

The Benefits of Putting
Objects into Boxes

Sophia Drossopoulou

Department of Computing,
Imperial College London

This room
is a mess!

No, it is not!
Everything is neatly
categorised in its box!

A common problem in programming

is that code structure/object topology is far too complex.

A common solution is to organize code/objects into “boxes”.

Over the last decade, several kinds of “boxes” have been
suggested with different aims.

Some of this work has concentrated on static type systems.

We shall discuss:

• Survey some of the work on boxes (4 strands),

• One further issue on boxes.

Survey - 1

Boxes for Package Encapsulation
Bokowski, Vitek, Grothof, Palsberg,...

Boxes for Package Encapsulation

• some classes declared
confined within their package

• objects of confined type
encapsulated within package

Therefore
• “box” is a package; static

boxes
• owner as dominator: no

incoming references to a box

Properties guaranteed statically

Boxes for Package Encapsulation

• some classes declared
confined within their package

• objects of confined type
encapsulated within package

Therefore
• “box” is a package; static

boxes
• owner as dominator: no

incoming references to a box

Properties guaranteed statically

package P1 {
 class A{ ... }
 class B{ ... }
 confined class C{ ... }
 }
package P2 {
 class D{ ... }
 confined class E{ ... }
 }

Boxes for Package Encapsulation

• some classes declared
confined within their package

• objects of confined type
encapsulated within package

Therefore
• “box” is a package; static

boxes
• owner as dominator: no

incoming references to a box

Properties guaranteed statically

package P1 {
 class A{ ... }
 class B{ ... }
 confined class C{ ... }
 }
package P2 {
 class D{ ... }
 confined class E{ ... }
 }

with a possible heap:

P1 P2

Boxes for Package Encapsulation

• some classes declared
confined within their package

• objects of confined type
encapsulated within package

Therefore
• “box” is a package; static

boxes
• owner as dominator: no

incoming references to a box

Properties guaranteed statically

package P1 {
 class A{ ... }
 class B{ ... }
 confined class C{ ... }
 }
package P2 {
 class D{ ... }
 confined class E{ ... }
 }

with a possible heap:

4: D

8: E

1:A 2:A

4:C 5:C

3: B
P1 P2

Boxes for Package Encapsulation

• some classes declared
confined within their package

• objects of confined type
encapsulated within package

Therefore
• “box” is a package; static

boxes
• owner as dominator: no

incoming references to a box

Properties guaranteed statically

Code from one package won’t
run on confined objects from
another.

package P1 {
 class A{ ... }
 class B{ ... }
 confined class C{ ... }
 }
package P2 {
 class D{ ... }
 confined class E{ ... }
 }

with a possible heap:

4: D

8: E

1:A 2:A

4:C 5:C

3: B
P1 P2

Survey - 2

Boxes for Object Encapsulation

Aldrich, Biddle, Boyapati, Chambers, Clarke, Drossopoulou,
Khrishnaswami, Kostadinov, Liskov, Lu, Noble, Potanin, Potter,

Vitek, Shrira, Wrigstad, ...

Boxes for Object Encapsulation
 – Clarke, Noble, Potter, Vitek,..

• each object belongs in a box;
• each box is characterized by

an object (its owner)
• objects may hold references

to objects in enclosing boxes
Therefore
• tree hierarchy of objects
• owner as dominator: no

incoming references to a box

Properties guaranteed statically

 a possible heap:

1

2

3 4

5 6

8

9

3

0

Boxes for Object Encapsulation – An Example

An employee is responsible for a
sequence of tasks. Each task has
a duration and a due date.

When an employee is delayed,
each of his tasks gets delayed
accordingly.

An employee is OK, if all his
tasks are within the due dates.

 “Java” code

class Employee {
 List tasks;
 void delay(){ ... }
 }
 class List {
 Node first;
 void delay(){ ... }
 }
 class Node {
 Node next;
 Task task;
 void delay(){ ... }
 }
 class Task { ...
 void delay(){ ... } }

Boxes for Object Encapsulation – An Example

 “Java” code

class Employee {
 List tasks;
 void delay(){ ... }
 }
 class List {
 Node first;
 void delay(){ ... }
 }
 class Node {
 Node next;
 Task task;
 void delay(){ ... }
 }
 class Task { ...

 void delay(){ ... } }

 possible heap

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Boxes for Object Encapsulation – An Example

Employee “owns” his tasks, and
the list.

