
Chalice to Boogie
Program Verification for Object-Oriented Programs

Chinmay Kakatkar

(star) (no star)

class Car
{

int fuel;

void refuel (int amount)
{

this.fuel := amount;
}

void main ()
{

…
}

}

class Car
{

int fuel;

void refuel (int amount)
{

this.fuel := amount;
}

void main ()
{

…
}

}

Car c1 := new Car ();
Car c2 := new Car ();
c1.refuel (3);
c2.refuel (5);
assert (c1.fuel == 3);

class Car
{

int fuel;

void refuel (int amount)
{

this.fuel := amount;
}

void main ()
{

…
}

}

Car c1 := new Car ();
Car c2 := new Car ();
c1.refuel (3);
c2.refuel (5);
assert (c1.fuel == 3);

c1

3

c2

5

c1

5

The Problem is

Framing

“We wish to logically represent how the

execution of a command changes the state
without having to explicitly say how the command
does not change the state.”

One Solution is

Implicit Dynamic Frames (IDF)

Theory: Kassios (2006), Smans (2008)

Implementation: ETH, Microsoft Research, Leuven

Car program in Chalice

class Car
{

var fuel : int;

void refuel (amount : int)
requires acc (this.fuel);
ensures acc (this.fuel) &*& this.fuel == amount;
{

this.fuel := amount;
}

void main ()
{

…
}

}

var c1 := new Car;
var c2 := new Car;
call c1.refuel (3);
call c2.refuel (5);
assert c1.fuel == 3;

c1

3

c2

5

c1

5

Car program in Chalice

class Car
{

var fuel : int;

void refuel (amount : int)
requires acc (this.fuel);
ensures acc (this.fuel) &*& this.fuel == amount;
{

this.fuel := amount;
}

void main ()
{

…
}

}

var c1 := new Car;
var c2 := new Car;
call c1.refuel (3);
call c2.refuel (5);
assert c1.fuel == 3;

SMT Solver

Yes! No!

Verification Pipeline

High-level verification language

Intermediate representation

Generation of verification conditions

TranslationStep 1

Step 2

Step 3

Chalice

(star)

Boogie

(no star)

Satisfiable?

SMT Solver

Yes! No!

Verification Pipeline

High-level verification language

Intermediate representation

Generation of verification conditions

TranslationStep 1

Step 2

Step 3

Chalice

(star)

Boogie

(no star)

Satisfiable?

Contributions

1. Formalization of a Chalice subset

2. Formalization of a Boogie subset

3. Formalization of a subset translation

from Chalice to Boogie

4. Proof of Soundness of Translation

Contributions

1. Formalization of a Chalice subset

2. Formalization of a Boogie subset

3. Formalization of a subset translation

from Chalice to Boogie

4. Proof of Soundness of Translation

Chalice
(has star)

Our subset ignores concurrency features

We give:

• Operational semantics

• Hoare logic { Pre } C { Post }

• Soundness proof of Hoare logic w.r.t.
operational semantics

“A Sip of the Chalice” (Drossopoulou & Raad, 2011)

Self-framing

class Car
{

var fuel : int;

void refuel (amount : int)
requires true;
ensures this.fuel == amount;
{

this.fuel := amount; //ERROR: update is not framed
}

void main ()
{

…
}

}

Badly framed Car program in Chalice (1)

class Car
{

var fuel : int;

void refuel (amount : int)
requires this.fuel == 0; //ERROR: assertion not self-framing
ensures acc (this.fuel) &*& this.fuel == amount;
{

this.fuel := amount;
}

void main ()
{

…
}

}

Badly framed Car program in Chalice (2)

Our approach to self-framing

An assertion A is self-framing

if and only if

All heap references in A are

sufficiently framed by the access predicate.

A = acc (x.f) &*& … &*& x.f == 100

Rights Access

A is self-framing

if and only if

Access (A) ⊆ Rights (A)

To be or not to be self-framing

A Access (A) Rights (A)

acc(x.f) &*& x.f == 100 { x.f } { x.f }

acc(x.f) &*& y.f == 90 { y.f } { x.f }

acc(x.f) &*& x.g == 101 { x.g } { x.f }

acc(x.f) { } { x.f }

Our approach to self-framing

is intuitive,

provides an operational angle,

and simplifies proof of soundness.

Challenges

• Scoping & Simplification

• Design choices

• Formalization of method calls

Contributions

1. Formalization of a Chalice subset

2. Formalization of a Boogie subset

3. Formalization of a subset translation

from Chalice to Boogie

4. Proof of Soundness of Translation

Boogie
(no star)

Our Boogie subset mirrors our Chalice subset

We give an operational semantics for our Boogie subset

Motivated in Rustan Leino’s talk at Imperial College London (2012)

Challenges

• Scoping, Simplification, Design

• Formalization of Boogie-specific
commands

Without the benefit of existing literature!

