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ABSTRACT 

 

 

 

Motion tracking of humans is a challenging problem in machine vision. Modeling human 

motion is not a trivial problem. The dynamics of human motion is unpredictable, since it 

is governed by an unknown number of parameters. Tracking becomes a more 

complicated problem in outdoor scenes, where numerous factors are controlling the 

scene in a very unpredictable way.  

 

We wish to design a system that can robustly model an outdoor scene, and hence perform 

tracking. We also wish to apply Kalman filtering techniques, and analyze how well it 

performs when applied to tracking.  
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Chapter 1 

 

 

 

 

 

 

1.1    THE PROBLEM STATEMENT  

Tracking objects in a video sequence has been of considerable interest to machine vision 

researchers for quite some time. Autonomous motion tracking has its roots in radar 

systems, where the luminous dots appearing on a black radar screen background, were 

tracked by a vision system. Due to slow processor speeds, tracking on a more intricate 

background, in real time, was still far away from becoming reality. Tracking has evolved 

over the years, with the development of new algorithms and improved processor speeds. 

Algorithms that are available today make it possible to track objects in outdoor scenes.  

Motion tracking has had very useful applications in the industry. From tracking objects in 

an assembly line to surveillance systems, motion tracking has become a very powerful 

concept. More recently, human motion tracking has been on the limelight. Since humans 

are the principal actors in life’s daily activities, motion tracking of humans is paramount 

to the success of a good surveillance system. Further, by tracking human motion we can 

use motion data to perform event inference, and justify any observable human behavior. 

Such surveillance systems are still under development.   

 

As it may otherwise seem, tracking human motion is not a trivial problem. There are 

infinitely many situations that could arise in a video scene.  

Introduction 
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Humans quite often appear to walk in groups in video sequences. Most vision systems 

and tracking algorithms fail to deal with the problem of occlusions. An occlusion is a 

situation where a human or an object partially or completely blocks the optical pathway 

of the vision system’s camera, to another human. In cases where occlusion occurs, 

motion tracking can get difficult for a number of reasons. A naïve system might not 

recognize occlusions completely. In such cases, these systems usually fail when the 

human group (causing occlusions between one another) disintegrates and walks away in 

different directions.  

 

This certainly should not be regarded as the only scenario. It merely illustrates the nature 

of the problem that is needed to be dealt with. More complex situations could arise, such 

as the case where the scene could get relatively crowded with people.  

 

PREVIOUS WORKS 

Numerous papers in machine vision have addressed the topic of motion tracking. We will 

try to summarize the developments in this field, and point to the reader to important 

literature.  

 

Background modeling is a prime component of any motion tracker. It has been used by 

machine vision researchers for quite sometime. A primitive model was laid out by Wren 

R.C. et al. [4] in their paper on a real-time system for tracking people. They suggested a 

single Gaussian background model; which was, however, very limited in the type of 

backgrounds it could model. It was only performed well in indoor backgrounds. Their 

work was followed later by Stauffer et. al. [7], at MIT, who showed that a mixture of 

Gaussians could be used to model an adaptive background. This worked very well in 

outdoor situations. Since then there have been other models, notably the median filter 

approach by Haritaoglu et. al. [9] .  
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The earliest motion tracking systems tracked objects on radar systems. These were 

followed by more advanced systems which started using optical flow techniques. With 

the advancement in background modeling, and processor speeds, machine vision 

researchers have started using more sophisticated techniques. Most researchers have 

shifted to detection-based tracking, where objects are extracted and their states identified.  

Other techniques, such as match-based techniques are useful for scenes where object 

detection and complete extraction is difficult. These use certain features of the object to 

perform tracking.  More recent techniques have used Bayesian networks and Hidden 

Markov Models.  

 

A handful of work [2], [3], [5], [6] has been of particular interest to us. Recently, Zhao, 

T. et. al. [2] work on tracking multiple humans used a novel approach to track humans in 

3D using ellipsoid human shape models. Previously, rectangular models have been used 

[3] with little success. The work also presents a unique approach to estimating the 

“search space” of a given human in subsequent frames and tracking using Kalman filters, 

hence reducing the search time complexity significantly. Kalman filters are also used to 

handle occlusions. We have found the use of Kalman filters in tracking, particularly 

interesting, and this has motivated our work.  

 

AIMS AND OBJECTIVES 

We wish to implement a system that can track multiple human motions in complex 

situations, using a stationary camera. The system will process video input sequences, and 

will output the trajectories of humans in the scene. Since, the system tracks human 

motions in real-time, it will also employ the ability to process less than 10 frames per 

second, on a regular Pentium processor. Such a feat would require the system to be 

implemented using fast and efficient algorithms together with suitable data-structures. 

 

The system will be implemented in C++ in the windows environment using Intel’s 

OpenCV library [4] 
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Following are a list of objectives: 

 

1. Identifying and removing background from the scenes, in order to expose the 

foreground pixels. A Gaussian model approach suggested by Zhao, T. et. al [2], 

which originally appeared in Yamada, et. al [8], will be used for background 

removal.  

2. The head-tops (top of head) of human candidates in the scene are located. These 

head-tops could also well be head-tops of shadows and reflections cast by the 

human objects. Hence, we should be able to classify the head-tops.  

3. We then perform shadow removal by first determining the shadow cast by the 

ellipsoid (the human model) on the ground [2]. We use our own techniques to 

efficiently remove the shadow.  

4. We classify each human subject using an ellipse model.  

5. The next step is to track each human object in the subsequent frames. We analyze 

two approaches, namely the vector analysis method, and using Kalman filters to 

enhance the prediction process.  

6. Testing the system on real image sequences shot with an actual surveillance 

camera.  
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Chapter 2 
 

 
 

 

 

 

 

2.1    THE DEVELOPMENT OF THE BACKGROUND MODEL 

We first attempt to define the notion of a background in an image sequence. The 

background, as most might perceive, is not necessarily always the objects in a scene that 

remain stationary. In the real world, there could many situations such as changes in 

illumination, the case where an object moves in a periodic fashion (e.g. leaves of trees), 

etc. Such cases should be accounted for, and these shouldn’t be classified as foreground.  

 

The background changes as a scene progresses. If we take an example of us watching a 

video scene: we subconsciously, compute the background by differentiating the 

stationary and the non-stationary objects in a scene. As objects enter the scene, we 

normally tend to focus on the non-stationary objects. In a way, we ignore the stationary 

objects, since we keep adding them subconsciously to our own model of the background.  

 

In order to develop the background model, we have implemented and experimented with 

two different models, namely:  

• Single Gaussian background model 

• Adaptive Gaussian mixture model  

The background model 
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2.2    THE SINGLE GAUSSIAN BACKGROUND MODEL 

The simplest way to model the background is by using a single Gaussian distribution [4] 

for each pixel in the background. The model is first trained on a set of images, which 

contain no moving pixels. Though this model cannot adapt itself to changes in the 

background, it is important to investigate how this trivial model performs in our dataset 

environment.  

 

At any time t during the training period, what we know about a particular pixel located at 

(i,j) is it’s history, which we denote by the set H [7]:  
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Since, our initial model uses single Gaussians; we can safely use a transformation to 

transform the RGB space into the intensity space. This mapping given by: 
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Yamada et. al. [8] suggests the following intensity function, which we have adopted:  

 

GBRI 3.064.095.0 ++=  

 

Hence, at any time t, we also know the history of the computed intensity values of the 

pixel located at ),( ji : 

{ }tensity IIInjiH ,,,),,( 10int KKK=  

 

 

The background model can now be computed from these intensity values. The single-

Gaussian background model sB  can be represented by an n ×  n matrix of Gaussian 

distributions, where the thji,  entry corresponds to the pixel at location ),( ji : 

(2.1) 
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, where jiG ,  = ),( σµN for the thji ),(  pixel  

 

Each of these Gaussians jiG , are the normal distributions centered around the pixel’s mean 

intensity value, over the training set. The distribution parameter estimates are computed 

during the training period, using the observed pixel intensity values: ),,(int njiH ensity . 

 

The most apparent implementation of this model is a 2-dimensional array of Gaussians. 

Each element of the 2-dimensional array corresponds to a pixel in the background and 

contains the single Gaussian. Fig 2.1 shows a representation of the background model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The figure on the left shows a set of training images, and the figure on the right is 

what the background model would like when it is constructed completely from the training set. As 

an example, 2,2G  would be centered around the mean of the pixel intensity values of the orange 

pixels at location (2,2). 
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Once the model is trained, it is used to classify pixels in the image sequence as either 

foreground or background. The foreground mask F of the k
th

 image in the sequence can 

be filtered out, using the following definition, where p is a pixel at location ),( ji in the 

thk image of the sequence and ),( σµN is the corresponding Gaussian of the ),( ji th  pixels 

in the background model. I  is the intensity function:  

 

    { }σµ npIpkF >−= )()(  

 

The single Gaussian model works well where there are no illumination changes, or 

frequent changes to the background. It can be manually re-initialized when changes to the 

background occurs. It is very swift at detecting the foreground mask, and its speed makes 

it a good candidate for real-time applications.  

 

However, since we would like to deal with outdoor situations, where there are frequent 

changes in illumination and a constantly changing background, the single Gaussian 

model becomes inappropriate. It would require frequent manual re-initialization; as 

frequent as there are changes to the background. This would ultimately, defeat the 

purpose of having a motion tracker, which is to remote track human motion with minimal 

supervision.  

 

The difficulty of modeling the background, in outdoor scenes, using a single Gaussian 

distribution model, has been illustrated in fig 2.2. In the outdoor environment, frames that 

are only a few minutes apart, could exhibit bi-modal intensity distributions 

 

(2.2) 
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Figure 2.2: These images have been adopted from Stauffer et. al. [7]. The scatter plots show the 

red and green values of a single pixel from the image over time. Notice how the values form 

clusters exhibiting bimodality.  

 

 

We implemented the single Gaussian model, and have found it to be inappropriate for the 

outdoor scenes that our tracker system is supposed to perform on. Most outdoor scenes 

frequently produce multi-modal distributions, as show in figure 2.2, and a more complex 

background model was required. In the next section, we will look at a more profound 

model that can capture and record such multi-modalities.  
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2.3    THE ADAPTIVE GAUSSIAN MIXTURE BACKGROUND MODEL  

It is quite apparent that we require an adaptive background model with multiple 

Gaussians to model the background that occur in outdoors. Stauffer et. al. [7] describes 

such an adaptive background model. The model is capable of detecting and accounting 

for illumination changes and constantly moving objects (for e.g. leaves of trees, 

flickering monitor screen, etc).  

 

The Gaussian mixture model uses unsupervised learning to learn the background; there is 

no initial training required, and more importantly, it adapts to scene changes. The 

motivation behind this method comes from scene changes and the need to break out of 

using just a single Gaussian to memorize the pixel’s intensities. Consider the case of the 

moving leaves of trees in a scene. Leaves of trees frequently exhibit movement due to 

swaying of branches on a windy day. If we look more closely, a pixel, due to its 

movement, switches between the leaf color (green) to the another color (lets say blue) as 

a leaf moves in and out of the pixel. If we had used a single Gaussian model, we would 

have produced a Gaussian centered around the mean of the two different colors (green 

and blue). Whereas, the mixture of Gaussians model, would rather record a Gaussian 

centered around the leaf’s color (green) and another Gaussian centered around the other 

color (blue) – hence recording the exact color/intensity changes, rather than an overall 

average of the changes, as in the single Gaussian model. Figure 2.3 illustrates this.  

 

Illumination changes and scene changes can both be detected by change in pixel intensity 

levels. Since, we use more than a single Gaussian for each pixel, the most recent pixel 

intensity levels are stored using Gaussians, and assigned individual weights. A weight is a 

value that indicates how often the intensity has occurred in the pixel, in the past. A new 

intensity observed is given a low weight, whereas, an intensity that occurs frequently 

gradually attains a high weight.  
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Figure 2.3: The figure on the left shows the close-up of a leaf, marked by the yellow arrow that 

shows the direction of the to and fro caused due to the leaf’s movement in the wind. The figure on 

the right shows how the leaf has now moved away from some of the pixels. The pixel, under 

examination, is the one located at (x,y). Notice, how its color distribution switches from a 

distribution centered around green to a distribution centered around blue. A good background 

model should record both the Gaussians.  

 

 

Given the fact that the most interesting scenes exhibit bi-modal distributions for its pixel 

intensities (see figure 2.2), we require a way to compute the respective Gaussians. The 

most common way of identifying separate Gaussian mixtures is by using an Expectation-

Maximization (EM) algorithm. Nevertheless, The EM algorithm can become a bottle-

neck in real-time applications, such as the motion tracker.  
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The EM algorithm starts out with a poor approximation of the Gaussian mixtures for the 

data clusters, gradually improving its approximation at each iteration. In a real-time 

application, waiting for the EM algorithm to achieve a good approximation for the 

Gaussian mixtures at each frame transition in an image sequence can become a very 

costly process. Moreover, an EM algorithm is more appropriate in situations where the 

clustered data remain static with no further additions. Real-time applications keep adding 

new data to the clusters or new clusters altogether, hence generating ever-changing 

Gaussian mixtures.  

 

Stauffer et. al. describes an online K-means approximation, which we have adopted in 

our system. Every new pixel intensity value is checked against the existing distributions 

for that pixel, and incorporated into the distribution if a match is found, or otherwise, 

forms a new distribution indicating a new cluster. This forms the basis of our adaptive 

model.  

 

At any time t , what we know is the history of a pixel at location ),( ji ’s, intensity values:  

 

{ }tensity IIInjiH ,,,),,( 10int KKK=  

 

For each pixel at location ),( ji , the background model at time t stores k Gaussian 

distributions, along with their weights tk ,ω . This is called the Gaussian mixture ),,( tjiψ , 

which can be represented by the set, where ),( σµNGk =  are normal distributions, as: 

:  

{ }ktktt GGGtji ⋅⋅⋅= ,1,10,0 ,,,),,( ωωωψ KKKKK ,  
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The background mixture model MB  at time t, can be represented by an m ×  n matrix of 

Gaussian mixtures ),,( tjiψ , where mi ≤≤0  and nj ≤≤0 :  
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At time 0=t  we start with the empty background mixture model )0(MB  where the 

Gaussian mixtures are { }kk GGji ⋅⋅= 0,00,0 ,,,)0,,( ωωψ KK  and, 00,0,10,0 ==== kωωω KKK  

and, )0,0(10 NGGG k ==== KKK  
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At time Tt = , for a pixel p  at location ),( ji  where )( pI is its intensity value: 

 

If it is the case that σµσµ npIGm ≤−∋∃ )(),(  , where ),,( TjiGm ψ∈  and km ≤≤0 , the 

weight, mean and variance are updated for the matched distribution mG as follows, where 

α is the weight-learning rate
1
, and  ρ  is the mean/variance-learning rate [7]:  

 

Weight:  αωαω +⋅−= −1,, )1( TmTm    

Mean:   )()1( 1 pITT ⋅+⋅−= − ρµρµ    

Variance: 22
1

2 ))(()1( TTT pI µρσρσ −⋅+⋅−= −  

 

                                                 
1
 The weight-learning rate is the rate at which new pixel values should be incorporated  into the existing 

model. A low weight-learning rate was used (~ 0.2), which indicates that new intensity values should be 

incorporated “slowly” into the model.  



 19 

For the unmatched distributions: nG  where mn ≠ , the weights are updated; the mean and 

variance remain unchanged [7].  

  

 Weight:  1,, )1( −⋅−= TnTn ωαω  

 Mean:  1−= TT µµ  

 Variance: 
2

1
2

−= TT σσ  

 

However, on the other hand, if it is the case that there are no matched distributions, i.e. : 

 

σµψσµ npITjiGn >−∋∈∀ )(),,(),(  

 

Since, there are no matched distributions, the distribution that is least probable, i.e. with 

the minimum 
σ

ω
 ratio, is replaced with a new distribution with the mean as )(PI  and a 

high variance (typically 10.0).  

 

 

PRELIMINARY RESULTS 

We implemented the Gaussian mixture model, and have found that it performs very well 

in outdoor situations. Though there is still a training period, which lasts for about 100 

frames, the model incorporates different pixel intensities rapidly, making it very suitable 

for tracking. We have used this model in our final tracking system. Results of background 

subtraction on actual images can be found in Chapter 7.  

 

A complete description of our implementation is given in Chapter 6, section 6.2. 
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Chapter 3 
 

 
 

 

 

 

 

 

 

This chapter discusses in detail how our system handles the extraction of human subjects 

in a given scene. It lays out the importance of a robust human detector, and how difficult 

it can get to detect and extract humans. The later parts of the chapter deal with other 

issues such as shadow removal and identifying humans.  

 

 

3.1    THE IMPORTANCE OF HUMAN EXTRACTION AND SEGMENTATION 

We revisit the sole purpose of our system, which is to track humans in a given scene. The 

part of the system which performs tracking depends a lot on the accuracy of the human 

extraction model. Inaccuracies can lead into detecting un-interesting objects. The human 

segmentation and extraction model hence plays a very important role in motion tracking.  

 

The remnants of background differencing are a residue of pixels which the system 

classifies as foreground. The residue frequently contains foreground pixels which does 

not necessarily represent human subjects. Shadows move alongside humans, and hence is 

left out by the background model in the residue. A good system should be capable of 

distinguishing between subjects and their shadows. Failure to do so would cause the 

system to track shadows inadvertently. 