The list “owns” its nodes.

with a possible heap:

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Boxes for Object Encapsulation – An Example

Each object owned by another,
eg 1 owns 2, 5, 6. Thus, classes
have owner parameter, eg
 class List<o>{ ... }
and types mention owners, eg
 List<this>

Objects may have fields pointing
to enclosing boxes, eg 3.

Therefore classes may have
context parameters, eg
 class Node<o1,o2>{
 Node<o1,o2> next;
 Task<o2> task;.. }

with a possible heap:

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Boxes for Object Encapsulation – An Example

“Java + OT” code
class Employee<o> {
 List<this> tasks;
 void delay(){ ... }
 }
 class List<o1>{
 Node<this,o1> first;
 void delay(){ ... }
 }
 class Node<o1,o2>{
 Node<o1,o2> next;
 Task<o2> task;
 void delay(){ ... }
 }
 class Task<o>{ ...
 void delay(){ ... } }

with a possible heap:

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Boxes for Object Encapsulation – An Example

class Employee<o> {
 List<this> tasks;
 void delay(){ ... }
 }
 class List<o1>{
 Node<this,o1> first;
 void delay(){ ... }
 }
 class Node<o1,o2>{
 Node<o1,o2> next;
 Task<o2> task;
 void delay(){ ... }
 }
 class Task<o>{ ...
 void delay(){ ... } }

with a possible heap:

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Employee “controls” its tasks; list controls its links.

Please turn the
volume down.

This will not make my
room any tidier!

radio.volumeDown() # room.TIDY()

Boxes for Object/Property Encapsulation
 Clarke, Drossopoulou, Smith

We want to be able to argue for “different” employees e1, e2:
 e1∦e2⊢ e1.delay() # e2.OK()

Approach: Boxes characterize
the parts of heap affecting/ed
by some execution/property.

For example:
 1.delay() : 1.under
 7.OK() : 7.under

Disjoint boxes ⇒ independence

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Boxes for Object/Property Encapsulation – An Example

Approach: we add effects to methods:
 class Employee<o> {...
 void delay():this.under
 }
 class List<o1>{...
 void delay():o1.under
 }
 class Node<o1,o2>{...
 void delay():o2.under
 }
 class Task<o>{ ...
 void delay():o.under
 }

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Therefore, e1.delay() : e1.under
 e2.OK() : e2.under

Because e1∦e2⊢ e1.under # e2.under
we have e1∦e2⊢ e1.delay() # e2.OK()

Boxes for Scoped Memory
 Zhao, Noble, Vitek, ...

Sacianu, Boyapati, Beebee, Rinard
Exploit owners as dominators property, to reclaim whole memory
areas rather than individual objects, in presence of multithreading

Here, 2, 3, and 4 belong in one
memory scope and reclaimed
together. Then, 1, 5 and 6 belong
to the parent memory scope.

Memory areas organized
hierarchically. Threads
enter/leave memory scopes
consistent with the hierarchy.

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Survey - 3

Boxes for Concurrency
 Boyapati, Lee, Liskov, Rinard, Salcianu, Shrira, Whaley, ...

and also

Abadi, Flanagan, Freund, Qadeer, ...

Boxes for Concurrency

To avoid races/guarantee atomicity, a thread must have acquired the
lock to an object before accessing it. The owner of a box stands for
the lock of all the contained objects.

A thread must lock 1 before
accessing 1, 5, or 6 – ie no need
to lock objects individusally.

Threads must lock 2 before
accessing 2, 3, or 4.

Note
• no nesting of boxes
• owners not dominators
• owners as locks.

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

Survey - 4

Boxes for Program Verification

Barnett, Bannerjee, Darvas, DeLine, Dietl, Faehndrich, Jacobs,
Leavens, Leino, Logozzo, Mueller, Naumann, Parkinson, Piessens,

Poetzsch-Heffter, Schulte ...

Boxes for Verification

An object “owns” other objects; the owner’s invariant depends on the
properties of the owned object.

A company is OK, if all its
employees are OK. An employee
is OK, if all his tasks are on
time.

