
 1

THE UNIVERSITY OF LONDON

QUEEN MARY COLLEGE

An Autonomous Machine Vision System For Tracking Human Motion

by

Rashed Karim

DISSERTATION SUBMITTED TO THE DEPARTMENT OF

COMPUTER SCIENCE IN PARTIAL FULLFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

QUEEN MARY COLLEGE

LONDON, UNITED KINGDOM

September 2005

© Rashed karim 2005

 2

Acknowledgements

This dissertation would not have materialized without the immense support of my parents

and my loving wife. I would like to thank them for their patience.

I would also like to thank my supervisors: Dr. Tao Xiang and Professor Sean Gong for

their support and time.

Along the way some people have helped and supported me from time to time. I would like

to thank them for being so kind and helpful, especially Haseeb Qadir at Microsoft, and

Dr. Chris Stauffer at the Massachusetts institute of Technology. .

.

 3

Table of Contents

Chapter 1: Introduction

 The problem statement ……………………………………………………....1

 Previous works ………………………………………………………………2

Aims and objectives………………………………………………………….3

Chapter 2: The background model

 2.1. The Development of the Background Model ………………………..… 5

 2.2. The Single Gaussian Background Model ……………………………… 6

 2.3. The Adaptive Gaussian Mixture Background Model ………………….10

Chapter 3: Human Segmentation and extraction

 3.1. The Importance of Human Extraction and Segmentation ……………...15

 3.2. The Difficulties of Human Segmentation and Extraction …………….. 16

 3.3. The Algorithm for Human Extraction ………………………………… 18

 3.4. Finding Head-tops …………………………………………………….. 20

Chapter 4: Motion Tracking

 4.1. Introduction ……………………………………………………………..23

 4.2. The Purpose of Motion Tracking ……………………………………….23

 4.3. Tracking as a Probabilistic Inference Problem …………………………25

 4.4. Development of the Tracker ……………………………………………27

 4.5. Detection and Registration of a New Blob ……………………………..28

 4.6. Parameter Initialization of Newly Registered Blob …………………….29

 4.7. Motion Prediction ………………………………………………………30

 4.8. The Lifetime of a Human Blob …………………………………………34

 4.9. Preliminary Results ……………………………………………………..35

 4

Chapter 5: The Kalman Filtering Process

 5.1. Introduction ……………………………………………………………..36

 5.2. The Need for a Filter ……………………………………………………36

 5.3. The Origins of the Filter ………………………………………………...39

 5.4. Least Squares Method …………………………………………………...40

 5.5. The Application of the Kalman Filtering Process in Motion Prediction ..43

Chapter 6: Implementation

 6.1. Introduction ……………………………………………………………...46

 6.2. The Background Model Implementation ………………………………..47

 6.3. Head-top Finder Implementation ………………………………………..53

 6.4. The Time Complexity of the Local-Minimum Finder Algorithm ………56

 6.5. Filtering Head-Tops ……………………………………………………..56

 6.6. Overall Time Complexity ……………………………………………….58

 6.7. Implementation of the Tracker …………………………………………..59

 6.8. The Tracker Class ……………………………………………………….67

 6.9. Implementing the Kalman Filter for Motion Prediction ………………...72

Chapter 7: Results

 7.1. Background Differencing Results ……………………………………….77

 7.2. Head-Top Finder Results ………………………………………………...81

 7.3. Motion Tracking Results ………………………………………………...83

Appendix A: References

Appendix B: Program code

 5

ABSTRACT

Motion tracking of humans is a challenging problem in machine vision. Modeling human

motion is not a trivial problem. The dynamics of human motion is unpredictable, since it

is governed by an unknown number of parameters. Tracking becomes a more

complicated problem in outdoor scenes, where numerous factors are controlling the

scene in a very unpredictable way.

We wish to design a system that can robustly model an outdoor scene, and hence perform

tracking. We also wish to apply Kalman filtering techniques, and analyze how well it

performs when applied to tracking.

 6

Chapter 1

1.1 THE PROBLEM STATEMENT

Tracking objects in a video sequence has been of considerable interest to machine vision

researchers for quite some time. Autonomous motion tracking has its roots in radar

systems, where the luminous dots appearing on a black radar screen background, were

tracked by a vision system. Due to slow processor speeds, tracking on a more intricate

background, in real time, was still far away from becoming reality. Tracking has evolved

over the years, with the development of new algorithms and improved processor speeds.

Algorithms that are available today make it possible to track objects in outdoor scenes.

Motion tracking has had very useful applications in the industry. From tracking objects in

an assembly line to surveillance systems, motion tracking has become a very powerful

concept. More recently, human motion tracking has been on the limelight. Since humans

are the principal actors in life’s daily activities, motion tracking of humans is paramount

to the success of a good surveillance system. Further, by tracking human motion we can

use motion data to perform event inference, and justify any observable human behavior.

Such surveillance systems are still under development.

As it may otherwise seem, tracking human motion is not a trivial problem. There are

infinitely many situations that could arise in a video scene.

Introduction

 7

Humans quite often appear to walk in groups in video sequences. Most vision systems

and tracking algorithms fail to deal with the problem of occlusions. An occlusion is a

situation where a human or an object partially or completely blocks the optical pathway

of the vision system’s camera, to another human. In cases where occlusion occurs,

motion tracking can get difficult for a number of reasons. A naïve system might not

recognize occlusions completely. In such cases, these systems usually fail when the

human group (causing occlusions between one another) disintegrates and walks away in

different directions.

This certainly should not be regarded as the only scenario. It merely illustrates the nature

of the problem that is needed to be dealt with. More complex situations could arise, such

as the case where the scene could get relatively crowded with people.

PREVIOUS WORKS

Numerous papers in machine vision have addressed the topic of motion tracking. We will

try to summarize the developments in this field, and point to the reader to important

literature.

Background modeling is a prime component of any motion tracker. It has been used by

machine vision researchers for quite sometime. A primitive model was laid out by Wren

R.C. et al. [4] in their paper on a real-time system for tracking people. They suggested a

single Gaussian background model; which was, however, very limited in the type of

backgrounds it could model. It was only performed well in indoor backgrounds. Their

work was followed later by Stauffer et. al. [7], at MIT, who showed that a mixture of

Gaussians could be used to model an adaptive background. This worked very well in

outdoor situations. Since then there have been other models, notably the median filter

approach by Haritaoglu et. al. [9] .

 8

The earliest motion tracking systems tracked objects on radar systems. These were

followed by more advanced systems which started using optical flow techniques. With

the advancement in background modeling, and processor speeds, machine vision

researchers have started using more sophisticated techniques. Most researchers have

shifted to detection-based tracking, where objects are extracted and their states identified.

Other techniques, such as match-based techniques are useful for scenes where object

detection and complete extraction is difficult. These use certain features of the object to

perform tracking. More recent techniques have used Bayesian networks and Hidden

Markov Models.

A handful of work [2], [3], [5], [6] has been of particular interest to us. Recently, Zhao,

T. et. al. [2] work on tracking multiple humans used a novel approach to track humans in

3D using ellipsoid human shape models. Previously, rectangular models have been used

[3] with little success. The work also presents a unique approach to estimating the

“search space” of a given human in subsequent frames and tracking using Kalman filters,

hence reducing the search time complexity significantly. Kalman filters are also used to

handle occlusions. We have found the use of Kalman filters in tracking, particularly

interesting, and this has motivated our work.

AIMS AND OBJECTIVES

We wish to implement a system that can track multiple human motions in complex

situations, using a stationary camera. The system will process video input sequences, and

will output the trajectories of humans in the scene. Since, the system tracks human

motions in real-time, it will also employ the ability to process less than 10 frames per

second, on a regular Pentium processor. Such a feat would require the system to be

implemented using fast and efficient algorithms together with suitable data-structures.

The system will be implemented in C++ in the windows environment using Intel’s

OpenCV library [4]

 9

Following are a list of objectives:

1. Identifying and removing background from the scenes, in order to expose the

foreground pixels. A Gaussian model approach suggested by Zhao, T. et. al [2],

which originally appeared in Yamada, et. al [8], will be used for background

removal.

2. The head-tops (top of head) of human candidates in the scene are located. These

head-tops could also well be head-tops of shadows and reflections cast by the

human objects. Hence, we should be able to classify the head-tops.

3. We then perform shadow removal by first determining the shadow cast by the

ellipsoid (the human model) on the ground [2]. We use our own techniques to

efficiently remove the shadow.

4. We classify each human subject using an ellipse model.

5. The next step is to track each human object in the subsequent frames. We analyze

two approaches, namely the vector analysis method, and using Kalman filters to

enhance the prediction process.

6. Testing the system on real image sequences shot with an actual surveillance

camera.

 10

Chapter 2

2.1 THE DEVELOPMENT OF THE BACKGROUND MODEL

We first attempt to define the notion of a background in an image sequence. The

background, as most might perceive, is not necessarily always the objects in a scene that

remain stationary. In the real world, there could many situations such as changes in

illumination, the case where an object moves in a periodic fashion (e.g. leaves of trees),

etc. Such cases should be accounted for, and these shouldn’t be classified as foreground.

The background changes as a scene progresses. If we take an example of us watching a

video scene: we subconsciously, compute the background by differentiating the

stationary and the non-stationary objects in a scene. As objects enter the scene, we

normally tend to focus on the non-stationary objects. In a way, we ignore the stationary

objects, since we keep adding them subconsciously to our own model of the background.

In order to develop the background model, we have implemented and experimented with

two different models, namely:

• Single Gaussian background model

• Adaptive Gaussian mixture model

The background model

 11

2.2 THE SINGLE GAUSSIAN BACKGROUND MODEL

The simplest way to model the background is by using a single Gaussian distribution [4]

for each pixel in the background. The model is first trained on a set of images, which

contain no moving pixels. Though this model cannot adapt itself to changes in the

background, it is important to investigate how this trivial model performs in our dataset

environment.

At any time t during the training period, what we know about a particular pixel located at

(i,j) is it’s history, which we denote by the set H [7]:

=),,(njiH

t

t

t

B

G

R

B

G

R

B

G

R

B

G

R

,,,,

2

2

2

1

1

1

0

0

0

KKK
, where tn ≤≤0

Since, our initial model uses single Gaussians; we can safely use a transformation to

transform the RGB space into the intensity space. This mapping given by:

+ℜ

a

B

G

R

I :

Yamada et. al. [8] suggests the following intensity function, which we have adopted:

GBRI 3.064.095.0 ++=

Hence, at any time t, we also know the history of the computed intensity values of the

pixel located at),(ji :

{ }tensity IIInjiH ,,,),,(10int KKK=

The background model can now be computed from these intensity values. The single-

Gaussian background model sB can be represented by an n × n matrix of Gaussian

distributions, where the thji, entry corresponds to the pixel at location),(ji :

(2.1)

 12

=

nnn

on

s

GG

GG

B

,0,

,0,0

KKK

MOM

MOM

MOM

LLL

, where jiG , =),(σµN for the thji),(pixel

Each of these Gaussians jiG , are the normal distributions centered around the pixel’s mean

intensity value, over the training set. The distribution parameter estimates are computed

during the training period, using the observed pixel intensity values:),,(int njiH ensity .

The most apparent implementation of this model is a 2-dimensional array of Gaussians.

Each element of the 2-dimensional array corresponds to a pixel in the background and

contains the single Gaussian. Fig 2.1 shows a representation of the background model.

Figure 2.1: The figure on the left shows a set of training images, and the figure on the right is

what the background model would like when it is constructed completely from the training set. As

an example, 2,2G would be centered around the mean of the pixel intensity values of the orange

pixels at location (2,2).

0,0G 1,0G …. ….. ….

….. 1,1G …. …. ….

…. …. 2,2G …. ….

…. ….. …. …. ….

…. …. …. …. nnG ,

 13

Once the model is trained, it is used to classify pixels in the image sequence as either

foreground or background. The foreground mask F of the k
th

 image in the sequence can

be filtered out, using the following definition, where p is a pixel at location),(ji in the

thk image of the sequence and),(σµN is the corresponding Gaussian of the),(ji th pixels

in the background model. I is the intensity function:

 { }σµ npIpkF >−=)()(

The single Gaussian model works well where there are no illumination changes, or

frequent changes to the background. It can be manually re-initialized when changes to the

background occurs. It is very swift at detecting the foreground mask, and its speed makes

it a good candidate for real-time applications.

However, since we would like to deal with outdoor situations, where there are frequent

changes in illumination and a constantly changing background, the single Gaussian

model becomes inappropriate. It would require frequent manual re-initialization; as

frequent as there are changes to the background. This would ultimately, defeat the

purpose of having a motion tracker, which is to remote track human motion with minimal

supervision.

The difficulty of modeling the background, in outdoor scenes, using a single Gaussian

distribution model, has been illustrated in fig 2.2. In the outdoor environment, frames that

are only a few minutes apart, could exhibit bi-modal intensity distributions

(2.2)

 14

Figure 2.2: These images have been adopted from Stauffer et. al. [7]. The scatter plots show the

red and green values of a single pixel from the image over time. Notice how the values form

clusters exhibiting bimodality.

We implemented the single Gaussian model, and have found it to be inappropriate for the

outdoor scenes that our tracker system is supposed to perform on. Most outdoor scenes

frequently produce multi-modal distributions, as show in figure 2.2, and a more complex

background model was required. In the next section, we will look at a more profound

model that can capture and record such multi-modalities.

 15

2.3 THE ADAPTIVE GAUSSIAN MIXTURE BACKGROUND MODEL

It is quite apparent that we require an adaptive background model with multiple

Gaussians to model the background that occur in outdoors. Stauffer et. al. [7] describes

such an adaptive background model. The model is capable of detecting and accounting

for illumination changes and constantly moving objects (for e.g. leaves of trees,

flickering monitor screen, etc).

The Gaussian mixture model uses unsupervised learning to learn the background; there is

no initial training required, and more importantly, it adapts to scene changes. The

motivation behind this method comes from scene changes and the need to break out of

using just a single Gaussian to memorize the pixel’s intensities. Consider the case of the

moving leaves of trees in a scene. Leaves of trees frequently exhibit movement due to

swaying of branches on a windy day. If we look more closely, a pixel, due to its

movement, switches between the leaf color (green) to the another color (lets say blue) as

a leaf moves in and out of the pixel. If we had used a single Gaussian model, we would

have produced a Gaussian centered around the mean of the two different colors (green

and blue). Whereas, the mixture of Gaussians model, would rather record a Gaussian

centered around the leaf’s color (green) and another Gaussian centered around the other

color (blue) – hence recording the exact color/intensity changes, rather than an overall

average of the changes, as in the single Gaussian model. Figure 2.3 illustrates this.

Illumination changes and scene changes can both be detected by change in pixel intensity

levels. Since, we use more than a single Gaussian for each pixel, the most recent pixel

intensity levels are stored using Gaussians, and assigned individual weights. A weight is a

value that indicates how often the intensity has occurred in the pixel, in the past. A new

intensity observed is given a low weight, whereas, an intensity that occurs frequently

gradually attains a high weight.

 16

Figure 2.3: The figure on the left shows the close-up of a leaf, marked by the yellow arrow that

shows the direction of the to and fro caused due to the leaf’s movement in the wind. The figure on

the right shows how the leaf has now moved away from some of the pixels. The pixel, under

examination, is the one located at (x,y). Notice, how its color distribution switches from a

distribution centered around green to a distribution centered around blue. A good background

model should record both the Gaussians.

Given the fact that the most interesting scenes exhibit bi-modal distributions for its pixel

intensities (see figure 2.2), we require a way to compute the respective Gaussians. The

most common way of identifying separate Gaussian mixtures is by using an Expectation-

Maximization (EM) algorithm. Nevertheless, The EM algorithm can become a bottle-

neck in real-time applications, such as the motion tracker.

Green Blue

x

y

 17

The EM algorithm starts out with a poor approximation of the Gaussian mixtures for the

data clusters, gradually improving its approximation at each iteration. In a real-time

application, waiting for the EM algorithm to achieve a good approximation for the

Gaussian mixtures at each frame transition in an image sequence can become a very

costly process. Moreover, an EM algorithm is more appropriate in situations where the

clustered data remain static with no further additions. Real-time applications keep adding

new data to the clusters or new clusters altogether, hence generating ever-changing

Gaussian mixtures.

Stauffer et. al. describes an online K-means approximation, which we have adopted in

our system. Every new pixel intensity value is checked against the existing distributions

for that pixel, and incorporated into the distribution if a match is found, or otherwise,

forms a new distribution indicating a new cluster. This forms the basis of our adaptive

model.

