
Verification of Protocols for Automated Negotiation
Shamimabi Paurobally1 and Jim Cunningham2

1 ,2 Imperial College, London SW7 2BZ, UK, email: { sp1,rjc} @doc.ic.ac.uk

Abstract. This paper presents the verifying aspect of our work for
verified, unambiguous and sharable protocols with desirable
properties to facilitate automated negotiation. A protocol is
represented as an abstract theory in a multi-modal meta-language,
called ANML, thereby enabling the verification and proof of certain
protocol correctness properties. Furthermore, such logical theories
allow the use of AI techniques for reasoning about goal satisfaction.
The two case studies discussed in this paper are two protocols
proposed in FIPA AUML, [11], which can be shown to contain
errors by using our framework. We provide improved
representations in ANML and when possible in AUML.

1 INTRODUCTION
Negotiation is part of those wider dynamic processes whereby
commercial goals are achieved by the parties to a contract. Overt
negotiation, as deal making, is often suppressed by agreed rules of
encounter, but it is rarely absent altogether. Automated negotiation
has the potential to save both time and computational costs.
Electronic agents may be able to find better deals in strategically
complex environments without the drawbacks of human ego and
prejudices. A key aspect in both real and automated negotiation is
the rich, sometimes implicit, interaction between participants, using
languages and protocols. Setting up a negotiation involves choosing
a common language, ontology and protocol, [15].

Agents engage in conversations, which may be sequences of
messages following a higher-level structure called a protocol, in
order to perform certain tasks. A group of agents agree to follow
this sequence when interacting with one another. Well-known
protocols are English auction, Dutch auction, sealed-bid auction.
Shared protocols and conversations facilitate heterogeneous
applications to attain a common understanding among themselves.
A common protocol thus ensures that all participants following it
will coordinate meaningfully and can expect certain responses from
others. Some researches have even taken the approach of a
protocol-oriented view of ACL (agent communication language)
semantics in order to standardise agent communication, [14]. We
acknowledge the importance of protocols in addition to an ACL in
a negotiation since a protocol allows rational behaviour for deriving
paths of actions towards a goal.

Although conversations have become part of many multi-agent
architectures, formalised conversation specification and
implementation are needed for verification, goal-oriented reasoning
and analysis of the properties of a protocol and hence a negotiation.
The semantics of current specification methodologies have to meet
these requirements in the case of agent interaction protocols. In a
previous paper, [12], we presented an outline of our meta-language,
ANML (Agent Negotiation Meta-Language), which is based on
multi-modal propositional dynamic logic and which provides
intuitive theories for negotiation. ANML can be used to represent
and verify protocols and their properties and to reason about a
negotiation through an abstract theory of a conversation. In
addition, ANML is compatible with existing ACLs as we may
define negotiation protocols using ANML where the messages
being sent by an agent are part of an agent communication language

like FIPA ACL, [3], or KQML, [7]. As an analogy with real-life
conversations, ANML may be considered as a tool to construct and
check the grammar in a conversation where the words being
communicated may be in any language such as English, Japanese or
Spanish.

In this paper, we use our framework to analyse two agent
interaction protocols proposed in FIPA AUML, [11]. The next
section gives an overview of our meta-language and of FIPA
AUML. In section 3 we verify a simple AUML Request Protocol
where at most three messages may be sent. We translate this
protocol into ANML and show how even such a simple protocol is
prone to error. We provide corrected versions of the protocol in
both ANML and AUML. In section 5, we carry out similar
verification on an iterated contract net protocol, initially proposed
in AUML. We perform progressive corrections on given protocols
by checking the possible states of a negotiation. AUML protocols
depend on the semantics of the FIPA ACL performatives, which
change according to the ongoing altercation about FIPA ACL.
ANML on the other hand is a meta-language that can be made
compatible with existing or emerging agent communication
languages.

