � C� � Y

X � Y � Y � X� false�

Unfolding reduces the initial goal conjoined with IC to

JSS�
� � X�� � � � X�� � X�� � � � X�� � � order�X��� �� X��� � � C � IC�

Splitting gives
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� X�� � � � X�� � order�X��� �� X��� � � C � IC � �

� X�� � � � X�� � order�X��� �� X��� � � C � IC ��

Propagation in the second disjunct gives

� X�� � � � X�� � order�X��� �� X��� � � C � IC � �

� X�� � � � X�� � � � X�� � false � order�X��� �� X��� � � C � IC ��

Logical equivalence transformation in the second disjunct gives

JSS��� X�� � � � X�� � order�X��� �� X��� � � C � IC�

Unfolding gives

X�� � � � X�� � � X�� � � � X�� � X�� �  � X�� � � C � IC�

Splitting gives

� X�� � � � X�� � X�� � � � X�� � C � IC � �

� X�� � � � X�� � X�� �  � X�� � C � IC ��

Three applications of propagation in the second disjunct give

� X�� � � � X�� � X�� � � � X�� � C � IC � �

� X�� � � � X�� � X�� �  � X�� � X�� � �� � X�� � �� � X�� � false � C � IC ��

Logical equivalence transformation in the second disjunct gives the computed answer

� X�� � � � X�� � C � X�� � � � X�� ��

In order to simulate e cient operational research algorithms for job�shop scheduling� the basic

proof procedure needs to be extended with a more sophisticated form of propagation ��CPD��

see section ���

Example ���� �Temporal reasoning�

The event calculus 	�� is a logic programming formalism for temporal reasoning� A simpli�ed

version of the event calculus can be expressed as an SLP knowledge base with i��de�nitions�

holds at�P� T��� happens�E� T�� � T� � T� � initiates�E� P�� not broken�T�� P� T��

broken�T�� P� T��� happens�E� T� � terminates�E� P�� T� � T � T��

The �rst expresses that a property P holds at some time T� if it is initiated by an event E at

some earlier time T� and is not broken �i�e� persists� from T� to T�� The second expresses that a

property P is broken �i�e� does not persist� from a time T� to a later time T� if an event E that

terminates P happens at a time T between T� and T��

The predicate happens is external� with integrity constraint

happens�E� T� � preconditions�E� T� P�� not holds at�P� T�� false

expressing that an event E cannot happen at a time T if the preconditions P of E do not hold

at time T �

The predicates preconditions� initiates and terminates are ordinary� e�g�

preconditions�carry umbrella� T� P�� P � own umbrella� P � borrowed umbrella

initiates�rain� raining�� true

terminates�sun� raining�� true�

Additional integrity constraints might be given to represent reactive behaviour of agents� e�g�

happens�rain� T�� happens�carry umbrella� T� ��

and to prevent concurrent execution of actions �events��
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happens�E� T� � happens�E�� T�� E � E��

Atoms in an answer computed by the proof procedure can be interpreted as actions to be

performed to achieve given goals and�or to react to given events� Denials in an answer can be

interpreted as prohibitions� For example� given the goal

holds at�raining� �� � happens�sun� ��

the proof procedure computes the only answer

happens�rain� T�� T � � � �T � �� false� � happens�sun� ���

Indeed� unfolding holds at�raining� �� gives

happens�rain� T�� T � � � �broken�T� raining� ��� false��

Then� two applications of unfolding� starting with broken�T�raining���� gives

happens�rain� T�� T � � � �happens�sun� T�� � T � T� � �� false��

Then� propagating with happens�sun��� gives the answer�

Given the goal

happens�rain� �

the proof procedure computes happens�carry umbrella� ���

The proof procedure presented in this paper has been used as the inference engine of the agent

architecture of 	��� There� the proof procedure is interleaved with interaction with the environ�

ment so that reactive behaviour can be achieved�

�� Improving the proof procedure

Propagation� which checks the consistency of goals with integrity constraints� may not terminate�

For example� given the goal �possibly obtained by several applications of inference rules�

G � �V � �� false� � �X � Y � Y � Z� X � Z�

unrestricted propagation as de�ned in section � would generate an in�nite sequence of goals