At any time t , what we know is the history of a pixel at location),(ji ’s, intensity values:

{ }tensity IIInjiH ,,,),,(10int KKK=

For each pixel at location),(ji , the background model at time t stores k Gaussian

distributions, along with their weights tk ,ω . This is called the Gaussian mixture),,(tjiψ ,

which can be represented by the set, where),(σµNGk = are normal distributions, as:

:

{ }ktktt GGGtji ⋅⋅⋅= ,1,10,0 ,,,),,(ωωωψ KKKKK ,

 18

The background mixture model MB at time t, can be represented by an m × n matrix of

Gaussian mixtures),,(tjiψ , where mi ≤≤0 and nj ≤≤0 :

=

),,(),,0(

),0,(),0,0(

)(

tnmtn

tmt

tBM

ψψ

ψψ

KKK

MOM

MOM

MOM

KKK

At time 0=t we start with the empty background mixture model)0(MB where the

Gaussian mixtures are { }kk GGji ⋅⋅= 0,00,0 ,,,)0,,(ωωψ KK and, 00,0,10,0 ==== kωωω KKK

and,)0,0(10 NGGG k ==== KKK

:

=

)0,,()0,,0(

)0,0,()0,0,0(

)0(

nmn

m

BM

ψψ

ψψ

KKK

MOM

MOM

MOM

KKK

At time Tt = , for a pixel p at location),(ji where)(pI is its intensity value:

If it is the case that σµσµ npIGm ≤−∋∃)(),(, where),,(TjiGm ψ∈ and km ≤≤0 , the

weight, mean and variance are updated for the matched distribution mG as follows, where

α is the weight-learning rate
1
, and ρ is the mean/variance-learning rate [7]:

Weight: αωαω +⋅−= −1,,)1(TmTm

Mean:)()1(1 pITT ⋅+⋅−= − ρµρµ

Variance: 22
1

2))(()1(TTT pI µρσρσ −⋅+⋅−= −

1
 The weight-learning rate is the rate at which new pixel values should be incorporated into the existing

model. A low weight-learning rate was used (~ 0.2), which indicates that new intensity values should be

incorporated “slowly” into the model.

 19

For the unmatched distributions: nG where mn ≠ , the weights are updated; the mean and

variance remain unchanged [7].

 Weight: 1,,)1(−⋅−= TnTn ωαω

 Mean: 1−= TT µµ

 Variance:
2

1
2

−= TT σσ

However, on the other hand, if it is the case that there are no matched distributions, i.e. :

σµψσµ npITjiGn >−∋∈∀)(),,(),(

Since, there are no matched distributions, the distribution that is least probable, i.e. with

the minimum
σ

ω
 ratio, is replaced with a new distribution with the mean as)(PI and a

high variance (typically 10.0).

PRELIMINARY RESULTS

We implemented the Gaussian mixture model, and have found that it performs very well

in outdoor situations. Though there is still a training period, which lasts for about 100

frames, the model incorporates different pixel intensities rapidly, making it very suitable

for tracking. We have used this model in our final tracking system. Results of background

subtraction on actual images can be found in Chapter 7.

A complete description of our implementation is given in Chapter 6, section 6.2.

 20

Chapter 3

This chapter discusses in detail how our system handles the extraction of human subjects

in a given scene. It lays out the importance of a robust human detector, and how difficult

it can get to detect and extract humans. The later parts of the chapter deal with other

issues such as shadow removal and identifying humans.

3.1 THE IMPORTANCE OF HUMAN EXTRACTION AND SEGMENTATION

We revisit the sole purpose of our system, which is to track humans in a given scene. The

part of the system which performs tracking depends a lot on the accuracy of the human

extraction model. Inaccuracies can lead into detecting un-interesting objects. The human

segmentation and extraction model hence plays a very important role in motion tracking.

The remnants of background differencing are a residue of pixels which the system

classifies as foreground. The residue frequently contains foreground pixels which does

not necessarily represent human subjects. Shadows move alongside humans, and hence is

left out by the background model in the residue. A good system should be capable of

distinguishing between subjects and their shadows. Failure to do so would cause the

system to track shadows inadvertently.

Human segmentation

and extraction

 21

3.2 THE DIFFICULTIES OF HUMAN SEGMENTATION AND EXTRACTION

Extracting human subjects and segmenting them can be challenging for many reasons.

The dynamics of the human body’s shape is very unpredictable. It could undergo

deformation, and sudden changes. Background differencing always leaves out a relatively

small number of patches of pixels which are part of the background. These are caused

due to the ever-changing illumination of outdoor scenes, which the background model

takes some time to incorporate. We refer to these patches as noise. Noise can be removed

significantly by the use of image filters and morphological operators. Figure 3.1 shows

how we have removed the noise from a background differenced image.

Figure 3.1: (a) The original image of the courtyard. (b) is the image after background

subtraction. Note that the black pixels indicate foreground. This snapshot was taken right after

the system was trained on 17 frames. The system had not yet learnt the motion of the leaves of the

trees completely, hence causing a majority of the leaves of trees to be treated as foreground. (c)

is the image after image in (b) was filtered using a median filter. (d) is the image after (c) was

filtered using a morphology close operator.

Our system removes the noise in a two-step process: first passing it through a median

filter and then performing a morphology close operation. Noise still remains after passing

(a) (b)

(c) (d)

 22

it through the two filters (Figre 3.1 (d)), however, these are easily removed using a size

filter, such as the one described in Section 3.3, equation 3.1.

A median filter, replaces a particular pixel with the median value of the color of its

neighboring pixels. This removes most of the isolated one-pixel noises (black dots). What

remains are bigger-sized noise pixels. Using a 3-by-3 rectangular structuring element, the

morphology close operator performs well to remove the remaining noise. The use of such

filters is not uncommon. It has appeared in the works of Zhao. T. et. al. [1]

The patches of black pixels, as seen in figure 3.1 (d), are called blobs. We will be using

this term from here on, throughout our entire discussion. Blobs representing human

subjects will be referred to as human blobs.

Removing noise from the background differenced image is not the end of the problems

we face in human segmentation and extraction. There are countless other situations that

might give arise to a false human hypothesis. It would be impossible to list out all such

cases; however we point out a few very common ones that we have observed, and have

attempted to solve.

Figure 3.2: figure (a) is a scene with three human subjects, where the bicycle rider is getting

occluded by the human subject on the right. Figure (b) is the resulting image after background

subtraction followed by filtering.

Figure 3.2 is an example of a situation where occlusion can cause major problems. It is

very difficult to hypothesize, by looking at the blobs, how many human subjects are

actually there in the scene. The problem of occlusions is dealt with using prediction

(a) (b)

 23

models, such as the Kalman filter, which we introduce in section 5.3. Occluded objects

follow the path predicted by the prediction model.

Apart from occlusions, we also face the problem of identifying a particular human

subject, as h/she is being tracked across the scene. The human subject may cross the path

of another human subject, in which case, the system can easily get confused between the

two. Our system starts predicting when such occlusion arises, and captures the human

object at a later frame, where it recovers from occlusion.

3.3 THE ALGORITHM FOR HUMAN EXTRACTION

A blob is a group of pixels },,{ 0 nppb KKK= , in any image frame, that lies within a

certain contour, where each pixel),(yxpi = is identified using pixel positions x and y .

A contour is a closed boundary. A blob b may be classified as a human blob, if its total

pixel area lies within a certain range. The set of all human blobs H, in any image frame

that contains a set of blobs B where Bb ∈ , can be represented as:

≤•≤= ∑
=

U

n

i

iiL TpTbH

0

)(ω

In equation 3.1, iω is the world area occupied by the thi pixel. Due to the perspective

effect, some models may wish to take iω into account, and assign different areas to

different pixels. The perspective effect causes certain pixels, which represent parts of

objects nearer to the camera, to have lesser world area. Pixels, representing objects which

are farther away, should have a higher iω value. Since our system employs a camera with

a relatively small visibility range, and also due to its proper positioning, employing a

model that takes this perspective effect into account, is unnecessary. Hence, we assign an

area of 1 unit to each pixel. The UT and LT are upper and lower limits of the area

threshold respectively. Typically, values of 200=LT and 500=UT have produced good

results.

(3.1)

 24

Equation 3.1 is essentially our size filter, and it removes most of the unwanted noise

propagating from background subtraction and successive filtering.

At this point, what remains are potential human blobs. However, sudden changes in

illumination may cause large areas of the background to show up as foreground. Such

areas may pass the size filter, in which case, it will get treated as a human blob. However,

our background model is very quick to adapting to such changes, and this only poses a

minimal threat. Improvements may be made, such as using a threshold value which can

indicate if human segmentation and extraction should be stopped completely until the

illumination change is incorporated; and extraction started at a later time when a lesser

percentage of the image is classified as foreground. Such situations are common if human

extraction is started prematurely during the background training period. For tracking

purposes, it is important that human extraction is started at a later time. Our system starts

human extraction once 100 frames have passed.

Efficient ways of extracting human blobs have appeared in various literatures. Javed et.

al. uses bounding rectangles [10] and so does many others [3],[5],[9]. Zhao. T. et al.

models a human using an ellipse, and uses the top of the head for extracting human blobs.

We have adopted this method of using ellipses to model humans.

As discussed earlier in section 3.2, occlusions pose a major problem when segmenting

human blobs. A perfect segmentation technique which works for any blob is still an open

problem. However, Zhao T. et. al. attempts to find a fair approximation of the location of

humans in the blob. The argument set forth argues that the head top of humans is least

likely to be occluded when they are walking in groups. This way, finding head-tops in a

blob gives yield to the human(s) in the blob. After a head-top is found an ellipse is drawn,

vertically downwards from the head-top, to capture the human.

 25

3.4 FINDING HEAD TOPS

The head-top of a human blob Hh ∈ , where },,{ 0 npph KKK= and),(yxpi = can be

defined as all pixels which are a local minimum point in y , within a certain

neighborhood Ω of x defined by { }SxxSxyx +≤≤−=Ω),(. The constant S is typically

the size in pixels, of an average human head. We have used S values ranging from 8-10

pixels.

Figure 3.3: Figure (a) shows the human blobs as they appear after background subtraction and

successive filtering. Figure (b) shows the head-tops identified using the algorithm we discussed in

section 3.2

Figure 3.3 illustrates how the algorithm provides us with a fairly good approximation of

the human blobs. Local minimums within the neighborhoods AΩ and BΩ identifies the

human blobs correctly. However, the neighborhoods CΩ and DΩ are false head-tops

which lie within the shadow pixels. Zhao T. et. al. [1],[2],[11] removes these false

hypotheses by performing a geometrical shadow analysis. Shadow analysis is a two-step

process. The position of the sun is determined, during that particular time of the day. The

shadow area cast by each ellipsoid is then determined and head tops lying within that area

is removed.

CΩ

DΩ

AΩ
BΩ

 26

Determining the sun’s co-ordinates at any time of the day and performing the geometric

computations is cumbersome, and we have devised a simpler method that has performed

well on the blobs that we have tested with. We calculate the elliptical area underneath a

head-top candidate that is also part of the blob. If the area underneath exceeds a certain

threshold limit HT , the local minimum qualifies as a head-top. The threshold limit HT is

typically the average pixel area occupied by a human subject scaled accordingly. The

scaling is required due to the perspective effect. HT is small for human subjects lying far

away from the camera. We multiply the threshold with a scaling factor s , which scales it

down, if the y co-ordinate of the local-minimum is far away from the camera. The

scaling factor can be written as
h

y
s = , where h is the height of the image. The threshold

without the scaling effect, is the elliptical area which can be calculated using the formula:

ba ××π , where a is the length of the major axis of the ellipse, and b the length of the

minor axis.

Figure 3.4 shows why head-top B and C would not pass our area threshold test – the blob

area underneath does not exceed the threshold limit HTs .

A

B C

HTsa > HTsa <

HTsa <

Figure 3.4: The figure shows the area that is being calculated under each head-top candidate.

We have omitted the head-top candidate in neighborhood BΩ from figure 3.3 for brevity. The

area of each region underneath the head-tops is denoted using a.

 27

Figure 3.5: A successful human blob extraction and segmentation performed by our system. The

original image in fig (a) is first background differenced and filtered (median, close and size) to

produce what is in fig (b). Head-top candidates are identified and ellipses are drawn to model

possible human subjects. Shadows are completely removed in figure (c) and figure (d), separating

out the two humans blobs.

We have designed our own algorithm for segmentation and extraction, which we have

described in Chapter 6, Section 6.3. The implementation of the algorithm has produced

very good results. We have also analyzed its time-complexity in section 6.4, and have

found it to be very suitable for real-time motion tracking. The test results on human

segmentation and extraction can be found in Chapter 7.

(a) (b)

(c) (d)

 28

Chapter 4

4.1 INTRODUCTION

The sole purpose of our system is to track the motion of humans. To “track” is to trace

the trajectory produced by humans in a given scene. Tracing the path taken by a human in

a scene is a trivial task. However, the problem lies in trying to make the system associate

a certain path to a human. The problem gets even more intricate when complex situations

arise, such as humans intercepting paths of one another, or when humans occlude one

another, when viewed from the camera viewpoint. Our system addresses each of these

issues and handles them robustly.

4.2 THE PURPOSE OF MOTION TRACKING

Given that a system is able to successfully identify and associate the different trajectories

to the different humans that produce them - such trajectories can be used to persistently

store and later analyze how humans locomote, especially when they exhibit abnormal

behavior. An intelligent surveillance system is bound to be deployed with a good tracking

system. Alarming situations can be easily detected and prevented, by using such a

system. However, our work does not aim to classify human motion, and differentiate

between normal and abnormal motion. This is a psychological issue, and models can be

developed further to predict such abnormalities.

The noise that frequently emerges in blob detection, after background filtering, poses a

difficult challenge to detecting motion by simply keeping track of where a certain blob

appears in a certain frame. On a windy day, for example, clouds frequently block the

Motion Tracking

 29

sun’s rays, causing sudden illumination changes. This causes background clutter. A blob

which is being tracked, may completely disappear for a certain number of frames, and

then reappear sometime later. A robust system should be able to predict and track the

blob’s motion for the period for which it disappeared. There are also situations when not

whole, but parts of a blob are detected. If the blob parts do not meet an area threshold

(average pixel area occupied by a human in our scenes), they are discarded and the blob

that was being searched for, is considered lost. However, if they do satisfy the threshold,

since not every pixel on the blob represent the human, they only give us an approximate

position of where the human has moved to. Figures 4.1 illustrates this:

Figure 4.1: Frames (a) and (b) are separated by 5 frames. Notice how the human figure walks

into behind the tree in frame (b). Frames (c) and (d) are the blobs produced, after background

subtraction, from frames (a) and (b) respectively. If the blob in frame (d) does not meet the area

threshold, it may be discarded and be considered as background noise. On the other hand, if it is

accepted, notice how the observed center differs from the actual center. Tracking using the center

can be difficult for these reasons. Our system uses head tops, as its tracking point.

(a) (b)

(c) (d)

observed center

actual

center

 30

4.3 TRACKING AS A PROBABILISTIC INFERENCE PROBLEM

Humans, in normal circumstances, tend to exhibit trajectories that are regular. This makes

it easier to predict their motion, given that we know the velocity and the direction in

which they are moving.

Tracking can be a viewed as a probabilistic inference problem [16]. We can model the

humans as having some state at any frame i. We will denote the state of a human object,

at the thi frame, using a random variable iX . The state of a human object iX is the actual

position of the human, at the instant the thi frame image was captured. A human object,

in its lifetime of n frames, passes through states:

{ }nXXX ,,, 10 KKKKK

Our system is not always capable of getting the exact actual position (due to background

clutter, noise, occlusions, etc.). However, it can determine the observed states of the

human object. An observed state is the position at which the human objects appear to be,

in the background differenced image. We sometimes also call it a measurement state. We

denote it using the random variable iY , where iY is the observed state of a human object at

the thi frame.

Our tracker system tries to predict the state of a human object, using previous observed

states. More generally, we are trying to determine a representation of:

),,(1100 −− == iii yYyYXP KKKK

This step is what is more popularly known as the prediction step [16]. Equation 4.1 tries

to identify the present actual state of the human object, using previous measurement

states. It assumes the fact that we already have knowledge of the measurement states of

our human object for states 0 to 1−i . From this, it derives the immediate future state.

(4.1)

 31

A better prediction of the current actual state iX can be obtained if we also use the

current measured state iY . Hence:

),,,(1100 iiiii yYyYyYXP === −−KKKK

This step is known as the correction step [16]. Before we design algorithms for

prediction and correction, we make a few assumptions that simplify our task considerably

[16]:

• The state of a human iX is dependent only on its previous state 1−iX : More

formally put: (Note that the assumption causes a simplification)

)(),,(111 −− = iiii XXPXXXP KKKKK

• The current measured/observed state iY is independent of all other

measurement states: },,{ 10 −iYY KKKKK , given that we know current state

iX .

Moving away from viewing tracking as a probabilistic inference problem, we now

discuss the approaches we used to develop a simple tracking model, based on the

assumptions and ideas represented above.

(4.2)

 32

4.4 DEVELOPMENT OF THE TRACKER

Assuming that we were properly able to extract human subjects, using the human

segmentation and extraction techniques presented in section 3.4, our tracker should be

able to robustly measure, predict and approximate the human states. The ideas that we

employ, are the ones that are represented using probabilistic inferences, as stated in the

previous section: section 4.3.

To explain how we develop a simple motion tracker, we begin with a simple scene,

where one single human subject makes an entrance, moving at an arbitrary velocity and

changing directions, and eventually finally exiting the scene. Figure 4.2 illustrates this

scene. Keeping this scene in picture, we will derive our motion model in the following

sections.

Figure 4.2: The frames above show how the human segmented blob enters the scene in (a), and

moves, changing directions in subsequent frames (b),(c) and (d). The red arrows indicate the

direction of motion between the previous and the current frames. Notice how the shape of the

human blob is constantly changing.