Human segmentation  

and extraction 
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3.2    THE DIFFICULTIES OF HUMAN SEGMENTATION AND EXTRACTION 

Extracting human subjects and segmenting them can be challenging for many reasons. 

The dynamics of the human body’s shape is very unpredictable. It could undergo 

deformation, and sudden changes. Background differencing always leaves out a relatively 

small number of patches of pixels which are part of the background. These are caused  

due to the ever-changing illumination of outdoor scenes, which the background model 

takes some time to incorporate. We refer to these patches as noise. Noise can be removed 

significantly by the use of image filters and morphological operators. Figure 3.1 shows 

how we have removed the noise from a background differenced image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: (a) The original image of the courtyard. (b) is the image after background 

subtraction. Note that the black pixels indicate foreground. This snapshot was taken right after 

the system was trained on 17 frames. The system had not yet learnt the motion of the leaves of the 

trees completely, hence causing a majority of the leaves of trees to be treated as foreground. (c) 

is the image after image in (b) was filtered using a median filter. (d) is the image after (c) was 

filtered using a morphology close operator. 

 

Our system removes the noise in a two-step process: first passing it through a median 

filter and then performing a morphology close operation. Noise still remains after passing 

  

  

(a) (b) 

(c) (d) 
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it through the two filters (Figre 3.1 (d)), however, these are easily removed using a size 

filter, such as the one described in Section 3.3, equation 3.1.  

 

A median filter, replaces a particular pixel with the median value of the color of its 

neighboring pixels. This removes most of the isolated one-pixel noises (black dots). What 

remains are bigger-sized noise pixels. Using a 3-by-3 rectangular structuring element, the 

morphology close operator performs well to remove the remaining noise. The use of such 

filters is not uncommon. It has appeared in the works of Zhao. T. et. al. [1] 

 

The patches of black pixels, as seen in figure 3.1 (d), are called blobs. We will be using 

this term from here on, throughout our entire discussion. Blobs representing human 

subjects will be referred to as human blobs.  

 

Removing noise from the background differenced image is not the end of the problems 

we face in human segmentation and extraction. There are countless other situations that 

might give arise to a false human hypothesis. It would be impossible to list out all such 

cases; however we point out a few very common ones that we have observed, and have 

attempted to solve. 

 

 

 

 

 

 

 

 

Figure 3.2: figure (a) is a scene with three human subjects, where the bicycle rider is getting 

occluded by the human subject on the right. Figure (b) is the resulting image after background 

subtraction followed by filtering.  

 

Figure 3.2 is an example of a situation where occlusion can cause major problems. It is 

very difficult to hypothesize, by looking at the blobs, how many human subjects are 

actually there in the scene. The problem of occlusions is dealt with using prediction 

  

(a) (b) 
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models, such as the Kalman filter, which we introduce in section 5.3. Occluded objects 

follow the path predicted by the prediction model.  

 

Apart from occlusions, we also face the problem of identifying a particular human 

subject, as h/she is being tracked across the scene. The human subject may cross the path 

of another human subject, in which case, the system can easily get confused between the 

two. Our system starts predicting when such occlusion arises, and captures the human 

object at a later frame, where it recovers from occlusion.  

 

3.3    THE ALGORITHM FOR HUMAN EXTRACTION 

A blob is a group of pixels },,{ 0 nppb KKK= , in any image frame, that lies within a 

certain contour, where each pixel ),( yxpi =  is identified using pixel positions x  and y . 

A contour is a closed boundary. A blob b may be classified as a human blob, if its total 

pixel area lies within a certain range. The set of all human blobs H, in any image frame 

that contains a set of blobs B where Bb ∈ , can be represented as: 

 













≤•≤= ∑
=

U

n

i

iiL TpTbH

0

)(ω  

 

In equation 3.1, iω  is the world area occupied by the thi  pixel. Due to the perspective 

effect, some models may wish to take iω  into account, and assign different areas to 

different pixels. The perspective effect causes certain pixels, which represent parts of 

objects nearer to the camera, to have lesser world area. Pixels, representing objects which 

are farther away, should have a higher iω  value. Since our system employs a camera with 

a relatively small visibility range, and also due to its proper positioning, employing a 

model that takes this perspective effect into account, is unnecessary. Hence, we assign an 

area of 1 unit to each pixel. The UT  and LT  are upper and lower limits of the area 

threshold respectively. Typically, values of 200=LT  and 500=UT  have produced good 

results. 

 

 

(3.1) 
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Equation 3.1 is essentially our size filter, and it removes most of the unwanted noise 

propagating from background subtraction and successive filtering.  

 

At this point, what remains are potential human blobs. However, sudden changes in 

illumination may cause large areas of the background to show up as foreground. Such 

areas may pass the size filter, in which case, it will get treated as a human blob. However, 

our background model is very quick to adapting to such changes, and this only poses a 

minimal threat. Improvements may be made, such as using a threshold value which can 

indicate if human segmentation and extraction should be stopped completely until the 

illumination change is incorporated; and extraction started at a later time when a lesser 

percentage of the image is classified as foreground. Such situations are common if human 

extraction is started prematurely during the background training period. For tracking 

purposes, it is important that human extraction is started at a later time. Our system starts 

human extraction once 100 frames have passed. 

 

Efficient ways of extracting human blobs have appeared in various literatures. Javed et. 

al. uses bounding rectangles [10] and so does many others [3],[5],[9]. Zhao. T. et al. 

models a human using an ellipse, and uses the top of the head for extracting human blobs. 

We have adopted this method of using ellipses to model humans.  

 

As discussed earlier in section 3.2, occlusions pose a major problem when segmenting 

human blobs. A perfect segmentation technique which works for any blob is still an open 

problem. However, Zhao T. et. al. attempts to find a fair approximation of the location of 

humans in the blob. The argument set forth argues that the head top of humans is least 

likely to be occluded when they are walking in groups. This way, finding head-tops in a 

blob gives yield to the human(s) in the blob. After a head-top is found an ellipse is drawn, 

vertically downwards from the head-top, to capture the human.  
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3.4    FINDING HEAD TOPS 

The head-top of a human blob Hh ∈ , where },,{ 0 npph KKK=  and ),( yxpi =  can be 

defined as all pixels which are a local minimum point in y , within a certain 

neighborhood Ω  of x defined by { }SxxSxyx +≤≤−=Ω ),( . The constant S  is typically 

the size in pixels, of an average human head. We have used S  values ranging from 8-10 

pixels.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Figure (a) shows the human blobs as they appear after background subtraction and 

successive filtering. Figure (b) shows the head-tops identified using the algorithm we discussed in 

section 3.2 

 

Figure 3.3 illustrates how the algorithm provides us with a fairly good approximation of 

the human blobs. Local minimums within the neighborhoods AΩ  and BΩ  identifies the 

human blobs correctly. However, the neighborhoods CΩ  and DΩ  are false head-tops 

which lie within the shadow pixels. Zhao T. et. al. [1],[2],[11] removes these false 

hypotheses by performing a geometrical shadow analysis. Shadow analysis is a two-step 

process. The position of the sun is determined, during that particular time of the day. The 

shadow area cast by each ellipsoid is then determined and head tops lying within that area 

is removed.  

CΩ  

DΩ  

AΩ  
BΩ  
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Determining the sun’s co-ordinates at any time of the day and performing the geometric 

computations is cumbersome, and we have devised a simpler method that has performed 

well on the blobs that we have tested with. We calculate the elliptical area underneath a 

head-top candidate that is also part of the blob. If the area underneath exceeds a certain 

threshold limit HT , the local minimum qualifies as a head-top. The threshold limit HT  is 

typically the average pixel area occupied by a human subject scaled accordingly. The 

scaling is required due to the perspective effect. HT  is small for human subjects lying far 

away from the camera. We multiply the threshold with a scaling factor s , which scales it 

down, if the y  co-ordinate of the local-minimum is far away from the camera. The 

scaling factor can be written as 
h

y
s = , where h  is the height of the image. The threshold 

without the scaling effect, is the elliptical area which can be calculated using the formula: 

ba ××π , where a is the length of the major axis of the ellipse, and b the length of the 

minor axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 3.4 shows why head-top B and C would not pass our area threshold test – the blob 

area underneath does not exceed the threshold limit HTs .  

A 

B C 

HTsa >  HTsa <  

HTsa <  

Figure 3.4: The figure shows the area that is being calculated under each head-top candidate. 

We have omitted the head-top candidate in neighborhood BΩ  from figure 3.3 for brevity. The 

area of each region underneath the head-tops is denoted using a.  
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Figure 3.5: A successful human blob extraction and segmentation performed by our system. The 

original image in fig (a) is first background differenced and filtered (median, close and size) to 

produce what is in fig (b). Head-top candidates are identified and ellipses are drawn to model 

possible human subjects. Shadows are completely removed in figure (c) and figure (d), separating 

out the two humans blobs.  

 

We have designed our own algorithm for segmentation and extraction, which we have 

described in Chapter 6, Section 6.3. The implementation of the algorithm has produced 

very good results. We have also analyzed its time-complexity in section 6.4, and have 

found it to be very suitable for real-time motion tracking. The test results on human 

segmentation and extraction can be found in Chapter 7.  

 

 

 

(a) (b) 

(c)  (d) 
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Chapter 4 
 

 

 

 

4.1    INTRODUCTION 

The sole purpose of our system is to track the motion of humans. To “track” is to trace 

the trajectory produced by humans in a given scene. Tracing the path taken by a human in 

a scene is a trivial task. However, the problem lies in trying to make the system associate 

a certain path to a human. The problem gets even more intricate when complex situations 

arise, such as humans intercepting paths of one another, or when humans occlude one 

another, when viewed from the camera viewpoint. Our system addresses each of these 

issues and handles them robustly.  

 

4.2    THE PURPOSE OF MOTION TRACKING 

Given that a system is able to successfully identify and associate the different trajectories 

to the different humans that produce them - such trajectories can be used to persistently 

store and later analyze how humans locomote, especially when they exhibit abnormal 

behavior. An intelligent surveillance system is bound to be deployed with a good tracking 

system. Alarming situations can be easily detected and prevented, by using such a 

system. However, our work does not aim to classify human motion, and differentiate 

between normal and abnormal motion. This is a psychological issue, and models can be 

developed further to predict such abnormalities.  

 

The noise that frequently emerges in blob detection, after background filtering, poses a 

difficult challenge to detecting motion by simply keeping track of where a certain blob 

appears in a certain frame. On a windy day, for example, clouds frequently block the 

Motion Tracking  
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sun’s rays, causing sudden illumination changes. This causes background clutter. A blob 

which is being tracked, may completely disappear for a certain number of frames, and 

then reappear sometime later. A robust system should be able to predict and track the 

blob’s motion for the period for which it disappeared. There are also situations when not 

whole, but parts of a blob are detected. If the blob parts do not meet an area threshold 

(average pixel area occupied by a human in our scenes), they are discarded and the blob 

that was being searched for, is considered lost. However, if they do satisfy the threshold, 

since not every pixel on the blob represent the human, they only give us an approximate 

position of where the human has moved to. Figures 4.1 illustrates this: 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Frames (a) and (b) are separated by 5 frames. Notice how the human figure walks 

into behind the tree in frame (b). Frames (c) and (d) are the blobs produced, after background 

subtraction, from frames (a) and (b) respectively. If the blob in frame (d) does not meet the area 

threshold, it may be discarded and be considered as background noise. On the other hand, if it is 

accepted, notice how the observed center differs from the actual center. Tracking using the center 

can be difficult for these reasons. Our system uses head tops, as its tracking point.  

 

 

 

(a) (b) 

(c)   (d)   

observed center 

actual 

center 
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4.3    TRACKING AS A PROBABILISTIC INFERENCE PROBLEM 

Humans, in normal circumstances, tend to exhibit trajectories that are regular. This makes 

it easier to predict their motion, given that we know the velocity and the direction in 

which they are moving.  

 

Tracking can be a viewed as a probabilistic inference problem [16]. We can model the 

humans as having some state at any frame i. We will denote the state of a human object, 

at the thi  frame, using a random variable iX . The state of a human object iX  is the actual 

position of the human, at the instant the thi  frame image was captured. A human object, 

in its lifetime of n frames, passes through states:  

 

{ }nXXX ,,, 10 KKKKK  

 

Our system is not always capable of getting the exact actual position (due to background 

clutter, noise, occlusions, etc.). However, it can determine the observed states of the 

human object. An observed state is the position at which the human objects appear to be, 

in the background differenced image. We sometimes also call it a measurement state. We 

denote it using the random variable iY , where iY  is the observed state of a human object at 

the thi  frame.  

 

Our tracker system tries to predict the state of a human object, using previous observed 

states. More generally, we are trying to determine a representation of:  

 

),,( 1100 −− == iii yYyYXP KKKK  

 

This step is what is more popularly known as the prediction step [16]. Equation 4.1 tries 

to identify the present actual state of the human object, using previous measurement 

states. It assumes the fact that we already have knowledge of the measurement states of 

our human object for states 0 to 1−i . From this, it derives the immediate future state.  

(4.1) 
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A better prediction of the current actual state iX  can be obtained if we also use the 

current measured state iY . Hence:   

 

),,,( 1100 iiiii yYyYyYXP === −−KKKK  

 

This step is known as the correction step [16]. Before we design algorithms for 

prediction and correction, we make a few assumptions that simplify our task considerably 

[16]:  

 

• The state of a human iX  is dependent only on its previous state 1−iX : More 

formally put: (Note that the assumption causes a simplification)  

 

)(),,( 111 −− = iiii XXPXXXP KKKKK  

 

• The current measured/observed state iY  is independent of all other 

measurement states: },,{ 10 −iYY KKKKK , given that we know current state 

iX . 

 

 

Moving away from viewing tracking as a probabilistic inference problem, we now 

discuss the approaches we used to develop a simple tracking model, based on the 

assumptions and ideas represented above.  

(4.2) 
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4.4    DEVELOPMENT OF THE TRACKER 

Assuming that we were properly able to extract human subjects, using the human 

segmentation and extraction techniques presented in section 3.4, our tracker should be 

able to robustly measure, predict and approximate the human states. The ideas that we 

employ, are the ones that are represented using probabilistic inferences, as stated in the 

previous section: section 4.3.  

 

To explain how we develop a simple motion tracker, we begin with a simple scene, 

where one single human subject makes an entrance, moving at an arbitrary velocity and 

changing directions, and eventually finally exiting the scene. Figure 4.2 illustrates this 

scene. Keeping this scene in picture, we will derive our motion model in the following 

sections.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2: The frames above show how the human segmented blob enters the scene in (a), and 

moves, changing directions in subsequent frames (b),(c) and (d). The red arrows indicate the 

direction of motion between the previous and the current frames. Notice how the shape of the 

human blob is constantly changing.  

  

  

(a) (b) 

(c)  (d)  
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4.5    DETECTION AND REGISTRATION OF A NEW BLOB 

A blob b, which can be thought of as a group of pixels },,{ 0 nppb KKK= , in any image 

frame, which lies within a certain contour where each pixel ),( yxpi =  is identified using 

pixel positions x  and y . A blob b may be classified as a human blob, if its total pixel 

area lies within a certain range. The set of all human blobs H, in any image frame, can be 

represented by equation 3.1 (Section 3.3). :  

 

Earlier in Chapter 3, section 3.3, we have discussed how we extract human blobs from a 

scene. The tracker uses the same principles to detect and extract a human blob. Once a 

human blob is detected, it is checked to see if it lies within a hotspot. A hotspot is 

associated to a registered human blob. It is simply a search neighborhood Ω  [1] within 

which any registered human blob is expected to be observed in the consecutive frame. 

For a human blob centered at ),( ba  it is defined as: 

 

})()(),{( 222 rbyaxyx ≤−+−=Ω  

 

The radius of the hotspot r  can depend on the speed at which the human blob is moving. 

We have used radius values typically ranging from 5-10 pixels, which have produced 

good results.  

 

At any frame instance i , our system keeps track of n search neighborhoods for n human 

blobs:  

{ }nΩΩΩΩ ,,, 210 KKKK  

 

When a blob falls within a search neighborhood iΩ , it gets associated to the search 

neighborhood’s blob, if it appears to be the same human blob. This is a problem which 

still remains to be solved. Zhao. T. [1] uses a texture template for object representation. 

Others  [10] have used similar constructs.  

 

A blob, which is classified as a human blob (equation 3.1), and which does not fall within 

any iΩ  is registered as a new blob.  
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4.6    PARAMETER INITIALIZATION OF NEWLY REGISTERED BLOBS 

A newly registered blob does not have sufficient parameters to enable it for tracking. The 

system requires further vital information about its motion, to initiate tracking. After a 

new blob is registered, when it is first observed in a frame; the newly registered blob is 

searched to make a second appearance in the subsequent frame, within its 

neighborhood Ω . If it is found, the velocity is computed and the direction of motion is 

established. Figure 4.3 illustrates this:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3: The human blob is first observed at position ),( 00 yx . In the next frame, it is searched 

and found to lie within its hotspot, at ),( 11 yx . The velocity, at which the blob is moving, can now 

be calculated, and hence we have obtained useful information about its motion.  

 

A human blob may also appear completely deformed in the second frame and may not 

pass the area threshold test (Equation 3.1). As a result, no human blob will be found to lie 

within the hotspot. This makes it impossible to calculate the speed and the direction at 

which the blob is moving. Prediction of its next appearance cannot be computed, and 

hence the human blob, which was being initialized for tracking, is discarded. We expect 

the blob to re-appear in later frames, and for its motion to get detected properly at some 

point in its lifetime.  