Note:
• owners may change; (5 may

move to 7)
• no owners as dominators; (3

may have reference to 9)
• owner as modifier (3 may

not change 9)

7: E

8: L

9:N

11:T

1:E

2:L

3:N 4:N

5:T 6:T

0:C

Survey - Summary

 owner is ... owner as
dominator?

benefit

Confined
types

package – static
number of owners

yes object encapsulated in
package

Object
Encapsulation

an object

yes

object encapsulated in
objects, scoped memory,
visualization, independence

Locking object or thread,
holds “logic lock” to
owned objects

no

no nesting

guarantee race-free, or
atomicity

Universes/
Boogie

an object; owner’s
properties depend on
owned objects’ state –

no; modifier

owners may
change

modular verification

However ...

The nano is mine

No, it is
mine

OK, let us
share it!

Common Ownership - The Classic Way

Put the nano in the most
enclosing inner box.

class Family<o> {...
 iPod<this> nano;
 Daughter<this> nicky;
 Parent<this> sophia;
 ...
 }

then:

 nicky: Daughter

 nano : iPod
 sophia: Parent

:Family

Common Ownership - The Classic Way - Limitations

However, the family also includes
athena and constantine. Therefore,
they too will get their hands on the
nano....

 nicky: Daughter
 nano : iPod

 sophia: Parent

:Family

 constantine: Parent

 athena: Daughter

Common Ownership - The Universes Way

Give sophia a readonly
reference to the nano.

class Daughter {...
 rep iPod nano;
 ...
 }

class Parent {...
 readonly iPod nano;
 ...
 }

then, sophia can listen to the
nano.

 nicky: Daughter

 nano : iPod

 sophia: Parent
readonly

Common Ownership - the Universes Way - Limitations

However, then, sophia cannot
switch the nano on or off!

 nicky: Daughter

 nano : iPod

 sophia: Parent
readonly

Common Ownership – Ownership Domains Way

Put sophia and nicky in the same
ownership domain, with access to
the domain containing nano.

class Daughter { ... }

class Parent { ... }

class Together {
 public domain people;
 domain music;
 link people->music;
 people Daughter nicky;
 people Parent sophia;
 music iPod nano; }

then, only sophia and nicky can
manipulate nano.

 nicky: Daughter

 nano : iPod
 sophia: Parent

people music
:Together

Common Ownership - Ownership Domains Way - Limitations

However, what if sophia wanted
to
• share the nano with nicky,

and also
• share the walkman with

constantine?

 nicky: Daughter

 nano : iPod
 sophia: Parent

 constantine: Parent

people music
:Together

 walkman: Sony

Common Ownership – The Lu & Potter Way

... more at ECOOP’06

Common Ownership – so far

slightly relax an underlying, unique ownership hierarchy

Instead, today we explore

Multiple Ownership

• allow more than one hierarchy
• allow more than one owner

Multiple Ownership – An Example

Tasks and employees as before.

A project consists of a sequence
of tasks.

When a project is delayed, its
tasks get delayed accordingly.

A project is OK, if all its tasks
are within their due dates.

In the code we omit Node class.

 “Java” code

class Employee {
 EList tasks;
 void delay(){ ... } }

class EList {
 EList next;
 Task task;
 void delay(){ ... } }

class Task { ...
 void delay(){ ... }; }

class Project {
 PList tasks;
 void delay(){ ... } }

class PList {
 PList next;
 Task task;
 void delay(){ ... } }

Multiple Ownership – An Example

class Employee {
 EList tasks;
 void delay(){ ... } }

class EList {
 EList next;
 Task task;
 void delay(){ ... } }

class Task { ...
 void delay(){ ... }; }

class Project {
 PList tasks;
 void delay(){ ... } }

class PList {
 PList next; Task task;

 void delay(){ ... } }

1:E

2: EL

4:T

3:EL

5: T

6:E

7: EL

8:T

9: PL 10:PL

11:P

We want: e1∦e2⊢ e1.delay() # e2.OK()
 p1∦p2⊢ p1.delay() # p2.OK()

Need to express that a task belongs to an employee and a project, e.g.
1:E

5: T

11: P

task 5 is owned by Employee 1, and Project 11.

We allow many owner parameters, as well as context parameters, i.e.:

 class A<o1,...on : p1,...pm>{ ... }
where o1,...on owner parameters, and p1,...pm context parameters.
Thus, our earlier class A<o1,p2,...,pn> corresponds, now to
class A<o1:p2,...,pn>

In a type, we say any, when actual owner/context unknown (cf readonly).