(a) (b)

(c) (d)

 33

4.5 DETECTION AND REGISTRATION OF A NEW BLOB

A blob b, which can be thought of as a group of pixels },,{ 0 nppb KKK= , in any image

frame, which lies within a certain contour where each pixel),(yxpi = is identified using

pixel positions x and y . A blob b may be classified as a human blob, if its total pixel

area lies within a certain range. The set of all human blobs H, in any image frame, can be

represented by equation 3.1 (Section 3.3). :

Earlier in Chapter 3, section 3.3, we have discussed how we extract human blobs from a

scene. The tracker uses the same principles to detect and extract a human blob. Once a

human blob is detected, it is checked to see if it lies within a hotspot. A hotspot is

associated to a registered human blob. It is simply a search neighborhood Ω [1] within

which any registered human blob is expected to be observed in the consecutive frame.

For a human blob centered at),(ba it is defined as:

})()(),{(222 rbyaxyx ≤−+−=Ω

The radius of the hotspot r can depend on the speed at which the human blob is moving.

We have used radius values typically ranging from 5-10 pixels, which have produced

good results.

At any frame instance i , our system keeps track of n search neighborhoods for n human

blobs:

{ }nΩΩΩΩ ,,, 210 KKKK

When a blob falls within a search neighborhood iΩ , it gets associated to the search

neighborhood’s blob, if it appears to be the same human blob. This is a problem which

still remains to be solved. Zhao. T. [1] uses a texture template for object representation.

Others [10] have used similar constructs.

A blob, which is classified as a human blob (equation 3.1), and which does not fall within

any iΩ is registered as a new blob.

 34

4.6 PARAMETER INITIALIZATION OF NEWLY REGISTERED BLOBS

A newly registered blob does not have sufficient parameters to enable it for tracking. The

system requires further vital information about its motion, to initiate tracking. After a

new blob is registered, when it is first observed in a frame; the newly registered blob is

searched to make a second appearance in the subsequent frame, within its

neighborhood Ω . If it is found, the velocity is computed and the direction of motion is

established. Figure 4.3 illustrates this:

Figure 4.3: The human blob is first observed at position),(00 yx . In the next frame, it is searched

and found to lie within its hotspot, at),(11 yx . The velocity, at which the blob is moving, can now

be calculated, and hence we have obtained useful information about its motion.

A human blob may also appear completely deformed in the second frame and may not

pass the area threshold test (Equation 3.1). As a result, no human blob will be found to lie

within the hotspot. This makes it impossible to calculate the speed and the direction at

which the blob is moving. Prediction of its next appearance cannot be computed, and

hence the human blob, which was being initialized for tracking, is discarded. We expect

the blob to re-appear in later frames, and for its motion to get detected properly at some

point in its lifetime.

(x0,y0)

(x1,y1)
v

Hotspot

 35

4.7 MOTION PREDICTION

Predicting motion of a human blob is an iterative process. It primarily involves estimating

the subsequent positions of the blob, using a priori information such as velocity,

directions of motion and the observed position. The noisy nature of foreground blobs,

propagating from background differencing, makes it difficult to rely solely on the

observed position. Our system tries to reduce the errors in the observed position by

averaging out the observed and the estimated position. The estimated position is the

position which the system computes using velocity and direction of prior motion.

We use vector analysis to predict motion. Lets assume that a blob is first detected at a

frame 0=i , and lets denote its initial pixel position as),(00 yx . Let’s also assume that at

frame 1=i the blob is again detected at),(11 yx . At this point, we have enough information

to calculate the speed and direction at which it is moving.

Figure 4.4: The first two positions of a blob is crucial for determining its speed and direction of

motion.

More generally, the speed is of the human blob, at any frame i is calculated using the

frame rate γ :

•−= −−

γ

1
),(),(11 iiiii yxyxs

),(00 yx

),(11 yx

(4.3)

O

 36

The velocity iv can now be calculated by normalizing the motion direction vector, and

multiplying it with speed is :

−+−

−

−+−

−

⋅=

−−

−

−−

−

2
1

2
1

1

2
1

2
1

1

)()(

)()(

iiii

ii

iiii

ii

ii

yyxx

yy

yyxx

xx

sv

Figure 4.5: The origin),(11 −− ii yx and the next observed position),(ii yx is all what is required

to start predicting subsequent positions.

The vector equation of the straight line l along which the blob is moving is given by:

10,:
1

1

1

1
−≥≥

−

−
+

=

−

−

−

−
ikand

yy

xx

y

x

y

x
l i

ii

ii
i

i

i

k

k λλ

Notice that the scalar parameter constant iλ when set to 1 gives),(ii yx . If the distance

traveled between points),(11 −− ii yx and),(ii yx is id , a λ value of 1 represents a distance

id traveled from the blob’s origin),(11 −− ii yx to),(ii yx .

Using these information, we can easily interpolate the next position),(11 ++ ii yx , the blob is

expected to move into.

),(11 −− ii yx

),(ii yx

−

−

−

−

1

1

ii

ii

yy

xx

−

−

1

1

i

i

y

x
 l

O

id

(4.3)

 37

To calculate),(11 ++ ii yx , we need to determine the value of the parameter constant iλ .

From our argument above, since we know that id represents 1=λ . If the blob has moved

a distance of 1+id , the distance traveled from the origin),(11 −− ii yx now totals 1++ ii dd ,

which can represented by a iλ value of

 + +

i

ii

d

dd 1 .

Figure 4.6: The point to be predicted (interpolated) is),(11 ++ ii yx . We use 1+id calculated using

iv to determine the value of iλ

However, it is important to note that we are only making a prediction of the distance

moved 1+id , using the speed is , observed in the previous frame. The parameter constant

iλ can now be written as:

×

+=

 ×
+=

+= +

i

i

i

i

i

i
i

d

s

d

ts

d

d γ
λ

1

111 1

Our surveillance camera records images at the rate of 10 frames per second, hence our

tracker uses 10=γ .

O

1+id

(4.4)

−

−

−

−

1

1

ii

ii

yy

xx

),(11 −− ii yx

),(ii yx

−

−

1

1

i

i

y

x

),(11 ++ ii yx

 38

Predicting a posteriori blob position using a priori information such as velocity and

direction of motion, only gives us the predicted position),(11
p

i

p

i yx ++ where we expect the

blob to be in the next frame. The observed position),(11
o
i

o
i yx ++ could be different from the

predicted position. A tracking system could assign appropriate weights to each of the

predicted and observed positions, and compute an estimated position)ˆ,ˆ(11 ++ ii yx of where

the human blob actually is. Without performing such an estimate and neglecting the

observed position, we have discovered that it is impossible to do tracking. Such estimates

have greatly improved our tracking results.

Figure 4.7: The estimated blob position lies somewhere in between the line connecting

the predicted and observed position points. The exact location of the estimated point is

determined by the estimation parameter called the “tracker reliability factor”.

Depending on how much we think our system is accurate in predicting the human blob’s

position, we assign normalized weights to the predicted and the observed positions

accordingly. Our system uses a tracker reliability factor (α).

We use a value of 8.0=α . From our experiences, α should be tested on various motion

sequences, before assigning it a constant value.

O

),(ii yx

),(11
p

i

p

i yx ++

observed position

predicted position

estimated position

),(11
o
i

o
i yx ++

)ˆ,ˆ(11 ++ ii yx

−+

=

o

o

p

p

y

x

y

x

y

x
)1(

ˆ

ˆ
αα

 39

4.8 THE LIFETIME OF A HUMAN BLOB

All human blobs have a certain lifetime. This is the period of time that elapses between

the time when the blob makes its first appearance, till the time when it exits the scene. A

human blob can be represented using a Deterministic Finite State Machine (DFSA). It

undergoes a series of state transitions during its entire lifetime. A human blob starts off

with an initial state, when it is newly registered by the tracker. We call this the “new

blob” state. If the blob can be initialized for tracking (i.e. observed in the second frame

hence enabling calculation of velocity and motion direction) it transits to the “tracked”

state. While it is being tracked, it may disappear for a few frames due to noise; in that

case it has transited to the “lost” state, and we keep predicting its motion, this time

without an observed point. The blob at this point may re-appear at a later frame, in which

case it again reverts back to the “tracked” state. However, if it never re-appears again and

the lost tolerance threshold is exceeded, it plummets to the “discard” state, after which it

is wiped out from the system. Figure 4.8. illustrates this using a DFSA.

Figure 4.8: Here are the transition states: 1T -blob is initialized completely for tracking, i.e. it is

observed in the second frame and its velocity has been calculated. 2T -blob disappears after being

tracked for sometime. 3T -blob reappears and has survived the lost tolerance threshold. 4T -blob

has crossed the lost tolerance threshold. 5T -was not detected in the second frame, and hence

initial velocity and direction could not be computed.

new blob tracked

discard lost

1T

2T
3T

4T

5T

 40

From our discussion of blob states, it is important to note that blobs which are lost, during

tracking, have their positions predicted completely based on its immediate prior value of

velocity and direction of motion. Regular non-lost blobs are estimated and tracked

normally, using a weighted average of predicted and observed points.

4.9 PRELIMIARY RESULTS

After implementing a tracker which performs prediction, wholly based on vector analysis

of linear motion, has produced disappointing results. In the next chapter, we present our

findings and explain why we require a better method for prediction. We introduce a

Kalman filtering process that has known to be widely used in tracking. In later chapters

(Chapter 6, 6.9) we provide implementation of both approaches, where the second

approach (Section 6.9, code 6.17 – 6.22) uses both vector analysis and Kalman filtering

process techniques.

 41

Chapter 5

5.1 INTRODUCTION

Predicting a human blob’s motion using vector analysis, works well when a human blob

is visible throughout its entire lifetime. The visibility decreases with increasing

illumination changes. The system also experiences poor visibility when the scene is dark,

and the human blob’s texture color is similar to its surroundings. As discussed earlier in

the previous chapter, these situations cause the blob to completely disappear, since it

cannot suffice the requirements of the area threshold test, during the human

segmentation and extraction process. A blob may also disappear when it gets occluded by

an object that is in the optical pathway of the camera and the blob. The system ought to

tackle these problems, since they are commonplace in outdoor scenes.

5.2 THE NEED FOR A FILTER

Human blobs’ position prediction and estimation calculations rely heavily on its observed

positions. Highly inaccurate observed positions could suddenly cause a human blob to

become lost, and eventually causing the system to exhaust its search for the lost blob, in

which case it is discarded. We have analyzed and tried to reason about such inaccuracies

and have found that most inaccuracies in observed positions are caused due to ill-formed

human blobs.

The Kalman filtering

process

 42

The cause of an ill-formed blob can be attributed to the background model. Irregular

deformation of a blob, after background subtraction, occurs when parts of the actual

human figure are conceived to be a part of the background. Since our system uses

Gaussian distributions to compare between the background and the foreground, finding a

match (to a background Gaussian) for a pixel which actually represents the foreground is

not unusual. Figrue 5.1 illustrates this.

Figure 5.1: This is a graphical monologue of the series of events showing how human blobs get

“badly” deformed, eventually causing a shift in the observed position marked by the red dot. Fig-

(a) are all the k-Gaussian distributions which store past frequently recurring intensities of pixel

P. In other words, fig- (a) models the background intensities for pixel P. The part of the

foreground fig-(b) which falls within pixel P, can have an intensity value which matches two or

more Gaussians in fig-(a), as shown by arrows fig-(d). The result, is the system “thinking” that P

is a part of the background, causing the deformation in fig-(c), and hence a shift in the center of

the blob – which is our observed point.

(d)

0G

1G

2G

3G

kG

(c)

P

 43

The deformations presented in figure 5.1 are minor, occurring frequently, and caused by

changes in scene illumination. More severe deformations could cause the human blob to

completely disappear, resulting in no observed point, and forcing the system to start

predicting “blindly”. Since we only use the immediate past (Equations 4.1, 4.2) for

prediction, a noisy observed direction of motion in the immediate past could cause the

system to start predicting subsequent positions in the wrong direction. Hotspots also

move with the predicted positions. All these events might lead to losing a blob

completely, even if it re-appears again at a later frame. We have tested our system

without using a filter, and we present what we have discovered in Figures 5.2 and 5.3.

Figure 5.2: Tracking starts off at O, with the usual “noisy” observed center, until the observed

point disappears at A, leaving the system to start predicting the subsequent positions in the

direction of the immediate past (orange line). At some later frame, subsequent predictions reach

point P with hotspot H. If the blob ever re-appears, which it does at R, it will not be detected by

Hotspot H, hence eventually causing the blob that was being tracked to be discarded. However,

the blob at R is recognized by the system and is tracked as a new separate blob.

We can alleviate the severity of the problem and the pitfalls of “blind” prediction if we

are able to smooth the path taken by the human blob using a filter. The path from O to A

in figure 5.2 can be smoothed, possibly causing prediction to occur in the desired

direction, and eventually having the hotspot around the region, where the blob re-appears.

Though smoothing does not guarantee perfect prediction, it definitely improves the

prediction process. Figure 5.3 shows how smoothing achieves this.

blob lost

H

R

A

P

O

 44

Figure 5.3: The dark red line is the path which can be obtained from the Kalman filter. A′ is now

the point at which the blob disappears, and prediction starts from there on. Prediction occurs in

the desired direction enabling the hotspot to encompass the blob’s position when it re-appears

again at a later frame. Henceforth, facilitating the blob to be tracked again.

Using such filtering techniques is not uncommon. It has appeared in the works Zhao. T.

et. al. [1] [4]. They use the Kalman filter [13], invented by the mathematician R.E.

Kalman in the 1960s. The Kalman filter has been known to be very powerful in its ability

to perform estimates for past, present and future states by minimizing the mean squared

error. The Kalman filter becomes more attractive for dynamical systems such as the

motion of a human blob.

5.3 ORIGINS OF THE FILTER

The Kalman filter has its roots in the more popular least square method of minimizing

error. The basic ideas behind the filter are derived from this method. We show how the

least square develops into the Kalman filter. Due to the filter’s numerous possible

applications in computer systems, it makes it necessary to speed-up the computations

required to compute the filter. We also show how this is being done.

R

H

A′

P′

 45

5.4 LEAST SQUARES METHOD

In the least squares method [14], we attempt to find a “good” estimate for a state a by

making a sequence of measurements of a. Our measurements are bound to contain some

error, and hence the least square method primarily concerns minimizing this error over all

measurements. We give an example [15] of an attempt to measuring the water levels of a

tank.

Figure 5.4: Fig-(a) shows how we make measurements of the water levels in a tank. We use a

ruler to make measurements at different times i , and possibly at different places. Fig-(b) is a

pictorial representation of our measurements. We are trying to estimate state a.

The error resulting from a single measurement i is given by:

2)(axE ii −=

The total error over all measurements is a summation of the individual errors:

∑∑
=

−==
n

i

i

i

i axEE

1

2
)(

a
0x

ix

(a) (b)

(5.1)

(5.2)

 46

We are interested in minimizing this error E , and finding the value of aa ˆ= for which E

is minimum, i.e. 0=
∂

∂

a

E
:

 ∑
=

−=
∂

∂
n

i

i ax
a

E

0

)ˆ(2

−= ∑

=

anx

n

i

i
ˆ2

0

 ∑∑
==

=⇒=−
n

i

i

n

i

i x
n

aanx

00

1
ˆ0ˆ

However, this method of finding estimates becomes computationally expensive for a real-

time system such as a motion tracker. For every estimate iâ , we need to compute first

∑
−

=

1

0

i

k

kx and then add it to ix , to get ∑
=

i

k

kx

0

. We could save the computations required by

giving a recurrent relation for iâ :

Since, ∑
−

=

−=
−

1

0

1
ˆ

1

1
i

k

ik ax
i

iii

i

k

k

n

i

ii xaxxxai +=+== −

−

==

∑∑ 1

1

00

ˆ

iii x
i

a
i

i
a

1
ˆ

1
ˆ 1 +

−
= −

()11 ˆ
1

ˆˆ −− −+= iiii ax
i

aa

Using equation 5.4., we are able to recursively calculate iâ , using the prior estimate 1
ˆ −ia .

We have essentially removed the summation which we required previously, over all prior

measurements.

(5.3)

(5.4)

 47

Equation 5.4 can be modified to represent a higher-order dimensional system, with

vectors representing their states and measurements. Equation 5.4 now becomes [15]:

()11
ˆˆˆ −− −+= iiiiii aHXKaa

The matrix nm
iH ×ℜ∈ relates the state a to the measurement x [15]:

[] [] aHHHxxxaHx
T

n
T

nii •=⇒•= KK 2121

The Kalman gain iK can be calculated using [15]:

T
iii HPK = , where () 1−

= T
iii HHP

However, now that we have solved these equations, we still have not accounted for the

noise which occurs in our motion tracking system, and in just any other dynamical

system. We represent the process and measurement noises using the random variables kw

and kv respectively. They are independent of one another and assumed to be distributed

normally with zero mean [12]:

),0(~ ik QNw

),0(~ ik RNv

Rewriting the state and measurement equations (5.5 and 5.6), with added noise:

kii waAa += −1
ˆ

iiii vaHx +=

Note that the square matrix nnA ×ℜ∈ , relates the state at i-1 to the state at i.

(5.6)

(5.5)

(5.7)

(5.10)

(5.11)

(5.8)

(5.9)

 48

The recurrent relation in iâ , now becomes:

)ˆ(ˆˆ
111 −−− −+= iiiiiiii aAHxKaAa

This equation can be solved [12],[13], giving the Kalman gain iK :

1)(−+′′= i
T

iii
T

iii RHPHHPK

 where: 11 −− +=′ i
T

iiii QAPAP

 and, 1111)1(−−−− ′−= iiii PHKP

Note that iQ and iR are the parameters of the normal distributions of noise (equations 5.8

and %.9).