 

 

(x0,y0) 

(x1,y1) 
v 

Hotspot 
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4.7    MOTION PREDICTION 

Predicting motion of a human blob is an iterative process. It primarily involves estimating 

the subsequent positions of the blob, using a priori information such as velocity, 

directions of motion and the observed position. The noisy nature of foreground blobs, 

propagating from background differencing, makes it difficult to rely solely on the 

observed position. Our system tries to reduce the errors in the observed position by 

averaging out the observed and the estimated position. The estimated position is the 

position which the system computes using velocity and direction of prior motion. 

 

We use vector analysis to predict motion. Lets assume that a blob is first detected at a 

frame 0=i , and lets denote its initial pixel position as ),( 00 yx . Let’s also assume that at 

frame 1=i  the blob is again detected at ),( 11 yx . At this point, we have enough information 

to calculate the speed and direction at which it is moving.  

 

 

 

 

 

 

 

 

 

 
 

  

Figure 4.4: The first two positions of a blob is crucial for determining its speed and direction of 

motion.  

 

More generally, the speed is  of the human blob, at any frame i is calculated using the 

frame rate γ :  









•−= −−

γ

1
),(),( 11 iiiii yxyxs  

 

),( 00 yx  

),( 11 yx  

(4.3) 

O 
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The velocity iv  can now be calculated by normalizing the motion direction vector, and 

multiplying it with speed is : 
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Figure 4.5: The origin ),( 11 −− ii yx  and the next observed position ),( ii yx  is all what is required 

to start predicting subsequent positions. 

 

 

The vector equation of the straight line l along which the blob is moving is given by:  
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Notice that the scalar parameter constant iλ  when set to 1 gives ),( ii yx . If the distance 

traveled between points ),( 11 −− ii yx  and ),( ii yx  is id , a λ  value of 1 represents a distance 

id  traveled from the blob’s origin ),( 11 −− ii yx  to ),( ii yx .  

 

Using these information, we can easily interpolate the next position ),( 11 ++ ii yx , the blob is 

expected to move into.  
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To calculate ),( 11 ++ ii yx , we need to determine the value of the parameter constant iλ . 

From our argument above, since we know that id  represents 1=λ . If the blob has moved 

a distance of 1+id , the distance traveled from the origin ),( 11 −− ii yx  now totals 1++ ii dd , 

which can represented by a iλ  value of 
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Figure 4.6: The point to be predicted (interpolated) is ),( 11 ++ ii yx . We use 1+id  calculated using 

iv  to determine the value of iλ  

 

However, it is important to note that we are only making a prediction of the distance 

moved 1+id , using the speed is , observed in the previous frame. The parameter constant 

iλ  can now be written as:  
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Our surveillance camera records images at the rate of 10 frames per second, hence our 

tracker uses 10=γ .  
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Predicting a posteriori blob position using a priori information such as velocity and 

direction of motion, only gives us the predicted position ),( 11
p

i

p

i yx ++  where we expect the 

blob to be in the next frame. The observed position ),( 11
o
i

o
i yx ++  could be different from the 

predicted position. A tracking system could assign appropriate weights to each of the 

predicted and observed positions, and compute an estimated position )ˆ,ˆ( 11 ++ ii yx  of where 

the human blob actually is. Without performing such an estimate and neglecting the 

observed position, we have discovered that it is impossible to do tracking. Such estimates 

have greatly improved our tracking results.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: The estimated blob position lies somewhere in between the line connecting 

the predicted and observed position points. The exact location of the estimated point is 

determined by the estimation parameter called the “tracker reliability factor”.  

 

 

Depending on how much we think our system is accurate in predicting the human blob’s 

position, we assign normalized weights to the predicted and the observed positions 

accordingly. Our system uses a tracker reliability factor (α ).  

 

 

 

 

We use a value of 8.0=α . From our experiences, α  should be tested on various motion 

sequences, before assigning it a constant value. 
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4.8    THE LIFETIME OF A HUMAN BLOB 

All human blobs have a certain lifetime. This is the period of time that elapses between 

the time when the blob makes its first appearance, till the time when it exits the scene. A 

human blob can be represented using a Deterministic Finite State Machine (DFSA). It 

undergoes a series of state transitions during its entire lifetime. A human blob starts off 

with an initial state, when it is newly registered by the tracker. We call this the “new 

blob” state. If the blob can be initialized for tracking (i.e. observed in the second frame 

hence enabling calculation of velocity and motion direction) it transits to the “tracked” 

state. While it is being tracked, it may disappear for a few frames due to noise; in that 

case it has transited to the “lost” state, and we keep predicting its motion, this time 

without an observed point. The blob at this point may re-appear at a later frame, in which 

case it again reverts back to the “tracked” state. However, if it never re-appears again and 

the lost tolerance threshold is exceeded, it plummets to the “discard” state, after which it 

is wiped out from the system. Figure 4.8. illustrates this using a DFSA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.8: Here are the transition states:  1T -blob is initialized completely for tracking, i.e. it is 

observed in the second frame and its velocity has been calculated. 2T -blob disappears after being 

tracked for sometime. 3T -blob reappears and has survived the lost tolerance threshold. 4T -blob 

has crossed the lost tolerance threshold. 5T -was not detected in the second frame, and hence 

initial velocity and direction could not be computed.  

new blob tracked 

discard lost 

1T  

2T  
3T  

4T  
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From our discussion of blob states, it is important to note that blobs which are lost, during 

tracking, have their positions predicted completely based on its immediate prior value of 

velocity and direction of motion. Regular non-lost blobs are estimated and tracked 

normally, using a weighted average of predicted and observed points.  

 

 

4.9    PRELIMIARY RESULTS  

After implementing a tracker which performs prediction, wholly based on vector analysis 

of linear motion, has produced disappointing results. In the next chapter, we present our 

findings and explain why we require a better method for prediction. We introduce a 

Kalman filtering process that has known to be widely used in tracking. In later chapters 

(Chapter 6, 6.9) we provide implementation of both approaches, where the second 

approach (Section 6.9, code 6.17 – 6.22) uses both vector analysis and Kalman filtering 

process techniques.  
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Chapter 5 

 

 

 

 

 

 

5.1    INTRODUCTION  

Predicting a human blob’s motion using vector analysis, works well when a human blob 

is visible throughout its entire lifetime. The visibility decreases with increasing 

illumination changes. The system also experiences poor visibility when the scene is dark, 

and the human blob’s texture color is similar to its surroundings. As discussed earlier in 

the previous chapter, these situations cause the blob to completely disappear, since it 

cannot suffice the requirements of the area threshold test, during the human 

segmentation and extraction process. A blob may also disappear when it gets occluded by 

an object that is in the optical pathway of the camera and the blob. The system ought to 

tackle these problems, since they are commonplace in outdoor scenes.  

 

5.2    THE NEED FOR A FILTER 

Human blobs’ position prediction and estimation calculations rely heavily on its observed 

positions. Highly inaccurate observed positions could suddenly cause a human blob to 

become lost, and eventually causing the system to exhaust its search for the lost blob, in 

which case it is discarded. We have analyzed and tried to reason about such inaccuracies 

and have found that most inaccuracies in observed positions are caused due to ill-formed 

human blobs.  

The Kalman filtering 

process  
 



 42 

The cause of an ill-formed blob can be attributed to the background model.  Irregular 

deformation of a blob, after background subtraction, occurs when parts of the actual 

human figure are conceived to be a part of the background. Since our system uses 

Gaussian distributions to compare between the background and the foreground, finding a 

match (to a background Gaussian) for a pixel which actually represents the foreground is 

not unusual. Figrue 5.1 illustrates this.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: This is a graphical monologue of the series of events showing how human blobs get 

“badly” deformed, eventually causing a shift in the observed position marked by the red dot. Fig-

(a) are all the k-Gaussian distributions which store past frequently recurring intensities of pixel 

P. In other words, fig- (a) models the background intensities for pixel P. The part of the 

foreground fig-(b) which falls within pixel P, can have an intensity value which matches two or 

more Gaussians in fig-(a), as shown by arrows fig-(d). The result, is the system “thinking” that P 

is a part of the background, causing the deformation in fig-(c), and hence a shift in the center of 

the blob – which is our observed point. 
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The deformations presented in figure 5.1 are minor, occurring frequently, and caused by 

changes in scene illumination. More severe deformations could cause the human blob to 

completely disappear, resulting in no observed point, and forcing the system to start 

predicting “blindly”. Since we only use the immediate past (Equations 4.1, 4.2) for 

prediction, a noisy observed direction of motion in the immediate past could cause the 

system to start predicting subsequent positions in the wrong direction. Hotspots also 

move with the predicted positions. All these events might lead to losing a blob 

completely, even if it re-appears again at a later frame. We have tested our system 

without using a filter, and we present what we have discovered in Figures 5.2 and 5.3.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Tracking starts off at O, with the usual “noisy” observed center, until the observed 

point disappears at A, leaving the system to start predicting the subsequent positions in the 

direction of the immediate past (orange line). At some later frame, subsequent predictions reach 

point P with hotspot H. If the blob ever re-appears, which it does at R, it will not be detected by 

Hotspot H, hence eventually causing the blob that was being tracked to be discarded. However, 

the blob at R is recognized by the system and is tracked as a new separate blob.  

 

We can alleviate the severity of the problem and the pitfalls of “blind” prediction if we 

are able to smooth the path taken by the human blob using a filter. The path from O to A 

in figure 5.2 can be smoothed, possibly causing prediction to occur in the desired 

direction, and eventually having the hotspot around the region, where the blob re-appears. 

Though smoothing does not guarantee perfect prediction, it definitely improves the 

prediction process. Figure 5.3 shows how smoothing achieves this.  
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Figure 5.3: The dark red line is the path which can be obtained from the Kalman filter. A′  is now 

the point at which the blob disappears, and prediction starts from there on. Prediction occurs in 

the desired direction enabling the hotspot to encompass the blob’s position when it re-appears 

again at a later frame. Henceforth, facilitating the blob to be tracked again.  

 

Using such filtering techniques is not uncommon. It has appeared in the works Zhao. T. 

et. al. [1] [4]. They use the Kalman filter [13], invented by the mathematician R.E. 

Kalman in the 1960s. The Kalman filter has been known to be very powerful in its ability 

to perform estimates for past, present and future states by minimizing the mean squared 

error. The Kalman filter becomes more attractive for dynamical systems such as the 

motion of a human blob.  

 

5.3    ORIGINS OF THE FILTER 

The Kalman filter has its roots in the more popular least square method of minimizing 

error. The basic ideas behind the filter are derived from this method. We show how the 

least square develops into the Kalman filter. Due to the filter’s numerous possible 

applications in computer systems, it makes it necessary to speed-up the computations 

required to compute the filter. We also show how this is being done.  
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5.4    LEAST SQUARES METHOD  

In the least squares method [14], we attempt to find a “good” estimate for a state a by 

making a sequence of measurements of a. Our measurements are bound to contain some 

error, and hence the least square method primarily concerns minimizing this error over all 

measurements. We give an example [15] of an attempt to measuring the water levels of a 

tank.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.4: Fig-(a) shows how we make measurements of the water levels in a tank. We use a 

ruler to make measurements at different times i , and possibly at different places. Fig-(b) is a 

pictorial representation of our measurements. We are trying to estimate state a. 

 

 

The error resulting from a single measurement i  is given by:  

 
2)( axE ii −=  

 

 

The total error over all measurements is a summation of the individual errors:  
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We are interested in minimizing this error E , and finding the value of aa ˆ=  for which E 

is minimum, i.e. 0=
∂

∂

a

E
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However, this method of finding estimates becomes computationally expensive for a real-

time system such as a motion tracker. For every estimate iâ , we need to compute first 

∑
−

=

1

0

i

k

kx  and then add it to ix , to get ∑
=

i

k

kx

0

. We could save the computations required by 

giving a recurrent relation for iâ : 
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Using equation 5.4., we are able to recursively calculate iâ , using the prior estimate 1
ˆ −ia . 

We have essentially removed the summation which we required previously, over all prior 

measurements.  

 

 

(5.3) 

(5.4) 
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Equation 5.4 can be modified to represent a higher-order dimensional system, with 

vectors representing their states and measurements. Equation 5.4 now becomes [15]:  

 

( )11
ˆˆˆ −− −+= iiiiii aHXKaa  

 

The matrix nm
iH ×ℜ∈  relates the state a to the measurement x [15]:  

 

[ ] [ ] aHHHxxxaHx
T

n
T

nii •=⇒•= KK 2121  

 

The Kalman gain iK  can be calculated using [15]:  

 

T
iii HPK = , where ( ) 1−

= T
iii HHP  

 

However, now that we have solved these equations, we still have not accounted for the 

noise which occurs in our motion tracking system, and in just any other dynamical 

system. We represent the process and measurement noises using the random variables kw  

and kv  respectively. They are independent of one another and assumed to be distributed 

normally with zero mean [12]:  

 

),0(~ ik QNw  

),0(~ ik RNv  

 

Rewriting the state and measurement equations (5.5 and 5.6), with added noise:  

 

kii waAa += −1
ˆ  

iiii vaHx +=  

 

Note that the square matrix nnA ×ℜ∈ , relates the state at i-1 to the state at i. 

(5.6) 

(5.5) 

(5.7) 

(5.10) 

(5.11) 

(5.8) 

(5.9) 
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The recurrent relation in iâ , now becomes: 

 

)ˆ(ˆˆ
111 −−− −+= iiiiiiii aAHxKaAa  

 

This equation can be solved [12],[13], giving the Kalman gain iK :  

 

1)( −+′′= i
T

iii
T

iii RHPHHPK  

   where: 11 −− +=′ i
T

iiii QAPAP  

   and,  1111 )1( −−−− ′−= iiii PHKP  

 

Note that iQ  and iR  are the parameters of the normal distributions of noise (equations 5.8 

and %.9).  

 

 

5.5    THE APPLICATION OF THE KALMAN FILTERING PROCESS IN 

MOTION PREDICTION  

 

Moving away from the mathematical abstraction of the Kalman filter, we now state how 

it may be used to predict the motion of the blob. First we define some parameters of blob 

motion. The state ns  of a blob at any time is its tracking point ),( yx  (usually center of the 

blob, or head top), together with its velocity ),( yx vv . We may write ns  in vector form as:  

 

[ ] T
nynxnnn vvyxs )()(=  

 

If we were to use a constant velocity model, assuming that all humans move with a 

constant velocity, i.e. 1−= nn vv , we could formulate the following: 

 

11 )( −− ⋅∆+= nxnn vtxx  

11 )( −− ⋅∆+= nynn vtyy  
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We could re-write these equations in matrix form as [11]:  
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However, we cannot disregard the noise that is involved in observing a state. As 

previously, the process and measurement noises can be represented using normal 

probability distributions with zero mean: ),0(~ ΣNwn   and )ˆ,0(~ ΣNvn , respectively. Σ  

and Σ̂  are the co-variance matrices of process and measurements, respectively. With 

added noise, equation 5.12 now becomes:  
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Now we state our measurement state nŝ , which follows from the actual state ns  with 

added measurement noise nv :  

 

nnn vss +=ˆ  

or more simply as, n
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The time-interval t∆ , is essentially the frame rate γ , Our camera shoots at 10 frames a 

second.  

(5.12) 
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The most important elements of the Kalman filter process are the process and 

measurement noise parameters. At each new iteration, they are updated. The update 

equations have been omitted for brevity, and the reader may wish to read W. Greg et. al. 

discussion on the Kalman filter [13].  

 

Using the Kalman filter and the state-measurement equations, as described above, we can 

achieve a better and more reliable level of motion prediction. To summarize up the entire 

process in simple terms, we first measure the initial position of the blob and its velocity 

(together put what is called the initial state 0s  of the blob). This can be done using the 

equations we have set forth in section 5.5. This is our initializing step. In the subsequent 

frames, we make a prediction, only using Kalman filtering. Prediction is followed by 

measurement and we determine the observed position of the blob. The measurement and 

prediction is then compared to assess how well we predicted. A simple pixel-wise 

difference between measurement and prediction positions is sufficient. This assessment 

of prediction updates the measurement and process noise parameters accordingly, hence 

preparing the Kalman filter to make a better next prediction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.5: The Kalman filtering process cycle in motion prediction  
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Chapter 6 

 

 

 

 

 

 

 

6.1    INTRODUCTION 

In this chapter we present to the reader important details of our implementation. The 

tracker system is divided into three different libraries namely: the background subtraction 

model, the head-top finder and the motion tracker. This chapter is divided into three 

separate sections, where each section represents a different library.  

 

Major parts of the implementation description in this chapter include actual program code 

from our system. We sometimes have omitted few parts of code for conciseness. For 

lengthy code, we have used algorithms to describe the implementation.  

 

The implementation was written using the C++ language. We have used Intel’s OpenCV 

library [17] for common image processing and vision functions. Since C++ is relatively 

platform and compiler dependent, it may also be worth noting that our development was 

carried out in the Microsoft Windows® environment, using Microsoft® Visual C++ 6.0.  