G � �V � Y � Y � �� false�

G � �V � Y � Y � �� false� � �V � Y� � Y� � Y � Y � �� false�
���

Such non�termination can be avoided� for example by restricting SLP knowledge bases so that

both i��de�nitions and integrity constraints are recursion�free� In general� however� propagation

needs to be re�ned both to improve termination and to improve e ciency� Since propagation

is a form of resolution� any resolution re�nement can be used� For example� using P��resolut�

ion� propagation could be applied only when C� is empty� Other resolution strategies� such

as subsumption and ordering strategies� can also be employed� In the general case� however�

because satis�ability is not semi�decidable� termination can not always be guaranteed�

Additional inference rules are needed to guarantee the practicality of the proof procedure�

Given the goal

position�tom� X�� �X � manager� bonus�tom� ����

no inference rule can be applied� and the atoms in the goal are returned as an answer� Fung

and Kowalski 	�� employ an additional inference rule �case analysis� giving two answers
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�position�tom� X� � X � manager � bonus�tom� ���� and

�position�tom� X� � �X � manager� false���

Another useful operation� which generalises subsumption� is deletion� i�e� elimination of logically

redundant information that can be recovered at any time� For example� given the goal

X � � � X � ��� � �X � Y � Y � Z� X � Z�

the atom X � � is logically entailed by X � ��� and transitivity of �� Therefore� X � � can

be deleted from the goal� We have not yet identi�ed appropriate criteria to distinguish when

integrity constraints are to be used for propagation and when for deletion�

The splitting rule can give rise to an exponential explosion in the size of goals� A way

to limit or even avoid splitting completely is to apply propagation within and across disjunct

boundaries� This is a form of non�clausal resolution� We call our variant of such non�clausal

resolution Constraint Propagation with Disjunctions �CPD��

Let us illustrate CPD via the job�shop scheduling problem of section 
� Consider the goal

JSS�� Propagating the global constraints �see de�nition ���� C with the second disjunct of the

�rst conjunct using IC avoids splitting completely and gives �after logical equivalence transfor�

mations� JSS��� We call this kind of CPD global�to�local� Global�to�local CPD does not avoid

splitting in many cases� However� its application might generate� within the disjuncts� tighter

constraints to be used for further propagation immediately after splitting takes place�

Propagation as de�ned in the basic proof procedure can be thought of as local�to�local CPD

if applied within a disjunct� and global�to�global CPD if applied within the global constraints�

A fourth form of CPD� local�to�global CPD� can be used to extract local information from

disjuncts and make it global to the disjunction� For example� consider the job�shop scheduling

problem in the previous section� and the goal

� X�� � � � X�� � X�� �  � X�� � � C�

where C� is

X�� � � � X � X�� �  � X � � � X�� � � � X���

X can be thought of as the starting time of a dummy operation that must follow all other

operations� Any lower bound for X is therefore a lower bound for the time of the overall schedule�

Two steps of global�to�local CPD introduces �� � X in each disjunct� Local�to�global CPD then

factors �� � X out of the disjuncts and adds it to C�� This information might be useful� in the

context of an extended goal� to decide another disjunction using global�to�local CPD without

splitting�

As an additional example� consider

� X � � � �� � X � � � �  � X � X � � � � ��� � X ��

Local�to�global CPD using the �rst conjunct can be used to generate the additional� top�most

level conjunct

� � � � X � X � �� ��

Global�to�local CPD introduces false into the �rst disjunct of the second conjunct and thus

renders ��� � X a global constraint� Further global�to�local CPD introduces false into the

�rst disjunct of the �rst conjunct in the initial goal� In this case� the use of CPD produces
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an answer without performing any �expensive� splitting� Of course� this is at the expense of

employing �and controlling� the use of more powerful inference rules� We have not yet completely

determined automatic control strategies for the application of these rules� However� experience

with our prototypes �see section �� and more generally with the use of similar rules in automated

theorem�proving encourages us to believe that such e cient control strategies may be possible�

The formalisation of CPD is simpli�ed when goals are disjunctions of �at goals�

De�nition 	��� Let

G � C� � � � � � Cn �D� � � � � �Dm

be a �at goal� with global constraints C�� � � � � Cn and disjunctions D�� � � � � Dm� and let

D � A� � � � � �Ar

be a disjunct of some Di� Then

� Global�to�global CPD is propagation between two global constraints Cs and Ct� The resol�

vent becomes an additional conjunct of G�

� Global�to�local CPD is propagation between a global constraint Cs and a local constraint

At� The resolvent becomes an additional conjunct of D�

� Local�to�local CPD is propagation between two local constraints As and At� The resolvent

becomes an additional conjunct of D�

� If all disjuncts of the disjunctionDi contain the same local constraint As� then� by �simple�

local�to�global CPD� As becomes an additional conjunct of G�

Simple local�to�global CPD is the opposite of splitting� More complex forms of local�to�global

CPD are also possible� as illustrated earlier�

�� Comparisons

The proof procedure originates from work on ALP and SQO� Comparisons with other approaches

to ALP and SQO can be found in 	�� ���� Here we concentrate on comparisons with CLP�

The CPD methods can be viewed as a natural implementation� and in some sense a gener�

alisation� of several methods of handling CLP disjunctive constraints� i�e� disjunctions of atomic

constraints� These methods include CHIP forward�checking and look�ahead techniques 	����

Generalised Propagation 	��� and Constructive Disjunction 	�"� ��

CLP�X� 	"�� the traditional approach to CLP� distinguishes between ordinary and constraint

predicates� In our approach� constraint predicates and ordinary predicates are both treated

as ordinary� accessible predicates de�ned by i��de�nitions� Atoms of ordinary predicates are

suspended when unfolding them would be combinatorially explosive� Both kinds of predicates

can also be approximated by integrity constraints� which can be applied when atoms are sus�

pended� As we have seen� constraint predicates can also be understood as being de�ned model�

theoretically� as in CLP�X��

In CLP�X� knowledge is represented in the form of clauses of the form
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H � B � C

where H is an atom of an ordinary predicate� B a conjunction of literals of ordinary predicates

and C is a conjunction of literals of constraint predicates� Answers to goals �existentially quan�

ti�ed conjunctions of literals� are sets of constraints obtained by �unfolding� atoms of ordinary

predicates and collecting any constraints encountered in the process in a separate store �initially

empty� checked for consistency and simpli�ed by a given constraint solver� Di�erent instances

of CLP�X� employ di�erent constraint solvers� For example� a constraint solver for CLP�R�

�the instance of CLP�X� for linear real arithmetic� might rely upon special�purpose built�in

algorithms for solving systems of linear equations and inequalities # like Gaussian elimination

or the Simplex algorithm�

In SLP� propagation with integrity constraints and evaluation in the submodel Mc of the

perfect model of T play the role of the constraint solver in CLP�X�� However� whereas the

user has no knowledge and no control over the internal organisation of the constraint solver in

CLP�X�� i�e� CLP�X� is a black�box approach to CLP� users can choose their own set of integrity

constraints in SLP�

A major theoretical disadvantage of black�box approaches to CLP is that to fully understand

the meaning of a computed answer �or lack thereof�� it is necessary to know the implementation

details of the constraint solver� Moreover� the techniques integrated into the constraint solver

may not be the most appropriate to solve a given problem e ciently� A number of non�black�box

approaches to CLP have been proposed to overcome these de�ciencies� Glass�box approaches

rely upon the user to guide the constraint solver in �nding a solution more e ciently� For

example� the cc�FD� language 	�"� allows several �higher�level� operators �such as implication�

propagation and cardinality� which the user can employ in the program� Similarly� CHIP 	���

allows disjunctive constraints �i�e� disjunctions of constraints� to be labelled as forward�checking

or look�ahead constraints� Transparent constraint solvers� whose organisation is known to the

user� are further examples of the glass�box approach� The treatment of equality in LP and in