2 SPECIFYING PROTOCOLS
Traditionally, deterministic finite state machines have been used to
specify protocols, ([10] and [14]). Other approaches for developing
protocols include state charts [19], and petri-nets. For sophisticated
interactions it is desirable to use formalisms with more support for
concurrency and verification [8]. There is a need for tools for
protocol specification, verification and sharing. In [12], we propose
a meta-language, called ANML, for expressing protocols and for
providing an abstract theory of a negotiation. ANML supports the
specification of protocols such that they can be sharable, with
desirable and testable properties and help to coordinate agents in
their goal seeking activities.

2.1 ANML
ANML, (Agent Negotiation Meta-Language), is a multi-modal,
propositional dynamic logic-based meta-language for representing
and reasoning about the states and processes of a negotiation. New
or existing protocols can be expressed and extended in ANML so as
to use its verification capability. ANML addresses much that can be
standardised seamlessly without the danger of semantics mismatch
in language and ontology between different agents. Our syntax is an
adaptation of the program logic described in Goldblatt (1987), [6],
where a process may be expressed in terms of its sub-processes. For
example, a negotiation process can be decomposed into possibly
non-atomic sub-processes like browsing, bargaining and paying.
We associate an agent with processes by prefixing the process with
an agent in the same way an object is suffixed by its methods e.g.,
r:retailer.display means retailer r executes the display process.
Usually we omit the agent type and denote a joint process between
two parties with ‘∪‘ as in { c ∪ r} .shopping. A process may be
decomposed into a sequence of sub-processes each possibly
coupled with the agent or agents executing that sub-process. An

action is an atomic process. The process denoted by a;b is
composed of the sequence a followed by b, a* denotes zero or more
iterations and a+, one or more iterations. A state test operator ‘?’
allows sequential composition to follow only if successful. For
example c.browse?;c.choose is the process c.choose if c.browse
succeeds, otherwise it fails. Paurobally and Cunningham (2000),
[12], covers ANML in more detail and specifies various negotiation
protocols in ANML.

Throughout this paper, for the sake of conciseness, we use the
terms state and current state as implicitly referring to the state and
current state of a negotiation on a subject respectively. The state of
a negotiation may have a hierarchical structure e.g. a state may
contain sub-states. When a state holds, it is necessary that its parent
states also hold e.g. when offered is true, then open is also true
since offered is a sub-state of open. However it is not necessary for
a sub-state to be true while its parent state holds. Hence a state
conveys information about a negotiation. Partial information is
available when we know that a parent state holds e.g. we know the
negotiation is closed, but we do not know what sub-state of closed
out of rejected, agreed or timedout. More specific information is
obtained by knowing which sub-state is true. A current state means
a state which is true while other non-parent states are false. The
current state of a negotiation is produced by agents’ actions.

2.2 FIPA AUML
Bauer et al. [1] has proposed AUML, (Agent Unified Modeling
Language), as an extension of UML to define interaction protocols
between agents. AUML is intended to be a graphical specification
technique, which rely partly on FIPA ACL by using a subset of its
communicative acts as messages. In sections 3 and 4, we show that
AUML allows errors and ambiguities in protocols and does not
scale easily to multi-agent systems.

An AUML Interaction Protocol (IP) diagram expresses a
protocol in the form of a UML sequence diagram with extensions
specific to AUML, as shown in Figure 2. Agents are assigned to
roles, belong to classes and an IP diagram shows interactions
between these agents along a timeline. A dashed box at the upper
right-hand corner declares the protocol as a template specification
for later instantiation. An arrow indicates an unnested,
asynchronous communication while a diamond means a decision
point that can result in zero or more communications being sent.

Figure 1. Extensions supporting concurrent threads

Figure 1 shows AUML notation for asynchronous messages. Figure
1(a) indicates that all threads CA-1 to CA-n are sent concurrently,
1(b) shows a decision point where zero or more messages may be
sent and 1(c) indicates exactly one message may be sent.

