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The Problem is

Framing







“We wish to logically represent how the 

execution of a command changes the state
without having to explicitly say how the command 
does not change the state.”



One Solution is

Implicit Dynamic Frames (IDF)

Theory: Kassios (2006), Smans (2008)

Implementation: ETH, Microsoft Research, Leuven





Car program in Chalice

class Car 
{ 

var fuel : int;

void refuel (amount :  int)
requires acc (this.fuel );
ensures acc (this.fuel ) &*& this.fuel == amount;
{ 

this.fuel := amount; 
} 

void main ( ) 
{ 

…
} 

}

var c1 := new Car; 
var c2 := new Car; 
call c1.refuel ( 3 ); 
call c2.refuel ( 5 ); 
assert c1.fuel == 3;
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Chalice 
(has star)

Our subset ignores concurrency features

We give:

• Operational semantics

• Hoare logic   { Pre } C { Post }

• Soundness proof of Hoare logic w.r.t. 
operational semantics

“A Sip of the Chalice” (Drossopoulou & Raad, 2011)



Self-framing



class Car 
{ 

var fuel : int;

void refuel ( amount : int )
requires true;
ensures this.fuel == amount;
{ 

this.fuel := amount;  //ERROR: update is not framed
} 

void main ( ) 
{ 

…
} 

}

Badly framed Car program in Chalice (1)



class Car 
{ 

var fuel : int;

void refuel ( amount : int )
requires this.fuel == 0;  //ERROR: assertion not self-framing
ensures acc ( this.fuel ) &*& this.fuel == amount;
{ 

this.fuel := amount; 
} 

void main ( ) 
{ 

…
} 

}

Badly framed Car program in Chalice (2)



Our approach to self-framing

An assertion A is self-framing

if and only if

All heap references in A are 

sufficiently framed by the access predicate.



A = acc ( x.f ) &*& … &*& x.f == 100

Rights Access

A is self-framing

if and only if

Access ( A )  ⊆ Rights ( A )



To be or not to be self-framing

A Access ( A ) Rights ( A )

acc(x.f) &*& x.f == 100 { x.f } { x.f }

acc(x.f) &*& y.f == 90 { y.f } { x.f }

acc(x.f) &*& x.g == 101 { x.g } { x.f }

acc(x.f) { } { x.f }



Our approach to self-framing

is intuitive, 

provides an operational angle, 

and simplifies proof of soundness.



Challenges

• Scoping & Simplification

• Design choices

• Formalization of method calls
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Boogie
(no star)

Our Boogie subset mirrors our Chalice subset

We give an operational semantics for our Boogie subset

Motivated in Rustan Leino’s talk at Imperial College London (2012)







Challenges

• Scoping, Simplification, Design

• Formalization of Boogie-specific 
commands

Without the benefit of existing literature!
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Chalice  to Boogie

Has notion of star operator

< maskC , heapC , frameC >

Has special commands and 

predicates

< frameB >

Translation needs to be meaning-preserving



Method Call
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method m ( t p )

requires Ar;

ensures Ae;

{

method bodyE

}

procedure C.m ( this : C , p : t )

{

var mask_e : Mask;    var heap_i : Heap;

havoc heap_i;

assume IsGoodInhaleState ( heap_i , heap , mask );

inhale ( Ar , mask , heap_i );

translate ( method body );

mask_e := mask;

exhale ( Ae , mask_e );

mask := mask_e;

}



exhale( acc( x.f ) , mask ) = assert 0 < mask[ x , C.f ];

mask[x , C.f] := mask[ x , C.f ] – 1;

assume IsGoodMask ( mask );

exhale( a1 &*& a2 , mask ) = exhale( a1 , mask );

exhale( a2 , mask );

exhale( b , mask ) = assert translate ( b );                    

inhale( b , mask , heap_i ) = assume translate ( b );                                    

inhale( a1 &*& a2 , mask , heap_i ) = inhale( a1 , mask , heap_i );

inhale( a2 , mask , heap_i );

inhale( acc(x.f) , mask , heap_i ) = heap[ x , C.f ] := heap_i[ x , C.f ];

mask[ x , C.f ] := mask[ x , C.f ] + 1;

assume IsGoodMask ( mask );
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Checking self-framedness of assertions in Boogie (1)

Not self-framing:

A = x.f == 3 &*& y.f == 3;

exhale(x.f == 3 &*& y.f == 3, mask ) = 

assert heap[ x , C.f ] == 3; //ERROR

assert heap[ y , C.f ] == 3;



Self-framing:

A = acc(x.f) &*& acc(y.f) &*& x.f == 3 &*& y.f == 3;          where x and y not aliases of each other!