5.5 THE APPLICATION OF THE KALMAN FILTERING PROCESS IN

MOTION PREDICTION

Moving away from the mathematical abstraction of the Kalman filter, we now state how

it may be used to predict the motion of the blob. First we define some parameters of blob

motion. The state ns of a blob at any time is its tracking point),(yx (usually center of the

blob, or head top), together with its velocity),(yx vv . We may write ns in vector form as:

[] T
nynxnnn vvyxs)()(=

If we were to use a constant velocity model, assuming that all humans move with a

constant velocity, i.e. 1−= nn vv , we could formulate the following:

11)(−− ⋅∆+= nxnn vtxx

11)(−− ⋅∆+= nynn vtyy

 49

We could re-write these equations in matrix form as [11]:

⋅

∆

∆

=

−

−

−

−

1

1

1

1

)(

)(

1000

0100

010

001

ny

nx

n

n

y

x

n

n

v

v

y

x

t

t

v

v

y

x

However, we cannot disregard the noise that is involved in observing a state. As

previously, the process and measurement noises can be represented using normal

probability distributions with zero mean:),0(~ ΣNwn and)ˆ,0(~ ΣNvn , respectively. Σ

and Σ̂ are the co-variance matrices of process and measurements, respectively. With

added noise, equation 5.12 now becomes:

n

ny

nx

n

n

y

x

n

n

w

v

v

y

x

t

t

v

v

y

x

+

⋅

∆

∆

=

−

−

−

−

1

1

1

1

)(

)(

1000

0100

010

001

Now we state our measurement state nŝ , which follows from the actual state ns with

added measurement noise nv :

nnn vss +=ˆ

or more simply as, n

ny

nx

n

n

n

n
v

v

v

y

x

y

x
+

⋅

=

−

−

1

1

)(

)(0010

0001

ˆ

ˆ

The time-interval t∆ , is essentially the frame rate γ , Our camera shoots at 10 frames a

second.

(5.12)

 50

The most important elements of the Kalman filter process are the process and

measurement noise parameters. At each new iteration, they are updated. The update

equations have been omitted for brevity, and the reader may wish to read W. Greg et. al.

discussion on the Kalman filter [13].

Using the Kalman filter and the state-measurement equations, as described above, we can

achieve a better and more reliable level of motion prediction. To summarize up the entire

process in simple terms, we first measure the initial position of the blob and its velocity

(together put what is called the initial state 0s of the blob). This can be done using the

equations we have set forth in section 5.5. This is our initializing step. In the subsequent

frames, we make a prediction, only using Kalman filtering. Prediction is followed by

measurement and we determine the observed position of the blob. The measurement and

prediction is then compared to assess how well we predicted. A simple pixel-wise

difference between measurement and prediction positions is sufficient. This assessment

of prediction updates the measurement and process noise parameters accordingly, hence

preparing the Kalman filter to make a better next prediction.

Figure 5.5: The Kalman filtering process cycle in motion prediction

initialization

prediction

measurement

Update noise

parameters by

assessing how far apart

is prediction and

 51

Chapter 6

6.1 INTRODUCTION

In this chapter we present to the reader important details of our implementation. The

tracker system is divided into three different libraries namely: the background subtraction

model, the head-top finder and the motion tracker. This chapter is divided into three

separate sections, where each section represents a different library.

Major parts of the implementation description in this chapter include actual program code

from our system. We sometimes have omitted few parts of code for conciseness. For

lengthy code, we have used algorithms to describe the implementation.

The implementation was written using the C++ language. We have used Intel’s OpenCV

library [17] for common image processing and vision functions. Since C++ is relatively

platform and compiler dependent, it may also be worth noting that our development was

carried out in the Microsoft Windows® environment, using Microsoft® Visual C++ 6.0.

Figure 6.0: An overall representation of our system and its data flow.

Implementation

Background

model

Head-top finder Motion Tracker

Video input Video output Background

differenced

frames Head-tops

 52

6.2 THE BACKGROUND MODEL IMPLEMENTATION

For most parts of the implementation description of the background, we will be

discussing the data structures we have constructed to fit our background model. These

data structures correspond to the mathematical set and matrix forms we have laid out in

Chapter 2, section 2.3. The background model algorithm adopted, is attributed to the

works of Stauffer et al [7]. However, we have provided our own independent

implementation of the algorithm using some efficient data structures.

We restate the Gaussian mixture),,(tjiψ for a pixel at location),(ji of frame t , as the set

of Gaussian distributions),(σnGk with assigned weights tk ,ω :

{ }ntntt GGGtji ⋅⋅⋅= ,1,10,0 ,,,),,(ωωωψ KKKKKK

The implementation of a Gaussian distribution),(σnGi is a C++ class with appropriate

get/set functions.

Code 6.1: The class definition for a Gaussian distribution and its function prototypes from the

GaussianDistribution.h file.

(6.1)

1: class GaussianDistribution

2: {

3: double variance;

4: double mean;

5: double weight;

6: public:

7: bool match(double);

8: double getWeight();

9: void updateDistribution(double, double);

10: void adjustWeight(double, bool);

11: double getWeightVarianceRatio();

12: void setDistribution(double, double, double);

13: };

 53

A few functions are worthy of a description:

The updateDistribution(double pixelValue, double learningRate) function

updates a Gaussian distribution with the new pixel value, which is the intensity value of a

pixel as defined in section 2.2. It updates it at a rate specified by learningRate. The

update equations are discussed in Chapter 2, section 2.3. We require updating Gaussians

during the training period to incorporate new pixel values, which are observed at a new

training frame. Updating Gaussians also becomes necessary after the training period,

when the background model is constantly adapting itself to new changes in pixel values.

The adjustWeight(double learningRate, bool matched) function adjusts the

weight based on equations set forth in section 2.3, and according to evidence specified by

match. At any frame, if a Gaussian distribution has been found to have a match (criteria

for a match defined in Chapter 2, equation 2.2, it is said to have an evidence. Its weight is

then updated according to the learningRate. Other Gaussians for which evidence was

not found have their weights updated at a different rate, i.e. specified by

−1 learningRate.

The implementation of a Gaussian mixture),,(tjiψ , is essentially a container for storing

its k Gaussians distributions. It can be represented using an array of

GaussianDistribution objects. Code 6.2 illustrates the implementation of the mixture.

The constructor, on lines 6-14, instantiates s Gaussian distributions. The class provides

functions, such as updateGaussians(double pixelValue) which iterate through each

Gaussian in the container, and searches for a match. If a match is found, the Gaussian is

updated by invoking the Gaussian’s updateDistribution() function. Otherwise, it

finds the least probable distribution (minimum σω / ratio) and replaces it with a new

Gaussian distribution by calling the container’s replaceDistribution(int, double,

double, double) function. The function parameters are parameters for the new

distribution.

 54

Code 6.2: The class definition for a Gaussian mixture and its function prototypes from the

GaussianContainer.h file.

Figure 6.3: The figure shows the two steps involved in updating Gaussians when a match is not

found. Also note the structure of a Gaussian mixture.

1: class GaussianContainer

2: {

3: GaussianDistribution** distPtr;

4: int size;

5: public:

6: GaussianContainer(int s)

7: {

8: distPtr = new GaussianDistribution*[s];

9: for (int i=0;i<s;i++)

10: {

11: distPtr[i] = new GaussianDistribution();

12: }

13: size = s;

14: }

15: bool updateGaussians(double);

16: int getSize();

17: int getLeastProbableDistribution();

18: void replaceDistribution(int, double, double, double);

19: };

G1 G2

Gn KK

Gi

distPtr

replaceDistribution()

getLeastProbableDistribution() 1

2

 55

The GaussianDistribution and GaussianContainer structures can now be used to

construct our background mixture model. Constructing the mixture model has essentially

been a bottom-up approach, by first constructing the smaller entities such as the

GaussianDistribution. We revisit the background mixture model, as described in

Chapter 2 section 2.3. The background mixture model MB , at time t, can be represented

using an nm× matrix of Gaussian mixtures),,(tjiψ , where mi ≤≤0 and nj ≤≤0 :

=

),,(),,0(

),0,(),0,0(

)(

tnmtn

tmt

tBM

ψψ

ψψ

KKK

MOM

MOM

MOM

KKK

The implementation of such a structure is a two-dimensional array of Gaussian mixtures.

Since a Gaussian mixture is represented by a the GaussianContainer class, our

background mixture model is a two-dimensional array of GaussianContainer objects.

It is represented by the MultipleGaussianBackgroundModel class.

Code 6.3: The class which represents the background mixture model. A few details have been

omitted for brevity.

1: class MultipleGaussianBackgroundModel

2: {

3: GaussianContainer*** containerPtr;

4: int height;

5: int width;

6: public:

7: MultipleGaussianBackgroundModel(IplImage* img)

8: {

9: height = img->height;

10: width = img->width;

11: createEmptyModel(height,width,

12: NUMBER_OF_GAUSSIANS_IN_MIXTURE_MODEL);

13: }

14: void updateModel(IplImage*, IplImage*);

15: };

 56

Code 6.3, shows the constructor of the background mixture model class. The constructor

accepts the image frame, as its parameter. These image frames are the 3-channel color

frames from the actual CCTV video. The height and the width of the image correspond to

our background mixture model MB matrix’s dimensions n and m respectively. An empty

model is created using a private function, the details of which have been omitted. This is

only an initialization step. The empty model is the one we have described in Chapter 2,

section 2.2.

An important function that deserves attention is the updateModel() function which

updates all the Gaussian containers of the background mixture model. The function takes

in the incoming 3-channel image frame from the video sequence as an input parameter. It

also takes in a second 3-channel image, which is to writes to as output. The output is the

current underlying background model. The update functions for the containers:

MultipleGaussianBackgroundModel, GaussianContainer, and

GaussianDistribution are a hierarchy of functions where one invokes the other, to

eventually update the entire background model. This hierarchy is shown in figure 6.4.

Figure 6.4: The hierarchy of update function calls. The update produces the background

differenced image as its output.

MultipleGaussianBackgroundModel ~

updateModel()

GaussianContainer ~ updateGaussians()

GaussianDistribution ~

updateDistribution()

MB

),,(tjiψ

),(σnGk

invokes

invokes

input output

 57

Figure 6.5: The figure summarizes pictorially the data-structures we use to build our on-

line background mixture model.

 KKK

GaussianContainer

GaussianDistribution MultipleGaussianBackgroundModel

There is a 1-to-1

correspondence

between the pixel of

an image frame , and

a matrix entry of the

background mixture

model

GaussianContainer***

 58

6.3 HEAD TOP FINDER IMPLEMENTATION

The algorithm for finding head-tops was discussed in Chapter 3, section 3.3. As stated

earlier, head-tops are local minimums within a foreground blob. The task of finding these

local minimums within a certain neighborhood is difficult owing to the manner in which

OpenCV functions allow the programmer to iterate around the contour of a blob.

Recollect that we iterate around the contour, since local minimums can only lie on the

contour of a blob. The task of finding local minimums would have been trivial if

OpenCV stored edges and allowed the programmer to iterate in an increasing or

decreasing order of y. The most logical solution would be then to sort the edges in a

particular order, before iterating. However, since the system is expected to run in real

time and sorting is an expensive operation, this solution would be inappropriate.

Code 6.4: The code required to iterate around the contour (edges) of a blob.

Code 6.4 shows the code that we use to iterate around the edges of a blob. OpenCV stores

the edges of blobs in no precise order. To illustrate this, figure 6.6 shows a blob which

has 440 edges, and edges (with x and y coordinates separately) have been plotted in the

order in which they can be iterated. The y values appear to be in some order, though not

in a completely ascending order and the x values appear to have no sense of ordering.

The absence of ordering makes it difficult to design a simple algorithm to calculate the

local minimums.

1: CvSeqReader reader;

2: CvPoint edgeactual;

3: cvStartReadSeq(edges, &reader);

4: CV_READ_SEQ_ELEM(edgeactual ,reader);

5: for(i=1; i< edges->total; i++)

6: {

7: CV_READ_SEQ_ELEM(edgeactual ,reader);

8: // edgeactual contains the edge (x,y)

9: }

 59

Figure 6.6: Figure (a) The y-values may appear to be in an ascending order; however this is not

the case. The red-arrows indicate the regions where there is no sense of ordering. Contours

cannot be iterated along x either, since there is no ordering in x as shown in figure (b)

Our algorithm for determining head-tops involves first determining the local minimums

in a certain neighborhood, and then filtering these using the area threshold, as described

in Chapter 3, section 3.3.

Algorithm 6.1: The first step of the head top finder algorithm.

Algorithm 6.1 shows the first step of the head-top finder algorithm. We calculate the

maximum number of head-tops (n) that could occur in the blob in a neighborhood

(neighborhood is equal to the size of the human head). This can easily be calculated by

first obtaining the maximum and minimum values of x, and then dividing their difference

by the average human head size. We use 10 pixels for the human head size.

(a) (b)

Input: Edges of a blob { }neeeE ,,, 21 KKKKK=

Output: Local minimum candidates { }nmmmM ,,, 21 KKKK=

Step 1:
 Find minimum and maximum x value from all edges of the blob

 minX ← minimum x from E

 maxX ← maximum x from E

 n ← (minX – maxX) / HUMAN_HEAD_SIZE

 60

Algorithm 6.2: The second step of the head top finder algorithm. The function y(p) gives the y-

coordinate of the point p (x,y). HEAD_SIZE is a program constant, and denotes the average size

of a human head in pixels.

Step 2:

1: { }nmmM ,,1 KKKK= , where),(∞∞=km and nk ≤<0 (n = calculated in step 1)

2: {}=Temp , {}2 =Temp

3: 0←diff

4: while ≠E Ø

5: keEE −←

6: flag1 ← true

7: flag2 ← true

8: MTemp ←

9: while ≠Temp Ø ∧ flag1 = true

10: ktTempTemp −←

11: if)(key <)(kty then

12: MTemp ←2

13: while ≠2Temp Ø ∧ flag2 = true

14: ktTempTemp 222 −←

15: diff ←)2()(kk txex −

16: if diff < HEAD_SIZE ∧)2()(kk tyey < then

17: kk etMM U)2(−←

18: flag1 ← false

19: flag2 ← false

20: else if diff < HEAD_SIZE ∧)2()(kk tyey ≥ then

21: flag2 ← false;

22: end if

23: end while

24: if flag = true then

25: kk etMM U)(−←

26: flag1 ← false

27: end if

28: flag2 ← true

29: end if

30: end while

31: end while

 M now contains the local minimums, and may contain some infinite points),(∞∞

 61

6.4 THE TIME COMPLEXITY OF THE LOCAL-MINIMUM FINDER

ALGORITHM

The algorithm works well and has produced good results in detecting the local minimum

points. The time-complexity of the algorithm is dominated by the three while loops.

Referring to algorithm 6.2, the while loop on line 4 has a worst-case complexity of O)(E ,

where E is the number of edges in a blob (typically 100-150 edges for a single human

blob). The while loops on line 9 and 13 each have a worst-case complexity of O)(2n ,

where n is the difference between the maximum and minimum x co-ordinates of the

blob’s edges, divided by the average human head size. n essentially grows with the

number of people in the blob; and its average value is approximately equal to the number

of people in the blob. Thus, the total time complexity of the algorithm is aggregated to

O)(2nE . Though not greatly efficient, modern processors make such worst-case

complexity safe enough for real-time processing.

6.5 FILTERING HEAD TOPS

Not all local minimums make it to become a head top. Some are filtered out if they do not

pass an area threshold test, as described in Chapter 3, section 3.4. This method effectively

removes any local-minimum points within a neighborhood of pixels that represent human

shadow. The headTopFilter() function of the HeadTopProcessor class

performs this filtering process. The function takes in a vector of local-minimums and

the IplImage image with blobs as parameters.

The implementation is straightforward. The function first initializes a few parallel arrays,

filling it with each local-minimum’s information, such as the center of the elliptical area

underneath, major and minor axes of the ellipse, etc. (The elliptical area underneath each

local minimum has been described in detail in Chapter 3, section 3.4, figure 3.3). These

arrays run in parallel, with each array’s corresponding entries all representing any one

particular local minimum.

 62

1: for (it=headTops->begin(); it!=headTops->end(); ++it) {

2:

3:

4:

5:

6:

7:

8:

9:

10:

11:

12:

13: }

Code 6.5: The initialization step of the parallel arrays. Each array’s corresponding

indexes refer to the same local-minimum. A few details have been omitted from the code

for brevity.

After initialization, the image containing the blobs is iterated pixel-by-pixel. At each

iteration step, a pixel is tested to see if it is black or white (black indicating foreground)

(code 6.5 line 2). If it is a foreground pixel, it is then checked to see if it lies within any

local-minimum’s ellipse (the ellipse underneath each local-minimum) (code 6.5 ln 6). If it

does, the local-minimum’s area count is incremented by 1(code 6.5 ln 9).