3 A Request Protocol

Figure 2 FIPA Request Interaction Protocol,[4]

Figure 2 shows a Request IP, [4], in AUML where at most three
messages can be exchanged. We show that errors exist in even such
simple protocols. An initiator sends a request to another agent, a

participant, who refuses, or replies that it does not understand or
agrees to satisfy the request and later reports on its success. We
represent this protocol in ANML and point out a number of errors
in it, which lead to an ambiguous and inconsistent interaction and
wrong beliefs. We finally give rectified versions of the protocol in
both ANML and AUML.

3.1 Initial remarks
An agent may not have built-in knowledge about real life
interactions, so a protocol has to be complete and make all
possibilities in a specific situation explicit. Consider the case when
either agent should be able to send some message at any time or
when an event can occur at any point, e.g. any agent can reject,
send a failure or a timeout can occur at any time. To represent such
dynamic processes in an AUML diagram would require each
interaction thread from each agent to show all possible messages,
leading to cluttered diagrams. In Figure 2, an initiator cannot send a
failure, reject or timeout message. In ANML, we just add axioms to
express the effect of these processes from a parent state.

In AUML diagrams, splitting and merging of threads of
interaction can be abbreviated to one thread along the same lifeline,
where execution at these threads usually depends on the current
state of the interaction and on previous messages. Conditions for
executing a process at decision threads have to be defined,
initialised and reset. In ANML, action-condition rules determine
possible state transitions and ensure the current state of a
negotiation is valid with respect to other states. In AUML
protocols, the guards at a decision point are often informally treated
or implicit, giving rise to misunderstandings. For example, in
Figure 2, agreed has not been defined and initialised anywhere and
is not shown to be related to the previous agree message.
Therefore, a participant can refuse a request or send a non-
understood message, but later may still send an inform message that
it has successfully performed the request.

Although using the same timeline as on the Initiator’s side in
Figure 2 makes the graphical diagram more readable, this
abbreviation cannot be used in more realistic protocols. Out of the
3 messages received by an Initiator in Figure 2, at least two of them
are terminal messages ending the interaction. In practical
conversations, at a decision point, there may be more than one non-
terminal message that gives rise to various sequences of
interactions.

3.2 Verification of the request protocol
A literal translation of Figure 2 along its timeline from AUML to
ANML results in the following path of execution:

{ Initiator ∪ Participant} . FIPA-Request-Protocol = Initiator.
request; (one-of [Participant.not-understood, Participant. refuse,
Participant.agree]

�
 (agreed → one-of ([Participant.failure,

Participant.inform-done, Participant.inform-ref])))

The one-of predicate returns true if and only if exactly one of the
elements in its given list is true whereas none-of returns true if and
only if none of the elements in its given list are true.

3.2.1 Errors in AUML protocol
As remarked before, the condition agreed at point B in Figure 2 has
no meaning for an agent and is not shown to be related to the
previous agree message. Even though a participant sends not-
understood or refuse after a request, it may still send inform-done
or failure or inform-ref later. It is thus not obvious that not-
understood and refuse lead to terminal states. In ANML, we can
treat agreed as a state which we initialise to false and set to true
when Participant sends an agree message.

In the AUML diagram, the request protocol is a path from a
request to success or failure messages. The preconditions and
postconditions for an action are not well-defined and there are no
constraints to stop an agent restarting a negotiation through a new

request while in the middle of following the protocol. There is no
facility for an agent to refer to a point in an interaction and to the
effects of messages. All actions end up in anonymous points. What
is the difference in the world between sending a not-understood,
refuse or agree message since the state of the world or the effects of
these actions are not given? How does an agent refer to the result
of an interaction or differ between possible worlds as messages are
sent? AUML protocols depend on the semantics of the FIPA ACL
performatives.

According to the AUML notation, in Figure 2 there is no
constraint against threads at A and B being executed concurrently.
This leads to a number of contradictions with realistic interactions.
A participant can send an agree or not-understood message while at
the same time sending a failure or inform-done. Logically a
participant should not be able to simultaneously send an agreement
at point A and a failure at point B. In practice, [agreed] is initially
false and depends on the decision at A. When messages at A and B
are sent concurrently, even if a participant sends an agree, [agreed]
is false and point B is not executed. Thus a participant does not
execute a request even after agreeing to it and an initiator waits in
vain for the result of an agreement. An agent may need time to
complete a task after agreeing to it and cannot execute A and B with
success concurrently.