Multiple Ownership

class Employee<o:> {
 EList<this:> tasks;
 void delay(){ ... } }

class EList<o:> {
 EList<o:> next;
 Task<o,any:> task;
 void delay(){ ... } }

class Task<o1,o2:>{ ...
 void delay(){ ... }; }

class Project<o:> {
 PList<this:> tasks;
 void delay(){ ... } }

class PList<o:> {
 PList<o:> next;
 Task<any,o:> task;
 void delay(){ ... } }

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P

The meaning of any: the corresponding owner/context is unknown, but
fixed.

class EList<o:> {
 …
 Task<o,any:> task;
}

final Employee<p:> e1;
final Project<q:> p1; final Project<r:> p2;

EList<e1:> l1;

l1.task:= new Task<e1,p1>; : OK
l1.task:= new Task<e1,p2>; : OK

EList<any:> l2;

l2.task : Task<any,any>
l2.task:= new Task<any,any>; : TYPE ERROR

We want to be able to argue:
 e1∦e2⊢ e1.delay() # e2.OK()

We first define when an object is “inside” another object, i.e. ι« ι’ as the
minimal reflexive, transitive relation, such that

if one of the owners of ι is ι’ then ι« ι’
Therefore

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P

5 « 5
5 « 1
5 « 11

Define run-time effects: χ ::= ι | c<ι1,.. ιn> | χ.undr | ...
meaning:

 [[ι]] = { ι }
[[c<ι1,.. ιn>]] = { ι | ι dyn. type c< ι1’,.. ιn’> and ιi’« ιi }
[[χ.undr]] = { ι | ι « [[χ]] }

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P

[[Task<1, 11>]] = { 5 }
[[Task<1, any>]] = { 4, 5 }
[[Task<11, any>]] = ∅

[[1]] = { 1 }
[[1.under]] = { 1, 2, 3, 4, 5 }

Define static effects φ ::= x | c<x1,.. xn> | φ.undr | ...

Define also a static effects system, which gives

class Employee<o:> {
 ...
 void delay()this.undr{..} }
}

class EList<o:> {
 ...
 void delay()o.undr{..} }
}

class Task<o1,o2:>{ ...
 void delay()this.undr{..}
}

class Project<o:> {
 ...
 void delay() this.undr{..} }
}

class PList<o:> {
 void delay()o.undr{..} }
}

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P

For stack s and heap h, define [[φ]] s,h the obvious way.

Define judgement Γ ⊢ φ # φ’ to denote disjointness of effects

Lemma:
 Γ ⊢ s, h Γ ⊢ φ # φ’ ⇒ [[φ]]s,h ∩ [[φ’]]s,h = ∅

Execution of an expression does not require/modify more than what is
described by the read/write effects:

Theorem:

Γ ⊢rd e : φ1 Γ ⊢wr e : φ2

Γ ⊢ s , h
e, s, h ↝ v, h’

⇒

 h = [[φ1]]s,h * h2

[[φ1]]s,h = [[φ2]]s,h * h3

h’ = h’’ * h3 * h2

e, s, [[φ2]]s,h*h3 ↝ v, h’’*h3

for some h2, h3, h’’

Thus, e1.delay() : e1.under
 e2.OK() : e2.under

Because e1∦e2 ⊢ e1.under # e2.under
we have e1∦e2 ⊢ e1.delay() # e2.OK()

Similarly, p1∦p2 ⊢ p1.delay() # p2.OK()

☺

Can I avoid multiple owners?

Single owners (usually) have the owners as dominators property. Can I
replace multiple owners by single owners representing tuples of owners?

i.e., instead of

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P12:P

13:PL

have pairs of owners objects

12:P

13:PL

1:E

2: EL

4:T

3:EL

5: T

6:E

7: EL

8:T

9: PL 10:PL

11:P

1,12 1,11 6,11

Can I avoid multiple owners? – not really

Thus scheme would require many
more “ghost” objects, and much
more “bookkeeping”.

Furthermore

• To whom does 1 belong?
• Accessing 1 would break the

owners as dominators
property.

• How do I delay an employee
(say 1) atomically?

12:P

13:PL

2: EL

4:T

3:EL

5: T

6:E

7: EL

8:T

9: PL 10:PL

1,12 1,11 6,11

1:EL

11:P

Can I preserve owners as dominators?