1: color = getPixelColor(image, cvPoint(x,y));

2: if (isBlackPixel(color))

3: {

4:

5:

6:

7:

8:

9:

10:

11:

12: }

Code 6.6: The above program steps are performed at each iteration of the pixel-by-pixel loop,

which goes through each pixel (x,y). Details have been omitted, and code has been simplified for

brevity.

height_ellipse = HUMAN_HEIGHT * ((double)it->y / image_height);

center = cvPoint(it->x, it->y+(double)(height_ellipse/2));

headTopsArray[i] = *it;

areaOccupied[i] = 0;

centerOfEllipseArray[i] = center;

majorAxisArray[i] = height_ellipse/2;

minorAxisArray[i] = HUMAN_HEAD_SIZE/2;

areaThreshold[i]=

cvRound(((double)AREA_THRESHOLD_PERCENTAGE/100.0)*(PI*majorAxis

Array[i]*minorAxisArray[j]));

i++;

for (k=0;k<n;k++)

{

}

if(isInEllipse(centerOfEllipse[k],majorAxis[k],minorAxis[k],

cvPoint(x,y)))

{

 areaOccupied[k]++;

}

 63

This way we determine each local minimum’s elliptical area underneath. This area, which

is stored in areaOccupied[i] for the thi local minimum, is compared against its

threshold stored in areaThreshold[i]. If a local minimum does not meet the

threshold, it is discarded. This way unwanted local-minimums are filtered out, and what

remains are actual head-top candidates.

6.6 OVERALL TIME COMPLEXITY

The time complexity of the filter implementation is dominated by the for loop which

iterates through all the pixels of the image. Our system runs on images of size 360-by-

240, which contain 86,400 pixels.

The total time complexity of the entire head-top finder implementation can now be

calculated, where a and b are the height and width of the image, respectively:

O =+)(2 abnE O)(ab

Results of this implementation have been presented in Chapter 7.

 64

6.7 IMPLEMENTATION OF THE TRACKER

The OpenCV library contains various container classes (C structs and classes) for storing

graphical entities such as points, lines, curves, etc. Blobs are a central theme for any

motion tracking systems. However, the container classes for blobs, namely CvSeq is not

sufficient enough to be used in most tracking system. It provides the bare minimums for

any blob, enabling only the storage of a sequence of points. The sequence of points

represents the contour of a blob, which is a closed curve. A tracking system requires

more functionality than that, since most computations performed by the tracker revolve

around the blob.

A wrapper class for blobs, popularly attributed to D. Grossman et. al. [18], was used to

extract and store blobs. The class provides indispensable functions which assist in

computing useful features such centers of a blob, maximum/minimum point on a blob,

perimeter and area of a blob, etc. Code 6.7 illustrates the ease with which this library can

be used:

Code 6.7: line 1 extracts blobs from an IplImage image pointed to by the variable image.

Lines 2 and 3 filters out blobs that are less than 50 and greater than 600 pixel area units. Lines 4

to 7 show how one could loop through the individual blobs.

The Grossman wrapper seems sufficient; however, it does not wholly suffice our tracker

requirements. We require more functionality. Hence we have written our own wrapper

class that provides the extra functionality required. We call our wrapper class a

TrackedBlob. Code 6.8 illustrates some of the important features of a tracked blob; we

have omitted a few details for brevity.

1: CBlobResult blobs = CBlobResult(image, NULL, 100, true);

2: blobs.Filter(blobs, B_INCLUDE, CBlobGetArea(), B_LESS, 600);

3: blobs.Filter(blobs, B_INCLUDE, CBlobGetArea(), B_GREATER, 50);

4: for (int i=0; i<blobs.GetNumBlobs(); ++i)

5: {

6: CBlob Blob = blobs.GetBlob(i);

7: }

 65

Code 6.8: A wrapper class designed by us for Grossman’s Blob class. The wrapper class

provides some extra features that are essential for the tracker for tracking purposes.

A trackedBlob stores important information about its position (lines 4 and 5 in code

6.8) and speed which are vital for predicting its motion. It also keeps track of how many

frames passed since it was last observed, using the lostBlobCount. Usually a blob is

discarded, and regarded as lost when it has not been observed for the past 4 frames. This

value can be adjusted, taking external factors into consideration. On a bright sunny day, 4

frames showed good performance. However, on a windy day, when there are frequent

changes in illumination, a greater frame threshold may be set to account for frequent blob

losses.

A blob also stores information about its search neighborhood Ω , i.e. the hotspot. As

defined earlier, this is the region within which the blob is expected to be observed in the

subsequent frame (See Chapter 3, section 3.4).

1: class TrackedBlob

2: {

3: HotSpot spot;

4: CvPoint previousPosition;

5: CvPoint currentPosition;

6: double speed;

7: int lostBlobCount;

8: int red;

9: int blue;

10: int green;

11: int status;

12: vector<CvPoint> motionHistory;

13: }

 66

Code 6.9 shows the Hotspot class.

Code 6.9: The class Hotspot which represents the region around a blob within which the

blob is expected to move in the subsequent.

The hotspot of a blob is essentially a circle with a certain radius. Our system uses a radius

value of 10 pixels. However this design can be easily used when different hotspot radii

are assigned depending on the velocity observed, i.e. for example a higher radius for a

higher velocity value. The constructor HotSpot(CvPoint p, double r) allows this

feature.

The hotspot class provides some useful functions, as shown in code 6.10.

Code 6.10: Hotspot class functions.

1: class HotSpot

2: {

3: public:

4: CvPoint center;

5: double radius;

6: HotSpot(CvPoint p, double r)

7: {

8: center = p;

9: radius = r;

10: }

11: HotSpot()

12: {

13: center = cvPoint(0,0);

14: radius = 0;

15: }

16: }

1: bool pointInHotSpot(CvPoint point);

2: void update(CvPoint p, double r);

 67

The pointInHotSpot() function returns true if a point lies within a hotspot. It checks to

see if the point lies within the circle using the inequality rbyax ≤−+− 22)()(. The

update method enables changing the hotspot’s radius, which may be required if the

velocity changes.

We look back to our algorithm for tracking blobs and describe the function

implementations which are invoked during tracking. Recollect that when tracking a blob,

we first calculate the predicted position of the blob using its velocity and direction of

motion information. The next step is to determine the observed position. However, some

blobs may not have an observed position (lost blobs). If there is an observed position, we

perform a weighted average of the predicted and observed positions, to determine the

blob’s next position. If, however, there is no observed position, we simply use our

predicted position as the blob’s next position. A detailed discussion is given in Chapter 4,

section 4.7.

The trackedBlob class provides the functions that are used to predict, estimate and

update a blob, while it is being tracked. Code 6.11 lists the important ones.

Code 6.11: trackedBlob class functions from TrackedBlob.h

1: CvPoint getEstimatedPosition(CvPoint observedPoint);

2: CvPoint getEstimatedPosition();

3: void estimateTrackAndUpdate(CvPoint);

4: void estimateTrackAndUpdate();

5: CvPoint getPredictedPosition();

 68

Figure 6.7: The hierarchy of function calls during prediction, estimation and update. Note that

updating is only performed after estimation and prediction.

The most important function which requires discussion is the one at the bottom of the

hierarchy: getPredictedPosition(). This function performs the prediction step for a

blob, by calculating the distance it will travel from prior speed (line 4, Code 6.12), and

then using linear motion formulas (Chapter 4, section 4.7, equations 4.3) to calculate the

prediction position (lines 5-7, Code 6.12). After employing Kalman filtering,

getPredictionPosition() changes considerable. See code 6.21.

There are two important things to note here: if the distance traveled in the previous frame

is zero, it is sensible to return the current position as the next predicted position.

estimateTrackAndUpdate (CvPoint c)

getEstimatedPosition(CvPoint observedPoint)

getPredictionPosition()

estimateTrackAndUpdate ()

getEstimatedPosition()

invokes

returns to

 69

Code 6.12: The getPredictedPosition() which performs motion prediction for a tracked

blob

After the prediction step is performed, recollect that we estimate the next position based

on the observed point. If we have no observed point, we simply use the predicted

position. Overloaded functions getEstimatedPosition(CvPoint observedPoint) and

getEstimatedPosition() perform these estimations (see Chapter 4, section 4.7). The

latter takes no parameter in order to estimate positions for blobs with no observed point.

1: CvPoint TrackedBlob::getPredictedPosition()

2: {

3: double distanceTravelledInLastFrame =

distance(currentPosition, previousPosition);

4: double predictedDistanceToBeTravelled = speed * FRAME_RATE;

5: double lambda = 1 + predictedDistanceToBeTravelled/distanceTravelledInLastFrame);

6: double predictedXOrdinate = (1-lambda)*previousPosition.x +

 lambda*currentPosition.x);

7: double predictedYOrdinate = (1-lambda)*previousPosition.y +

 lambda*currentPosition.y);

8: if (distanceTravelledInLastFrame == 0)

9: {

10: return currentPosition;

11: }

12: return

cvPoint(cvRound(predictedXOrdinate),cvRound(predictedYOrdinate));

13: }

 70

Code 6.13: getEstimatedPosition performs estimation

The estimated positions are calculated using the weighted average of the predicted

(acquired from the getPredictionPosition() function) and the observed positions.

TRACKER_RELIABILITY_FACTOR is a program constant, and we use a value of 50%

indicating that we trust our prediction and observed positions equally. The zero-

parameter getEstimatedPosition() function cannot perform an estimation, since it

has no observed point, and hence it uses the predicted position as the next estimated

position.

We now look at the two overloaded TrackedBlob functions, which are at the top of the

hierarchy: estimateTrackAndUpdate (CvPoint c) and estimateTrackAndUpdate

(). The latter is for blobs with no observed point. These functions invoke the predictor

and the estimator functions, and perform maintenance operations such as updating blob’s

data members. The blob needs to be updated since the estimator returns a new estimated

position, which becomes the blob’s current position in the next frame.

1: CvPoint TrackedBlob::getEstimatedPosition(CvPoint observedPoint)

2: {

3: CvPoint predictedPosition = getPredictedPosition();

4: double estimatedPositionXOrdinate = ((1-

 (TRACKER_RELIABILITY_FACTOR*observedPoint.x);

5: double estimatedPositionYOrdinate = ((1-

 TRACKER_RELIABILITY_FACTOR)*predictedPosition.y)

 + (TRACKER_RELIABILITY_FACTOR*observedPoint.y);

6: return cvPoint(cvRound(estimatedPositionXOrdinate),

 cvRound(estimatedPositionYOrdinate));

7: }

8: CvPoint TrackedBlob::getEstimatedPosition()

9: {

10: return (getPredictedPosition());

11: }

 71

Code 6.14: The function which is at the top of the hierarchy of functions. We have

included its overloaded counterpart estimateTrackAndUpdate () for brevity.

1: void TrackedBlob::estimateTrackAndUpdate(CvPoint c)

2: {

3: CvPoint centerOfBlob = kalmanFilter(c);

4: CvPoint nextEstimatedPosition = getEstimatedPosition(centerOfBlob);

5: // update tracked blob and prepare for next estimation

6: speed = distance(centerOfBlob, currentPosition) / FRAME_RATE;

7: updateTrackedBlob(nextEstimatedPosition, nextEstimatedPosition,

 currentPosition, DEFAULT_HOTSPOT_RADIUS, \

 BEING_TRACKED, speed,0);

8: }

 72

6.8 THE Tracker CLASS

The heart of the tracking system is the tracker class which performs the tracking

process. The class definition is simple, and it uses a C++ vector to store all the blobs it is

currently tracking. It only contains a single function: track(),which coordinates the

entire tracking process.

Code 6.15: The tracker class definition from Tracker.h. The destructor function has

been omitted for brevity.

The Track() function performs the most important parts of the tracking process. Its task

is to primarily maintain and keep track of each blob’s state in its entire lifetime (See

Chapter 4, section 4.8). At each frame, it updates each tracked blob’s state and invokes

the appropriate functions for prediction, estimation and update. The parameter to the

track function is an IplImage to which it writes back its output: the trajectories of the

human blobs. Since, we draw out the trajectories on the image sequences; we feed each

image frame sequence as input to this function. The second parameter is the vector of the

blob’s centers, or otherwise points which it is supposed to track on the human. Head-tops

can be used as an alternate. This vector is the provided to the track() function by the

findHeadTops() function of the HeadTopProcessor class.

1: class Tracker

2: {

3: vector<TrackedBlob>* trackedBlobs;

4: public:

5: Tracker()

6: {

7: trackedBlobs = new vector<TrackedBlob>;

8: }

9: void track(IplImage* img, vector<CvPoint>* blobCenters);

10: };

 73

Code 6.16:: Code shows how the output from the head-top finder class is redirected into

the track function, for tracking purposes. Here we are tracking the head-tops of the

humans. img1 is each image frame in the sequence on which the trajectories are to be drawn

out.

The implementation of the track () function is too verbose, and we felt that presenting

the algorithm is a more effective way of explaining the track function. We have divided

the algorithm into 3 steps, and these 3 steps are performed in a loop that iterates through

the set of image sequence frames I . T is the set of blobs that are currently being tracked.

{ }no iiiI ,,, 1 KKKK=

{ }=T

while ≠i Ø do

 kiII −←

 B)(kigetHeadTop←

 ←T Perform step 1 with input parameter = B

 ←T Perform step 2 with input parameter = T

 ←T Perform step 3

 Output trajectories: mark the current position of each tracked blob in T on image ki

end while

1: Tracker* t = new Tracker();

2: // loop through a sequence of image

3: // loop body:

4: Vector<CvPoint>* v = ht->findHeadTops(img1);

5: t->track(img1, v);

6: cvShowImage("scene", img1);

7: // end loop

 74

Algorithm 6.3: Step 1 of the track() function algorithm

Step 1:

Input parameter: set of trackable points B and set of tracked blobs T

Output: T ′

while ≠B Ø do

 ibBB −←

 Temp ← T

 while ≠Temp Ø do

 kpTempTemp −←

 if ∈kb Hotspot ()kp then

 if status)(kp = NEW_BLOB then

 measure velocity of blob, calculate direction and update

 else if status)(kp = BEING_TRACKED then

 estimateTrackAndUpdate (ib)

 else if status)(kp = BLOB_LOST then

 estimateTrackAndUpdate (ib)

 end if

 mark kt as tracked in current frame

 blobtracked ← true

 end if

 end while

 if blobtracked = false then

 create a new tracked blob t from ib

 tTT U←

 end if

end while

 75

Algorithm 6.4: Step 2 of the track() function algorithm

Step 2: Maintain and update tracked blobs that were not tracked in the current sequence

frame

Input parameter: set of tracked blobs T

Output: T ′

Temp2 ← T

while Temp2 ≠ Ø do

Temp2 ← Temp2 - kt2

 if kt2 was tracked in step 1 then

 if status (kt2) = BEING_TRACKED then

 estimateTrackAndUpdate ()

 else if status)2(kt = BLOB_LOST then

 if tracked blob kt2 has reached MAX_LOST_THRESHOLD then

 status (kt2) ← DISCARD_BLOB

 else

 estimateTrackAndUpdate ()

 end if

 else if status)2(kt = NEW_BLOB then

 status (kt2) ← DISCARD_BLOB

 end if

 end if

end while

 76

Algorithm 6.5: Step 3 of the track() function algorithm

Step 3: Remove tracked blobs that have their statuses set to DISCARD_BLOB

Input parameter: set of tracked blobs T

Output: T ′

Temp3 T←

while Temp3 ≠ Ø do

Temp3 ktTemp 33−←

 if status (kt3) = DISCARD_BLOB then

 ktTT −←

 else

 lostBlobCount (kt) ← lostBlobCount (kt) – 1

 end if

end while

 77

6.9 IMPLEMENTING THE KALMAN FILTER FOR MOTION PREDICTION

OpenCV provides some very useful functions for implementing the Kalman filter. These

functions are part of its Motion Analysis package. We associate a separate Kalman filter

to each blob that is being tracked. Apart from the data members that we have listed

already in code 6.8., a TrackedBlob contains more members that are required to store the

Kalman matrices and its parameters. Code 6.17 lists them all.

1: class TrackedBlob

2: {

3: // kalman parameters

4: CvKalman* kalman;

5: CvMat* measurement;

6: // more trackedblob data members

7: };

Code 6.17: The TrackedBlob class stores the Kalman filter parameters enabling each

tracked blob object to be associated to a Kalman filter, for its motion’s prediction.

It is most sensible to initialize the Kalman parameters in the constructor of

TrackedBlob. Code 6.18 shows how we initialize these parameters.

Code 6.18: Kalman filter initialization in TrackedBlob constructor. The code has been

adopted from OpenCV’s Kalman filter sample example, which ships with OpenCV.

1: kalman = cvCreateKalman(4,2,0);

2: cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1));

3: cvSetIdentity(kalman->process_noise_cov, cvRealScalar(proc_cov));

4: cvSetIdentity(kalman->measurement_noise_cov, cvRealScalar(meas_cov)) ;

5: cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));

6: memcpy(kalman->transition_matrix->data.fl, A, sizeof(A));

7: CvRNG rng = cvRNG(-1);

8: cvRandArr(&rng, kalman->state_post, CV_RAND_NORMAL, cvRealScalar(0),

cvRealScalar(0.1));

9: kalman->state_post->data.fl[0]=centerOfBlob.x;

10: kalman->state_post->data.fl[1]=centerOfBlob.y;

11:measurement=cvCreateMat(2,1,CV_32FC1);

 78

The initialization code contains a few constants, which we have defined in the

constants.h file. These are the values for the process and measurement covariance.

We also define a transition matrix A using const float A []. This matrix relates

how the states interact (Chapter 5, equation 5.12). Code 6.19 shows these declarations.