3.2.2 Corrections in an ANML translation
We define the states of a negotiation after each possible message by
assuming that an (agent’s) action triggers a corresponding state e.g.
an agree action triggers an agreed state. The states after request,
refuse, inform-done, not-understood, agree, failure, inform-ref
actions are requested, refused, informed-done, not-understood,
agreed, failed and informed-ref respectively. A protocol is
ambiguous if any of the states are undefined at any point. It is
incorrect if a state that becomes true is not as required by the
semantics of the protocol, e.g. in an auction a bid triggers the
rejected state. We aim to obtain a complete protocol where all
states are well-defined at all instances by analysing the truth values
of the above states. The set of states is finite and bounded by the
protocol. Before a negotiation, all the above states are initialised to
false. To prevent an agent from restarting a negotiation whilst in the
middle of one, we introduce the interaction state as the parent of all
states; ¬interaction is true at the start of a negotiation and is the
precondition for sending a request. We also express points A and B
as a sequential path.

Theory 1 is an axiomatisation in ANML of the request protocol
by giving the relation between parent and sub-states and action-
condition rules for state transitions. We use multi-modal operators
in ANML to represent axioms for state transitions. s1 ↔ [X.a]s2 can
be read as state s1 of negotiation holds if and only if at this state, an
agent X performing action a always leads to next state s2. s(X)
denotes the state s produced by an action from agent X. Axioms
between states ensure that only the current state is enabled while
other non-parent states remain false. Now we can differentiate
between worlds by referring to the current state of a negotiation.
We can identify the state and result of a negotiation at any point.

We specify two more states open and closed, as sub-states of
interaction, to explicitly convey non-terminal and terminal states
respectively. We also allow a timeout event to occur at any time,
leading to a timedout state. We can prove that the final protocol,
given by Theory 1, leads to well-defined states at all times. We can
further incorporate our corrections into a new AUML diagram and
extended statecharts given in Figure 3. Let P denote a participant, I
denote an initiator and X as any agent.

interaction ↔ one-of ([open, closed])
open ↔ one-of ([requested(X), agreed(X)])
closed ↔ one-of ([not-understood(X), refused(X), failed(X),

 informed-done(X), informed-ref(X), timedout])
¬interaction ↔ none-of ([open, closed])
¬open ↔ none-of ([requested(X), agreed(X)])

¬closed ↔ none-of ([not-understood(X), refused(X), failed(X),
 informed-done(X), informed-ref(X)])

¬interaction ↔ [I.request] requested(I)
requested(I) ↔ [P. not-understood]not-understood(P)�

 [P.refuse] refused(P) � [P.agree]agreed(P)
agreed(P) ↔ [P.failure]failed(P) � [P.inform-done]

inform-done(P) � [P.inform-ref]informed-ref(P)
open ↔ [timeout] timedout

Theory 1. Logical theory for request protocol

Figure 3. Suggested AUML and statechart diagrams for a request IP

4 ITERATED CONTRACT NET PROTOCOL

Figure 4. FIPA Iterated Contract Net Interaction Protocol, [5]

In the FIPA contract net protocol, a manager solicits proposals from
other agents by issuing a call for proposals (cfp). Agents receiving a
cfp may reply with propose, not-understood or refuse-1 before a
deadline. After the deadline, the manager sends an accept-proposal
to selected agents and a reject-proposal to others. When a
contractor has completed its task, it sends a completion message to
the manager. The FIPA iterated contract net IP, [5], is an extension
of the contract net protocol to allow multi-round iterative bidding.
After a first call for proposals, a manager may accept one or more
of the bids, rejecting the others, or may repeat the process by
issuing a revised cfp and rejecting all the proposals. The process
terminates when the manager refuses all proposals and does not
issue a new cfp or accepts one or more of the bids or the contractors
all refuse to bid and the manager does not issue a new cfp.