exhale(acc(x.f) &*& acc(y.f) &*& x.f == 3 &*& y.f == 3, mask ) = 

assert 0 < mask[ x , C.f ];

mask[ x , C.f ] := mask[ x , C.f ] – 1;

assume IsGoodMask ( mask );

assert 0 < mask[ y , C.f ];

mask[ y , C.f ] := mask[ y , C.f ] – 1;

assume IsGoodMask ( mask );

assert heap[ x , C.f ] == 3;

assert heap[ y , C.f ] == 3;

Checking self-framedness of assertions in Boogie (2)



class Car 

{ 

var fuel : int;

void refuel ( amount : int )

requires acc ( this.fuel );

ensures acc ( this.fuel ) &*& this.fuel == amount;

{ 

this.fuel := amount; 

} 

void main ( ) 

{ 

var c1 := new Car; 

var c2 := new Car; 

call c1.refuel ( 3 ); 

call c2.refuel ( 5 ); 

assert ( c1.fuel == 3 );

} 

}

Car program still running …



void refuel ( amount : int )

requires acc ( this.fuel );

ensures acc ( this.fuel ) &*& this.fuel == amount;

{ 

this.fuel := amount; 

} 

call c1.refuel ( 3 );

//set up variables

var mask_e : Mask;    var heap_i : Heap;

var y : Expression;

y := 3;

mask_e := mask;

//exhale precondition

assert 0 < mask_e [ this , Car.fuel ];

mask_e [ this , Car.fuel ] := mask_e [ this , Car.fuel ] – 1;

assume IsGoodMask ( mask_e );

mask := mask_e;

havoc heap_i;

assume IsGoodInhaleState ( heap_i , heap, mask );

//inhale postcondition

heap [ this , Car.fuel ] := heap_i [ this , Car.fuel ];

mask [ this , Car.fuel ] := mask [ this , Car.fuel ] + 1;

assume IsGoodMask ( mask );

assume heap [ this , Car.fuel ] == y;

procedure Car.refuel ( this : Car , amount : int )

{

var mask_e : Mask;    var heap_i : Heap;

havoc heap_i;

assume IsGoodInhaleState ( heap_i , heap , mask );

//inhale precondition

heap [ this , Car.fuel ] := heap_i [ this , Car.fuel ];

mask [ this , Car.fuel ] := mask [ this , Car.fuel ] + 1;

assume IsGoodMask ( mask );

//translate method body

CanAccess ( mask , this , Car.fuel );  

heap [ this , Car.fuel ] := amount;

mask_e := mask;

//exhale postcondition

assert 0 < mask_e [ this , Car.fuel ];

mask_e [ this , Car.fuel ] := mask_e [ this , Car.fuel ] – 1;

assume IsGoodMask ( mask_e );

assert heap [ this , Car.fuel ] == amount;

mask := mask_e;

}
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Soundness Argument

The translation of a Chalice program P is sound

if and only if

given that P verifies in the Boogie environment, it 

also verifies in the Chalice environment.
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If program verifies in Boogie environment …
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Yes!
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Other Machinery

Auxiliary Definitions, Lemmas E



Challenges

• Design of translation function

• Formulating & justifying soundness argument

• Lemmas and proofs



Highlights

1. Formalization of a Chalice subset

� Approach to self-framing

2. Formalization of a Boogie subset

� Operational semantics

3. Formalization of a sound translation from Chalice to Boogie

� Translation function, soundness argument & proofs
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1. Boogie-based verification

2. Pedagogic uses
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A Challenging Project

� Lots of background reading

� An open-ended project

� Balancing breadth and depth of investigation

� Experimenting with tools

� Formalizing approaches and arguments

� Making original contributions

� I am not JMC or MEng (but I am passionate about research!)
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Future Work

1. Formalize translation of while loop, and proof of method call

2. Extend language subsets to include concurrency

3. Consider translation from VeriFast to Chalice





Q&A



Extra Slides



Usual approach to self-framing

An assertion A is self-framing

if and only if

The validity of A is preserved in all heaps 

which agree in the locations mentioned in 

the permissions. (Parkinson & Summers, 2011)



While loop

while ( condition )

{

// check invariant holds upon loop entry (assert E)

loop body E

// check invariant holds after arbitrary loop iteration (havocE)

}



Method call

If:

• x.m(y)

• translation of x.m(y) gives a Boogie encoding CB

• CB verifies in Boogie

• Chalice and Boogie starting configurations are congruent

• and given preconditions of operational semantics for x.m(y)E

Then:

(esp. using Lemmas for Inhale / Exhale E)

Show that there exists a terminal Boogie configuration ϕB s. t. 

• CB execution in Boogie leads to ϕB
• Terminal configurations in Chalice and Boogie match


