 

 

 

 

 

 

 

Figure 6.0: An overall representation of our system and its data flow.  
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6.2    THE BACKGROUND MODEL IMPLEMENTATION 

For most parts of the implementation description of the background, we will be 

discussing the data structures we have constructed to fit our background model. These 

data structures correspond to the mathematical set and matrix forms we have laid out in 

Chapter 2, section 2.3. The background model algorithm adopted, is attributed to the 

works of Stauffer et al [7]. However, we have provided our own independent 

implementation of the algorithm using some efficient data structures.  

 

We restate the Gaussian mixture ),,( tjiψ  for a pixel at location ),( ji  of frame t , as the set 

of Gaussian distributions ),( σnGk  with assigned weights tk ,ω :  

 

{ }ntntt GGGtji ⋅⋅⋅= ,1,10,0 ,,,),,( ωωωψ KKKKKK  

 

The implementation of a Gaussian distribution ),( σnGi  is a C++ class with appropriate 

get/set functions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Code 6.1: The class definition for a Gaussian distribution and its function prototypes from the 

GaussianDistribution.h file.  

(6.1) 

1: class GaussianDistribution  

2: { 

3:  double variance;  

4:  double mean;  

5:  double weight;  

6: public:  

7:  bool match(double); 

8:  double getWeight(); 

9:  void updateDistribution(double, double); 

10:  void adjustWeight(double, bool); 

11:  double getWeightVarianceRatio(); 

12:  void setDistribution(double, double, double); 

13: }; 
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A few functions are worthy of a description: 

The updateDistribution(double pixelValue, double learningRate) function 

updates a Gaussian distribution with the new pixel value, which is the intensity value of a 

pixel as defined in section 2.2. It updates it at a rate specified by learningRate. The 

update equations are discussed in Chapter 2, section 2.3. We require updating Gaussians 

during the training period to incorporate new pixel values, which are observed at a new 

training frame. Updating Gaussians also becomes necessary after the training period, 

when the background model is constantly adapting itself to new changes in pixel values.  

 

The adjustWeight(double learningRate, bool matched) function adjusts the 

weight based on equations set forth in section 2.3, and according to evidence specified by 

match. At any frame, if a Gaussian distribution has been found to have a match (criteria 

for a match defined in Chapter 2, equation 2.2, it is said to have an evidence. Its weight is 

then updated according to the learningRate. Other Gaussians for which evidence was 

not found have their weights updated at a different rate, i.e. specified by 

−1 learningRate. 

 

The implementation of a Gaussian mixture ),,( tjiψ , is essentially a container for storing 

its k  Gaussians distributions. It can be represented using an array of 

GaussianDistribution objects. Code 6.2 illustrates the implementation of the mixture. 

The constructor, on lines 6-14, instantiates s Gaussian distributions. The class provides 

functions, such as updateGaussians(double pixelValue) which iterate through each 

Gaussian in the container, and searches for a match. If a match is found, the Gaussian is 

updated by invoking the Gaussian’s updateDistribution( ) function. Otherwise, it 

finds the least probable distribution (minimum σω /  ratio) and replaces it with a new 

Gaussian distribution by calling the container’s replaceDistribution(int, double, 

double, double) function. The function parameters are parameters for the new 

distribution.  
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Code 6.2: The class definition for a Gaussian mixture and its function prototypes from the 

GaussianContainer.h file.  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: The figure shows the two steps involved in updating Gaussians when a match is not 

found. Also note the structure of a Gaussian mixture.  

1: class GaussianContainer  

2: { 

3: GaussianDistribution** distPtr;  

4: int size; 

5: public:  

6: GaussianContainer(int s) 

7: { 

8:  distPtr = new GaussianDistribution*[s]; 

9:  for (int i=0;i<s;i++) 

10:  { 

11:   distPtr[i] = new GaussianDistribution(); 

12:  } 

13:  size = s; 

14: } 

15: bool updateGaussians(double); 

16: int getSize(); 

17: int getLeastProbableDistribution();  

18: void replaceDistribution(int, double, double, double); 

19: }; 

 

G1 G2 

 

Gn KK  

Gi 

distPtr 

replaceDistribution( ) 

getLeastProbableDistribution( ) 1 

2 



 55 

The GaussianDistribution and GaussianContainer structures can now be used to 

construct our background mixture model. Constructing the mixture model has essentially 

been a bottom-up approach, by first constructing the smaller entities such as the 

GaussianDistribution. We revisit the background mixture model, as described in 

Chapter 2 section 2.3. The background mixture model MB , at time t, can be represented 

using an nm×  matrix of Gaussian mixtures ),,( tjiψ , where mi ≤≤0  and nj ≤≤0 : 
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The implementation of such a structure is a two-dimensional array of Gaussian mixtures. 

Since a Gaussian mixture is represented by a the GaussianContainer class, our 

background mixture model is a two-dimensional array of GaussianContainer objects. 

It is represented by the MultipleGaussianBackgroundModel class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Code 6.3: The class which represents the background mixture model. A few details have been 

omitted for brevity.  

1: class MultipleGaussianBackgroundModel 

2: { 

3: GaussianContainer*** containerPtr;  

4: int height;  

5: int width;  

6:  public: 

7: MultipleGaussianBackgroundModel(IplImage* img) 

8: { 

9:  height = img->height; 

10:  width = img->width; 

11:  createEmptyModel(height,width, 

12:     NUMBER_OF_GAUSSIANS_IN_MIXTURE_MODEL); 

13: } 

14: void updateModel(IplImage*, IplImage*); 

15: }; 
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Code 6.3, shows the constructor of the background mixture model class. The constructor 

accepts the image frame, as its parameter. These image frames are the 3-channel color 

frames from the actual CCTV video. The height and the width of the image correspond to 

our background mixture model MB  matrix’s dimensions n and m respectively. An empty 

model is created using a private function, the details of which have been omitted. This is 

only an initialization step. The empty model is the one we have described in Chapter 2, 

section 2.2.  

 

An important function that deserves attention is the updateModel( ) function which 

updates all the Gaussian containers of the background mixture model. The function takes 

in the incoming 3-channel image frame from the video sequence as an input parameter. It 

also takes in a second 3-channel image, which is to writes to as output. The output is the 

current underlying background model. The update functions for the containers: 

MultipleGaussianBackgroundModel, GaussianContainer, and 

GaussianDistribution are a hierarchy of functions where one invokes the other, to 

eventually update the entire background model. This hierarchy is shown in figure 6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: The hierarchy of update function calls. The update produces the background 

differenced image as its output.  
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Figure 6.5: The figure summarizes pictorially the data-structures we use to build our on-

line background mixture model.  
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6.3    HEAD TOP FINDER IMPLEMENTATION 

 

The algorithm for finding head-tops was discussed in Chapter 3, section 3.3. As stated 

earlier, head-tops are local minimums within a foreground blob. The task of finding these 

local minimums within a certain neighborhood is difficult owing to the manner in which 

OpenCV functions allow the programmer to iterate around the contour of a blob. 

Recollect that we iterate around the contour, since local minimums can only lie on the 

contour of a blob. The task of finding local minimums would have been trivial if 

OpenCV stored edges and allowed the programmer to iterate in an increasing or 

decreasing order of y. The most logical solution would be then to sort the edges in a 

particular order, before iterating. However, since the system is expected to run in real 

time and sorting is an expensive operation, this solution would be inappropriate.  

 

 

 

 

 

 

 

 

 

 

Code 6.4:  The code required to iterate around the contour (edges) of a blob.  

 

Code 6.4 shows the code that we use to iterate around the edges of a blob. OpenCV stores 

the edges of blobs in no precise order. To illustrate this, figure 6.6 shows a blob which 

has 440 edges, and edges (with x and y coordinates separately) have been plotted in the 

order in which they can be iterated. The y values appear to be in some order, though not 

in a completely ascending order and the x values appear to have no sense of ordering.  

The absence of ordering makes it difficult to design a simple algorithm to calculate the 

local minimums.  

 

 

1: CvSeqReader reader; 

2: CvPoint edgeactual; 

3: cvStartReadSeq( edges, &reader); 

4: CV_READ_SEQ_ELEM( edgeactual ,reader); 

5: for(i=1; i< edges->total; i++) 

6: { 

7:  CV_READ_SEQ_ELEM( edgeactual ,reader); 

8:  // edgeactual contains the edge (x,y) 

9: } 
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Figure 6.6: Figure (a) The y-values may appear to be in an ascending order; however this is not 

the case. The red-arrows indicate the regions where there is no sense of ordering. Contours 

cannot be iterated along x either, since there is no ordering in x as shown in figure (b) 

 

 

Our algorithm for determining head-tops involves first determining the local minimums 

in a certain neighborhood, and then filtering these using the area threshold, as described 

in Chapter 3, section 3.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 6.1: The first step of the head top finder algorithm.  

 

 

Algorithm 6.1 shows the first step of the head-top finder algorithm. We calculate the 

maximum number of head-tops (n) that could occur in the blob in a neighborhood 

(neighborhood is equal to the size of the human head). This can easily be calculated by 

first obtaining the maximum and minimum values of x, and then dividing their difference 

by the average human head size. We use 10 pixels for the human head size.   

 

  

  

(a) (b) 

Input: Edges of a blob { }neeeE ,,, 21 KKKKK=  

Output: Local minimum candidates { }nmmmM ,,, 21 KKKK=  

 

Step 1: 
 Find minimum and maximum x value from all edges of the blob 

 minX ← minimum x from E 

 maxX ← maximum x from E 

 n ← (minX – maxX) / HUMAN_HEAD_SIZE 

 

 



 60 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 6.2: The second step of the head top finder algorithm. The function y(p) gives the y-

coordinate of the point p (x,y). HEAD_SIZE is a program constant, and denotes the average size 

of a human head in pixels.  

Step 2: 

1: { }nmmM ,,1 KKKK= , where ),( ∞∞=km  and nk ≤<0  (n = calculated in step 1) 

2: {}=Temp , {}2 =Temp  

3: 0←diff   

4: while ≠E Ø 

5:  keEE −←  

6:  flag1 ← true 

7:  flag2 ← true 

8:  MTemp ←  

9:  while ≠Temp Ø ∧  flag1 = true 

10:   ktTempTemp −←  

11:   if  )( key  < )( kty  then  

12:    MTemp ←2  

13:    while ≠2Temp Ø ∧  flag2 = true 

14:     ktTempTemp 222 −←  

15:     diff ← )2()( kk txex −   

16:     if diff < HEAD_SIZE ∧  )2()( kk tyey <  then  

17:      kk etMM U)2( −←  

18:      flag1 ←  false 

19:      flag2 ←  false 

20:      else if  diff < HEAD_SIZE ∧  )2()( kk tyey ≥  then 

21:      flag2 ←  false; 

22:     end if  

23:    end while 

24:    if  flag = true  then  

25:     kk etMM U)( −←  

26:     flag1 ←  false 

27:    end if 

28:    flag2 ←  true 

29:   end if 

30:  end while 

31: end while 

 

 M now contains the local minimums, and may contain some infinite points ),( ∞∞  
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6.4    THE TIME COMPLEXITY OF THE LOCAL-MINIMUM FINDER 

ALGORITHM 

The algorithm works well and has produced good results in detecting the local minimum 

points. The time-complexity of the algorithm is dominated by the three while loops. 

Referring to algorithm 6.2, the while loop on line 4 has a worst-case complexity of O )(E , 

where E  is the number of edges in a blob (typically 100-150 edges for a single human 

blob). The while loops on line 9 and 13 each have a worst-case complexity of O )( 2n , 

where n is the difference between the maximum and minimum x co-ordinates of the 

blob’s edges, divided by the average human head size. n essentially grows with the 

number of people in the blob; and its average value is approximately equal to the number 

of people in the blob. Thus, the total time complexity of the algorithm is aggregated to 

O )( 2nE . Though not greatly efficient, modern processors make such worst-case 

complexity safe enough for real-time processing.  

 

 

6.5    FILTERING HEAD TOPS 

 

Not all local minimums make it to become a head top. Some are filtered out if they do not 

pass an area threshold test, as described in Chapter 3, section 3.4. This method effectively 

removes any local-minimum points within a neighborhood of pixels that represent human 

shadow. The headTopFilter( ) function of the HeadTopProcessor class 

performs this filtering process. The function takes in a vector of local-minimums and 

the IplImage image with blobs as parameters.  

 

The implementation is straightforward. The function first initializes a few parallel arrays, 

filling it with each local-minimum’s information, such as the center of the elliptical area 

underneath, major and minor axes of the ellipse, etc. (The elliptical area underneath each 

local minimum has been described in detail in Chapter 3, section 3.4, figure 3.3). These 

arrays run in parallel, with each array’s corresponding entries all representing any one 

particular local minimum.  

 



 62 

1: for (it=headTops->begin(); it!=headTops->end(); ++it) { 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13:  } 

Code 6.5: The initialization step of the parallel arrays. Each array’s corresponding 

indexes refer to the same local-minimum. A few details have been omitted from the code 

for brevity.  

 

After initialization, the image containing the blobs is iterated pixel-by-pixel. At each 

iteration step, a pixel is tested to see if it is black or white (black indicating foreground) 

(code 6.5 line 2). If it is a foreground pixel, it is then checked to see if it lies within any 

local-minimum’s ellipse (the ellipse underneath each local-minimum) (code 6.5 ln 6). If it 

does, the local-minimum’s area count is incremented by 1(code 6.5 ln 9).  

 

1:  color = getPixelColor(image, cvPoint(x,y)); 

2:  if (isBlackPixel(color)) 

3:  { 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: } 

Code 6.6: The above program steps are performed at each iteration of the pixel-by-pixel loop, 

which goes through each pixel (x,y). Details have been omitted, and code has been simplified for 

brevity. 

height_ellipse = HUMAN_HEIGHT * ((double)it->y / image_height);  

center = cvPoint(it->x, it->y+(double)(height_ellipse/2)); 

headTopsArray[i] = *it;  

areaOccupied[i] = 0;  

centerOfEllipseArray[i] = center;  

majorAxisArray[i] = height_ellipse/2;  

minorAxisArray[i] = HUMAN_HEAD_SIZE/2; 

areaThreshold[i]= 

cvRound(((double)AREA_THRESHOLD_PERCENTAGE/100.0)*(PI*majorAxis

Array[i]*minorAxisArray[j])); 

i++; 

for (k=0;k<n;k++) 

{  

 

 

 

 

 

 
} 

if(isInEllipse(centerOfEllipse[k],majorAxis[k],minorAxis[k],      

cvPoint(x,y))) 

{ 

     areaOccupied[k]++; 

} 
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This way we determine each local minimum’s elliptical area underneath. This area, which 

is stored in areaOccupied[i] for the  thi  local minimum, is compared against its 

threshold stored in areaThreshold[i]. If a local minimum does not meet the 

threshold, it is discarded. This way unwanted local-minimums are filtered out, and what 

remains are actual head-top candidates.  

 

6.6    OVERALL TIME COMPLEXITY 

The time complexity of the filter implementation is dominated by the for loop which 

iterates through all the pixels of the image. Our system runs on images of size 360-by-

240, which contain 86,400 pixels.   

 

The total time complexity of the entire head-top finder implementation can now be 

calculated, where a and b are the height and width of the image, respectively:  

 

O =+ )( 2 abnE  O )(ab  

 

Results of this implementation have been presented in Chapter 7. 
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6.7    IMPLEMENTATION OF THE TRACKER 

 

The OpenCV library contains various container classes (C structs and classes) for storing 

graphical entities such as points, lines, curves, etc. Blobs are a central theme for any 

motion tracking systems. However, the container classes for blobs, namely CvSeq is not 

sufficient enough to be used in most tracking system. It provides the bare minimums for 

any blob, enabling only the storage of a sequence of points. The sequence of points 

represents the contour of a blob, which is a closed curve.  A tracking system requires 

more functionality than that, since most computations performed by the tracker revolve 

around the blob.  

 

A wrapper class for blobs, popularly attributed to D. Grossman et. al. [18], was used to 

extract and store blobs. The class provides indispensable functions which assist in 

computing useful features such centers of a blob, maximum/minimum point on a blob, 

perimeter and area of a blob, etc. Code 6.7 illustrates the ease with which this library can 

be used:  

 

 

 

 

 

 

 

 

 

 

 

Code 6.7: line 1 extracts blobs from an IplImage image pointed to by the variable image. 

Lines 2 and 3 filters out blobs that are less than 50 and greater than 600 pixel area units. Lines 4 

to 7 show how one could loop through the individual blobs. 

 

The Grossman wrapper seems sufficient; however, it does not wholly suffice our tracker 

requirements. We require more functionality. Hence we have written our own wrapper 

class that provides the extra functionality required. We call our wrapper class a 

TrackedBlob. Code 6.8 illustrates some of the important features of a tracked blob; we 

have omitted a few details for brevity. 

1: CBlobResult blobs = CBlobResult( image, NULL, 100, true ); 

2: blobs.Filter( blobs, B_INCLUDE, CBlobGetArea(), B_LESS, 600 ); 

3: blobs.Filter( blobs, B_INCLUDE, CBlobGetArea(), B_GREATER, 50 ); 

4: for  (int i=0; i<blobs.GetNumBlobs(); ++i) 

5: { 

6:  CBlob Blob = blobs.GetBlob(i); 

7: } 
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Code 6.8: A wrapper class designed by us for Grossman’s Blob class. The wrapper class 

provides some extra features that are essential for the tracker for tracking purposes. 
 