The obvious error in Figure 4 is the participant’s missing
timeline. Figure 4 is translated along its timelines into the three
axioms in ANML in Theory 2. Let P denote the Participant and I
an Initiator.

{ I:Initiator ∪ P:Participant} .FIPA-IteratedContractNet-Protocol =
 I.cfp; { I ∪ P} .contractNetProtocol

{ I ∪ P} .contractNetProtocol = (deadline ↔ one-of ([P.not-
understood, P.refuse-1, P.propose])) ; one-of([I.reject-
proposal-1, { I ∪ P} .accepting, (I.reject-proposal-2�

 (I.cfp-2; { I ∪P} .contractNetProtocol)])

{ I∪P} .accepting = I.accept-proposal; one-of([P.failure, P.inform])

Theory 2. First ANML version of iterated contract net protocol

4.1 Verifying the iterated contract net protocol
Most of the errors mentioned in section 3 also occur in Figure 4 and
assuming that we have resolved them, we discuss here additional
errors and rectification, while mentioning in brackets which axioms
in Theory 3 correct that error. For example, a recurrent error is the
lack of conditions or their incorrect setting at decision points. In
Figure 4, even after a participant responds with a not-understood or
refuse-1 message at A1 after a cfp, the interaction can continue and
an initiator can send an accept-proposal at B1. The threads of
interaction for both agents lying along one timeline require
constraints at the decision points A1, B1 and C1. Theory 3 gives our
logical theory for this protocol after several revisions for ensuring
all states are well-defined and as expected. We refer to points A1,
B1, C1 and D1 in Figure 4.

4.1.1 Deadlines
In theory 2 and Figure 4, a participant must wait for the deadline (at
point A1) to occur in order to respond to a cfp. For example, if the
deadline is set to 4 minutes then at exactly 4 minutes and 0 seconds,
all agents must send their responses. This is not feasible and in
practice, a participant is allowed to respond before a deadline.
Deadlines that are given a ground value such as 9:00 am become
unattainable when reiterating cfps. Figure 4 also does not cover the
case where a deadline passes without a participant sending any
messages. Axioms 26 and 20 respectively specify a timeout event
and the possible actions before a deadline.

4.1.2 Incompleteness

Point B1 has no deadline or timeout for a manager to accept or
reject proposals, neither does a participant have any deadline or
timeout at C1. In fact, a number of events specified in the English
description of the protocol are not portrayed in Figure 4. The case
when all the contractors refuse to bid and the initiator does not issue
a new cfp is not shown. Axioms 10 and 22 capture this. The
negotiation may also not terminate, ending up in infinite call for
proposals, even if all agents send a refusal. A logical theory of a
protocol allows us to derive its properties such as termination and
decidability, [13]. In Figure 4, contrary to the English description,
an initiator cannot both accept some proposals and reject others
since point B1 is an exclusive-or decision where exactly one of the
interaction threads can be performed. Axioms 6 and 23 allow
rejected-proposal-1(C) and proposal-accepted(Z) to coexist.

4.1.3 Scaling to multi-agent systems
The contract net protocol is a multi-agent interaction. Yet Figure 4
and theory 2 show an interaction between only two agents. They do
not portray how an interaction in a multi-agent system depends on
the responses of specific agents and their dynamic roles. How does
an agent infer at point B, whether only one agent is sent an
acceptance or some agents, e.g. X,Y,Z, are sent acceptance.

For example after A1 in Figure 4, out of n agents, m agents send
a proposal and p agents send a refusal. What is the relation between
an agent among these m agents and one from the p agents? An
initiator must send acceptances and rejections to these m agents and
not to those (n-m) agents that did not send a proposal. The identity
of these m and (n-m) agents must be known so that each agent
receives and sends the appropriate message. Likewise only those
agents whose proposals have been accepted should be able to send
the results of executing a cfp at C1, but the AUML protocol does
not stop other agents from doing so. There is a lack of guards and
lack of information about which agent can perform which action.
Figure 4 does not associate the identity of an agent to the messages
being sent and it is not known which agents’ proposals are accepted
and which ones are rejected.

