
Cassis 2005 -1/48

 Polymorphic Bytecode

Sophia Drossopoulou (Imperial College London)

joint work with Davide Ancona and Elena Zucca (Univ. Genova),
Ferruccio Damiani (Univ. Torino), and Alex Buckley (Imperial College)

Contents:
1. The problem in terms of an example
2. Overview of the solution in terms of the example
3- 6 The solution revisited (formally)

Cassis 2005 -2/48

1. The Problem

Java/C# compilers annotate the bytecode with information about
compilation environment –runtime environment may differ from
compilation environment

Cassis 2005 -3/48

Java/C# compilers annotate bytecode with information about the

compilation environment. In particular, a field access is annotated
with the class containing the field, and the type of the field. This
annotation is used for 1) field resolution and 2) to help the verifier.

E.g. the souce
 S = class A{ D m(B x){ return x.f.g; } }
compiled in environment ∆1
 ∆1 = class B{ C f} class C{ D g }
produces a bytecode corresponding to:
 B1 = class A{ D m(B x){ return x[B.f C][C.g D]; }

Cassis 2005 -4/48

Runtime environment may differ from compilation environment.

If difference small, then OK; if difference large, then runtime ERROR.

From previous, S = class A{ D m(B x){ return x.f.g; } }
compiled in ∆1 = class B{ C f} class C{ D g }
produces B1 = class A{ D m(B x){ return x[B.f C][C.g D]; }

If B1 is run in a context
 of ∆1 then OK.
 of ∆2 = class B {C f; D g } class C extends B { } then OK.
 of ∆3 = class B{ E f} class E{ D g } then ERROR.

Davide: Isn’t that annoying?
Sophia: It is unavoidable.
Davide/Elena: It is avoidable!

Cassis 2005 -5/48

2. Overview of the Solution

Cassis 2005 -6/48

Davide’s aim: Compositional compilation

1. decouple compilation from the particular compilation
environment as far as possible.

2. make bytecode easily retargetable.

Aims are achieved through:

1. Compilation produces annotations with type variables
rather than types; type variables can be replaced later;

2. Compilation does not check the presence of members, (or
subtypes); instead, it produces constraints.

Thus, compilation is context independent.

Global compilation will have format: ∆ ┝GL S : ∆’ ║ B

Compositional compilation will have format: ┝CO S : ∆ ║ Γ ║ B.

Cassis 2005 -7/48

In terms of our example, take

S = class A{ D m(B x){ return x.f.g; }
∆ = class A{ D m(B) }
∆1 = class B{ C f} class C{ D g }
B1 = class A{ D m(B x){ return x[B.f C][C.g D]; } }

Then, traditional, global compilation gives
 ∆1 ┝GL S : ∆ ║ B1

Now, take polymorphic bytecode B2 and constraints Γ:

B2 = class A{ D m(B x){ return x[B.f α][α.g α’]; } }
Γ = fld(B.f α), fld(α.g α’), α’≤D

Then, compositional compilation will give
┝CO S : ∆ ║ Γ ║ B2.

Cassis 2005 -8/48

In order to execute the polymorphic bytecode we can:
1. consider a linking step, where type variables are replaced by

class names before execution – linking.
or
2. extend the virtual machine so that type variables are replaced

at runtime - flexible dynamic linking (Alex Buckley).

In this talk we take the first approach.

Cassis 2005 -9/48

Taking the first approach, we will define a linking step:

Γ ║ B ↝ Γ’ ║ B’ in ∆
uses the context ∆; resolves the constraints in Γ; applies the solution
to Γ, obtaining remaining constraints Γ’ and more defined binary B’.

For example, take

B2 = class A{ D m(B x){ return x[B.f α][α.g α’]; } }
Γ = fld(B.f α), fld (α.g α’), α’≤D
∆3 = class B{ C f}
B3 = class A{ D m(B x){ return x[B.f C][C.g α’]; } }
Γ3 = fld (C.g α’), α’≤D

Then, linking will give
Γ ║ B2 ↝ Γ3 ║ B3 in ∆3

Cassis 2005 -10/48

Furthermore, take

B3 = class A{ D m(B x){ return x[B.f C][C.g α’]; } }
Γ3 = fld (C.g α’), α’≤D
∆4 = class C{ H g} class H extends D { }
B4 = class A{ D m(B x){ return x[B.f C][C.g H]; } }

Then, linking will give
Γ3 ║ B3 ↝ ε ║ B4 in ∆4

and also
Γ ║ B2 ↝ ε ║ B4 in ∆3∆4

Cassis 2005 -11/48

What about the relation between global compilation, compositional
compilation, and linking?