SLP� via equality rewrite rules� is a concrete example of a transparent constraint solver� The no�

box approach� a term coined by Fr�uhwirth 	��� constitutes the most complete departure from the

original black�box approach� as it abandons the idea of a built�in constraint solver� Instead� the

user speci�es a set of constraint handling rules which implement a constraint solver explicitly�

similarly to our integrity constraints� However� our approach uses a submodel �for constraint

predicates� of the perfect model to evaluate reducible constraint atoms� and for this reason� it

is not purely no�box�

SLP combines CLP and ALP� Other such combinations have been proposed� e�g� the language

of 	
�� This di�ers from ours in the same way that the instance of SLP for CLP di�ers from

the conventional� black�box approach to CLP�
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	� Conclusions

We have presented Suspended Logic Programming� an extension of ordinary LP including� in

addition to ordinary LP clauses� integrity constraints� direct representation of disjunction in

the bodies of clauses and in goals� and suspension of atoms as in concurrent languages� We

have argued that SLP uni�es and generalises Constraint Logic Programming� Abductive Logic

Programming and Semantic Query Optimisation� We have presented a proof procedure for the

new framework� based upon previously proposed proof procedures for ALP�

In the presentation of the proof procedure we have concentrated on its logic and ignored

control issues� Any concrete implementation of the proof procedure needs to employ speci�c

control strategies �Algorithm � Logic � Control 	���� In our experience� any such strategies

should delay splitting as much as possible� in favour of simple propagation and CPD�

To date� two prototype implementations of SLP have been developed 	���� The implemen�

tations include several of the extensions proposed in section � and have been tested on example

applications� The table below shows some computational results for two version of the n�queens

problem� the �rst using the single integrity constraint given in example ��
 and the second using

the two integrity constraints

queen�A�B� � move��A�B���C�D�� � attacked�C�D�

queen�C�D� � attacked�C�D� � false

with attacked an external predicate�

n �S �r�� no CPD �r�� g�t�l CPD ��r�� full CPD
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The �rst two columns specify the number of queens n and the corresponding number of possible

solutions �S� respectively� The next three columns give the processing times �in seconds on a

Sun UltraSparc� and numbers of splitting operations for� respectively� a solution using the single

integrity constraint ��r�� �rst without making use of CPD� then with global�to�local CPD� and

a solution using the two integrity constraints ���r�� with full application of all CPD methods

including local�to�global CPD� The numbers in brackets in the fourth column are the numbers

of splitting operations performed when employing the heuristic to always choose for splitting

the disjunction with the smallest number of disjuncts� This strategy implements the well�known

�most�constrained variable� heuristic which has been successfully used in CLP to speed up the

solving of many constraint satisfaction problems� Note that such heuristics are not expressed in

the framework itself� rather they are control matters that are part of the implementation� which
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can be made options for the user to switch on or o��

The computational results obtained in this and similar experiments indicate that a careful

usage of the CPD methods cuts down both the size of the search tree �quite dramatically� and

the computation time �not quite so dramatically�� The table also shows that the bene�ts of

using global�to�local CPD in the one�rule version increase with the problem size # computation

times are almost the same for n � 
� � � � � �� but for n � �� � � � � � the gain is� roughly� ��$�

��$ and ��$� respectively� Similarly� the pruning factor of the search tree �i�e� the node count

for the one�rule version without CPD divided by the node count for the one�rule version with

global�to�local CPD� increases from �� for n � � to 
� for n � " and �
 for n � �� For n � 

�results not reported in the table� the node count is more than �� times higher without CPD

and the time saved is about ��$�

A full application of the CPD methods� including local�to�local and local�to�global CPD�

may further prune the search tree� but at least in the presently available implementations� this

is accompanied by increasing computation times� For n � " and n � � no results were obtained

at all because the program ran out of memory �this is indicated by �n�a�� or �not available�� in

the table��

A more e cient implementation of SLP �based on the prototypes� is currently being devel�

oped and already yields signi�cantly better results than those reported above 	���

Preliminary results 	��� seem to indicate the suitability of the approach presented in this

paper to express operational research algorithms� Future work should explore this area further�

We have assumed that SLP theories are locally strati�ed� More work is needed to study the

non�locally strati�ed case�

Finally� SLP and concurrent LP employ on a similar notion of suspension� Unifying the two

approaches might be another interesting topic for future research�
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