Figure 4 shows only two timelines. Illustrating a complete and
reasonable interaction between more than 2 or 3 agents in AUML
would be hard and would result in an illegible diagram. In addition,
AUML does not keep a parameter to record which agent sent which
message to whom. What if participants wish to send messages
between themselves as in a forum instead of just between an
initiator and a participant? For a multilateral IP in AUML, one
would need to show all the timelines of all the agents in all their
roles. This has to be specified beforehand and the number of agents
fixed, preventing open interactions. Auctions are popular forms of
negotiation allowing dynamic entries and thus cannot be
realistically specified in AUML. Hence AUML does not capture
correctly multi-agent and dynamic negotiations with an agent
changing roles dynamically.

Even if a group of (n+1) agents follows Figure 4 as a protocol, an
initiator must keep n instances of the same negotiation for n
participants, giving rise to complexity, concurrency and
coordination problems. In an online auction, an auctioneer
following an AUML protocol would need an auction instance for
each possible (registered) bidder, instead of only keeping track of
the state of the auction with those agents which sent bids. When
the participants are allowed to know how the initiator responds to
others, then each participant would need n instances of the
interaction for each other participant. If an interaction allows
communication between participants, then the n instances are
related to each other leading to a complexity of mn for m states.

In ANML we pass an agent as a parameter to the actions and
states related to it. We use finite set theory to manage groups of
agents and parameterise actions and states with a group of agents.
The sets of agents in each state is initialised to empty and an agent
is added to an appropriate set according to the message exchange
and the resulting state. For example, just after a cfp, not-
understood({ }) means that no agent has sent a not-understood
message. When agents ann and bob send a not-understood, they are
added to the set to give not-understood({ann,bob}).

4.1.4 Iterating call for proposals (cfps)
After a participant responds with a refuse-1 or a not-understood at
A1, it is unclear in Figure 4 whether that participant is sent further
cfps or it is written off for the rest of the interaction. In practice all
agents should be sent revised cfps, since an agent which previously
sent a refusal may later be able to execute a revised cfp. Figure 4
presupposes that only those participants that previously sent a
proposal are eventually sent a revised cfp, as the interaction thread
D1 is a response to propose. In axioms (7) and (9), we create a
sub-state of open called on-hold for those agents which sent a
refusal or not-understood in response to a cfp. Axioms (22) and
(24) allow revised cfps to be sent to all agents and reinitialise the
set of agents in the on-hold state.

Point D1 is a concurrent interaction thread where an initiator
simultaneously rejects the proposals of a number of agents and
sends a new cfp to them. Confusion may arise when several
messages are sent or received simultaneously. A participant may
receive a revised cfp followed by a rejection because of delays in
the communication channel. In this case, the participant’s beliefs
become inconsistent with the other agents. An initiator may also
have difficulty in distinguishing between delayed proposals from
previous cfps. D1 should not be a concurrent thread and an initiator
should first send a reject-proposal-2 to some agents followed by a
cfp-2 to all agents. We also need to re-initialise the conditions,
states and sets of agents when reiterating a cfp as in axioms (22)
and (24) and the rules between states. It is unclear how to do this
initialisation in AUML, even if guarding conditions were given.
The first cfp is an entry point into a negotiation and must be
distinguished from revised cfps. (Axiom 19).

4.1.5 Making Proposals
The AUML protocol supposes that as soon as an initiator receives a
proposal, it cannot accept other messages and must perform the

decisions at point B1. This behaviour is at odds with the English
definition of the protocol where an initiator waits for a number of
proposals before deciding on which ones to accept. We solve this in
axiom(8) by letting proposed(Y) be a sub-state of cfped(X).

In Figure 4, in order to proceed to point B1, at least one
participant must send a proposal. An initiator cannot send a revised
call for proposal unless he/she has received at least one proposal.
This can lead to a deadlock because all participants may refuse to
bid and an initiator cannot revise its cfp from the protocol. The
interaction does not terminate when no participants make a
proposal. Axiom 22 allows a timeout and sending a revised cfp in
case of no proposals.