Contributions

1. Formalization of a Chalice subset

2. Formalization of a Boogie subset

3. Formalization of a subset translation

from Chalice to Boogie

4. Proof of Soundness of Translation

Chalice to Boogie

Has special commands and

predicates

< frameB >

Chalice to Boogie

Has notion of star operator

< maskC , heapC , frameC >

Has special commands and

predicates

< frameB >

Translation needs to be meaning-preserving

Method Call

Caller Callee

x.y(m)

Execute method body

.

.

.

.

.

.

return

Caller Callee

x.y(m)

Execute method body

.

.

.

.

.

.

return

Exhale (PRE)

Inhale (PRE)

Exhale (POST)

Inhale (POST)

x.m(y)

x.m(y)

method m (t p)

requires Ar;

ensures Ae;

{

method bodyE

}

x.m(y)

method m (t p)

requires Ar;

ensures Ae;

{

method bodyE

}

var mask_e : Mask; var heap_i : Heap;

var y1 : Expression;

y1 := y;

mask_e := mask;

exhale(Ar [this / x] [y1 / y] , mask_e);

mask := mask_e;

havoc heap_i;

assume IsGoodInhaleState(heap_i , heap , mask);

inhale(Ae [this / x] [y1 / y] , mask , heap_i);

x.m(y)

var mask_e : Mask; var heap_i : Heap;

var y1 : Expression;

y1 := y;

mask_e := mask;

exhale(Ar [this / x] [y1 / y] , mask_e);

mask := mask_e;

havoc heap_i;

assume IsGoodInhaleState(heap_i , heap , mask);

inhale(Ae [this / x] [y1 / y] , mask , heap_i);

method m (t p)

requires Ar;

ensures Ae;

{

method bodyE

}

procedure C.m (this : C , p : t)

{

var mask_e : Mask; var heap_i : Heap;

havoc heap_i;

assume IsGoodInhaleState (heap_i , heap , mask);

inhale (Ar , mask , heap_i);

translate (method body);

mask_e := mask;

exhale (Ae , mask_e);

mask := mask_e;

}

exhale(acc(x.f) , mask) = assert 0 < mask[x , C.f];

mask[x , C.f] := mask[x , C.f] – 1;

assume IsGoodMask (mask);

exhale(a1 &*& a2 , mask) = exhale(a1 , mask);

exhale(a2 , mask);

exhale(b , mask) = assert translate (b);

inhale(b , mask , heap_i) = assume translate (b);

inhale(a1 &*& a2 , mask , heap_i) = inhale(a1 , mask , heap_i);

inhale(a2 , mask , heap_i);

inhale(acc(x.f) , mask , heap_i) = heap[x , C.f] := heap_i[x , C.f];

mask[x , C.f] := mask[x , C.f] + 1;

assume IsGoodMask (mask);

exhale(acc(x.f) , mask) = assert 0 < mask[x , C.f];

mask[x , C.f] := mask[x , C.f] – 1;

assume IsGoodMask (mask);

exhale(a1 &*& a2 , mask) = exhale(a1 , mask);

exhale(a2 , mask);

exhale(b , mask) = assert translate (b);

inhale(b , mask , heap_i) = assume translate (b);

inhale(a1 &*& a2 , mask , heap_i) = inhale(a1 , mask , heap_i);

inhale(a2 , mask , heap_i);

inhale(acc(x.f) , mask , heap_i) = heap[x , C.f] := heap_i[x , C.f];

mask[x , C.f] := mask[x , C.f] + 1;

assume IsGoodMask (mask);

Checking self-framedness of assertions in Boogie (1)

Not self-framing:

A = x.f == 3 &*& y.f == 3;

exhale(x.f == 3 &*& y.f == 3, mask) =

assert heap[x , C.f] == 3; //ERROR

assert heap[y , C.f] == 3;

Self-framing:

A = acc(x.f) &*& acc(y.f) &*& x.f == 3 &*& y.f == 3; where x and y not aliases of each other!

exhale(acc(x.f) &*& acc(y.f) &*& x.f == 3 &*& y.f == 3, mask) =

assert 0 < mask[x , C.f];

mask[x , C.f] := mask[x , C.f] – 1;

assume IsGoodMask (mask);

assert 0 < mask[y , C.f];

mask[y , C.f] := mask[y , C.f] – 1;

assume IsGoodMask (mask);

assert heap[x , C.f] == 3;

assert heap[y , C.f] == 3;

Checking self-framedness of assertions in Boogie (2)

class Car

{

var fuel : int;

void refuel (amount : int)

requires acc (this.fuel);

ensures acc (this.fuel) &*& this.fuel == amount;