In our example, we have

• ∆1 ┝GL S : ∆ ║ B1 (global compilation),
• ┝CO S : ∆ ║ Γ ║ B2 (compositional compilation),
• Γ ║ B2 ↝ ε ║ B1 in ∆1 (linking).

We shall require that compositional compilation followed by linking
that resolves all constraints is “equivalent” to global compilation.

end of overview of the solution

Cassis 2005 -12/48

Structure of the talk:
1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -13/48

3. A language independent framework for compilation

Global Compilation ∆ ┝gl s : δ ║ b for one fragment
 ∆ ┝GL S : ∆ ║ B for many fragments

where δ, ∆ one, many class signatures
 s, S one, many source fragments
 b, B one, many binary fragments

Compositional Compilation ┝co s : δ ║ Γ ║ b one fragm.

 ┝CO S : ∆ ║ Γ ║ B many frgms
where γ, Γ one, many constraints

Linking Γ ║ B ↝ Γ’ ║ B’ in ∆

Cassis 2005 -14/48

Our framework is parametric wrt. compilation of one fragment.

In other words,
• Global compilation of one fragment,

 ∆ ┝gl s : δ ║ b,
 language dependent, outside the framework.

• Global compilation of many fragments,
 ∆ ┝GL S : ∆ ║ B,
 part of our framework; defined in terms of ∆ ┝gl s : δ ║ b.

• Compositional compilation of one fragment,
 ┝co s : δ ║ Γ ║ b,
language dependent, and outside the framework.

• Global compilation of many fragments,
 ┝CO S : ∆ ║ Γ ║ B,
 part of framework; defined in terms of ┝co s : δ ║ Γ ║ b.

Cassis 2005 -15/48

Global Compilation

Global compilation for one fragment, ∆ ┝gl s : δ ║ b
given by the particular programming language.

Global compilation for many fragments:

 ∆ ┝gl s : δ ║ b
∆ ┝GL s : δ ║ b

 ∆ ∆1 … ∆k-1 ∆k+1… ∆n ┝GL Sk : ∆k ║ Bk for k∈1..n

∆ ┝GL S1… Sn : ∆1 … ∆n ║ B1 …B1

where δ, ∆ class signatures, s, S source fragments
 b, B binary fragments

Cassis 2005 -16/48

Compositional Compilation

Compositional compilation for one fragment, ┝co s : δ ║ Γ ║ b,
given by the particular programming language.

Compositional compilation for many fragments:

 ┝co s : δ ║ Γ ║ b
Γ ║ b ↝ Γ’ ║ B’ in ∆
 ┝CO s : δ ║ Γ’ ║ b’

 ┝CO Sk : ∆k ║ Γk ║ Bk for k∈1..n
Γ1… Γn ║ B1 … Bn ↝ Γ’ ║ B’ in ∆1…∆n
 ┝CO S1… Sn : ∆1…∆n ║ Γ’║ B’

where δ, ∆ class signatures, γ, Γ constraints,
 s, S source fragments b, B binary fragments

Cassis 2005 -17/48

Sound and Complete Compositional Compilation

Definition Compositional compilation is sound, iff
┝CO S : ∆ ║ Γ ║ B,
 and
 Γ ║ B ↝ ε ║ B’ in ∆ ∆’

 ⇒

 ∆ ∆’ ┝GL : S : ∆ ║B’

 Definition Compositional compilation is complete, iff

 ∆’┝GL S : ∆ ║B

 ⇒

∃ Γ’, B’:
┝CO S : ∆ ║ Γ’ ║ B’,
 and
 Γ’ ║B’ ↝ ε ║ B in ∆ ∆’

Note, that for ∆’ = ε, we obtain that sound and complete means:
 ┝CO S : ∆ ║ ε ║ B ⇔ ┝GL S : ∆ ║B

Cassis 2005 -18/48

Theorem 1 (Sufficient Conditions for Soundness)

If

1.

┝co s : δ ║ Γ ║ b, and
 Γ ║ b ↝ ε ║ b’ in ∆ δ

⇒

∆ δ ┝gl s : δ ║b’

2.

Γ ║ B ↝ Γ’ ║ B’ in ∆, and
Γ’║ B’ ↝ ε ║ B’’ in ∆’ ∆

⇒

Γ║B ↝ ε ║ B’’ in ∆’∆

3.

Γ1…Γn ║ B1…Bn ↝ ε ║ B’ in ∆

⇒

∃ B1’,…,Bn’:
 B’ = B1’,…,Bn’ and
 Γk ║ Bk ↝ ε ║ Bk’ in ∆

4.