Code 6.19: Some constants required for Kalman initialization

In the initialization (code 6.18), we initialize a Kalman OpenCV object (line 1) using

cvCreateKalman. The first two parameters are the dimensionality of the state and

measurement vectors. See section 5.5, for a discussion of our state and measurement

vectors. The next few lines 2-5, initialize the Kalman filter’s internal matrices. What we

are essentially doing, is multiplying the internal identity matrices with some of our

defined constants, such as the ones we have declared in code 6.19. Lines 9-10 initialize

the state vector to contain our initial tracking point (center of blob, or head top).

The rest of Kalman filter prediction is performed using the kalmanFilter(CvPoint)

function of TrackedBlob class.

Code 6.20: The kalmanFilter() invokes OpenCV’s prediction and correction Kalman

functions.

1: const double proc_cov=1e-5;

2: const double meas_cov=1e-5;

3: const float A[] = {1,1,0,1};

1: CvPoint TrackedBlob::kalmanFilter(CvPoint m) {

2: measurement->data.fl[0] = m.x;

3: measurement->data.fl[1] = m.y;

4: cvKalmanPredict(kalman, 0);

5: cvKalmanCorrect(kalman, measurement);

6: return cvPoint(cvRound(kalman->state_post->data.fl[0]),

cvRound(kalman->state_post->data.fl[1]));

7: }

 79

The kalmanFilter() function performs subsequent predictions, after the initialization

process. Subsequent calls to the kalmanFilter() function with the measurement

point, triggers automatic prediction and correction performed by OpenCV’s

cvKalmanPredict and cvKalmanCorrrect functions. Internal matrices are updated

using the new measurement point (line 2-3 code 6.20). The process and measurement

covariances are updated automatically internally by making calls to cvKalmanCorrect

(line 5, code 6.20).

It is important to note that the Kalman filtering process is an alternative to predicting

motion using vector analysis. However, for lost blobs, we use our vector analysis

techniques to track their motion. We re-visit our function hierarchy in section 6.2, figure

6.4. getPredictionPosition() can now be modified and greatly simplified. Code

6.21 illustrates this.

Code 6.21: the new getPredictedPosition() function, and greatly simplified since it is not

using vector analysis methods to predict motion anymore. It uses the prediction of the Kalman

filter. Refer to code 6.12 where have we introduced the getPredictedPosition() function.

getEstimatedPosition(), which is for lost blobs, still needs to predict using

vector analysis techniques for linear motion. We have found that the Kalman filter

behaves poorly for lost blobs, for which there is really no measurement value. For a

measurement value we predict the lost blob’s motion using vector analysis, and then use

this to predict using Kalman filter. The code for getEstimatedPosition() now

does motion prediction first, and then uses its results for the Kalman filter.

1: CvPoint TrackedBlob::getPredictedPosition()

2: {

3: return kalmanFilter(currentPosition);

4: }

 80

Code 6.22: getEstimatedPosition() remains with little changes. Note that in code 6.15

getEstimatePosition() invokes getPredictedPosition(). Since

getPredictionPosition() has simplified after employing the Kalman filter, we insert

the code of the previous getPredictedPosition() into here, however, passing the final

returned point through the Kalman filter.

Results from Kalman filtering have been presented on Chapter 7

1: CvPoint TrackedBlob::getEstimatedPosition()

2: {

3: // calculate the predicted position using position vectors

4: // velocity of blob

5: double distanceTravelledInLastFrame =

distance(currentPosition, previousPosition);

6: double predictedDistanceToBeTravelled = speed *

FRAME_RATE;

7: double lambda = 1 +

(predictedDistanceToBeTravelled/distanceTravelledInLastFrame);

8: double predictedXOrdinate = (1-lambda)*previousPosition.x

+ (lambda*currentPosition.x);

9: double predictedYOrdinate = (1-lambda)*previousPosition.y

+ (lambda*currentPosition.y);

10: if (distanceTravelledInLastFrame == 0)

11: {

12: return currentPosition;

13: }

14: CvPoint c = cvPoint(cvRound(predictedXOrdinate),

cvRound(predictedYOrdinate));

15: return kalmanFilter(c);

16: }

 81

Chapter 7

In this chapter we present our results and findings, with real outputs from our system. We

have divided this chapter into four sections namely: background differencing, head-top

finder, appearance modeling and motion tracker. These four sections have been named

according to the four most integral components of our system. We test these components

by diverting their output to the screen. The components don’t necessarily produce outputs

to the screen when run with the tracker. See fig 6.0. for a pictorial description of the

entire system, and its data flow.

Results

 82

7.1 BACKGROUND DIFFERENCING RESULTS

Background set 1:

After 20 frames

After 100 frames

Result set 7.1: The images on the right are the background subtracted images. The leaves of trees

are moving constantly due to wind, and notice how the background model has learnt and adapted

to the moving leaves in the 100
th
 frame.

 83

Background set 1 (continued):

After 300 frames

After 600 frames

Result set 7.2: There is a stark change in illumination in the courtyard between the 100
th
 and the

300
th
 frame. The background model has adapted very well to this change. After 600 frames have

passed, the system has completely learnt about the motion of leaves of trees, and has subtracted

them quite well.

 84

Background set 2:

After 20 frames have passed, the person can be seen standing with the other people who

apparently have become part of the background. The person, who we have been focusing on,

is slowly becoming part of the background. Notice how the human subject’s blob is

disappearing.

After 20 frames

Notice that a person comes out of the building (pointed to by the arrow), he is still not part

of the background, as can be seen in the background-differenced image. We will be focusing

on him for the rest of this example.

 85

After another 20 frames have passed, the blob has disappeared significantly, indicating that

the human subject has become a part of the background. This shows that our system’s

background can incorporate objects which are added to the background, and is adaptable.

After 40 frames

 86

7.2 HEAD-TOP FINDER RESULTS

Result set 7.4: A well-formed human blob is detected as expected. Shadows are completely

removed.

Result set 7.5: The man in the bicycle causes a large foreground blob. The system finds it difficult

to distinguish this blob from a similar blob that would have been produced if there were a group

of people instead.

Result set 7.6: Perfect segmentation and detection at a point far away from the camera. Notice

how the shape of the ellipse has decreased due to the perspective effect. The scaling factor for the

perspective works well.

 87

Result set 7.7: Single human blobs are detected correctly. Shadows are again removed perfectly.

Result set 7.8: A relatively deformed blob is also detected properly. The shadow can clearly be

seen to contain a local minimum, as marked by the arrow. The algorithm has removed it

successfully.

Result set 7.9: The dangers of premature human segmentation and detection. The detection was

performed during the background training period. To avoid such situations, detection is started

at least after the system has been trained on 500 frames for the background.

 88

7.3 MOTION TRACKING RESULTS

Results from motion tracking have been divided into different scenes. Some frames have

been cropped to focus on the regions of interest. The trajectories appear in different

colors. The system assigns a random color to every human it tracks.

The scenes have been shot at Queen Mary College’s courtyard, situated right in front of

the Computer Science department. The camera was mounted on top of a building. Scenes

were shot at different times of the day, and we have tried capturing scenes with differing

illumination. Some scenes were shot on a windy day, to test how the system performs on

leaves moving in the background.

Each scene has labeled frames indicating the sequence. We have also indicated, below

each frame, how many frames have elapsed since the first frame. In the following

diagram, we point important aspects of our system’s capabilities.

c

The above figure shows regions, marked by the orange arrows and light green on the ground plane,

where our system had the most amounts of success rates while tracking. These are the regions where

relatively bigger blobs were produced, and hence making it easier for tracking. The red-arrows

indicate that the leaves of the trees are always in constant to-and-from motion

 89

SCENE 1:

Scene shot on a relatively less windy day with poor illumination. The second human

subject, who enters the scene in 4, is tracked eventually when h/she becomes visible to

the tracker. Frame 5 shows the path traced for the second human subject. The colors of

the trajectories happen to be very similar; however they are different when examined

more closely, indicating that the system identifies them as different human subjects.

1

3

2

4

5

After 20 frames

After 51 frames After 76 frames

After 112 frames After 154 frames

6

 90

SCENE 2:

This scene was shot on a bright sunny day with ample lighting. However, tracking occurs

with some success. Disruption occurs when the cyclist occludes the human group. The

system loses track, but tracks the cyclist perfectly. The group is again tracked in frame 6

(light yellow trajectory). See discussion on the following page.

1 2

3 4

5 6

After 40 frames

After 60 frames After 80 frames

After 95 frames After 110 frames

 91

We analyze why scene 2 failed to track properly by examining the blobs. Notice the

severity of deformations that have occurred in frames 1 and 2. However, our head-top

finder algorithm would have no problems detecting two heads in frame 2. Since our

default hotspot radius spans a distance of 10 pixels, it spanned the entire group of the 2

people. Frame 4 causes a serious occlusion which lasts for about 10 frames. Notice how

the head-tops could have gotten shifted considerably in frame 4. Frame 6 has the one of

the humans in the group completely invisible.

1 2

3 4

5 6

 92

SCENE 3:

In this we analyze another situation where the scene is nicely lit; however, there is some

disruption in tracking. See discussion on the following page

1 2

3 4

5

After 15 frames

After 30 frames After 50 frames

After 55 frames

 93

Analyzing the scene puts forth two concerns that need to be examined: the human blob in

frame 1 is detected late and the blob is lost and re-detected as a new blob in frame 4.

The late detection in frame 1 can easily be reasoned if we look the blobs that were

produced 20-100 frames before frame 1. We have circled the places where the blob

appears. Notice how the blob is very ill-formed and how its size makes it impossible for

it to pass our size filter test.

100 frames before 70 frames before

40 frames before 20 frames before

 94

Frame 4, in scene 3, showed a lost blob and a re-detection as a new blob. After

debugging, we have found that the blob was lost immediately right after it was detected at

the same position. This caused the current and previous positions to be the same, hence

causing the velocity to become zero. This is the reason why the system doesn’t predict

any further (no predict trail line which is usually characterized by a straight line for linear

motion). The system waits thinking that the human has stalled. However, this is not the

case. The human is later detected in frame 5, but as a different human blob. Such

anomalies can occur, and are very difficult to deal with.

 95

SCENE 4:

Scene 4 is a rather badly illuminated scene. Notice that the trees cast no shadows

indicating that the sky is overcastted. The reason we have extracted this scene is to point

to the reader that the system is able to track humans at all regions on the ground plane,

and just not the center (which the previous scenes focused on). However, we have noticed

a higher number of false trajectories for objects far away from the camera.

1 2

3 4

5 6

 96

SCENE 5:

What we have here is a brightly illuminated scene. The system performs tracking to

perfection, tracking every move of the human subject.

1 2

3 4

5 6

20 frames before

40 frames before 70 frames before

95 frames before 120 frames before

 97

SCENE 6:

This scene shows how the tracking system performs prediction when a blob is lost.

Notice how the trajectory produced in scene 5 ends in a straight line. It is impossible for

humans to produce such a trajectory, and even if the move was articulated in that manner

the noisy nature of the blob producing such a trajectory is highly unlikely. We can

conclude that it is a straight line since the motion tracker uses its vector analysis

functions to predict linear motion. We have also attached a background-differenced

frame, produced three frames before frame no.5. Notice how the blob has completely

disappeared, forcing the system to perform motion prediction. (follow circled regions)

1 2

3 4

5

 98

SCENE 7:

We have captured various motion tracks from various scenes. Each image represents a

different scene. Notice that in some scenes, there are fast moving cars in the background,

and these are characterized by the straight line trajectories.

 99

Appendix A

[1] T. Zhao, R. Nevatia, “Tracking multiple humans in crowded environment” Proc IEEE

transactions on pattern analysis and machine intelligence, 2004

[2] T. Zhao, R. Nevatia, “Tracking multiple human motions in complex situations” Proc

IEEE transactions on pattern analysis and machine intelligence, 2004.

[3] M. Han, W. Xu, H. Tao, Y. Gong, “An algorithm for multiple object trajectory

tracking”, Proc. Inernatioal Conference on Computer Vision, 2004

[4] C. R. Allen, A. Azarbayejani, T. Darrell, A.P. Pentland, “Pfinder: Real-time tracking

tracking of the human body”, vol. 19, no. 7, July 1997

[5] I. Cohen, G. Medioni, “Detecting and tracking moving objects for video

surveillance”, Proc. of the IEEE Computer Vision and Pattern Recognition 99, June

1999.

[6] T. Zhao, R. Nevatia, “Segmenting and tracking of multiple humans in complex

situations”, Proc. of IEEE Computer Vision and Pattern Recognition, 2001.

References

 100

[7] C. Stauffer, W. Eric, L. Grimson, “Learning patterns of activity using real-time

tracking”, Proc IEEE trasnsactions on pattern analysis and machine intelligence, vol 22,

no. 8, August 2000

[8] M. Yamada, K. Ebihara, J. Ohya, “A new robust real-time method for extracting

human silhouettes”, Proc. of International conference on artificial intelligence, 1998

[9] I. Haritaoglu, D. Harwood, L.S. Davis, “W4: Real-time surveillance of people and

their activities”, Proc. of IEEE transactions on pattern analysis and machine intelligence,

2000.

[10] O. Javed, M. Shah, “Tracking and object classification for automated surveillance”,

Proc. of the European conference on computer vision, 2002.

[11] T. Zhao, “Model-based Segmentation and Tracking of Multiple Humans in Complex

Situations”, PhD thesis, University of southern California, December 2003.

[12] G. Welch, G. Bishop, “An introduction to Kalman filter”, available on the web at

http://www.cs.unc.edu/~welch/kalman/kalmanIntro.html

[13] R. Kalman, “A new approach to Linear Filtering and Prediction problems”, Journals

of Basic engineering, Vol. 82, pp 35-45. 1960

[14] Sorenson, H.W., “Least square estimation: from Gauss to Kalman”, IEEE spectrum,

vol. 7, pp 63-68, July 1970

[15] C. Fermuller’s lectures in motion tracking using Kalman filtering at the University

of Maryland at college park, available on the web at http://

www.cfar.umd.edu/~fer/cmsc426/lectures/tracking.pdf

[16] D. Forsyth, J. Ponce, “Computer vision – A modern approach”, Prentice Hall 2003,

pp 374-376.

 101

[17] Intel’s opensource OpenCV library available on the web at

http://www.intel.com/research/mrl/research/opencv/

[18] D. Grossman wrapper blob code is available in the “files” section of the OpenCV

forum available online on http://groups.yahoo.com.

 102

Appendix B

Code acknowledgements

Our system uses a blob extraction and analysis facility package developed by D.

Grossman, and popularly used by machine vision researchers, all over the world. The

blob analysis and extraction package has not been included in this section. It can be

viewed online on the Yahoo® OpenCV forums at

http://groups.yahoo.com/group/OpenCV/ in the files section, compressed in a zipped file

called cvblobslib_OpenCV_english.zip

The package has been included on the CD, under a folder called “Blob analysis

package”.

The blob analysis package provides built-in functions to extract blobs and its properties.