 

A trackedBlob stores important information about its position (lines 4 and 5 in code 

6.8) and speed which are vital for predicting its motion. It also keeps track of how many 

frames passed since it was last observed, using the lostBlobCount. Usually a blob is 

discarded, and regarded as lost when it has not been observed for the past 4 frames. This 

value can be adjusted, taking external factors into consideration. On a bright sunny day, 4 

frames showed good performance. However, on a windy day, when there are frequent 

changes in illumination, a greater frame threshold may be set to account for frequent blob 

losses.  

 

A blob also stores information about its search neighborhood Ω , i.e. the hotspot. As 

defined earlier, this is the region within which the blob is expected to be observed in the 

subsequent frame (See Chapter 3, section 3.4).  

1:  class TrackedBlob  

2:  {  

3:  HotSpot spot;      

4:  CvPoint previousPosition;  

5:  CvPoint currentPosition;   

6:  double speed;  

7:  int lostBlobCount;     

8:  int red; 

9:  int blue; 

10:  int green; 

11:  int status;   

12:  vector<CvPoint> motionHistory; 

13: } 
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Code 6.9 shows the Hotspot class.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Code 6.9: The class Hotspot which represents the region around a blob within which the 

blob is expected to move in the subsequent.  

 

 

The hotspot of a blob is essentially a circle with a certain radius. Our system uses a radius 

value of 10 pixels. However this design can be easily used when different hotspot radii 

are assigned depending on the velocity observed, i.e. for example a higher radius for a 

higher velocity value. The constructor HotSpot(CvPoint p, double r) allows this 

feature.  

 

The hotspot class provides some useful functions, as shown in code 6.10.   

 

 

 

 

 
Code 6.10: Hotspot class functions. 

1: class HotSpot  

2: { 

3: public: 

4:  CvPoint center;  

5:  double radius;  

6:  HotSpot(CvPoint p, double r) 

7:  { 

8:   center = p;  

9:   radius = r;  

10:  } 

11:  HotSpot() 

12:  { 

13:   center = cvPoint(0,0); 

14:   radius = 0; 

15:  } 

16: } 

 

1: bool pointInHotSpot(CvPoint point); 

2: void update(CvPoint p, double r); 
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The pointInHotSpot() function returns true if a point lies within a hotspot. It checks to 

see if the point lies within the circle using the inequality rbyax ≤−+− 22 )()( . The 

update method enables changing the hotspot’s radius, which may be required if the 

velocity changes.  

 

We look back to our algorithm for tracking blobs and describe the function 

implementations which are invoked during tracking. Recollect that when tracking a blob, 

we first calculate the predicted position of the blob using its velocity and direction of 

motion information. The next step is to determine the observed position. However, some 

blobs may not have an observed position (lost blobs). If there is an observed position, we 

perform a weighted average of the predicted and observed positions, to determine the 

blob’s next position. If, however, there is no observed position, we simply use our 

predicted position as the blob’s next position. A detailed discussion is given in Chapter 4, 

section 4.7.  

 

The trackedBlob class provides the functions that are used to predict, estimate and 

update a blob, while it is being tracked. Code 6.11 lists the important ones.  

 

 

 

 

 

 

 

Code 6.11: trackedBlob class functions from TrackedBlob.h 

1: CvPoint getEstimatedPosition(CvPoint observedPoint); 

2: CvPoint getEstimatedPosition(); 

3: void estimateTrackAndUpdate(CvPoint); 

4: void estimateTrackAndUpdate(); 

5: CvPoint getPredictedPosition(); 
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Figure 6.7: The hierarchy of function calls during prediction, estimation and update. Note that 

updating is only performed after estimation and prediction.  

 

 

The most important function which requires discussion is the one at the bottom of the 

hierarchy: getPredictedPosition(). This function performs the prediction step for a 

blob, by calculating the distance it will travel from prior speed (line 4, Code 6.12), and 

then using linear motion formulas (Chapter 4, section 4.7, equations 4.3) to calculate the 

prediction position (lines 5-7, Code 6.12). After employing Kalman filtering, 

getPredictionPosition( ) changes considerable. See code 6.21.  

 

There are two important things to note here: if the distance traveled in the previous frame 

is zero, it is sensible to return the current position as the next predicted position. 

estimateTrackAndUpdate (CvPoint c) 

getEstimatedPosition(CvPoint observedPoint)  

getPredictionPosition( ) 

estimateTrackAndUpdate () 

getEstimatedPosition() 

invokes 

returns to 
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Code 6.12: The getPredictedPosition( ) which performs motion prediction for a tracked 

blob 

 

 

After the prediction step is performed, recollect that we estimate the next position based 

on the observed point. If we have no observed point, we simply use the predicted 

position. Overloaded functions getEstimatedPosition(CvPoint observedPoint) and 

getEstimatedPosition() perform these estimations (see Chapter 4, section 4.7). The 

latter takes no parameter in order to estimate positions for blobs with no observed point. 

1: CvPoint TrackedBlob::getPredictedPosition() 

2: { 

3: double distanceTravelledInLastFrame =  

distance(currentPosition, previousPosition); 

4: double predictedDistanceToBeTravelled = speed * FRAME_RATE; 

5: double lambda = 1 + predictedDistanceToBeTravelled/distanceTravelledInLastFrame); 

6: double predictedXOrdinate = (1-lambda)*previousPosition.x +  

     lambda*currentPosition.x); 

7: double predictedYOrdinate = (1-lambda)*previousPosition.y +  

     lambda*currentPosition.y); 

8: if (distanceTravelledInLastFrame == 0) 

9: { 

10:  return currentPosition; 

11: } 

12: return  

cvPoint(cvRound(predictedXOrdinate),cvRound(predictedYOrdinate)); 

13: } 
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Code 6.13: getEstimatedPosition performs estimation  

 

 

 

The estimated positions are calculated using the weighted average of the predicted 

(acquired from the getPredictionPosition( ) function) and the observed positions. 

TRACKER_RELIABILITY_FACTOR is a program constant, and we use a value of 50% 

indicating that we trust our prediction and observed positions equally. The zero-

parameter getEstimatedPosition( ) function cannot perform an estimation, since it 

has no observed point, and hence it uses the predicted position as the next estimated 

position.  

 

We now look at the two overloaded TrackedBlob functions, which are at the top of the 

hierarchy: estimateTrackAndUpdate (CvPoint c) and estimateTrackAndUpdate 

(). The latter is for blobs with no observed point. These functions invoke the predictor 

and the estimator functions, and perform maintenance operations such as updating blob’s 

data members. The blob needs to be updated since the estimator returns a new estimated 

position, which becomes the blob’s current position in the next frame.  

1:  CvPoint TrackedBlob::getEstimatedPosition(CvPoint observedPoint) 

2:  { 

3:      CvPoint predictedPosition = getPredictedPosition(); 

4:      double estimatedPositionXOrdinate = ((1-     

        (TRACKER_RELIABILITY_FACTOR*observedPoint.x); 

5:      double estimatedPositionYOrdinate = ((1- 

        TRACKER_RELIABILITY_FACTOR)*predictedPosition.y)  

        + (TRACKER_RELIABILITY_FACTOR*observedPoint.y); 

6:      return cvPoint(cvRound(estimatedPositionXOrdinate),  

               cvRound(estimatedPositionYOrdinate)); 

7:  } 

 

8:  CvPoint TrackedBlob::getEstimatedPosition() 

9:  { 

10:     return (getPredictedPosition()); 

11: } 
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Code 6.14: The function which is at the top of the hierarchy of functions. We have 

included its overloaded counterpart estimateTrackAndUpdate () for brevity.  

 

 

1: void TrackedBlob::estimateTrackAndUpdate(CvPoint c) 

2: { 

3:  CvPoint centerOfBlob = kalmanFilter(c); 

4:  CvPoint nextEstimatedPosition = getEstimatedPosition(centerOfBlob); 

5:  // update tracked blob and prepare for next estimation 

6:  speed = distance(centerOfBlob, currentPosition) / FRAME_RATE;  

7:  updateTrackedBlob(nextEstimatedPosition, nextEstimatedPosition,  

    currentPosition, DEFAULT_HOTSPOT_RADIUS, \ 

    BEING_TRACKED, speed,0);  

8: } 
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6.8    THE Tracker CLASS 

The heart of the tracking system is the tracker class which performs the tracking 

process. The class definition is simple, and it uses a C++ vector to store all the blobs it is 

currently tracking. It only contains a single function: track( ),which coordinates the 

entire tracking process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code 6.15: The tracker class definition from Tracker.h. The destructor function has 

been omitted for brevity.  

 

The Track( ) function performs the most important parts of the tracking process. Its task 

is to primarily maintain and keep track of each blob’s state in its entire lifetime (See 

Chapter 4, section 4.8). At each frame, it updates each tracked blob’s state and invokes 

the appropriate functions for prediction, estimation and update. The parameter to the 

track function is an IplImage to which it writes back its output: the trajectories of the 

human blobs. Since, we draw out the trajectories on the image sequences; we feed each 

image frame sequence as input to this function. The second parameter is the vector of the 

blob’s centers, or otherwise points which it is supposed to track on the human. Head-tops 

can be used as an alternate. This vector is the provided to the track( ) function by the 

findHeadTops( ) function of the HeadTopProcessor class.  

1:  class Tracker 

2:  { 

3:     vector<TrackedBlob>* trackedBlobs;  

4:     public: 

5:     Tracker() 

6:     { 

7:           trackedBlobs = new vector<TrackedBlob>; 

8:     } 

9:     void track(IplImage* img, vector<CvPoint>* blobCenters); 

10:    }; 
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Code 6.16:: Code shows how the output from the head-top finder class is redirected into 

the track function, for tracking purposes. Here we are tracking the head-tops of the 

humans. img1 is each image frame in the sequence on which the trajectories are to be drawn 

out.  

 

The implementation of the track ( ) function is too verbose, and we felt that presenting 

the algorithm is a more effective way of explaining the track function. We have divided 

the algorithm into 3 steps, and these 3 steps are performed in a loop that iterates through 

the set of image sequence frames I . T is the set of blobs that are currently being tracked.  

 

{ }no iiiI ,,, 1 KKKK=  

{ }=T  

while ≠i Ø  do  

      kiII −←  

      B )( kigetHeadTop←   

     ←T Perform step 1 with input parameter = B 

     ←T Perform step 2 with input parameter = T 

     ←T Perform step 3 

   Output trajectories:  mark the current position of each tracked blob in T on image ki  

end while

1: Tracker* t = new Tracker( ); 

2: // loop through a sequence of image  

3: // loop body:  

4: Vector<CvPoint>* v = ht->findHeadTops(img1); 

5: t->track(img1, v); 

6: cvShowImage("scene", img1); 

7: // end loop  
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Algorithm 6.3: Step 1 of the track() function algorithm

Step 1:   

Input parameter: set of trackable points B  and set of tracked blobs T 

Output: T ′  

while ≠B Ø do 

 ibBB −←  

 Temp ←  T 

 while ≠Temp Ø do  

  kpTempTemp −←  

  if   ∈kb Hotspot  ( )kp  then 

   if  status  )( kp  = NEW_BLOB   then 

    measure velocity of blob, calculate direction and update  

   else if  status  )( kp = BEING_TRACKED  then  

    estimateTrackAndUpdate ( ib ) 

   else if  status  )( kp = BLOB_LOST  then  

    estimateTrackAndUpdate ( ib ) 

   end if 

   mark kt  as tracked in current frame 

   blobtracked ←  true 

  end if 

 end while  

 if   blobtracked = false  then 

  create a new tracked blob t   from ib   

  tTT U←  

 end if 

end while  
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Algorithm 6.4: Step 2 of the track() function algorithm

 

Step 2: Maintain and update tracked blobs that were not tracked in the current sequence 

frame 

Input parameter: set of tracked blobs T 

Output: T ′  

 

Temp2 ←  T 

while  Temp2 ≠ Ø   do 

Temp2 ← Temp2 - kt2  

 if  kt2  was tracked in step 1  then 

  if  status ( kt2 ) = BEING_TRACKED   then 

   estimateTrackAndUpdate ( ) 

  else if  status  )2( kt = BLOB_LOST  then  

   if  tracked blob  kt2   has reached MAX_LOST_THRESHOLD then 

    status ( kt2 ) ← DISCARD_BLOB 

   else 

    estimateTrackAndUpdate ( ) 

   end if 

  else  if status  )2( kt = NEW_BLOB  then   

   status ( kt2 ) ← DISCARD_BLOB 

  end if 

 end if  

end while  
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Algorithm 6.5: Step 3 of the track() function algorithm 

 

 

Step 3: Remove tracked blobs that have their statuses set to DISCARD_BLOB 

Input parameter: set of tracked blobs T 

Output: T ′  

Temp3 T←  

while Temp3 ≠ Ø  do 

Temp3 ktTemp 33−←  

 if  status ( kt3 ) = DISCARD_BLOB  then 

  ktTT −←  

 else  

  lostBlobCount ( kt ) ← lostBlobCount ( kt ) – 1 

 end if 

end while  
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6.9    IMPLEMENTING THE KALMAN FILTER FOR MOTION PREDICTION 

OpenCV provides some very useful functions for implementing the Kalman filter. These 

functions are part of its Motion Analysis package. We associate a separate Kalman filter 

to each blob that is being tracked. Apart from the data members that we have listed 

already in code 6.8., a TrackedBlob contains more members that are required to store the 

Kalman matrices and its parameters. Code 6.17 lists them all.  

 

 

1: class TrackedBlob  

2: {  

3:  // kalman parameters 

4:  CvKalman* kalman; 

5:  CvMat* measurement; 

 

6:  // more trackedblob data members 

7: }; 

 

Code 6.17: The TrackedBlob class stores the Kalman filter parameters enabling each 

tracked blob object to be associated to a Kalman filter, for its motion’s prediction.   

 

It is most sensible to initialize the Kalman parameters in the constructor of 

TrackedBlob. Code 6.18 shows how we initialize these parameters.  

 

 

 

 

 

 

 

 

 

 

 

Code 6.18: Kalman filter initialization in TrackedBlob constructor. The code has been 

adopted from OpenCV’s Kalman filter sample example, which ships with OpenCV.  

1: kalman = cvCreateKalman(4,2,0); 

2: cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1)); 

3: cvSetIdentity(kalman->process_noise_cov, cvRealScalar(proc_cov)); 

4: cvSetIdentity(kalman->measurement_noise_cov, cvRealScalar(meas_cov)) ; 

5: cvSetIdentity(kalman->error_cov_post, cvRealScalar(1)); 

6: memcpy( kalman->transition_matrix->data.fl, A, sizeof(A)); 

7: CvRNG rng = cvRNG(-1); 

8: cvRandArr(&rng, kalman->state_post, CV_RAND_NORMAL, cvRealScalar(0),  

cvRealScalar(0.1)); 

9: kalman->state_post->data.fl[0]=centerOfBlob.x; 

10: kalman->state_post->data.fl[1]=centerOfBlob.y; 

11:measurement=cvCreateMat(2,1,CV_32FC1); 
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The initialization code contains a few constants, which we have defined in the 

constants.h file. These are the values for the process and measurement covariance. 

We also define a transition matrix A using const float A [ ]. This matrix relates 

how the states interact (Chapter 5, equation 5.12). Code 6.19 shows these declarations.  

 

 

 

 

 

 

Code 6.19: Some constants required for Kalman initialization 

 

In the initialization (code 6.18), we initialize a Kalman OpenCV object (line 1) using 

cvCreateKalman. The first two parameters are the dimensionality of the state and 

measurement vectors. See section 5.5, for a discussion of our state and measurement 

vectors. The next few lines 2-5, initialize the Kalman filter’s internal matrices. What we 

are essentially doing, is multiplying the internal identity matrices with some of our 

defined constants, such as the ones we have declared in code 6.19. Lines 9-10 initialize 

the state vector to contain our initial tracking point (center of blob, or head top).  

 

The rest of Kalman filter prediction is performed using the kalmanFilter(CvPoint) 

function of TrackedBlob class.  

 

 

 

 

 

 

 

 

 

 

 

 

Code 6.20: The kalmanFilter( ) invokes OpenCV’s prediction and correction Kalman 

functions.  

1: const double proc_cov=1e-5; 

2: const double meas_cov=1e-5; 

3: const float A[] = {1,1,0,1}; 

 

1: CvPoint TrackedBlob::kalmanFilter(CvPoint m) { 

2:  measurement->data.fl[0] = m.x; 

3: measurement->data.fl[1] = m.y;  

4: cvKalmanPredict(kalman, 0); 

5: cvKalmanCorrect(kalman, measurement); 

6: return cvPoint(cvRound(kalman->state_post->data.fl[0]),  

cvRound(kalman->state_post->data.fl[1])); 

7: } 
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The kalmanFilter( ) function performs subsequent predictions, after the initialization 

process. Subsequent calls to the kalmanFilter( ) function with the measurement 

point, triggers automatic prediction and correction performed by OpenCV’s  

cvKalmanPredict and cvKalmanCorrrect functions.  Internal matrices are updated 

using the new measurement point (line 2-3 code 6.20). The process and measurement 

covariances are updated automatically internally by making calls to cvKalmanCorrect 

(line 5, code 6.20).  

 

It is important to note that the Kalman filtering process is an alternative to predicting 

motion using vector analysis. However, for lost blobs, we use our vector analysis 

techniques to track their motion. We re-visit our function hierarchy in section 6.2, figure 

6.4. getPredictionPosition( ) can now be modified and greatly simplified. Code 

6.21 illustrates this.  