4.1.6 Terminal states
In AUML, diagrams abbreviating different threads of interaction
onto a single timeline obscures the terminal actions and points for
where a negotiation can end. It is not obvious in Figure 4 that an
interaction ends when an initiator refuses all proposals and does not
issue a new cfp. Contrary to figure 2, in figure 4 a negotiation is not
closed if some agents send not-understood or refuse-1 messages,
since there can be revised cfps. In ANML, both open and closed
states, their sub-states and the processes leading to them are
obvious. States failed(F) and informed(E) may both be true at a
point since some participants will send a successful completion
while others a failure.

4.1.7 A logical theory of the iterated Contract Net Protocol
Theory 3 is the ANML logical theory for an iterated contract net
protocol after several iterations to ensure that the states of a
negotiation are well-defined and as expected. We express a multi-
agent interaction between an Initiator, I, and n other participants.
Let I, P and X denote single agents and Y, Z, A, B, C, D, E, and F
denote sets of agents. Axioms (4) to (13) represent the relation
between states and sub-states. Axioms (14) to (18) ensure that
messages are sent to the right agents or group of agents, so that an
agent does not receive contradictory or unintended messages.
Axioms (19) to (26) are action-condition rules for state transitions.

interaction ↔ one-of ([open, closed]) (4)
open ↔ one-of ([cfped(X), pending-accomplishment (Y)]) (5)
pending-accomplishment (Y) ↔ (rejected-proposal-1(C) �

proposal-accepted(Y-C)) (6)
on-hold → cfped(X) (7)
proposed(Y) → cfped(X) (8)
on-hold ↔ not-understood(A) � refused-1(B) (9)
closed ↔ one-of ([(failed(E) � informed(F)), rejected, timedout,

rejected-proposal-2(D)]) (10)
 ¬interaction ↔ none-of ([open, closed]) (11)
¬open ↔ none-of ([cfped(X), pending-accomplishment (Y)]) (12)
¬closed ↔ none-of ([failed(E), informed(F), rejected, timedout,

rejected-proposal-2(D)]) (13)
(not-understood(A) 	 refused-1(B)
 proposed(Y)) →A∩B∩Y={ } (14)
(rejected-proposal-1(C) � proposal-accepted(Z) �

proposed(Y)) → ((Z = Y - C)
 C � Z = { }) (15)
failed(E) � informed(F) � proposal-accepted(Z)→ (F=Z - E) (16)
failed(E) � informed(F) → (F � E = { }) (17)
rejected-proposal-2(C) → proposed(C) (18)
¬interaction ↔ [I.initial-cfp] (cfped(I) � not-understood({ }) �

refused-1({ })) (19)
(cfped(I) � not-understood(A) � refused-1(B) � ¬proposed(Y)) ↔
 one-of ([[P. not-understood]not-understood(A ∪ P) ,
 [P.refuse-1]refused-1(B ∪ P) , [P.propose]proposed({ P})])(20)
(cfped(I) � not-understood(A) � refused-1(B) � proposed(Y)) ↔
 one-of([[P. not-understood]not-understood(A ∪ P) , [P.refuse-1]
 refused-1(B∪P), [P.propose]proposed({ Y∪P})]]) (21)
(on-hold � ¬proposed(Y) � cfped(I))↔[timeout ; I.cfp] (cfped(I)
 � not-understood({ }) � refused-1({ })) (22)

proposed(Y) ↔ ([I.reject-proposal-1] rejected-proposal-1(C) �
[I.accept-proposal] proposal-accepted(Z) Z = Y -C) !
([I.reject-proposal-2] rejected-proposal-2(Y) (23)

rejected-proposal-2(Y) ↔ [I.cfp] (cfped(I) " not-understood({ })#
 refused-1({ })) (24)

proposal-accepted(Z) ↔ [P.inform]informed(E)$
 [P.failure]failed(F) % E= Z - F (25)

open → [reject] rejected & [timeout] timedout (26)

Theory 3. Final ANML protocol

5 CONCLUSION
We have shown how to represent and verify existing protocols
using a meta-language, ANML, to obtain an improved and intuitive
theory of a protocol. We can also convert a logical theory of, for
example a bilateral negotiation, [12], from ANML into an AUML
diagram, a statechart or a petrinet. However the AUML diagram is
relatively complicated since, unlike the two simple case studies
analysed here, more than one non-terminal messages are possible at
any one decision point. Also expressing all conditions and internal
events in AUML increases the complexity of the diagram.

