
Turing Machines and
Separation Logic

(Work in Progress)

Jian Xu Xingyuan Zhang
PLA University of Science and Technology

Christian Urban
King's College London

Imperial College, 24 November 2013 -- p. 1/26

Why Turing Machines?
we wanted to formalise computability theory
at the beginning, it was just a student project

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

Imperial College, 24 November 2013 -- p. 2/26

Why Turing Machines?
we wanted to formalise computability theory
at the beginning, it was just a student project

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

Imperial College, 24 November 2013 -- p. 2/26

..

TMs are a fantastic model of low-level code
completely unstructured Spaghetti Code
good testbed for verification techniques
Can we verify a program with 38 Mio
instructions?
we can delay implementing a concrete machine
model (for OS/low-level code verification)

Why Turing Machines?
we wanted to formalise computability theory
at the beginning, it was just a student project

Computability and Logic (5th. ed)
Boolos, Burgess and Jeffrey

found an inconsistency in the definition of
halting computations (Chap. 3 vs Chap. 8)

Imperial College, 24 November 2013 -- p. 2/26

..

TMs are a fantastic model of low-level code
completely unstructured Spaghetti Code
good testbed for verification techniques
Can we verify a program with 38 Mio
instructions?
we can delay implementing a concrete machine
model (for OS/low-level code verification)

Some Previous Works
(but not interested in low-level code)

Norrish formalised computability theory in HOL
starting from the lambda-calculus

for technical reasons we could not follow his work
some proofs use TMs (Wang tilings)

Asperti and Ricciotti formalised TMs in Matita
no undecidability result ⇒ interest in complexity
their UTM operates on a different alphabet than the
TMs it simulates

"In particular, the fact that the universal
machine operates with a different alphabet
with respect to the machines it simulates is
annoying." (Asperti and Ricciotti)

Imperial College, 24 November 2013 -- p. 3/26

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

Imperial College, 24 November 2013 -- p. 4/26

..
undecidability
of the halting
problem

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

Imperial College, 24 November 2013 -- p. 4/26

..
undecidability
of the halting
problem

...

verified
translator

...

verified
translator

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

Imperial College, 24 November 2013 -- p. 4/26

..
undecidability
of the halting
problem

...

verified
translator

...

verified
translator

..UF

The Big Picture

.....TMs ...Register
Machines

...Recursive
Functions

Imperial College, 24 November 2013 -- p. 4/26

..
undecidability
of the halting
problem

...

verified
translator

...

verified
translator

..UF

..a correct UTM by translation

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM calculate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

Imperial College, 24 November 2013 -- p. 5/26

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM calculate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

Imperial College, 24 November 2013 -- p. 5/26

Turing Machines
tapes are lists and contain 0s or 1s only

..
left list

.
right list
.

head
.… . …

steps function:
What does the TM calculate after it has
executed n steps?

designate the 0-state as "halting state" and remain
there forever, i.e. have a Nop-action

Imperial College, 24 November 2013 -- p. 5/26

Register Machines

programs are lists of instructions

I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if the content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

Imperial College, 24 November 2013 -- p. 6/26

Register Machines

programs are lists of instructions

I ::= Goto L jump to instruction L
| Inc R increment register R by one
| Dec R L if the content of R is non-zero,

then decrement it by one
otherwise jump to instruction L

Imperial College, 24 November 2013 -- p. 6/26

..Spaghetti Code!

Recursive Functions
rec ::= Z zero-function

| S successor-function
| Idn

m projection
| Cnn f gs composition
| Prn f g primitive recursion
| Mnn f minimisation

eval :: rec ⇒ nat list ⇒ nat
can be defined by recursion (HOL has Least)

you define
addition, multiplication, logical operations, quantifiers…
coding of numbers (Cantor encoding), UF

Imperial College, 24 November 2013 -- p. 7/26

Copy Turing Machine

TM that copies a number on the input tape
copy def

= cbegin ; cloop ; cend

.. ⇒. ⇒. ⇒. ︷ ︸︸ ︷
cbegin

. ︷ ︸︸ ︷
cloop

. ︷︸︸︷
cend

cbegin def
=

[(W0, 0), (R, 2), (R, 3),
(R, 2), (W1, 3), (L, 4),
(L, 4), (L, 0)]

cloop def
=

[(R, 0), (R, 2), (R, 3),
(W0, 2), (R, 3), (R, 4),
(W1, 5), (R, 4), (L, 6),
(L, 5), (L, 6), (L, 1)]

cend def
=

[(L, 0), (R, 2), (W1, 3),
(L, 4), (R, 2), (R, 2),
(L, 5), (W0, 4), (R, 0),
(L, 5)]

Imperial College, 24 November 2013 -- p. 8/26

Dither Machine

TM that is the identity with 1 and loops with 0

start tape
halting case: ..… ⇒ ..…

non-halting case: ..… ⇒ loops

dither def
= [(W0, 1), (R, 2), (L, 1), (L, 0)]