 

 

 

 

 

 

 

Code 6.21: the new getPredictedPosition( ) function, and greatly simplified since it is not 

using vector analysis methods to predict motion anymore. It uses the prediction of the Kalman 

filter. Refer to code 6.12 where have we introduced the getPredictedPosition( ) function. 

 
 

getEstimatedPosition( ), which is for lost blobs, still needs to predict using 

vector analysis techniques for linear motion. We have found that the Kalman filter 

behaves poorly for lost blobs, for which there is really no measurement value. For a 

measurement value we predict the lost blob’s motion using vector analysis, and then use 

this to predict using Kalman filter.  The code for getEstimatedPosition( ) now 

does motion prediction first, and then uses its results for the Kalman filter.  

1: CvPoint TrackedBlob::getPredictedPosition() 

2: { 

3: return kalmanFilter(currentPosition); 

4: } 
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Code 6.22: getEstimatedPosition( ) remains with little changes. Note that in code 6.15 

getEstimatePosition() invokes getPredictedPosition( ). Since 

getPredictionPosition( ) has simplified after employing the Kalman filter, we insert 

the code of the previous getPredictedPosition( ) into here, however, passing the final 

returned point through the Kalman filter. 

 

 

Results from Kalman filtering have been presented on Chapter 7 

1:  CvPoint TrackedBlob::getEstimatedPosition() 

2:  { 

  

3: // calculate the predicted position using position vectors  

4: // velocity of blob 

5: double distanceTravelledInLastFrame =  

distance(currentPosition, previousPosition); 

6: double predictedDistanceToBeTravelled = speed *  

FRAME_RATE; 

 

7: double lambda = 1 +  

(predictedDistanceToBeTravelled/distanceTravelledInLastFrame); 

 

8: double predictedXOrdinate = (1-lambda)*previousPosition.x  

+ (lambda*currentPosition.x); 

9: double predictedYOrdinate = (1-lambda)*previousPosition.y  

+ (lambda*currentPosition.y); 

 

10: if (distanceTravelledInLastFrame == 0) 

11: { 

12:  return currentPosition; 

13: } 

14: CvPoint c =  cvPoint(cvRound(predictedXOrdinate),  

cvRound(predictedYOrdinate)); 

 

15: return kalmanFilter(c); 

16:  } 
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Chapter 7 
 

 

 

 

 

 

 

In this chapter we present our results and findings, with real outputs from our system. We 

have divided this chapter into four sections namely: background differencing, head-top 

finder, appearance modeling and motion tracker. These four sections have been named 

according to the four most integral components of our system. We test these components 

by diverting their output to the screen. The components don’t necessarily produce outputs 

to the screen when run with the tracker. See fig 6.0. for a pictorial description of the 

entire system, and its data flow.  

 

Results 
 



 82 

7.1    BACKGROUND DIFFERENCING RESULTS 

 

Background set 1: 

After 20 frames 

 

 

 

 

 

 

 

 

 

After 100 frames 

 

 

 

 

 

 

 

 

 

Result set 7.1: The images on the right are the background subtracted images. The leaves of trees 

are moving constantly due to wind, and notice how the background model has learnt and adapted 

to the moving leaves in the 100
th
 frame. 
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Background set 1 (continued): 

 

After 300 frames 

 

 

 

 

 

 

 

 

 

After 600 frames  

 

 

 

 

 

 

 

 

 

Result set 7.2: There is a stark change in illumination in the courtyard between the 100
th
 and the 

300
th
 frame. The background model has adapted very well to this change. After 600 frames have 

passed, the system has completely learnt about the motion of leaves of trees, and has subtracted 

them quite well.  
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Background set 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

After 20 frames have passed, the person can be seen standing with the other people who 

apparently have become part of the background. The person, who we have been focusing on, 

is slowly becoming part of the background. Notice how the human subject’s blob is 

disappearing.  

After 20 frames 

Notice that a person comes out of the building (pointed to by the arrow), he is still not part 

of the background, as can be seen in the background-differenced image. We will be focusing 

on him for the rest of this example.  
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After another 20 frames have passed, the blob has disappeared significantly, indicating that 

the human subject has become a part of the background. This shows that our system’s 

background can incorporate objects which are added to the background, and is adaptable.   

After 40 frames 
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7.2    HEAD-TOP FINDER RESULTS 

 

 

 

  

 

 

 

 

 

 
Result set 7.4: A well-formed human blob is detected as expected. Shadows are completely 

removed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result set 7.5: The man in the bicycle causes a large foreground blob. The system finds it difficult 

to distinguish this blob from a similar blob that would have been produced if there were a group 

of people instead.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result set 7.6: Perfect segmentation and detection at a point far away from the camera. Notice 

how the shape of the ellipse has decreased due to the perspective effect. The scaling factor for the 

perspective works well.  
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Result set 7.7: Single human blobs are detected correctly. Shadows are again removed perfectly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result set 7.8: A relatively deformed blob is also detected properly. The shadow can clearly be 

seen to contain a local minimum, as marked by the arrow. The algorithm has removed it 

successfully.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Result set 7.9: The dangers of premature human segmentation and detection. The detection was 

performed during the background training period. To avoid such situations, detection is started 

at least after the system has been trained on 500 frames for the background.  
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7.3 MOTION TRACKING RESULTS 

 

Results from motion tracking have been divided into different scenes. Some frames have 

been cropped to focus on the regions of interest. The trajectories appear in different 

colors. The system assigns a random color to every human it tracks.  

 

The scenes have been shot at Queen Mary College’s courtyard, situated right in front of 

the Computer Science department. The camera was mounted on top of a building. Scenes 

were shot at different times of the day, and we have tried capturing scenes with differing 

illumination. Some scenes were shot on a windy day, to test how the system performs on 

leaves moving in the background.  

 

Each scene has labeled frames indicating the sequence. We have also indicated, below 

each frame, how many frames have elapsed since the first frame. In the following 

diagram, we point important aspects of our system’s capabilities.  

 

c 

 

 

 

The above figure shows regions, marked by the orange arrows and light green on the ground plane, 

where our system had the most amounts of success rates while tracking. These are the regions where 

relatively bigger blobs were produced, and hence making it easier for tracking. The red-arrows 

indicate that the leaves of the trees are always in constant to-and-from motion 
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SCENE 1:  

Scene shot on a relatively less windy day with poor illumination. The second human 

subject, who enters the scene in 4, is tracked eventually when h/she becomes visible to 

the tracker. Frame 5 shows the path traced for the second human subject. The colors of 

the trajectories happen to be very similar; however they are different when examined 

more closely, indicating that the system identifies them as different human subjects.  
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After 20 frames 

After 51 frames After 76 frames 

After 112 frames After 154 frames 

 

6 
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SCENE 2:  

This scene was shot on a bright sunny day with ample lighting. However, tracking occurs 

with some success. Disruption occurs when the cyclist occludes the human group. The 

system loses track, but tracks the cyclist perfectly. The group is again tracked in frame 6 

(light yellow trajectory). See discussion on the following page.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

1 2 

3 4 

5 6 

After 40 frames 

After 60 frames After 80 frames 

After 95 frames After 110 frames 
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We analyze why scene 2 failed to track properly by examining the blobs. Notice the 

severity of deformations that have occurred in frames 1 and 2. However, our head-top 

finder algorithm would have no problems detecting two heads in frame 2. Since our 

default hotspot radius spans a distance of 10 pixels, it spanned the entire group of the 2 

people. Frame 4 causes a serious occlusion which lasts for about 10 frames. Notice how 

the head-tops could have gotten shifted considerably in frame 4. Frame 6 has the one of 

the humans in the group completely invisible.  
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SCENE 3: 

 

In this we analyze another situation where the scene is nicely lit; however, there is some 

disruption in tracking. See discussion on the following page 
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Analyzing the scene puts forth two concerns that need to be examined: the human blob in 

frame 1 is detected late and the blob is lost and re-detected as a new blob in frame 4.  

 

The late detection in frame 1 can easily be reasoned if we look the blobs that were 

produced 20-100 frames before frame 1. We have circled the places where the blob 

appears. Notice how the blob is very ill-formed and how its size makes it impossible for 

it to pass our size filter test.  
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Frame 4, in scene 3, showed a lost blob and a re-detection as a new blob. After 

debugging, we have found that the blob was lost immediately right after it was detected at 

the same position. This caused the current and previous positions to be the same, hence 

causing the velocity to become zero. This is the reason why the system doesn’t predict 

any further (no predict trail line which is usually characterized by a straight line for linear 

motion). The system waits thinking that the human has stalled. However, this is not the 

case. The human is later detected in frame 5, but as a different human blob. Such 

anomalies can occur, and are very difficult to deal with.  
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SCENE 4: 

Scene 4 is a rather badly illuminated scene. Notice that the trees cast no shadows 

indicating that the sky is overcastted. The reason we have extracted this scene is to point 

to the reader that the system is able to track humans at all regions on the ground plane, 

and just not the center (which the previous scenes focused on). However, we have noticed 

a higher number of false trajectories for objects far away from the camera. 
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SCENE 5: 

What we have here is a brightly illuminated scene. The system performs tracking to 

perfection, tracking every move of the human subject.  
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SCENE 6: 

This scene shows how the tracking system performs prediction when a blob is lost. 

Notice how the trajectory produced in scene 5 ends in a straight line. It is impossible for 

humans to produce such a trajectory, and even if the move was articulated in that manner 

the noisy nature of the blob producing such a trajectory is highly unlikely. We can 

conclude that it is a straight line since the motion tracker uses its vector analysis 

functions to predict linear motion. We have also attached a background-differenced 

frame, produced three frames before frame no.5. Notice how the blob has completely 

disappeared, forcing the system to perform motion prediction. (follow circled regions)  
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SCENE 7: 

 

We have captured various motion tracks from various scenes. Each image represents a 

different scene. Notice that in some scenes, there are fast moving cars in the background, 

and these are characterized by the straight line trajectories.  
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Code acknowledgements  

 
Our system uses a blob extraction and analysis facility package developed by D. 

Grossman, and popularly used by machine vision researchers, all over the world. The 

blob analysis and extraction package has not been included in this section. It can be 

viewed online on the Yahoo® OpenCV forums at 

http://groups.yahoo.com/group/OpenCV/ in the files section, compressed in a zipped file 

called cvblobslib_OpenCV_english.zip  

 

The package has been included on the CD, under a folder called “Blob analysis 

package”.  

 

The blob analysis package provides built-in functions to extract blobs and its properties. 

Program code 
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Constants.h 
 
#include <cv.h> 
#include <highgui.h> 
#include <vector> 
 
 
 
#define NUMBER_OF_GAUSSIANS_IN_MIXTURE_MODEL 4 
#define MATCH_FACTOR 2.5 
#define LEARNING_RATE_WEIGHT 0.4 
#define LEARNING_RATE_VARIANCE 0.2 
#define HIGH_VARIANCE 10.0 
#define LOW_WEIGHT 0.1 
 
#define TRACK_PATH_SIZE 3.0 
#define HUMAN_HEAD_SIZE 10  // always use even numbers 
#define HUMAN_HEIGHT 50 
#define AREA_THRESHOLD_PERCENTAGE 50 
 
// for tracker 
#define NEW_BLOB 1  
#define BEING_TRACKED 2 
#define BLOB_LOST 3 
#define DISCARD_BLOB 4 
#define FRAME_RATE 0.1 
#define DEFAULT_HOTSPOT_RADIUS 10 
#define TRACKER_RELIABILITY_FACTOR 0.5 // value between 0 and 1.  
       // a value of 1 makes tracker 
track  

// relying only on observed 
point (if any) 

       // a value of 0 makes tracker 
track relying  

// only on predicted point 
 
#define MAX_LOST_BLOB_COUNT 10 
using namespace std; 
 
 
double const PI = 3.14159; 
 
 
class GlobalFunctions { 
 
public: 
 

// returns the greyscale value of a 1-channel image 
 static double getPixelColor(IplImage* image, CvPoint point) 
 { 
  double grey_value; 
  grey_value = ((uchar*)(image->imageData +  

image->widthStep*point.y))[point.x]; 
  return grey_value; 
 } 
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 // to check if a point lies within a specified ellipse 
 static bool isInEllipse(CvPoint center, double major, double 
minor, CvPoint  

point) 
 {  
  // l = (x-h)^2 / a^2  
  // r = (y-k)^2 / b^2  
 
  double l,r;  
 
  l = ((point.x - center.x)*(point.x - center.x)) / 
(major*major);  
  r = ((point.y - center.y)*(point.y - center.y)) / 
(minor*minor); 
 
  return ((l+r)<=1); 
 } 
 
 
 // draws straight lines between sets of points, with a specified 
color 
 static void drawPath(IplImage* img, vector<CvPoint> motionHistory, 
CvScalar  

pathColor) 
 { 
  if (motionHistory.size() == 1) 
  { 
   return;  
  } 
  else  
  { 
   for (int i=1;i<motionHistory.size();i++) 
   { 
    cvLine(img, motionHistory.at(i), 
motionHistory.at(i-1),  

CV_RGB(pathColor.val[0], pathColor.val[1], 
pathColor.val[2]),  

2, 8); 
   } 
  } 
 } 
 
  
}; 



 105 

Background model 
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GaussianDistribution.h 

 
 
 
#include "../constants.h" 
 
 
class GaussianDistribution  
{ 
 double variance;  
 double mean;  
 double weight;  
 
public:  
  
 GaussianDistribution() 
 { 
  variance = 0;  
  mean = 0; 
  weight = 0; 
 } 
   
 GaussianDistribution(double m, double v, double w) 
 {  
   
  variance = v;  
  mean = m;  
  weight = w; 
 } 
 
 GaussianDistribution(double m) 
 { 
  mean = m;  
  variance = HIGH_VARIANCE;  
  weight = LOW_WEIGHT; 
 } 
  
 bool match(double); 
 double getWeight(); 
 void updateDistribution(double, double); 
 void adjustWeight(double, bool); 
 double getWeightVarianceRatio(); 
 void setDistribution(double, double, double); 
 
}; 
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GaussianDistribution.cpp 
 
#include "stdafx.h" 
#include "GaussianDistribution.h" 
#include "math.h" 
 
 
bool GaussianDistribution::match(double pixelValue) 
{ 
 double difference;  
 difference = abs(pixelValue - mean); 
 return (difference < MATCH_FACTOR * (sqrt(variance)));  
} 
 
double GaussianDistribution::getWeight() 
{ 
 return weight; 
} 
 
// updates only if the pixelValue matches the distribution  
// else does not update  
void GaussianDistribution::updateDistribution(double pixelValue, double 
learningRate) 
{ 
 mean = ((1-learningRate)*mean) + (learningRate*pixelValue); 
 variance = ((1-learningRate)*variance)+((pixelValue-
mean)*(pixelValue-mean)); 
} 
  
void GaussianDistribution::adjustWeight(double learningRate, bool 
matched) 
{ 
 if (matched) 
 { 
  weight = (1-learningRate)*weight + learningRate; 
 } 
 else 
 { 
  weight = (1-learningRate)*weight; 
 } 
} 
 
double GaussianDistribution::getWeightVarianceRatio() 
{ 
 return (weight/variance); 
} 
 
void GaussianDistribution::setDistribution(double m, double v, double w) 
{ 
 mean = m; 
 weight = w; 
 variance = v; 
} 
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GaussianContainer.h 

 
 
#include "GaussianDistribution.h" 
 
 
class GaussianContainer  
{ 
 // array of gaussian distribution (gaussian mixtures) 
 GaussianDistribution** distPtr;  
 int size; 
 
public:  
 // creates a container with zero gaussians  
 // the number of gaussians is specified by size s 
 // literature suggests size of 3-4 
 GaussianContainer(int s) 
 { 
  // if (s<1) throw an exception 
 
  distPtr = new GaussianDistribution*[s]; 
  for (int i=0;i<s;i++) 
  { 
   distPtr[i] = new GaussianDistribution(); 
  } 
  size = s; 
 } 
  
 bool updateGaussians(double); 
 int getSize(); 
 int getLeastProbableDistribution();  
 void replaceDistribution(int, double, double, double); 
 
 // destructor 
 ~GaussianContainer() 
 { 
  delete distPtr;  
 } 
 
}; 
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GaussianContainer.cpp 
 
 
 
#include "stdafx.h" 
#include "gaussianContainer.h" 

 
// Updates gaussians by incorporating the incoming new pixel value Xt 
// From Stauffer et. al. 
// returns true if a match is found and false otherwise 
bool GaussianContainer::updateGaussians(double Xt) 
{ 
 // iterate through all the gaussians in the container 
 // and find the first match 
 bool matchFound = false;  

 
// stores the index of the matched gaussian if match is found 

 int index=0;   
  

for (int i=0;i<size && !matchFound ;i++) 
 { 
  if ((distPtr[i])->match(Xt)) 
  { 
   matchFound = true;  
   index=i; 
  } 
 } 
   
 // distPtr[i] is the distribution which matches Xt  
 if (matchFound) 
 { 
  // update mean and variance of the matched distribution 
  (distPtr[index])->updateDistribution(Xt, 
LEARNING_RATE_VARIANCE); 
 
 } 
 else  
 { 
  // get distribution with least alpha/sdev value 
  // replace that distribution with mean = Xt, and high 
variance 
  int indexOfLeastProbable = getLeastProbableDistribution(); 
  replaceDistribution(indexOfLeastProbable, Xt, HIGH_VARIANCE, 
LOW_WEIGHT); 
    