A logical theory for a protocol enables us to verify functional
correctness and to address properties such as termination, fairness,
safety and liveness, [13]. We can use the research on joint intention,
[2], to facilitate issues of concurrency, nesting and consistency. An
abstract theory for a protocol allows us to use AI techniques for
reasoning and planning about the sets of possible paths towards a
goal. In a forthcoming paper, we use epistemic logic to analyse the
knowledge of an agent and consistency in the group’s knowledge
about the current state of a negotiation as it progresses.

REFERENCES
[1] Bauer, B., Müller, J., Odell, J. [2001] “Agent UML: A Formalism for

Specifying Multiagent Interaction” . Agent-Oriented Software Eng., P.
Ciancarini and M. Wooldridge eds., Springer, Berlin, pp. 91-103.

[2] Cohen, P. R. and Levesque, H. J. [1991]. “Teamwork” . Nous, 35,
25(4):487—512.

[3] FIPA. [1997]. Agent Communication Language. Technical report.
Foundation for Intelligent Physical Agents. http://www.fipa.org

[4] FIPA [2001]. “FIPA Request Interaction Protocol” .
http://www.fipa.org/specs/fipa00026/XC00026F.html

[5] FIPA [2001]. “FIPA Iterated Contract Net Interaction Protocol” .
http://www.fipa.org/specs/fipa00030/XC00030F.html

[6] Goldblatt, R. [1987]. Logics of Time and Computation, Lecture Notes,
Center for the Study of Language and Information 1987.

[7] Labrou, Y. and Finin, T. [1997]. “Semantics for an agent
communication language” . The fourth Int. workshop on Agent
Theories, Architectures and Languages. Rhode Island, USA.

[8] Labrou, Y. [2001]. “Standardising Agent Communication” . In Proc. of
9th ECCAI Advanced Course and EASSS 2001. Springer, LNAI 2086.

[9] Moore, S. [1999]. “On conversation policies and the need for
exceptions” . Workshop on Specifying and Implementing Conversation
Policies, Third Int. Conf. on Autonomous Agents. pages 19-28.

[10] Nodine M. and Unruh A. [1998]. “Facil itating open communication in
agent systems: the InfoSleuth infrastructure” . In Proc. of the Fourth
Int. Workshop on Agent Theories, Architectures, and Languages,
1997. MCC-INSL-113-98.

[11] Odell, J., Parunak, H.V.D., Bauer B. [2001]. “Representing Agent
Interaction Protocols in UML” . Agent-Oriented Software Eng., P.
Ciancarini and M. Wooldridge eds., Springer Berlin, pp. 121–140.

[12] Paurobally, S. and Cunningham, J. [2000]. “Specifying the Processes
and States of Negotiation” . In Agent Mediated Electronic Commerce.
The European AgentLink Perspective. Springer. pages 61-77.

[13] Paurobally, S. and Cunningham, J. Safety and Liveness of Negotiation
Protocols. AISB2002. Convention on AI and the Simulation of
Behaviour. London. ISBN 1902956299

[14] Pitt, J., and Mamdani, A. [1999]. Communication protocols in multi-
agent systems” . In the Workshop on Specifying and Implementing
Conversation Policies, Third Int. Conf. on Autonomous Agents.

[15] Rosenschein, J. S. and Zlotkin, G. [1998]. “Rules of Encounter.
Designing Conventions for Automated Negotiation among
Computers” . MIT Press. ISBN 0262181592.