Imperial College, 24 November 2013 -- p. 9/26

Hoare Logic for TMs

Hoare-triples

and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

Imperial College, 24 November 2013 -- p. 10/26

Hoare Logic for TMs

Hoare-triples and Hoare-pairs:

{P} p {Q} def
=

∀ tp.
if P tp holds then
∃ n. such that
is_final (steps (1, tp) p n) ∧
Q holds_for (steps (1, tp) p n)

{P} p ↑ def
=

∀ tp.
if P tp holds then
∀ n. ¬ is_final (steps (1, tp) p n)

Imperial College, 24 November 2013 -- p. 10/26

Some Derived Rules

P' 7→ P {P} p {Q} Q 7→ Q'
{P'} p {Q'}

{P} p1 {Q} {Q} p2 {R}
{P} p1 ; p2 {R}

{P} p1 {Q} {Q} p2 ↑
{P} p1 ; p2 ↑

Imperial College, 24 November 2013 -- p. 11/26

Undecidability

Imperial College, 24 November 2013 -- p. 12/26

contra def
= copy ; H ; dither

Undecidability

Suppose H decides whether contra called with the
code of contra halts, then

P1
def
= λtp. tp = ([], ⟨code contra⟩)

P2
def
= λtp. tp = ([0], ⟨(code contra, code contra)⟩)

P3
def
= λtp. ∃ k. tp = (0k, ⟨0⟩)

{P1} copy {P2} {P2} H {P3}
{P1} copy ; H {P3} {P3} dither ↑

{P1} contra ↑
Imperial College, 24 November 2013 -- p. 12/26

contra def
= copy ; H ; dither

Undecidability

Suppose H decides wether contra called with the
code of contra does not halt, then

Q1
def
= λtp. tp = ([], ⟨code contra⟩)

Q2
def
= λtp. tp = ([0], ⟨(code contra, code contra)⟩)

Q3
def
= λtp. ∃ k. tp = (0k, ⟨1⟩)

{Q1} copy {Q2} {Q2} H {Q3}
{Q1} copy ; H {Q3} {Q3} dither {Q3}

{Q1} contra {Q3}

Imperial College, 24 November 2013 -- p. 12/26

contra def
= copy ; H ; dither

Hoare Reasoning
reasoning is quite demanding, e.g. the invariants
of the copy-machine:

I1 n (l, r) def
= (l, r) = ([], 1n) (starting state)

I2 n (l, r) def
= ∃ i j. 0 < i ∧ i + j = n ∧ (l, r) = (1i, 1j)

I3 n (l, r) def
= 0 < n ∧ (l, tl r) = (0::1n, [])

I4 n (l, r) def
= 0 < n ∧ (l, r) = (1n, [0, 1]) ∨ (l, r) = (1n - 1, [1, 0, 1])

I0 n (l, r) def
= 1 < n ∧ (l, r) = (1n - 2, [1, 1, 0, 1]) ∨ (halting state)

n = 1 ∧ (l, r) = ([], [0, 1, 0, 1])

J1 n (l, r) def
= ∃ i j. i + j + 1 = n ∧ (l, r) = (1i, 1::1::0j@1j) ∧ 0 < j ∨

0 < n ∧ (l, r) = ([], 0::1::0n@1n) (starting state)
J0 n (l, r) def

= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (halting state)

K1 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1::0n@1n) (starting state)

K0 n (l, r) def
= 0 < n ∧ (l, r) = ([0], 1n@0::1n) (halting state)

Imperial College, 24 November 2013 -- p. 13/26

Midway Conclusion

feels awfully like reasoning about machine code
compositional constructions / reasoning is not at
all frictionless
sizes

sizes:
UF 140843 constructors
URM 2 Mio instructions
UTM 38 Mio states

Imperial College, 24 November 2013 -- p. 14/26

..⋆old version: URM (12 Mio) UTM (112 Mio)

The Trouble With Hoare-Triples

Whenever we wanted to prove

{P} p {Q}

(1) we had to find invariants for each state
(not easy)

(2) we had to find a termination order proving that p
terminates (not easy either)

very little opportunity for automation

Imperial College, 24 November 2013 -- p. 15/26

The Trouble With Hoare-Triples

Whenever we wanted to prove

{P} p {Q}

(1) we had to find invariants for each state
(not easy)

(2) we had to find a termination order proving that p
terminates (not easy either)

very little opportunity for automation

Imperial College, 24 November 2013 -- p. 15/26

Inspiration from other Works

Jensen, Benton, Kennedy (2013), High-Level
Separation Logic for Low-Level Code

Myreen (2008), Formal Verification of
Machine-Code Programs, PhD thesis

Klein, Kolanski, Boyton (2012), Mechanised
Separation Algebra

Imperial College, 24 November 2013 -- p. 16/26

Inspiration from other Works

Jensen, Benton, Kennedy (2013), High-Level
Separation Logic for Low-Level Code

Myreen (2008), Formal Verification of
Machine-Code Programs, PhD thesis

Klein, Kolanski, Boyton (2012), Mechanised
Separation Algebra

Imperial College, 24 November 2013 -- p. 16/26

..Stealing

Inspiration from other Works

Jensen, Benton, Kennedy (2013), High-Level
Separation Logic for Low-Level Code

Myreen (2008), Formal Verification of
Machine-Code Programs, PhD thesis

Klein, Kolanski, Boyton (2012), Mechanised
Separation Algebra

Imperial College, 24 November 2013 -- p. 16/26

..Stealing

Better Composability
an idea from Jensen, Benton & Kennedy who
looked at X86 assembler programs and macros

assembler for TMs:

move_one_left def
=

Λ exit.
Inst (L, exit) (L, exit) ;
Label exit

⇒ represent "state" labels as functions
(with bound variables ⇒ locality)