ε ║ B ↝ ε ║ B in ε for all B

then compositional compilation is sound.

Cassis 2005 -19/48

1st Condition

┝co s : δ ║ Γ ║ b, and
 Γ ║ b ↝ ε ║ b’ in ∆ δ

⇒

∆ δ ┝gl s : δ ║b’

means that compositional compilation “in the small” is sound.

2nd Condition

Γ ║ B ↝ Γ’ ║ B’ in ∆, and
Γ’║ B’ ↝ ε ║ B’’ in ∆’ ∆

⇒

Γ║B ↝ ε ║ B’’ in ∆’∆

means that two linking steps, with the second step in a larger
environment ∆’ ∆ resolving all constraints,
correspond to one linking step in a larger environment resolving all
constraints.

Cassis 2005 -20/48

3rd Condition

Γ1…Γn ║ B1…Bn ↝ ε ║ B’ in ∆

⇒

∃ B1’,…,Bn’:
 B’ = B1’,…,Bn’ and
 Γk ║ Bk ↝ ε ║ Bk’ in ∆

 k∈1..n

means that linking a sequence of binaries B1…Bn resolving all
constraints,
correspond to a sequence of linking binary Bk and each step
resolving all constraints.

4th Condition

ε ║ B ↝ ε ║ B in ε for all B

means that linking in an empty environment, and empty constraints
has no effect.

Cassis 2005 -21/48

Theorem 2 (Sufficient Conditions for Completeness)

If

1.

 ∆ δ ┝gl s : δ ║b

⇒

∃ b’, Γ:
 ┝ co s : δ ║ Γ ║ b’,
 Γ ║ b’ ↝ ε ║ b’ in ∆ δ

2.

Γ║B ↝ ε ║ B’ in ∆’∆

⇒

∃ B’’, Γ’’:
 Γ ║ B ↝ Γ’’ ║ B’’ in ∆,
 Γ’’║ B’’ ↝ ε ║ B’ in ∆’∆

3.

B’ = B1’,…,Bn’ and
Γk ║ Bk ↝ ε ║ Bk’ in ∆

⇒

Γ1…Γn ║ B1…Bn ↝ ε ║ B’ in ∆

then compositional compilation is compete.

Cassis 2005 -22/48

1st Condition - Complete

 ∆ δ ┝gl s : δ ║b

⇒

∃ b’, Γ:
 ┝co s : δ ║ Γ ║ b’,
 Γ ║ b’ ↝ ε ║ b’ in ∆ δ

means that compositional compilation “in the small” is compete.

 2nd Condition - Complete

Γ║B ↝ ε ║ B’ in ∆’∆

⇒

∃ B’’, Γ’’:
 Γ ║ B ↝ Γ’’ ║ B’’ in ∆,
 Γ’’║ B’’ ↝ ε ║ B’ in ∆’∆

means that one linking step which resolves all constraints, can be
broken down into two steps, the first in a smaller environment.

Cassis 2005 -23/48

3rd Condition - Complete

B’ = B1’,…,Bn’ and
Γk ║ Bk ↝ ε ║ Bk’ in ∆

⇒

Γ1…Γn ║ B1…Bn ↝ ε ║ B’ in ∆

means that a sequence of linking steps which resolves all
constraints, can be subsumed in one step.

Seeking sound and complete compositional compilation …

Cassis 2005 -24/48

1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -25/48

FJ0 Source Syntax

S ::= s1 … sn

s ::= class c extends c’ { fd mdS }
fd ::= c f
mdS ::= c m(c’ x){ return eS; }
eS ::= x | eS.f | eSm(eS) | new c(eS1…eSn) | (c)eS

Notes

1. Superscripts distinguish source/binary, eg eS vs eB.
2. One field, one method per class.
3. One parameter, x, per method.
4. No imperative features.
5. Cast expression (c)eS.
6. No overloading

where 2-4 not a restriction, 5 extra to FJ, 6 as in FJ.

Cassis 2005 -26/48

FJ0 Binary Syntax

B ::= b1 … bn

b ::= class c extends c’ { fd mdB }
fd ::= c f
mdB ::= c m(c’ x){ return eB; }
eS ::= x |
 eB[c.f c'] | field f from class c, type c'
 eB [c.m(c') c"](eB) |
 meth m from class c,type c'→ c"
 new [c c1…cn](eB1…eBn) |
 constr. for class c, fld types c1,…,cn
 <<c>>eB potential cast

Cassis 2005 -27/48

FJ Class Signatures

∆ ::= δ 1 … δ n

δ ::= class c extends c’ { c’’ f c”’ m(c”” x) }

Cassis 2005 -28/48

Constraints

Γ ::= γ 1 … γ n

γ ::= c ≤ c’ | class c is a subclass of c'
 fld(c.f c’) | class c has field f of type c'
 mth(c.m(c') c"] | class c has method m of type c'→ c"
 fldTypes(c c1…cn) | the fields of class c have types c1,…,cn

The judgment
 ∆ ┝ γ
means that the environment ∆ satisfies constraint γ .