 } 
   
 // adjust weights 
 for (int j=0;j<size;j++) 
 { 
  if (j==index && matchFound == true) 
  { 
   (distPtr[j])->adjustWeight(LEARNING_RATE_WEIGHT, 
true); 
  } 
  else  
  { 
   (distPtr[j])->adjustWeight(LEARNING_RATE_WEIGHT, 
false); 
  } 
 } 
  
 return matchFound; 
 
} 
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int GaussianContainer::getSize() 
{ 
 return size; 
} 
 
int GaussianContainer::getLeastProbableDistribution() 
{ 
 double temp, value;  
 int tempIndex; 
  
 value=distPtr[0]->getWeightVarianceRatio(); 
 tempIndex=0; 
 
 for (int i=1;i<size;i++) 
 { 
  temp = distPtr[i]->getWeightVarianceRatio(); 
  if (temp < value) 
  { 
   value = temp; 
   tempIndex=i; 
  } 
 } 
 
 return tempIndex; 
 
  
} 
 
void GaussianContainer::replaceDistribution(int index, double mean, 
double variance, double weight) 
{ 
  
 distPtr[index]->setDistribution(mean, variance, weight); 
} 
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MultipleGaussianBackgroundModel.h 

 
#include "gaussianContainer.h" 
#include "cv.h"   
 
class MultipleGaussianBackgroundModel 
{ 
 GaussianContainer*** containerPtr;  
 int height;  
 int width;  
 
public: 
 
 MultipleGaussianBackgroundModel(IplImage* img) 
 { 
  height = img->height; 
  width = img->width; 
  createEmptyModel(height, width, 
NUMBER_OF_GAUSSIANS_IN_MIXTURE_MODEL); 
 } 
 
 double colorToIntensity(int, int, int); 
 void updateModel(IplImage*, IplImage*); 
 
 
 ~MultipleGaussianBackgroundModel() 
 { 
  for (int i=0;i<height;i++) 
  { 
   for (int j=0;j<width;j++) 
   { 
    delete ((containerPtr[i])[j]); 
   } 
   delete (containerPtr[i]); 
  } 
  delete containerPtr; 
 } 
 
 
private:  
 
 // helper to constructor 
 // creates an empty background model 
 // creates a 2D array (dimensions = height (h), width (w) ) 
 // each array element points to a GaussianContainer of size 
specified by  

// sizeOfContainer 
 void createEmptyModel(int w, int h, int sizeOfContainer) 
 { 
 
  // if sizeOfContainer < 0 then throw exception  
  containerPtr = new GaussianContainer**[w]; 
 
  for (int i=0;i<w;i++) 
  { 
   containerPtr[i] = new GaussianContainer*[h]; 
   for (int j=0;j<h;j++) 
   { 
    // create a GaussianContainer object.  
    // constructor for GaussianContainer calls 
constructor 
    // of GaussianDistribution 
    (containerPtr[i])[j] = new 
GaussianContainer(sizeOfContainer); 
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   } 
  } 

} 
}; 
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MultipleGaussianBackgroundModel.cpp 
 
#include "stdafx.h" 
#include "multipleGaussianBackgroundModel.h" 
 
// img2 pointer to an empty image 
// img2 after function finishes execution - binary image, white pixels 
representing foreground 
void MultipleGaussianBackgroundModel::updateModel(IplImage* img, 
IplImage* img2) 
{ 
 int step, width2; 
 double intensity; 
 bool isBackgroundPixel = false; 
 
 step = img->widthStep; 
 width2 = img->width * img->nChannels; 
 unsigned char *data= reinterpret_cast<unsigned char *>(img-
>imageData);  
 unsigned char *data2= reinterpret_cast<unsigned char *>(img2-
>imageData); 
 
 // iterate through each pixel 
 for (int i=0;i<height;i++) 
 { 
  for (int j=0;j<width2;j+=img->nChannels) 
  { 
   int j1 = j/img->nChannels;  
   // intensity is Xt according to Stauffer et. al.  
   intensity = 
colorToIntensity(data[j+2],data[j+1],data[j]); 
   isBackgroundPixel = (containerPtr[i])[j1]- 

>updateGaussians(intensity); 
 
   if (isBackgroundPixel) 
   { 
    data2[j] = 0xFF; 
    data2[j+1] = 0xFF; 
    data2[j+2] = 0xFF; 
   } 
   else  
   { 
    data2[j] = 0x00; 
    data2[j+1] = 0x00; 
    data2[j+2] = 0x00; 
   } 
  } 
  data+=step; 
  data2+=step; 
 } 
 
} 
 
  
double MultipleGaussianBackgroundModel::colorToIntensity(int red, int 
blue, int green) 
{ 
  return ((0.3*red)+(0.59*green)+(0.11*blue)); 
} 
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HeadTop finder  
 
HeadTopProcessor.h 
 
#include <cv.h> 
#include <vector> 
using namespace std; 
 
class HeadTopProcessor 
{ 
public: 
 HeadTopProcessor() 
 {} 
 
 ~HeadTopProcessor() 
 {} 
 
 vector<CvPoint>* findHeadTops(IplImage*); 
 
private: 
 vector<CvPoint>* findLocalMin(CvSeq* s); 
 vector<CvPoint>* headTopFilter1(vector<CvPoint>* headTops, 
IplImage*); 
 
 
}; 
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HeadTopProcessor.cpp 
 

 

 
#include <stdafx.h> 
#include "HeadTopProcessor.h"  
#include "..\Blob analysis package\blob.h" 
#include "..\Blob analysis package\BlobResult.h" 
#include <cv.h> 
#include <highgui.h> 
#include <fstream> 
#include "..\constants.h" 
using namespace std; 
 
 
vector<CvPoint>* HeadTopProcessor::findHeadTops(IplImage* img) 
{ 
 CBlobResult blobs; 
 CBlob Blob; 
 vector<CvPoint>* localMins;  
 vector<CvPoint>* filteredLocalMins1;  
 vector<CvPoint>* allLocalMins = new vector<CvPoint>; 
 double height_ellipse; 
 
 blobs = CBlobResult( img, NULL, 100, true ); 
 blobs.Filter( blobs, B_INCLUDE, CBlobGetArea(), B_LESS, 600 ); 
 blobs.Filter( blobs, B_INCLUDE, CBlobGetArea(), B_GREATER, 100 ); 
 
 for  (int i=0; i<blobs.GetNumBlobs(); ++i) 
 { 
  Blob = blobs.GetBlob(i); 
  IplImage* f = cvCreateImage(cvGetSize(img), 8, 1); 
   
  localMins = findLocalMin(Blob.edges); 
  filteredLocalMins1 = headTopFilter1(localMins, img); 
 
  for (vector<CvPoint>::iterator it=filteredLocalMins1-
>begin();  

it!=filteredLocalMins1->end();++it) 
  { 
   height_ellipse = HUMAN_HEIGHT * ((double)it->y /  

(double)cvGetSize(img).height);  
   CvPoint center=cvPoint(it->x, it-
>y+(double)(height_ellipse/2)); 
    
   allLocalMins->push_back(*it); 
 
  } 
   
  
   
   
 } 
 return allLocalMins; 
  
 
 
} 
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// filters any headtop which does not lie on a foreground blob  
vector<CvPoint>* HeadTopProcessor::headTopFilter1(vector<CvPoint>* 
headTops, IplImage* img) 
{ 
 
 int i,j,k,j1, n, height, step, width; 
 double image_height, height_ellipse, colour2;  
 vector<CvPoint>* v; 
 CvPoint center;  
 int* areaOccupied; 
 int* areaThreshold;  
 double* majorAxisArray;  
 double* minorAxisArray;  
 CvPoint* centerOfEllipseArray;  
 CvPoint* headTopsArray;  
 unsigned char *data;  
  
 // arrayOccupied stores cumulative pixel area 
 // underneath each headtop. areaOccupied runs "parallel" to 
headTopsArray 
 n = headTops->size(); 
 areaOccupied = new int[n];   
 headTopsArray = new CvPoint[n];  
 centerOfEllipseArray = new CvPoint[n];  
 majorAxisArray = new double[n];  
 minorAxisArray = new double[n];  
 areaThreshold = new int[n];  
 v = new vector<CvPoint>;  
 i=0;  
 j=0;  
 image_height = (double)cvGetSize(img).height; 
 height = img->height; 
 step = img->widthStep; 
 width = img->width * img->nChannels; 
 data= reinterpret_cast<unsigned char *>(img->imageData);  
 
 // fill headTopsArray with CvPoints in headTops vector 
 for (vector<CvPoint>::iterator it=headTops->begin(); it!=headTops-
>end(); ++it) 
 { 
  height_ellipse = HUMAN_HEIGHT * ((double)it->y / 
image_height);  
  center = cvPoint(it->x, it->y+(double)(height_ellipse/2)); 
   
  headTopsArray[i] = *it;  
  areaOccupied[i] = 0;   // initialize areas 
  centerOfEllipseArray[i] = center;  
  majorAxisArray[i] = height_ellipse/2;  
  minorAxisArray[i] = HUMAN_HEAD_SIZE/2; 
  /*areaThreshold[i] = \ 
  cvRound(((double)AREA_THRESHOLD_PERCENTAGE/100.0)* \ 
  HUMAN_AREA * ((double)it->y / image_height));*/ 
  areaThreshold[i] = \ 
  
 cvRound(((double)AREA_THRESHOLD_PERCENTAGE/100.0)*(PI*majorAxisArr
ay[i]*minorAxis 

Array[i])); 
 
   
  i++;  // keeping all arrays parallel. 
 } 
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 for (i=0;i<height;i++) 
 { 
  for (j=0;j<width;j++) 
  { 
   j1 = j / img->nChannels; 
   colour2 = GlobalFunctions::getPixelColor(img, 
cvPoint(j1,i)); 
    
   if (colour2 <= 10) 
   { 
    for (k=0;k<n;k++) 
    {  
     if 
(GlobalFunctions::isInEllipse(centerOfEllipseArray[k], 

 minorAxisArray[k], 
majorAxisArray[k],  

cvPoint(j1,i))) 
     { 
      areaOccupied[k]++; 
     } 
    
    } 
   } 
  } 
  data+=step; 
 } 
 
 for (k=0;k<n;k++) 
 { 
  if (areaOccupied[k] >= areaThreshold[k]) 
   v->push_back(headTopsArray[k]); 
 } 
 
 // free up memory  
 delete [] areaOccupied;  
 delete [] headTopsArray;  
 delete [] centerOfEllipseArray; 
 delete [] majorAxisArray; 
 delete [] minorAxisArray; 
 delete [] areaThreshold; 
 
 return v;  
 
  
  
} 
 
vector<CvPoint>* HeadTopProcessor::findLocalMin(CvSeq* edges) 
{ 
 int minX, maxX,n, i,j,k, diff;  
 bool flag1, flag2;  
 CvSeqReader reader; 
 CvPoint edgeactual; 
 CvPoint* localMins;  
 vector<CvPoint>* v;  
  
 // initialization  
 v = new vector<CvPoint>;  
 cvStartReadSeq( edges, &reader); 
 CV_READ_SEQ_ELEM( edgeactual ,reader); 
 minX = edgeactual.x;  // first edge in sequeunce 
 maxX = edgeactual.x;  // first edge in sequeunce 
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 // find minimum X and maximum X 
 for(i=1; i< edges->total; i++) 
 { 
  CV_READ_SEQ_ELEM( edgeactual ,reader); 
  if (edgeactual.x < minX) 
   minX = edgeactual.x; 
  if (edgeactual.x > maxX) 
   maxX = edgeactual.x;  
 } 
 
 n = cvRound((double)(maxX-minX)/(double)HUMAN_HEAD_SIZE); 
  
 // initialize an array that will store local minimums 
 localMins = new CvPoint[n]; 
 for (i=0;i<n;i++) 
 { 
  localMins[i] = cvPoint(10000,10000); 
 } 
 
 // search for local mins in a neighborhood.specified by human 
head-size 
 cvStartReadSeq( edges, &reader); // reinitialize iterator 
 for (i=0;i<edges->total;i++) 
 { 
  CV_READ_SEQ_ELEM(edgeactual, reader);  
  flag1= true;  
  flag2 = true; 
 
  for (j=0;j<n && flag2; j++) 
  { 
   if (edgeactual.y < localMins[j].y) 
   { 
    for (k=0;k<n && flag1;k++) 
    { 
     diff = abs(edgeactual.x - localMins[k].x); 
      
     if (diff < HUMAN_HEAD_SIZE && edgeactual.y 
<  

localMins[k].y) 
     { 
      localMins[k] = edgeactual;  
      flag1 = false;  
      flag2 = false;  
     } 
     else if (diff < HUMAN_HEAD_SIZE && 
edgeactual.y >=  

localMins[k].y) 
     { 
      flag1 = false;  
     } 
    } 
 
    if (flag1) 
    { 
     localMins[j] = edgeactual;  
     flag2 = false;  
    } 
    flag1 = true;  
   } 
  } 
 } 
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 // fill localMins array into a vector for return 
 // discard points (10000,10000)  
 for (i=0;i<n;i++) 
 { 
  if (!(localMins[i].x == 10000 && localMins[i].y == 10000)) 
  { 
   v->push_back(localMins[i]); 
  } 
 } 
 
 return v; 
  
 
 
} 
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Motion Tracker
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HotSpot.h 
 

 
// OpenCV 
#include "cxcore.h" 
 
class HotSpot  
{ 
public: 
 CvPoint center;  
 double radius;  
 
 
 HotSpot(CvPoint p, double r) 
 { 
  center = p;  
  radius = r;  
 } 
  
 
 HotSpot() 
 { 
  center = cvPoint(0,0); 
  radius = 0; 
 } 
 
 bool pointInHotSpot(CvPoint point); 
 void update(CvPoint p, double r);  
  
 
}; 

 

HotSpot.cpp  
#include "stdafx.h" 
#include "HotSpot.h" 
// checks if a point (x,y) is in within the hotspot defined 
// by a circle with center (a,b) and equation:  
// (x-a)^2 + (y-b)^2 <= r^2 
 
bool HotSpot::pointInHotSpot(CvPoint point) 
{ 
 int d = (point.x - center.x)*(point.x-center.x) + (point.y - 
center.y)*(point.y-center.y); 
 return (d <= (radius*radius)); 
} 
/* 
bool HotSpot::pointInHotSpot(CvPoint point) 
{ 
 bool cond1, cond2;  
 
 cond1 = point.x >= center.x-radius && point.x <= center.x+radius;  
 cond2 = point.y >= center.y-radius && point.y <= point.y+radius;  
 
    return cond1 && cond2; 
}*/ 
 
void HotSpot::update(CvPoint p, double r) 
{ 
 center = p; 
 radius = r; 
} 
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TrackedBlob.h 
 
 
 
// OpenCV 
#include <cv.h> 
#include <cxcore.h> 
#include <highgui.h> 
#include "..\Blob analysis package\blob.h" 
#include "..\Blob analysis package\BlobResult.h" 
#include "HotSpot.h" 
#include "..\constants.h" 
#include <vector> 
 
using namespace std; 
const double proc_cov=1e-5; 
const double meas_cov=1e-5; 
//const float A[] = {1,1,0,1}; 
const float A[] = {1,1,0,1}; 
 
// a registered blob 
class TrackedBlob  
{  
public: 
 HotSpot spot;     // contains center of the blob 
  
 // new code 
 CvPoint previousPosition; // (x0, y0) 
 CvPoint currentPosition;  // (xi, yi)  
 double speed;  
 int lostBlobCount;     
 bool trackedInCurrentFrame; 
  
  
public: 
 int red; 
 int blue; 
 int green; 
 int status;  // TRACKED - Trackedblob was found in the 
current frame 
     // ON_SEARCH - Blob is still being 
searched for 
 
 vector<CvPoint> motionHistory; 
  
 // kalman parameters 
 CvKalman* kalman; 
 CvMat* measurement; 
  
 TrackedBlob(CvPoint); 
    
 
 bool isThisTrackedBlob(CvPoint centerOfUnTrackedBlob); 
 void updateTrackedBlob(CvPoint newCenterOfBlob, CvPoint 
currentPosition, \ 
  CvPoint previousPosition, double radius, int status, double 
speed, 

int lostBlobCount);  
  
 void addToMotionHistory(CvPoint); 
 void trackedBlobInit2(CvPoint);   
 CvPoint getEstimatedPosition(CvPoint observedPoint); 
 CvPoint getEstimatedPosition(); 
 void estimateTrackAndUpdate(CvPoint); 
 void estimateTrackAndUpdate(); 
 CvPoint GetCenter(CBlob); 
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 // SET METHODS 
 inline void setTrackedInCurrentFrame(bool t) { 
trackedInCurrentFrame = t; } 
 inline void setStatus(int s) { status = s; }; 
 
 // GET METHODS 
 inline bool getTrackedInCurrentFrame() { return 
trackedInCurrentFrame; } 
 inline int getLostBlobCount() { return lostBlobCount; } 
  
 
private: 
 void updateHotSpot(CvPoint newCenterOfHotSpot, double radius); 
 double distance(CvPoint, CvPoint); 
 CvPoint getPredictedPosition(); 
 CvPoint kalmanFilter(CvPoint); 
 