Program code

 103

Constants.h

#include <cv.h>
#include <highgui.h>
#include <vector>

#define NUMBER_OF_GAUSSIANS_IN_MIXTURE_MODEL 4
#define MATCH_FACTOR 2.5
#define LEARNING_RATE_WEIGHT 0.4
#define LEARNING_RATE_VARIANCE 0.2
#define HIGH_VARIANCE 10.0
#define LOW_WEIGHT 0.1

#define TRACK_PATH_SIZE 3.0
#define HUMAN_HEAD_SIZE 10 // always use even numbers
#define HUMAN_HEIGHT 50
#define AREA_THRESHOLD_PERCENTAGE 50

// for tracker
#define NEW_BLOB 1
#define BEING_TRACKED 2
#define BLOB_LOST 3
#define DISCARD_BLOB 4
#define FRAME_RATE 0.1
#define DEFAULT_HOTSPOT_RADIUS 10
#define TRACKER_RELIABILITY_FACTOR 0.5 // value between 0 and 1.
 // a value of 1 makes tracker
track

// relying only on observed
point (if any)

 // a value of 0 makes tracker
track relying

// only on predicted point

#define MAX_LOST_BLOB_COUNT 10
using namespace std;

double const PI = 3.14159;

class GlobalFunctions {

public:

// returns the greyscale value of a 1-channel image
 static double getPixelColor(IplImage* image, CvPoint point)
 {
 double grey_value;
 grey_value = ((uchar*)(image->imageData +

image->widthStep*point.y))[point.x];
 return grey_value;
 }

 104

 // to check if a point lies within a specified ellipse
 static bool isInEllipse(CvPoint center, double major, double
minor, CvPoint

point)
 {
 // l = (x-h)^2 / a^2
 // r = (y-k)^2 / b^2

 double l,r;

 l = ((point.x - center.x)*(point.x - center.x)) /
(major*major);
 r = ((point.y - center.y)*(point.y - center.y)) /
(minor*minor);

 return ((l+r)<=1);
 }

 // draws straight lines between sets of points, with a specified
color
 static void drawPath(IplImage* img, vector<CvPoint> motionHistory,
CvScalar

pathColor)
 {
 if (motionHistory.size() == 1)
 {
 return;
 }
 else
 {
 for (int i=1;i<motionHistory.size();i++)
 {
 cvLine(img, motionHistory.at(i),
motionHistory.at(i-1),

CV_RGB(pathColor.val[0], pathColor.val[1],
pathColor.val[2]),

2, 8);
 }
 }
 }

};

 105

Background model

 106

GaussianDistribution.h

#include "../constants.h"

class GaussianDistribution
{
 double variance;
 double mean;
 double weight;

public:

 GaussianDistribution()
 {
 variance = 0;
 mean = 0;
 weight = 0;
 }

 GaussianDistribution(double m, double v, double w)
 {

 variance = v;
 mean = m;
 weight = w;
 }

 GaussianDistribution(double m)
 {
 mean = m;
 variance = HIGH_VARIANCE;
 weight = LOW_WEIGHT;
 }

 bool match(double);
 double getWeight();
 void updateDistribution(double, double);
 void adjustWeight(double, bool);
 double getWeightVarianceRatio();
 void setDistribution(double, double, double);

};

 107

GaussianDistribution.cpp

#include "stdafx.h"
#include "GaussianDistribution.h"
#include "math.h"

bool GaussianDistribution::match(double pixelValue)
{
 double difference;
 difference = abs(pixelValue - mean);
 return (difference < MATCH_FACTOR * (sqrt(variance)));
}

double GaussianDistribution::getWeight()
{
 return weight;
}

// updates only if the pixelValue matches the distribution
// else does not update
void GaussianDistribution::updateDistribution(double pixelValue, double
learningRate)
{
 mean = ((1-learningRate)*mean) + (learningRate*pixelValue);
 variance = ((1-learningRate)*variance)+((pixelValue-
mean)*(pixelValue-mean));
}

void GaussianDistribution::adjustWeight(double learningRate, bool
matched)
{
 if (matched)
 {
 weight = (1-learningRate)*weight + learningRate;
 }
 else
 {
 weight = (1-learningRate)*weight;
 }
}

double GaussianDistribution::getWeightVarianceRatio()
{
 return (weight/variance);
}

void GaussianDistribution::setDistribution(double m, double v, double w)
{
 mean = m;
 weight = w;
 variance = v;
}

 108

GaussianContainer.h

#include "GaussianDistribution.h"

class GaussianContainer
{
 // array of gaussian distribution (gaussian mixtures)
 GaussianDistribution** distPtr;
 int size;

public:
 // creates a container with zero gaussians
 // the number of gaussians is specified by size s
 // literature suggests size of 3-4
 GaussianContainer(int s)
 {
 // if (s<1) throw an exception

 distPtr = new GaussianDistribution*[s];
 for (int i=0;i<s;i++)
 {
 distPtr[i] = new GaussianDistribution();
 }
 size = s;
 }

 bool updateGaussians(double);
 int getSize();
 int getLeastProbableDistribution();
 void replaceDistribution(int, double, double, double);

 // destructor
 ~GaussianContainer()
 {
 delete distPtr;
 }

};

 109

GaussianContainer.cpp

#include "stdafx.h"
#include "gaussianContainer.h"

// Updates gaussians by incorporating the incoming new pixel value Xt
// From Stauffer et. al.
// returns true if a match is found and false otherwise
bool GaussianContainer::updateGaussians(double Xt)
{
 // iterate through all the gaussians in the container
 // and find the first match
 bool matchFound = false;

// stores the index of the matched gaussian if match is found

 int index=0;

for (int i=0;i<size && !matchFound ;i++)
 {
 if ((distPtr[i])->match(Xt))
 {
 matchFound = true;
 index=i;
 }
 }

 // distPtr[i] is the distribution which matches Xt
 if (matchFound)
 {
 // update mean and variance of the matched distribution
 (distPtr[index])->updateDistribution(Xt,
LEARNING_RATE_VARIANCE);

 }
 else
 {
 // get distribution with least alpha/sdev value
 // replace that distribution with mean = Xt, and high
variance
 int indexOfLeastProbable = getLeastProbableDistribution();
 replaceDistribution(indexOfLeastProbable, Xt, HIGH_VARIANCE,
LOW_WEIGHT);

 }

 // adjust weights
 for (int j=0;j<size;j++)
 {
 if (j==index && matchFound == true)
 {
 (distPtr[j])->adjustWeight(LEARNING_RATE_WEIGHT,
true);
 }
 else
 {
 (distPtr[j])->adjustWeight(LEARNING_RATE_WEIGHT,
false);
 }
 }

 return matchFound;

}

 110

int GaussianContainer::getSize()
{
 return size;
}

int GaussianContainer::getLeastProbableDistribution()
{
 double temp, value;
 int tempIndex;

 value=distPtr[0]->getWeightVarianceRatio();
 tempIndex=0;

 for (int i=1;i<size;i++)
 {
 temp = distPtr[i]->getWeightVarianceRatio();
 if (temp < value)
 {
 value = temp;
 tempIndex=i;
 }
 }

 return tempIndex;

}

void GaussianContainer::replaceDistribution(int index, double mean,
double variance, double weight)
{

 distPtr[index]->setDistribution(mean, variance, weight);
}

 111

MultipleGaussianBackgroundModel.h

#include "gaussianContainer.h"
#include "cv.h"

class MultipleGaussianBackgroundModel
{
 GaussianContainer*** containerPtr;
 int height;
 int width;

public:

 MultipleGaussianBackgroundModel(IplImage* img)
 {
 height = img->height;
 width = img->width;
 createEmptyModel(height, width,
NUMBER_OF_GAUSSIANS_IN_MIXTURE_MODEL);
 }

 double colorToIntensity(int, int, int);
 void updateModel(IplImage*, IplImage*);

 ~MultipleGaussianBackgroundModel()
 {
 for (int i=0;i<height;i++)
 {
 for (int j=0;j<width;j++)
 {
 delete ((containerPtr[i])[j]);
 }
 delete (containerPtr[i]);
 }
 delete containerPtr;
 }

private:

 // helper to constructor
 // creates an empty background model
 // creates a 2D array (dimensions = height (h), width (w))
 // each array element points to a GaussianContainer of size
specified by

// sizeOfContainer
 void createEmptyModel(int w, int h, int sizeOfContainer)
 {

 // if sizeOfContainer < 0 then throw exception
 containerPtr = new GaussianContainer**[w];

 for (int i=0;i<w;i++)
 {
 containerPtr[i] = new GaussianContainer*[h];
 for (int j=0;j<h;j++)
 {
 // create a GaussianContainer object.
 // constructor for GaussianContainer calls
constructor
 // of GaussianDistribution
 (containerPtr[i])[j] = new
GaussianContainer(sizeOfContainer);

 112

 }
 }

}
};

 113

MultipleGaussianBackgroundModel.cpp

#include "stdafx.h"
#include "multipleGaussianBackgroundModel.h"

// img2 pointer to an empty image
// img2 after function finishes execution - binary image, white pixels
representing foreground
void MultipleGaussianBackgroundModel::updateModel(IplImage* img,
IplImage* img2)
{
 int step, width2;
 double intensity;
 bool isBackgroundPixel = false;

 step = img->widthStep;
 width2 = img->width * img->nChannels;
 unsigned char *data= reinterpret_cast<unsigned char *>(img-
>imageData);
 unsigned char *data2= reinterpret_cast<unsigned char *>(img2-
>imageData);

 // iterate through each pixel
 for (int i=0;i<height;i++)
 {
 for (int j=0;j<width2;j+=img->nChannels)
 {
 int j1 = j/img->nChannels;
 // intensity is Xt according to Stauffer et. al.
 intensity =
colorToIntensity(data[j+2],data[j+1],data[j]);
 isBackgroundPixel = (containerPtr[i])[j1]-

>updateGaussians(intensity);

 if (isBackgroundPixel)
 {
 data2[j] = 0xFF;
 data2[j+1] = 0xFF;
 data2[j+2] = 0xFF;
 }
 else
 {
 data2[j] = 0x00;
 data2[j+1] = 0x00;
 data2[j+2] = 0x00;
 }
 }
 data+=step;
 data2+=step;
 }

}

double MultipleGaussianBackgroundModel::colorToIntensity(int red, int
blue, int green)
{
 return ((0.3*red)+(0.59*green)+(0.11*blue));
}

 114

HeadTop finder

HeadTopProcessor.h

#include <cv.h>
#include <vector>
using namespace std;

class HeadTopProcessor
{
public:
 HeadTopProcessor()
 {}

 ~HeadTopProcessor()
 {}

 vector<CvPoint>* findHeadTops(IplImage*);

private:
 vector<CvPoint>* findLocalMin(CvSeq* s);
 vector<CvPoint>* headTopFilter1(vector<CvPoint>* headTops,
IplImage*);

};

 115

HeadTopProcessor.cpp

#include <stdafx.h>
#include "HeadTopProcessor.h"
#include "..\Blob analysis package\blob.h"
#include "..\Blob analysis package\BlobResult.h"
#include <cv.h>
#include <highgui.h>
#include <fstream>
#include "..\constants.h"
using namespace std;

vector<CvPoint>* HeadTopProcessor::findHeadTops(IplImage* img)
{
 CBlobResult blobs;
 CBlob Blob;
 vector<CvPoint>* localMins;
 vector<CvPoint>* filteredLocalMins1;
 vector<CvPoint>* allLocalMins = new vector<CvPoint>;
 double height_ellipse;

 blobs = CBlobResult(img, NULL, 100, true);
 blobs.Filter(blobs, B_INCLUDE, CBlobGetArea(), B_LESS, 600);
 blobs.Filter(blobs, B_INCLUDE, CBlobGetArea(), B_GREATER, 100);

 for (int i=0; i<blobs.GetNumBlobs(); ++i)
 {
 Blob = blobs.GetBlob(i);
 IplImage* f = cvCreateImage(cvGetSize(img), 8, 1);

 localMins = findLocalMin(Blob.edges);
 filteredLocalMins1 = headTopFilter1(localMins, img);

 for (vector<CvPoint>::iterator it=filteredLocalMins1-
>begin();

it!=filteredLocalMins1->end();++it)
 {
 height_ellipse = HUMAN_HEIGHT * ((double)it->y /

(double)cvGetSize(img).height);
 CvPoint center=cvPoint(it->x, it-
>y+(double)(height_ellipse/2));

 allLocalMins->push_back(*it);

 }

 }
 return allLocalMins;

}

 116

// filters any headtop which does not lie on a foreground blob
vector<CvPoint>* HeadTopProcessor::headTopFilter1(vector<CvPoint>*
headTops, IplImage* img)
{

 int i,j,k,j1, n, height, step, width;
 double image_height, height_ellipse, colour2;
 vector<CvPoint>* v;
 CvPoint center;
 int* areaOccupied;
 int* areaThreshold;
 double* majorAxisArray;
 double* minorAxisArray;
 CvPoint* centerOfEllipseArray;
 CvPoint* headTopsArray;
 unsigned char *data;

 // arrayOccupied stores cumulative pixel area
 // underneath each headtop. areaOccupied runs "parallel" to
headTopsArray
 n = headTops->size();
 areaOccupied = new int[n];
 headTopsArray = new CvPoint[n];
 centerOfEllipseArray = new CvPoint[n];
 majorAxisArray = new double[n];
 minorAxisArray = new double[n];
 areaThreshold = new int[n];
 v = new vector<CvPoint>;
 i=0;
 j=0;
 image_height = (double)cvGetSize(img).height;
 height = img->height;
 step = img->widthStep;
 width = img->width * img->nChannels;
 data= reinterpret_cast<unsigned char *>(img->imageData);

 // fill headTopsArray with CvPoints in headTops vector
 for (vector<CvPoint>::iterator it=headTops->begin(); it!=headTops-
>end(); ++it)
 {
 height_ellipse = HUMAN_HEIGHT * ((double)it->y /
image_height);
 center = cvPoint(it->x, it->y+(double)(height_ellipse/2));

 headTopsArray[i] = *it;
 areaOccupied[i] = 0; // initialize areas
 centerOfEllipseArray[i] = center;
 majorAxisArray[i] = height_ellipse/2;
 minorAxisArray[i] = HUMAN_HEAD_SIZE/2;
 /*areaThreshold[i] = \
 cvRound(((double)AREA_THRESHOLD_PERCENTAGE/100.0)* \
 HUMAN_AREA * ((double)it->y / image_height));*/
 areaThreshold[i] = \

 cvRound(((double)AREA_THRESHOLD_PERCENTAGE/100.0)*(PI*majorAxisArr
ay[i]*minorAxis

Array[i]));

 i++; // keeping all arrays parallel.
 }

 117

 for (i=0;i<height;i++)
 {
 for (j=0;j<width;j++)
 {
 j1 = j / img->nChannels;
 colour2 = GlobalFunctions::getPixelColor(img,
cvPoint(j1,i));

 if (colour2 <= 10)
 {
 for (k=0;k<n;k++)
 {
 if
(GlobalFunctions::isInEllipse(centerOfEllipseArray[k],

 minorAxisArray[k],
majorAxisArray[k],

cvPoint(j1,i)))
 {
 areaOccupied[k]++;
 }

 }
 }
 }
 data+=step;
 }

 for (k=0;k<n;k++)
 {
 if (areaOccupied[k] >= areaThreshold[k])
 v->push_back(headTopsArray[k]);
 }

 // free up memory
 delete [] areaOccupied;
 delete [] headTopsArray;
 delete [] centerOfEllipseArray;
 delete [] majorAxisArray;
 delete [] minorAxisArray;
 delete [] areaThreshold;

 return v;

}

vector<CvPoint>* HeadTopProcessor::findLocalMin(CvSeq* edges)
{
 int minX, maxX,n, i,j,k, diff;
 bool flag1, flag2;
 CvSeqReader reader;
 CvPoint edgeactual;
 CvPoint* localMins;
 vector<CvPoint>* v;

 // initialization
 v = new vector<CvPoint>;
 cvStartReadSeq(edges, &reader);
 CV_READ_SEQ_ELEM(edgeactual ,reader);
 minX = edgeactual.x; // first edge in sequeunce
 maxX = edgeactual.x; // first edge in sequeunce

 118

 // find minimum X and maximum X
 for(i=1; i< edges->total; i++)
 {
 CV_READ_SEQ_ELEM(edgeactual ,reader);
 if (edgeactual.x < minX)
 minX = edgeactual.x;
 if (edgeactual.x > maxX)
 maxX = edgeactual.x;
 }

 n = cvRound((double)(maxX-minX)/(double)HUMAN_HEAD_SIZE);

 // initialize an array that will store local minimums
 localMins = new CvPoint[n];
 for (i=0;i<n;i++)
 {
 localMins[i] = cvPoint(10000,10000);
 }

 // search for local mins in a neighborhood.specified by human
head-size
 cvStartReadSeq(edges, &reader); // reinitialize iterator
 for (i=0;i<edges->total;i++)
 {
 CV_READ_SEQ_ELEM(edgeactual, reader);
 flag1= true;
 flag2 = true;

 for (j=0;j<n && flag2; j++)
 {
 if (edgeactual.y < localMins[j].y)
 {
 for (k=0;k<n && flag1;k++)
 {
 diff = abs(edgeactual.x - localMins[k].x);

 if (diff < HUMAN_HEAD_SIZE && edgeactual.y
<

localMins[k].y)
 {
 localMins[k] = edgeactual;
 flag1 = false;
 flag2 = false;
 }
 else if (diff < HUMAN_HEAD_SIZE &&
edgeactual.y >=

localMins[k].y)
 {
 flag1 = false;
 }
 }

 if (flag1)
 {
 localMins[j] = edgeactual;
 flag2 = false;
 }
 flag1 = true;
 }
 }
 }

 119

 // fill localMins array into a vector for return
 // discard points (10000,10000)
 for (i=0;i<n;i++)
 {
 if (!(localMins[i].x == 10000 && localMins[i].y == 10000))
 {
 v->push_back(localMins[i]);
 }
 }

 return v;

}

 120

Motion Tracker

 121

HotSpot.h

// OpenCV
#include "cxcore.h"

class HotSpot
{
public:
 CvPoint center;
 double radius;

 HotSpot(CvPoint p, double r)
 {
 center = p;
 radius = r;
 }

 HotSpot()
 {
 center = cvPoint(0,0);
 radius = 0;
 }

 bool pointInHotSpot(CvPoint point);
 void update(CvPoint p, double r);

};

HotSpot.cpp
#include "stdafx.h"
#include "HotSpot.h"
// checks if a point (x,y) is in within the hotspot defined
// by a circle with center (a,b) and equation:
// (x-a)^2 + (y-b)^2 <= r^2

bool HotSpot::pointInHotSpot(CvPoint point)
{
 int d = (point.x - center.x)*(point.x-center.x) + (point.y -
center.y)*(point.y-center.y);
 return (d <= (radius*radius));
}
/*
bool HotSpot::pointInHotSpot(CvPoint point)
{
 bool cond1, cond2;

 cond1 = point.x >= center.x-radius && point.x <= center.x+radius;
 cond2 = point.y >= center.y-radius && point.y <= point.y+radius;

 return cond1 && cond2;
}*/

void HotSpot::update(CvPoint p, double r)
{
 center = p;
 radius = r;
}

 122

TrackedBlob.h

// OpenCV
#include <cv.h>
#include <cxcore.h>
#include <highgui.h>
#include "..\Blob analysis package\blob.h"
#include "..\Blob analysis package\BlobResult.h"
#include "HotSpot.h"
#include "..\constants.h"
#include <vector>

using namespace std;
const double proc_cov=1e-5;
const double meas_cov=1e-5;
//const float A[] = {1,1,0,1};
const float A[] = {1,1,0,1};

// a registered blob
class TrackedBlob
{
public:
 HotSpot spot; // contains center of the blob