We skip the details here, but e.g. take
 ∆2 = class B { D g … } class C extends B { }
then
 ∆2 ┝ C ≤ B and ∆2 ┝ fld(C.g D)

Cassis 2005 -29/48

 1. The problem

2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -30/48

We also introduce local variable declararions, Π, which maps this
and x to a type.

We define ∆ ┝gl s : δ ║ b in terms of the judgments

1. ∆ ┝ γ
 ie the environment ∆ satisfies constraint γ.

2. ∆, Π ┝gl eS : t ║ eb .

i.e. eS has type , and compliation produces eb.

Cassis 2005 -31/48

Global Compilation Rules – in the small

 Π(x) = t
 ∆, Π ┝gl x : t ║ x

 ∆, Π ┝gl eS : c ║ eB
 ∆ ┝ fld(c.f, c’)
 ∆, Π ┝gl eS.f : c’ ║ eB[c.f,c’]

 ∆, Π ┝gl eS : c ║ eB ∆ ┝ mth(c.m(c’),c’’)
 ∆, Π ┝gl e1S : c’’’ ║ e1B ∆ ┝ c’’’ ≤ c’
 ∆, Π┝gl eS .m(e1S) : c’’ ║ eB[c.m(c’), c’’] (e1B)

 ∆ ┝ fldTypes(c, c1 … cn) ∆, Π ┝gl ekS : ck ║ ekB k=1..n
 ∆, Π ┝gl new c(e1S… enS) : c ║ new [c c1…cn](eB1…eBn)

 casts later

Cassis 2005 -32/48

Global Compilation Rules – in the large

 ∆, this->c, x->c’’’ ┝gl eS : c’’ ║ e’B
 ∆ ┝ c’’’ ≤ c’
 ∆ ┝gl class c extends c’ { fd c’’ m(c’’’){ eS} : (c,c’,fd,c’’ m(c’’’) ║
 class c extends c’ { fd c’’ m(c’’’){ eS }

Cassis 2005 -33/48

1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -34/48

Compositional Compilation Rules – in the small

 Π(x) = t
 Π ┝co x : t║ ε ║x

 Π ┝ co eS : t ║ Γ ║eB

 α is a fresh type variable
 Π ┝ co eS.f : α║Γ,fld(t.f, α) ║eB[t.f,α]

 Π ┝ co eS : t ║ Γ ║eB
 Π ┝ co e1S : t’ ║ Γ’║e1B
 α, α’ are fresh type variables
 Π┝co eS.m(e1S) : c’’ ║ Γ, Γ’, mth(t.m(α) α’), t’≤ α ║
 eB[t.m(α), α’] (e1B)

 Π ┝ co ekS : tk ║Γk ║ ekB k=1..n
 αk are fresh type variables k=1..n
 Π ┝ co new c(e1S…enS) : c ║Γ1..Γn, fldTyps(c, α1..αn), t1≤α1,… tn≤αn
 ║ new [c c1…cn](eB1…eBn)

Cassis 2005 -35/48

 casts later

Compositional Compilation Rules – in the large

 this->c, x->c”’┝ co eS : t ║Γ ║ eB
 ∆ ┝co class c extends c’ { fd c” m(c”’){ eS } : (c, c’, fd, c’’ m(c”’) ║
 Γ, t ≤ c” ║ class c extends c’ { fd c” m(c”’){ eS }

Cassis 2005 -36/48

Comparison of the global and compositional systems ..
in terms of the rule for field access

∆, Π ┝gl eS : c ║ eB
 ∆ ┝ fld(c.f, c’)
 ∆, Π ┝gl eS.f : c’ ║ eB[c.f,c’]

Π ┝ co eS : t ║ Γ ║eB

 α is a fresh type variable
 Π ┝ co eS.f : α║ Γ, fld(t.f, α) ║eB[t.f,α]

• Use of type variables in compositional
• Constraints consumed in the global system vs the constraints are

produced in the compositional

Cassis 2005 -37/48

1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -38/48

4.4 Linking

We are looking for a relation Γ ║ B ↝ Γ’ ║ B’ in ∆ so that the
requirements from Theorem 1 and 2 will be satisfied.