{

this.fuel := amount;

}

void main ()

{

var c1 := new Car;

var c2 := new Car;

call c1.refuel (3);

call c2.refuel (5);

assert (c1.fuel == 3);

}

}

Car program still running …

void refuel (amount : int)

requires acc (this.fuel);

ensures acc (this.fuel) &*& this.fuel == amount;

{

this.fuel := amount;

}

call c1.refuel (3);

//set up variables

var mask_e : Mask; var heap_i : Heap;

var y : Expression;

y := 3;

mask_e := mask;

//exhale precondition

assert 0 < mask_e [this , Car.fuel];

mask_e [this , Car.fuel] := mask_e [this , Car.fuel] – 1;

assume IsGoodMask (mask_e);

mask := mask_e;

havoc heap_i;

assume IsGoodInhaleState (heap_i , heap, mask);

//inhale postcondition

heap [this , Car.fuel] := heap_i [this , Car.fuel];

mask [this , Car.fuel] := mask [this , Car.fuel] + 1;

assume IsGoodMask (mask);

assume heap [this , Car.fuel] == y;

procedure Car.refuel (this : Car , amount : int)

{

var mask_e : Mask; var heap_i : Heap;

havoc heap_i;

assume IsGoodInhaleState (heap_i , heap , mask);

//inhale precondition

heap [this , Car.fuel] := heap_i [this , Car.fuel];

mask [this , Car.fuel] := mask [this , Car.fuel] + 1;

assume IsGoodMask (mask);

//translate method body

CanAccess (mask , this , Car.fuel);

heap [this , Car.fuel] := amount;

mask_e := mask;

//exhale postcondition

assert 0 < mask_e [this , Car.fuel];

mask_e [this , Car.fuel] := mask_e [this , Car.fuel] – 1;

assume IsGoodMask (mask_e);

assert heap [this , Car.fuel] == amount;

mask := mask_e;

}

Contributions

1. Formalization of a Chalice subset

2. Formalization of a Boogie subset

3. Formalization of a subset translation

from Chalice to Boogie

4. Proof of Soundness of Translation

Soundness Argument

The translation of a Chalice program P is sound

if and only if

given that P verifies in the Boogie environment, it

also verifies in the Chalice environment.

Verification Pipeline Revisited

SMT Solver

Yes! No!

High-level verification language

Intermediate representation

TranslationStep 1

Step 2

Step 3

Chalice

(star)

Boogie

(no star)

Satisfiable?

Generation of verification conditions

If program verifies in Chalice environment …

SMT Solver

Yes!

High-level verification language

Intermediate representation

TranslationStep 1

Step 2

Step 3

Chalice

(star)

Boogie

(no star)

Satisfiable?

Generation of verification conditions

If program verifies in Boogie environment …

SMT Solver

Yes!

Intermediate representation

Step 2

Step 3

Boogie

(no star)

Satisfiable?

Generation of verification conditions

Other Machinery

Auxiliary Definitions, Lemmas E

Challenges

• Design of translation function

• Formulating & justifying soundness argument

• Lemmas and proofs

Highlights

1. Formalization of a Chalice subset

� Approach to self-framing

2. Formalization of a Boogie subset

� Operational semantics

3. Formalization of a sound translation from Chalice to Boogie

� Translation function, soundness argument & proofs

Applications

1. Boogie-based verification

2. Pedagogic uses

http://rise4fun.com/

Applications

1. Boogie-based verification

2. Pedagogic uses

A Challenging Project

� Lots of background reading

� An open-ended project

� Balancing breadth and depth of investigation

� Experimenting with tools

� Formalizing approaches and arguments

� Making original contributions

� I am not JMC or MEng (but I am passionate about research!)

K
n
o

w
le

d
g

e

Time

Future Work

1. Formalize translation of while loop, and proof of method call

2. Extend language subsets to include concurrency

3. Consider translation from VeriFast to Chalice

Q&A

Extra Slides

Usual approach to self-framing

An assertion A is self-framing

if and only if

The validity of A is preserved in all heaps

which agree in the locations mentioned in

the permissions. (Parkinson & Summers, 2011)

While loop

while (condition)

{

// check invariant holds upon loop entry (assert E)

loop body E

// check invariant holds after arbitrary loop iteration (havocE)

}

Method call

If:

• x.m(y)

• translation of x.m(y) gives a Boogie encoding CB

• CB verifies in Boogie

• Chalice and Boogie starting configurations are congruent

• and given preconditions of operational semantics for x.m(y)E

Then:

(esp. using Lemmas for Inhale / Exhale E)

Show that there exists a terminal Boogie configuration ϕB s. t.

• CB execution in Boogie leads to ϕB
• Terminal configurations in Chalice and Boogie match