Yes, in a way, if we
• require that in each type definition the actual owner parameters are

“within” the actual context parameters,
• define a program “slice”, Pi, where each class as a “selected” ownership

parameter out of the may ownership parameters.
• For each slice, we filter the heap, by dropping any field whose selected

owner is not “outside” the selected owner parameter of the defining
class.

Can I preserve owners as dominators? yes, partly

Yes, in a way, if we
• require that in each type definition the actual owner parameters are

“within” the actual context parameters,
• define a program “slice”, Pi, where each class as a “selected” ownership

parameter out of the may ownership parameters.
• For each slice, we filter the heap, by dropping any field whose selected

owner is not “outside” the selected owner parameter of the defining
class.

Then

• For each of the slices, the selected owners are dominators in the
correspondingly filtered heap.

 Preserving owners as dominators – partly - P1 slice

Selected owner higlighted,

class Task<o1,o2:>{ ... }

class Employee<o:> {
 EList<this:> tasks;
.. }

class EList<o:> {
 EList<o:> next;
 Task<o,any:> task;
 ... }

class Project<o:> {
 PList<this:> tasks; ... }

class PList<o:> {
 PList<o:> next;
 Task<any,o:> task;
 ... }

Preserving owners as dominators – partly - P1 slice

Selected owner higlighted,
// and fields filtered out

class Task<o1,o2:>{ ... }

class Employee<o:> {
 EList<this:> tasks;
.. }

class EList<o:> {
 EList<o:> next;
 Task<o,any:> task;
 ... }

class Project<o:> {
 PList<this:> tasks; ... }

class PList<o:> {
 PList<o:> next;
 // Task<any,o:> task;
 ... }

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P12:P

13:PL

Preserving owners as dominators – partly – P2 slice

Selected owner higlighted

class Task<o1,o2:>{ ... }

class Employee<o:> {
 EList<this:> tasks;
.. }

class EList<o:> {
 EList<o:> next;
 Task<o,any:> task;
 ... }
class Project<o:> {
 PList<this:> tasks; ... }

class PList<o:> {
 PList<o:> next;
 Task<any,o:> task;
 ... }

Preserving owners as dominators – partly – P2 slice

Selected owner higlighted,
// and fields filtered out
class Task<o1,o2:>{ ... }

class Employee<o:> {
 EList<this:> tasks;
.. }

class EList<o:> {
 EList<o:> next;
 // Task<o,any:> task;
 ... }
class Project<o:> {
 PList<this:> tasks; ... }

class PList<o:> {
 PList<o:> next;
 Task<any,o:> task;
 ... }

1:E

2:EL

4:T

3:EL

5:T

6:E

7:EL

8:T

9:PL 10:PL

11:P12:P

13:PL

Preserving owners as dominators – partly
Aside: I have been tackling this problem (independence of actions and
assertions in the presence of “overlapping topologies”) unsuccessfully by
filtering out fields in and off for the last two years. Multiple owners was
the missing link.

Looking for an AOP view, where
the program is
 P = P1 ⊕ P2 ⊕ ... ⊕ Pn
the heap is
 h = h1 ⊕ ⊕ hn
and execution of P consists of the combination of execution of P1,P2,..., Pn,
and preserves some of the properties established in the context of Pi.

 f1 ⊕ f2 = f0 * f3 * f4 where f1 = f0 * f3 and f2 = f0 * f4

Multiple Ownership - Conclusions
• multiple owners are possible,
• multiple owners describe realistic object topologies,

and thus document programmer’s intuitions,
• multiple owners can be used to argue disjointness.

Multiple Ownership – Further Work

• refine type system (any as existential, refine scope),
• apply to concurrency and verification,
• AOP: combine two programs into one program with

multiple ownership hierarchies.

Watch http://slurp.doc.ic.ac.uk/ for the paper

The Benefits of Putting Objects into Boxes
Conclusions

• “boxes” express and preserve a topology in the object
heap;

• topology exploited for different goals, eg encapsulation,
memory management, program verification, concurrency.

• different goals impose slightly different constraints and
notations – a unification would be nice (pluggable types).

• notation heavy in some cases; some nice simplifications
exist, more are currently being developed.

• type inference exists for some systems, more would be
good.

Thank you!