 // new code
 CvPoint previousPosition; // (x0, y0)
 CvPoint currentPosition; // (xi, yi)
 double speed;
 int lostBlobCount;
 bool trackedInCurrentFrame;

public:
 int red;
 int blue;
 int green;
 int status; // TRACKED - Trackedblob was found in the
current frame
 // ON_SEARCH - Blob is still being
searched for

 vector<CvPoint> motionHistory;

 // kalman parameters
 CvKalman* kalman;
 CvMat* measurement;

 TrackedBlob(CvPoint);

 bool isThisTrackedBlob(CvPoint centerOfUnTrackedBlob);
 void updateTrackedBlob(CvPoint newCenterOfBlob, CvPoint
currentPosition, \
 CvPoint previousPosition, double radius, int status, double
speed,

int lostBlobCount);

 void addToMotionHistory(CvPoint);
 void trackedBlobInit2(CvPoint);
 CvPoint getEstimatedPosition(CvPoint observedPoint);
 CvPoint getEstimatedPosition();
 void estimateTrackAndUpdate(CvPoint);
 void estimateTrackAndUpdate();
 CvPoint GetCenter(CBlob);

 123

 124

 // SET METHODS
 inline void setTrackedInCurrentFrame(bool t) {
trackedInCurrentFrame = t; }
 inline void setStatus(int s) { status = s; };

 // GET METHODS
 inline bool getTrackedInCurrentFrame() { return
trackedInCurrentFrame; }
 inline int getLostBlobCount() { return lostBlobCount; }

private:
 void updateHotSpot(CvPoint newCenterOfHotSpot, double radius);
 double distance(CvPoint, CvPoint);
 CvPoint getPredictedPosition();
 CvPoint kalmanFilter(CvPoint);

};

 125

TrackedBlob.cpp

#include "stdafx.h"
#include "TrackedBlob.h"

TrackedBlob::TrackedBlob(CvPoint centerOfBlob) {

 spot.center = centerOfBlob;
 spot.radius = DEFAULT_HOTSPOT_RADIUS;
 red=rand()%255;
 blue=rand()%255;
 green=rand()%255;
 status = NEW_BLOB;
 trackedInCurrentFrame = false; // only tracker can confirm
this info.

 motionHistory.push_back(centerOfBlob);

 // new code
 previousPosition = centerOfBlob;
 speed = 0; // when a blob is spotted first, its speed
is not
 // known, until it is tracked in the
subsequent frames

 lostBlobCount = 0;

 // kalman filter
 kalman = cvCreateKalman(4,2,0);
 cvSetIdentity(kalman->measurement_matrix, cvRealScalar(1));
 cvSetIdentity(kalman->process_noise_cov,
cvRealScalar(proc_cov));
 cvSetIdentity(kalman->measurement_noise_cov,
cvRealScalar(meas_cov));
 cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));
 memcpy(kalman->transition_matrix->data.fl, A, sizeof(A));
 CvRNG rng = cvRNG(-1);
 cvRandArr(&rng, kalman->state_post, CV_RAND_NORMAL,
cvRealScalar(0),

cvRealScalar(0.1));
 kalman->state_post->data.fl[0]=centerOfBlob.x;
 kalman->state_post->data.fl[1]=centerOfBlob.y;

 measurement = cvCreateMat(2,1,CV_32FC1);
}

bool TrackedBlob::isThisTrackedBlob(CvPoint centerOfUnTrackedBlob)
{
 return spot.pointInHotSpot(centerOfUnTrackedBlob);
}

void TrackedBlob::updateHotSpot(CvPoint newCenterOfHotSpot, double
radius)
{
 spot.update(newCenterOfHotSpot, radius);
}

 126

// updates a tracked blob and its hotspot
void TrackedBlob::updateTrackedBlob(CvPoint newCenterOfBlob, CvPoint
cPos, CvPoint pPos, double radius, int s, double sp, int bc)
{

 status = s;
 currentPosition = cPos;
 previousPosition = pPos;
 speed = sp;
 lostBlobCount = bc;

if (newCenterOfBlob.x == 0 && newCenterOfBlob.y ==0)
{
 int i=0;
}

 // update the blob's hotspot
 updateHotSpot(newCenterOfBlob, radius);

 // add to motion history
 addToMotionHistory(cPos);

}

void TrackedBlob::addToMotionHistory(CvPoint p)
{
 motionHistory.push_back(p);
}

// the second time a blob is tracked, we have a value for (x1,y1)
// and hence we can calculate its velocity, and predict its motion
void TrackedBlob::trackedBlobInit2(CvPoint c)
{
 CvPoint centerOfBlob = c;
 speed = distance(centerOfBlob, previousPosition) / FRAME_RATE;

 if (centerOfBlob.y == previousPosition.y && centerOfBlob.x ==
previousPosition.x)
 {
 updateTrackedBlob(centerOfBlob, centerOfBlob,
previousPosition,

DEFAULT_HOTSPOT_RADIUS, NEW_BLOB, speed,
0);

 }
 else
 {
 // update tracked blob and hotspot
 updateTrackedBlob(centerOfBlob, centerOfBlob,
previousPosition,

DEFAULT_HOTSPOT_RADIUS, BEING_TRACKED,
speed, 0);

 }
}

// for tracked blobs for which an observed blob has been detected in its
hotspot
void TrackedBlob::estimateTrackAndUpdate(CvPoint c)
{
 CvPoint centerOfBlob = c;
 CvPoint nextEstimatedPosition =
getEstimatedPosition(centerOfBlob);

 // update tracked blob and prepare for next estimation
 speed = distance(centerOfBlob, currentPosition) / FRAME_RATE;

 127

 updateTrackedBlob(nextEstimatedPosition, nextEstimatedPosition,
currentPosition,

DEFAULT_HOTSPOT_RADIUS, BEING_TRACKED, speed,0);

}

 128

// for tracked blobs for which no observed blob has been detected in its
hotspot
void TrackedBlob::estimateTrackAndUpdate()
{

 CvPoint nextEstimatedPosition = getEstimatedPosition();

speed = distance(nextEstimatedPosition,
currentPosition)/FRAME_RATE;
 updateTrackedBlob(nextEstimatedPosition, nextEstimatedPosition,
currentPosition,
 DEFAULT_HOTSPOT_RADIUS, BLOB_LOST, speed,
++lostBlobCount);

}

// the distance between two CvPoints
double TrackedBlob::distance(CvPoint a, CvPoint b)
{

 return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}

// function can only be called when blob's status is set to
BEING_TRACKED or LOST_BLOB
// function should not be called when blob's status is NEW_BLOB
CvPoint TrackedBlob::getPredictedPosition()
{
 /*
 // calculate the predicted position using position vectors
 // velocity of blob
 double distanceTravelledInLastFrame =
distance(currentPosition,previousPosition);
 double predictedDistanceToBeTravelled = speed * FRAME_RATE;

 // lamba is the scalar constant found in the vector equation of
straight
 // lines
 double lambda = 1 +
predictedDistanceToBeTravelled/distanceTravelledInLastFrame);

 double predictedXOrdinate = (1-lambda)*previousPosition.x +

(lambda*currentPosition.x);
 double predictedYOrdinate = (1-lambda)*previousPosition.y +

(lambda*currentPosition.y);

 if (distanceTravelledInLastFrame == 0)
 {
 return currentPosition;
 }

 return cvPoint(cvRound(predictedXOrdinate),
cvRound(predictedYOrdinate));*/
 return kalmanFilter(currentPosition);
}

 129

// estimate the position of the blob when it has been observed
CvPoint TrackedBlob::getEstimatedPosition(CvPoint observedPoint)
{
 CvPoint predictedPosition = getPredictedPosition();

 double estimatedPositionXOrdinate = ((1-

TRACKER_RELIABILITY_FACTOR)*predictedPosition.x) +
(TRACKER_RELIABILITY_FACTOR*observedPoint.x);

 double estimatedPositionYOrdinate = ((1-

TRACKER_RELIABILITY_FACTOR)*predictedPosition.y) +
 (TRACKER_RELIABILITY_FACTOR*observedPoint.y);

 return cvPoint(cvRound(estimatedPositionXOrdinate),

cvRound(estimatedPositionYOrdinate));
}

// estimate the position when there is no observed point
// useful when blob is lost
CvPoint TrackedBlob::getEstimatedPosition()
{

 // calculate the predicted position using position vectors
 // velocity of blob
 double distanceTravelledInLastFrame =
distance(currentPosition,previousPosition);
 double predictedDistanceToBeTravelled = speed * FRAME_RATE;

 // lamba is the scalar constant found in the vector equation of
straight
 // lines
 double lambda = 1 +

(predictedDistanceToBeTravelled/distanceTravelledInLastFrame
);

 double predictedXOrdinate = (1-lambda)*previousPosition.x +

(lambda*currentPosition.x);
 double predictedYOrdinate = (1-lambda)*previousPosition.y +

(lambda*currentPosition.y);

 if (distanceTravelledInLastFrame == 0)
 {
 return currentPosition;
 }

 //return kalmanFilter(cvPoint(cvRound(predictedXOrdinate),

cvRound(predictedYOrdinate)));
 CvPoint c = cvPoint(cvRound(predictedXOrdinate),
cvRound(predictedYOrdinate));
 return kalmanFilter(c);
}

 130

CvPoint TrackedBlob::GetCenter(CBlob Blob)
{
 CBlobGetXCenter getXc;
 CBlobGetYCenter getYc;
 double blobCentre[2];
 blobCentre[0] = getXc(Blob);
 blobCentre[1] = getYc(Blob);
 return cvPoint(blobCentre[0], blobCentre[1]);

}

CvPoint TrackedBlob::kalmanFilter(CvPoint m)
{
 measurement->data.fl[0] = m.x;
 measurement->data.fl[1] = m.y;

 cvKalmanPredict(kalman, 0);
 cvKalmanCorrect(kalman, measurement);
 return cvPoint(cvRound(kalman->state_post->data.fl[0]),

cvRound(kalman->state_post->data.fl[1]));

}

 131

Tracker.h

#include "TrackedBlob.h"

#include <vector>
#include <fstream>
using namespace std;

class Tracker
{
 vector<TrackedBlob>* trackedBlobs;

public:
 Tracker()
 {
 trackedBlobs = new vector<TrackedBlob>;
 }

 ~Tracker()
 {
 delete trackedBlobs;
 }

 void track(IplImage* img, vector<CvPoint>* blobCenters);

};

 132

Tracker.cpp

#include "stdafx.h"
#include "Tracker.h"
#include "..\Blob analysis package\blob.h"
#include "..\Blob analysis package\BlobResult.h"
//#include "..\constants.h"
#include <vector>
using namespace std;

void Tracker::track(IplImage* img, vector<CvPoint>* blobCenters)
{
 CBlobResult blobs;
 CvPoint blobCenter;
 bool blobTracked;
 vector<TrackedBlob>* newBlobs;

 newBlobs = new vector<TrackedBlob>;
 blobTracked = false;

 for (vector<CvPoint>::iterator it0 = blobCenters->begin();
!blobTracked &&

it0!=blobCenters->end(); ++it0)
 {
 blobCenter = *it0;

 // iterate through every registered blob
 for (vector<TrackedBlob>::iterator it = trackedBlobs-
>begin();

!blobTracked && it!=trackedBlobs->end(); ++it)
 {

 if (it->isThisTrackedBlob(blobCenter))
 {

 if (it->status == NEW_BLOB)
 {
 // we can now measure the velocity,
and hence

// predict motion
 it->trackedBlobInit2(blobCenter);
 }
 else if (it->status == BEING_TRACKED)
 {
 // an old tracked blob, keep
tracking with observed

// point
 it-
>estimateTrackAndUpdate(blobCenter);
 }
 else if (it->status == BLOB_LOST)
 {
 // an old tracked blob, keep
tracking with observed

// point
 it-
>estimateTrackAndUpdate(blobCenter);
 }

 // notify that this blob has been tracked
in the current

// frame
 it->setTrackedInCurrentFrame(true);
 blobTracked = true;

 133

 }
 }

 134

 if (!blobTracked)
 {

 TrackedBlob t1(blobCenter);
 // new blob, didnt fall inside any hotspot,
collect to register

// this new blob
 newBlobs->push_back(t1);
 }

 } // end for

 // blobs not tracked in this round, find them and change their
statuses
 for (vector<TrackedBlob>::iterator it2=trackedBlobs->begin();

it2!=trackedBlobs->end(); ++it2)
 {
 if (!(it2->getTrackedInCurrentFrame()))
 {
 // blob was not tracked in this frame
 // it either got lost, or was lost already.
 // in latter case, check if its been lost for too long

 // blob tracked in the previous frame, but didnt get
track this time
 if (it2->status == BEING_TRACKED)
 {
 // this estimates position and changes status to
LOST_BLOB
 it2->estimateTrackAndUpdate();
 }

 // blob not tracked in the previous frame(s), and not
tracked
 // this time either
 else if (it2->status == BLOB_LOST)
 {
 if (it2->getLostBlobCount() >
MAX_LOST_BLOB_COUNT)
 {
 it2->setStatus(DISCARD_BLOB);
 }
 else
 {
 // MAX_LOST_BLOB_COUNT not reached, keep
estimating
 it2->estimateTrackAndUpdate();
 }
 }

 // blob that was registered as a new tracked blob in
the previous

// frame, and now got lost. In such cases, we cannot
predict motion
// since we dont know the direction

 // of the motion and velocity
 else if (it2->status == NEW_BLOB)
 {
 it2->setStatus(DISCARD_BLOB);
 }
 }
 else
 {
 // maintenance operation

 135

 // blobs that were tracked, must have their flag
resetted for next

// frame
 it2->setTrackedInCurrentFrame(false);
 }

 }

 // remove blobs that are marked for discard
 vector<TrackedBlob>::iterator it1=trackedBlobs->begin();
 while (it1!=trackedBlobs->end())
 {
 if (it1->status == DISCARD_BLOB)
 {
 it1=trackedBlobs->erase(it1);
 }
 else
 {
 it1++;
 }
 }

 // register collected new blobs that didnt fall into any hotspot
 // insert blobs that havent been tracked before.
 for (vector<TrackedBlob>::iterator it3=newBlobs->begin();

it3!=newBlobs->end();++it3)
 {
 trackedBlobs->push_back(*it3);
 }

 // output motion history of all tracked blobs
 for (vector<TrackedBlob>::iterator it4=trackedBlobs->begin();

it4!=trackedBlobs->end();++it4)
 {
 /*
 vector<CvPoint>::iterator it5=(it4->motionHistory).begin();
 while (it5!=(it4->motionHistory).end())
 {
 cvCircle(img, *it5, 3, CV_RGB(it4->red, it4->green,
it4->blue), 1);
 it5++;
 }*/
 GlobalFunctions::drawPath(img, it4->motionHistory,

cvScalar(it4->red, it4->green, it4-
>blue));

 }

}

 136

Driver.cpp

// some helped functions

// char* to CString converter

CString convert(char* s)

{

 CString c;

 for (int i=0;s[i]!='\0';i++)

 {

 c+=s[i];

 }

 return c;

}

// pads numZero zeros to the left-side of integer

// useful for filenames of image files

// with names of this format: cyard7-00001.jpeg

CString padZerosToLeft(int i, int numZeros)

{

 CString s, temp2;

 char* temp1 = new char[256];

 _itoa(i,temp1,10);

 temp2 = convert(temp1);

 int zeros = numZeros - temp2.GetLength();

 for (int j=0;j<zeros;j++)

 {

 s+='0';

 }

 return s+temp1;

}

// the median filter

IplImage* medianFilter(IplImage* img)

{

 if (img!=NULL)

 {

 IplImage* cpy_img = cvCloneImage(img);

 cvSmooth(img,cpy_img,CV_MEDIAN,3,0,0);

 return cpy_img;

 }

 else

 return 0;

}

 137

// driver

void myDriver()

{

 // path of the image frames of video input

 CString s = "C:\\visionDataSets\\org_data\\all\\cyard7-";

 CString filename, org_filename;

 IplImage* img1, *one_channel_output, *output, *output_median;

 MultipleGaussianBackgroundModel* multGPtr;

 HeadTopProcessor* ht;

 Tracker* t;

 vector<CvPoint>* v;

 // output to this window

 cvNamedWindow("scene", 1);

 t = new Tracker();

 ht = new HeadTopProcessor();

 // iterate 9000 image frames

 for (int i=0;i<9000;i++)

 {

 filename = s+padZerosToLeft(i,6)+".jpeg";

 img1 = cvLoadImage(filename);

 if (i == 0)

 {

 // initialize background model with zero mean and

std. dev.

 multGPtr = new MultipleGaussianBackgroundModel(img1);

 output = cvCreateImage(cvGetSize(img1),

IPL_DEPTH_8U, 3);

 }

 else

 {

 multGPtr->updateModel(img1, output);

 output_median = medianFilter(output);

 one_channel_output = cvCreateImage(cvGetSize(img1),

IPL_DEPTH_8U,

1);

 cvSplit(output_median, one_channel_output,0,0,0);

 v = ht->findHeadTops(one_channel_output); //

find headtops

 t->track(img1, v); //

track

 cvShowImage("scene", img1);

 cvReleaseImage(&img1);

 cvReleaseImage(&one_channel_output);

 cvReleaseImage(&output_median);

 138

 }

 }

 cvDestroyWindow("scene");

}