Idea: the linking process replaces type variables in B by classes from
∆ which satisfy the constraints from Γ.
Therefore, look for appropriate substitution σ and apply it to B.
Thus, assume a judgment Γ ↝ Γ’ ║ σ in ∆ and define

Γ ↝ Γ’ ║ σ in ∆
Γ ║ B ↝ Γ’ ║ σ(B) in ∆

Cassis 2005 -39/48

3rd Theorem: if
1. Γ ↝ Γ’ ║ σ in ∆ implies ∆┝ σ(Γ)\ Γ’.
2. ∆┝ σ(Γ) implies Γ ↝ ε ║ σ in ∆.
3. Γ ↝ ε ║ σ in ∆1∆2 implies
 Γ ↝ Γ1 ║ σ1 in ∆1,
 Γ1 ↝ ε ║ σ2 in ∆1∆2

 σ = σ1 σ2. for some σ1, σ2, Γ1.
then, the requirements of theorems 1 and 2 are satisfied (and thus
FJ0 compositional compilation is sound and complete.)

Cassis 2005 -40/48

The search for substitutions is defined in terms of rules like

∆┝ fld(c.f c’)
fld(c.f α) ↝ α↦ c’ in ∆

 c is undefrined in ∆
fld(c.f t) ↝ id in ∆

t cannot be unified with c’
∆┝ fld(c.f c’)
fld(c.f t) ↝ ERROR║ ε in ∆

Γ ↝ Γ’ ║ σ in ∆
σ(γ) ↝ σ’ in ∆
Γ γ ↝ σ’(Γ’) ║σ’σ in ∆

Γ ↝ Γ’ ║ σ in ∆
σ(γ) ↝ id in ∆
Γ γ ↝ σ(γ) Γ’ ║ σ in ∆

For example, Γ = fld(B.f α), fld (α.g α’), α’≤D, ∆3 = class B{ F f}
Γ3 = fld (C.g α’), α’≤D,
Then, linking will give Γ ↝ Γ3 ║ α↦ F in ∆3

Cassis 2005 -41/48

1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -42/48

Theorem 4
 Γ ↝ Γ’ ║ σ in ∆ satisfies the requirements of theorem 3.

Therefore, FJ0 compositional compilation is sound and complete.

☺

Cassis 2005 -43/48

1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -44/48

Casts are “delicate” in that the bytecode produced depends on
whether the subclass relationship holds; This can be checked in
global compilation, but not in compositional compilation.

∆, Π ┝gl eS : c’ ║ eB
 ∆ ┝ c’ ≤ c
 ∆, Π ┝gl (c) eS : c ║ eB

 ∆, Π ┝gl eS : c’ ║ eB
 ∆ ┝ c ≤ c’
 ∆, Π ┝gl (c) eS : c ║ (c) eB

 Π ┝ co eS : t ║Γ ║ eB

 Π ┝ co (c)eS : c ║Γ ║ <<c>>eB

The function I(∆, σ, eB) replaces <<c>>e’B by (c)e’B or e’B.
Then

Γ ↝ Γ’ ║ σ in ∆
Γ ║ B ↝ Γ’ ║ I(∆, σ, eB) in ∆

Cassis 2005 -45/48

 1. The problem

2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -46/48

In Flexible Dynamic Linking we replace the linking phase by
lazy runtime liking interleaved with resolution and
verification.
We also allow the use of type variables in the signatures of
methods or types of fields.
For verification, we do not load classes, instead we post
constraints.
Then, type variables may be replaced very lazily, eg replace α
right before the field access in [B.f α].

We have proven the type soundness of the approach.

We are developing one .NET and one JVM implementation. So far,
.NET allows less flexibility.

Cassis 2005 -47/48

1. The problem
2. Overview of the Solution
3. A language independent framework for compilation
4. Application of FJ0

4.1. FJ0 source, binary, environments,
4.2. Global Compilation for FJ0
4.3. Compositional Compilation for FJ0
4.4. Linking for FJ0
4.5 Properties
4.6 What about casts?

5. Flexible Dynamic Linking
6. Conclusions

Cassis 2005 -48/48

Compositional compilation provides ”compile once, run
everywhere”
Compositional compilation achieved through

• Use of type variables in annotations,
• Creation, rather than consumption of constraints,
• Linking step which satisfies constraints through the

creation of appropriate substitutions.

Treatment of cases where the instruction created depends on
environment requires more sophistication for linking (I(∆, σ, eB))

• Eg casts (in talk)
• More such cases, e.g. A.B.C.

Further issues
• overloading
• generics