}; 
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TrackedBlob.cpp 
 
#include "stdafx.h"  
#include "TrackedBlob.h" 
 
 
TrackedBlob::TrackedBlob(CvPoint centerOfBlob) { 
 
 
  spot.center = centerOfBlob; 
  spot.radius = DEFAULT_HOTSPOT_RADIUS; 
  red=rand()%255; 
  blue=rand()%255; 
  green=rand()%255; 
  status = NEW_BLOB;  
  trackedInCurrentFrame = false; // only tracker can confirm 
this info.  
   
  motionHistory.push_back(centerOfBlob); 
   
  // new code 
  previousPosition = centerOfBlob; 
  speed = 0;  // when a blob is spotted first, its speed 
is not  
     // known, until it is tracked in the 
subsequent frames 
   
  lostBlobCount = 0; 
 
  // kalman filter 
  kalman = cvCreateKalman(4,2,0); 
  cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1)); 
  cvSetIdentity(kalman->process_noise_cov, 
cvRealScalar(proc_cov)); 
  cvSetIdentity(kalman->measurement_noise_cov, 
cvRealScalar(meas_cov)); 
  cvSetIdentity(kalman->error_cov_post, cvRealScalar(1)); 
  memcpy( kalman->transition_matrix->data.fl, A, sizeof(A)); 
  CvRNG rng = cvRNG(-1); 
  cvRandArr(&rng, kalman->state_post, CV_RAND_NORMAL, 
cvRealScalar(0),  

cvRealScalar(0.1)); 
  kalman->state_post->data.fl[0]=centerOfBlob.x; 
  kalman->state_post->data.fl[1]=centerOfBlob.y; 
   
  measurement = cvCreateMat(2,1,CV_32FC1);  
} 
 
 
bool TrackedBlob::isThisTrackedBlob(CvPoint centerOfUnTrackedBlob) 
{ 
 return spot.pointInHotSpot(centerOfUnTrackedBlob); 
} 
 
 
void TrackedBlob::updateHotSpot(CvPoint newCenterOfHotSpot, double 
radius) 
{ 
 spot.update(newCenterOfHotSpot, radius); 
} 
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// updates a tracked blob and its hotspot 
void TrackedBlob::updateTrackedBlob(CvPoint newCenterOfBlob, CvPoint 
cPos, CvPoint pPos, double radius, int s, double sp, int bc) 
{ 
  
 status = s; 
 currentPosition = cPos;  
 previousPosition = pPos; 
 speed = sp; 
 lostBlobCount = bc;   
 
if (newCenterOfBlob.x == 0 && newCenterOfBlob.y ==0) 
{ 
    int i=0; 
} 
 
 // update the blob's hotspot 
 updateHotSpot(newCenterOfBlob, radius); 
 
 // add to motion history 
 addToMotionHistory(cPos); 
 
} 
 
void TrackedBlob::addToMotionHistory(CvPoint p) 
{ 
 motionHistory.push_back(p); 
} 
 
// the second time a blob is tracked, we have a value for (x1,y1) 
// and hence we can calculate its velocity, and predict its motion 
void TrackedBlob::trackedBlobInit2(CvPoint c) 
{ 
 CvPoint centerOfBlob = c; 
 speed = distance(centerOfBlob, previousPosition) / FRAME_RATE; 
 
 if (centerOfBlob.y == previousPosition.y && centerOfBlob.x == 
previousPosition.x)  
 { 
  updateTrackedBlob(centerOfBlob, centerOfBlob, 
previousPosition,  

DEFAULT_HOTSPOT_RADIUS, NEW_BLOB, speed, 
0); 

 } 
 else  
 { 
  // update tracked blob and hotspot 
  updateTrackedBlob(centerOfBlob, centerOfBlob, 
previousPosition,  

DEFAULT_HOTSPOT_RADIUS, BEING_TRACKED, 
speed, 0); 

 } 
} 
 
// for tracked blobs for which an observed blob has been detected in its 
hotspot 
void TrackedBlob::estimateTrackAndUpdate(CvPoint c) 
{ 
 CvPoint centerOfBlob = c; 
 CvPoint nextEstimatedPosition = 
getEstimatedPosition(centerOfBlob); 
     
 // update tracked blob and prepare for next estimation 
 speed = distance(centerOfBlob, currentPosition) / FRAME_RATE;  
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 updateTrackedBlob(nextEstimatedPosition, nextEstimatedPosition, 
currentPosition,  

DEFAULT_HOTSPOT_RADIUS, BEING_TRACKED, speed,0);
  

 
} 
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// for tracked blobs for which no observed blob has been detected in its 
hotspot 
void TrackedBlob::estimateTrackAndUpdate() 
{ 
 
 CvPoint nextEstimatedPosition = getEstimatedPosition(); 

speed = distance(nextEstimatedPosition, 
currentPosition)/FRAME_RATE;  
 updateTrackedBlob(nextEstimatedPosition, nextEstimatedPosition, 
currentPosition,  
    DEFAULT_HOTSPOT_RADIUS, BLOB_LOST, speed, 
++lostBlobCount); 
 
} 
 
 
 
// the distance between two CvPoints 
double TrackedBlob::distance(CvPoint a, CvPoint b) 
{ 
  
 return  sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y)); 
} 
 
 
// function can only be called when blob's status is set to 
BEING_TRACKED or LOST_BLOB 
// function should not be called when blob's status is NEW_BLOB 
CvPoint TrackedBlob::getPredictedPosition() 
{ 
 /* 
 // calculate the predicted position using position vectors  
 // velocity of blob 
 double distanceTravelledInLastFrame = 
distance(currentPosition,previousPosition); 
 double predictedDistanceToBeTravelled = speed * FRAME_RATE; 
 
 
 // lamba is the scalar constant found in the vector equation of 
straight 
 // lines 
 double lambda = 1 + 
predictedDistanceToBeTravelled/distanceTravelledInLastFrame); 
 
 double predictedXOrdinate = (1-lambda)*previousPosition.x +  

(lambda*currentPosition.x); 
 double predictedYOrdinate = (1-lambda)*previousPosition.y +  

(lambda*currentPosition.y); 
 
 if (distanceTravelledInLastFrame == 0) 
 { 
  return currentPosition; 
 } 
 
 return cvPoint(cvRound(predictedXOrdinate), 
cvRound(predictedYOrdinate));*/ 
 return kalmanFilter(currentPosition); 
} 
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// estimate the position of the blob when it has been observed 
CvPoint TrackedBlob::getEstimatedPosition(CvPoint observedPoint) 
{ 
 CvPoint predictedPosition = getPredictedPosition(); 
  
 double estimatedPositionXOrdinate = ((1- 

TRACKER_RELIABILITY_FACTOR)*predictedPosition.x) +  
(TRACKER_RELIABILITY_FACTOR*observedPoint.x); 

 
 double estimatedPositionYOrdinate = ((1- 

TRACKER_RELIABILITY_FACTOR)*predictedPosition.y) +  
  (TRACKER_RELIABILITY_FACTOR*observedPoint.y); 
 
 return cvPoint(cvRound(estimatedPositionXOrdinate),  

cvRound(estimatedPositionYOrdinate)); 
} 
 
// estimate the position when there is no observed point  
// useful when blob is lost 
CvPoint TrackedBlob::getEstimatedPosition() 
{ 
  
 // calculate the predicted position using position vectors  
 // velocity of blob 
 double distanceTravelledInLastFrame = 
distance(currentPosition,previousPosition); 
 double predictedDistanceToBeTravelled = speed * FRAME_RATE; 
 
 
 // lamba is the scalar constant found in the vector equation of 
straight 
 // lines 
 double lambda = 1 + 

 
(predictedDistanceToBeTravelled/distanceTravelledInLastFrame
); 

 
 double predictedXOrdinate = (1-lambda)*previousPosition.x +  

(lambda*currentPosition.x); 
 double predictedYOrdinate = (1-lambda)*previousPosition.y +  

(lambda*currentPosition.y); 
 
 if (distanceTravelledInLastFrame == 0) 
 { 
  return currentPosition; 
 } 
  
 //return kalmanFilter(cvPoint(cvRound(predictedXOrdinate),  

cvRound(predictedYOrdinate))); 
 CvPoint c =  cvPoint(cvRound(predictedXOrdinate), 
cvRound(predictedYOrdinate)); 
 return kalmanFilter(c); 
} 



 130 

 
CvPoint TrackedBlob::GetCenter(CBlob Blob) 
{ 
   CBlobGetXCenter getXc; 
   CBlobGetYCenter getYc; 
   double blobCentre[2]; 
   blobCentre[0] = getXc(Blob); 
   blobCentre[1] = getYc(Blob); 
   return cvPoint(blobCentre[0], blobCentre[1]); 
    
} 
 
CvPoint TrackedBlob::kalmanFilter(CvPoint m) 
{ 
 measurement->data.fl[0] = m.x; 
 measurement->data.fl[1] = m.y;  
 
 cvKalmanPredict(kalman, 0); 
 cvKalmanCorrect(kalman, measurement); 
 return cvPoint(cvRound(kalman->state_post->data.fl[0]),  

cvRound(kalman->state_post->data.fl[1])); 
 
} 
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Tracker.h 
 

 
#include "TrackedBlob.h" 
 
#include <vector> 
#include <fstream> 
using namespace std; 
 
class Tracker 
{ 
 vector<TrackedBlob>* trackedBlobs;  
 
public: 
 Tracker() 
 { 
  trackedBlobs = new vector<TrackedBlob>; 
 } 
  
 ~Tracker() 
 { 
  delete trackedBlobs; 
 } 
  
 void track(IplImage* img, vector<CvPoint>* blobCenters); 
 
 
}; 
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Tracker.cpp 
 
#include "stdafx.h" 
#include "Tracker.h" 
#include "..\Blob analysis package\blob.h" 
#include "..\Blob analysis package\BlobResult.h" 
//#include "..\constants.h" 
#include <vector> 
using namespace std; 
 
void Tracker::track(IplImage* img, vector<CvPoint>* blobCenters) 
{ 
 CBlobResult blobs; 
 CvPoint blobCenter;  
 bool blobTracked;  
 vector<TrackedBlob>* newBlobs; 
  
 newBlobs = new vector<TrackedBlob>; 
 blobTracked = false; 
   
 for (vector<CvPoint>::iterator it0 = blobCenters->begin(); 
!blobTracked &&  

it0!=blobCenters->end(); ++it0)  
 { 
   blobCenter = *it0; 
  
    
   // iterate through every registered blob  
   for (vector<TrackedBlob>::iterator it = trackedBlobs-
>begin();  

!blobTracked && it!=trackedBlobs->end(); ++it)  
   {   
 
    if (it->isThisTrackedBlob(blobCenter)) 
    { 
     
     if (it->status == NEW_BLOB) 
     { 
      // we can now measure the velocity, 
and hence  

// predict motion 
      it->trackedBlobInit2(blobCenter); 
     } 
     else if (it->status == BEING_TRACKED) 
     { 
      // an old tracked blob, keep 
tracking with observed  

// point 
      it-
>estimateTrackAndUpdate(blobCenter); 
     } 
     else if (it->status == BLOB_LOST) 
     { 
      // an old tracked blob, keep 
tracking with observed  

// point 
      it-
>estimateTrackAndUpdate(blobCenter); 
     } 
 
     // notify that this blob has been tracked 
in the current  

// frame 
     it->setTrackedInCurrentFrame(true); 
     blobTracked = true;  
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    } 
   } 
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   if (!blobTracked) 
   { 
     
    TrackedBlob t1(blobCenter); 
    // new blob, didnt fall inside any hotspot, 
collect to register  

// this new blob 
    newBlobs->push_back(t1);   
   } 
    
  
 } // end for 
 
 // blobs not tracked in this round, find them and change their 
statuses 
 for (vector<TrackedBlob>::iterator it2=trackedBlobs->begin();  

it2!=trackedBlobs->end(); ++it2) 
 { 
  if (!(it2->getTrackedInCurrentFrame())) 
  { 
   // blob was not tracked in this frame 
   // it either got lost, or was lost already.  
   // in latter case, check if its been lost for too long 
 
   // blob tracked in the previous frame, but didnt get 
track this time 
   if (it2->status == BEING_TRACKED) 
   { 
    // this estimates position and changes status to 
LOST_BLOB 
    it2->estimateTrackAndUpdate(); 
   } 
 
   // blob not tracked in the previous frame(s), and not 
tracked  
   // this time either 
   else if (it2->status == BLOB_LOST) 
   { 
    if (it2->getLostBlobCount() > 
MAX_LOST_BLOB_COUNT) 
    { 
     it2->setStatus(DISCARD_BLOB); 
    } 
    else  
    { 
     // MAX_LOST_BLOB_COUNT not reached, keep 
estimating 
     it2->estimateTrackAndUpdate(); 
    } 
   } 
 
   // blob that was registered as a new tracked blob in 
the previous  

// frame, and now got lost. In such cases, we cannot 
predict motion  
// since we dont know the direction  

   // of the motion and velocity 
   else if (it2->status == NEW_BLOB) 
   { 
    it2->setStatus(DISCARD_BLOB); 
   } 
  } 
  else 
  { 
   // maintenance operation 
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   // blobs that were tracked, must have their flag 
resetted for next  

// frame 
   it2->setTrackedInCurrentFrame(false); 
  } 
 
 
 
 } 
 
 
 // remove blobs that are marked for discard 
 vector<TrackedBlob>::iterator it1=trackedBlobs->begin(); 
 while (it1!=trackedBlobs->end()) 
 { 
  if (it1->status == DISCARD_BLOB) 
  { 
   it1=trackedBlobs->erase(it1); 
  } 
  else 
  { 
   it1++; 
  } 
 } 
 
 
 // register collected new blobs that didnt fall into any hotspot 
 // insert blobs that havent been tracked before.  
 for (vector<TrackedBlob>::iterator it3=newBlobs->begin(); 

it3!=newBlobs->end();++it3) 
 { 
  trackedBlobs->push_back(*it3); 
 } 
 
 // output motion history of all tracked blobs 
 for (vector<TrackedBlob>::iterator it4=trackedBlobs->begin();  

it4!=trackedBlobs->end();++it4) 
 { 
  /* 
  vector<CvPoint>::iterator it5=(it4->motionHistory).begin(); 
  while (it5!=(it4->motionHistory).end()) 
  { 
   cvCircle(img, *it5, 3, CV_RGB(it4->red, it4->green, 
it4->blue), 1); 
   it5++; 
  }*/ 
  GlobalFunctions::drawPath(img, it4->motionHistory,  

cvScalar(it4->red, it4->green, it4-
>blue)); 

 } 
 
} 
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Driver.cpp 

 
// some helped functions 

// char* to CString converter 

CString convert(char* s) 

{ 

 CString c;  

 for (int i=0;s[i]!='\0';i++) 

 { 

  c+=s[i]; 

 } 

 return c; 

} 

 

// pads numZero zeros to the left-side of integer  

// useful for filenames of image files  

// with names of this format: cyard7-00001.jpeg 

CString padZerosToLeft(int i, int numZeros) 

{ 

 CString s, temp2; 

 char* temp1 = new char[256]; 

 _itoa(i,temp1,10); 

 temp2 = convert(temp1); 

 

 int zeros = numZeros - temp2.GetLength(); 

 for (int j=0;j<zeros;j++) 

 { 

  s+='0'; 

 } 

 

 return s+temp1; 

 

} 

 

// the median filter 

IplImage* medianFilter(IplImage* img) 

{ 

 if (img!=NULL) 

 { 

  IplImage* cpy_img = cvCloneImage(img); 

  cvSmooth(img,cpy_img,CV_MEDIAN,3,0,0); 

  return cpy_img; 

 } 

 else 

  return 0; 

  

} 
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// driver 

void myDriver()  

{ 

 // path of the image frames of video input 

 CString s = "C:\\visionDataSets\\org_data\\all\\cyard7-"; 

   

 CString filename, org_filename; 

  

  

 IplImage* img1, *one_channel_output, *output, *output_median; 

 MultipleGaussianBackgroundModel* multGPtr; 

 HeadTopProcessor* ht;  

 Tracker* t; 

 vector<CvPoint>* v;  

 

 // output to this window 

 cvNamedWindow("scene", 1); 

  

  

 t = new Tracker(); 

 ht = new HeadTopProcessor(); 

 

 // iterate 9000 image frames  

 for (int i=0;i<9000;i++) 

 { 

  filename = s+padZerosToLeft(i,6)+".jpeg"; 

  img1 = cvLoadImage(filename); 

  

  if (i == 0) 

  { 

   // initialize background model with zero mean and 

std. dev.  

   multGPtr = new MultipleGaussianBackgroundModel(img1); 

   output = cvCreateImage(cvGetSize(img1),  

IPL_DEPTH_8U, 3); 

    

  } 

  else 

  { 

   multGPtr->updateModel(img1, output); 

   output_median = medianFilter(output); 

    

   one_channel_output = cvCreateImage(cvGetSize(img1), 

IPL_DEPTH_8U,  

1); 

   cvSplit(output_median, one_channel_output,0,0,0); 

    

    

   v = ht->findHeadTops(one_channel_output);  // 

find headtops 

   t->track(img1, v);     // 

track 

   

   cvShowImage("scene", img1); 

    

 

   cvReleaseImage(&img1); 

   cvReleaseImage(&one_channel_output); 

   cvReleaseImage(&output_median); 
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  }  

 }  

 cvDestroyWindow("scene"); 

} 

 