Imperial College, 24 November 2013 -- p. 17/26

Better Composability

move_left_until_zero def
=

Λ start exit.
Label start ;
if_zero exit ;
move_left ;
jmp start ;
Label exit

if_zero e def
= Λ exit. Inst (W0, e), (W1, exit); Label exit

jmp e def
= Inst (W0, e), (W1, e)

Imperial College, 24 November 2013 -- p. 18/26

An RM-API with TMs

..... ...Recursive
Functions

.

R
eg

.M
ac

h.
A

PI

.

Macros

. .TMs

Suppose the first four registers of an RM contain
1,2,0 and 3, then the encoding is

.
Imperial College, 24 November 2013 -- p. 19/26

Inc a
Inc a def

=
locate a ;
right_until_zero ;
move_right ;
shift_right ;
move_left ;
left_until_double_zero ;
write_one ;
left_until_double_zero ;
move_right ;
move_right

Imperial College, 24 November 2013 -- p. 20/26

Separation Algebra

use some infrastructure introduced by Klein et al
in Isabelle/HOL
and an idea by Myreen

{|p|} c {|q|}

p, c, q will be assertions in a separation logic

e.g. {|st i ⋆ hd n ⋆ ones u v ⋆ zero (v + 1)|}

Imperial College, 24 November 2013 -- p. 21/26

Separation Algebra

use some infrastructure introduced by Klein et al
in Isabelle/HOL
and an idea by Myreen

{|p|} c {|q|}

p, c, q will be assertions in a separation logic
e.g. {|st i ⋆ hd n ⋆ ones u v ⋆ zero (v + 1)|}

Imperial College, 24 November 2013 -- p. 21/26

Separation Triples

{|p|} c {|q|} def
=

∀ cf r.
(p ⋆ c ⋆ r) cf implies
∃ k. (q ⋆ c ⋆ r) (steps k cf)

{| st i ⋆ hd v ⋆ zero u ⋆ ones (u + 1) v |}
i:[left_until_zero]:j

{| st j ⋆ hd u ⋆ zero u ⋆ ones (u + 1) v |}
Imperial College, 24 November 2013 -- p. 22/26

Inductions over ones
What most simplifies the work is that we can do
inductions over the ''input'' (inductively defined
assertions)

Suppose right_until_zero:

..
ones u v

{| st i ⋆ hd u ⋆ zero (v + 1) ⋆ ones u v |}
i:[right_until_zero]:j

{| st j ⋆ hd (v + 1) ⋆ zero (v + 1) ⋆ ones u v |}

Imperial College, 24 November 2013 -- p. 23/26

.

Inductions over ones
What most simplifies the work is that we can do
inductions over the ''input'' (inductively defined
assertions)

Suppose right_until_zero:

..
ones u v

{| st i ⋆ hd u ⋆ zero (v + 1) ⋆ ones u v |}
i:[right_until_zero]:j

{| st j ⋆ hd (v + 1) ⋆ zero (v + 1) ⋆ ones u v |}

Imperial College, 24 November 2013 -- p. 23/26

..a

Automation

we introduced some tactics for handling
sequential programs

{|p|} i:[c1 ; ... ; cn]:j {|q|}

for loops we often only have to do inductions on
the length of the input (e.g. how many 0s/1s are
on the tape)
no termination measures are needed

Imperial College, 24 November 2013 -- p. 24/26

Register Machines
We could also use Jensen's et al work to give a
more appropriate view on register machines

{|p|} i:[rm_c]:j {|q|}

Rule for Inc
RM. {| pc i ⋆ m a v |}

i:[Inc a]:j
{| pc j ⋆ m a (Suc v)|}

Rules for Dec
RM. {|(pc i ⋆ m a (Suc v))|}

i :[Dec a e]: j
{|pc j ⋆ m a v|}

RM. {| pc i ⋆ m a 0 |}
i:[Dec a e]:j
{| pc e ⋆ m a 0 |}

Imperial College, 24 November 2013 -- p. 25/26

Conclusion
What started out as a student project, turned out
to be much more fun than first thought.

Where can you claim that you proved the
correctness of a 38 Mio instruction program?
(ca. 7000 is the soa)

We learned a lot about current verification
technology for low-level code (we had no
infrastructure: CPU model).

The existing literature on TMs & RMs leave out
quite a bit of the story (not to mention contains
bugs).

Imperial College, 24 November 2013 -- p. 26/26

