(star) (no star) Chalice to Boogie

Program Verification for Object-Oriented Programs

Chinmay Kakatkar

```
class Car
{
  int fuel;
  void refuel ( int amount )
   ł
     this.fuel := amount;
  void main()
     ...
```

Int)

```
class Car
  int fuel;
  void refuel ( int amount )
     this.fuel := amount;
  void main()
                                  Car c1 := new Car ();
                                  Car c2 := new Car ();
                                  c1.refuel (3);
                                  c2.refuel (5);
                                  assert ( c1.fuel == 3 );
```


Car c1 := **new** Car (); Car c2 := new Car (); c1.refuel (3); c2.refuel (5); *assert* (c1.fuel == 3); The Problem is **Framing**

MICKEY MOUSE / run cycle 2 3

© Copyright — Walt Disney Productions World Rights Reserved

"We wish to **logically represent how** the execution of **a command changes the state** without having to explicitly say how the command does not change the state."

One Solution is Implicit Dynamic Frames (IDF)

Theory: Kassios (2006), Smans (2008)

Implementation: ETH, Microsoft Research, Leuven

Car program in Chalice

```
class Car
  var fuel : int;
  void refuel (amount : int)
  requires acc (this.fuel );
  ensures acc (this.fuel ) &*& this.fuel == amount;
     this.fuel := amount;
  void main()
                                                          var c1 := new Car;
                                                          var c2 := new Car;
                                                          call c1.refuel (3);
                                                          call c2.refuel (5);
                                                          assert c1.fuel == 3;
```


Verification Pipeline

Verification Pipeline

Contributions

- 1. Formalization of a Chalice subset
- 2. Formalization of a Boogie subset
- 3. Formalization of a subset translation from Chalice to Boogie
- 4. Proof of Soundness of Translation

Contributions

- 1. Formalization of a Chalice subset
- 2. Formalization of a Boogie subset
- 3. Formalization of a subset translation from Chalice to Boogie
- 4. Proof of Soundness of Translation

Chalice (has star)

Our subset ignores concurrency features

We give:

- Operational semantics
- Hoare logic { Pre } C { Post }
- Soundness proof of Hoare logic w.r.t. operational semantics

"A Sip of the Chalice" (Drossopoulou & Raad, 2011)

Self-framing

Badly framed Car program in Chalice (1)

```
class Car
  var fuel : int;
  void refuel ( amount : int )
  requires true;
  ensures this fuel == amount;
     this.fuel := amount; //ERROR: update is not framed
  void main()
  {
     •••
```

Badly framed Car program in Chalice (2)

```
class Car
  var fuel : int;
  void refuel ( amount : int )
  requires this.fuel == 0; //ERROR: assertion not self-framing
  ensures acc (this.fuel) &*& this.fuel == amount;
     this.fuel := amount;
  void main()
  {
     ...
```

Our approach to self-framing

An assertion A is **self-framing**

if and only if

All heap references in *A* are sufficiently framed by the access predicate.

$A = \text{acc} (x.f) \&^*\& \dots \&^*\& x.f == 100$ **Rights** Access

A is self-framing

if and only if

Access (A) \subseteq Rights (A)

To be or not to be self-framing

A	Access (A)	Rights (A)	
acc(x.f) &*& x.f == 100	{ x.f }	{ x.f }	\checkmark
acc(x.f) &*& y.f == 90	{ y.f }	{ x.f }	X
acc(x.f) &*& x.g == 101	{ x.g }	{ x.f }	X
acc(x.f)	{ }	{ x.f }	\checkmark

Our approach to self-framing

is intuitive,

provides an operational angle,

and simplifies proof of soundness.

Challenges

- Scoping & Simplification
- Design choices
- Formalization of method calls

Contributions

- 1. Formalization of a Chalice subset
- 2. Formalization of a Boogie subset
- 3. Formalization of a subset translation from Chalice to Boogie
- 4. Proof of Soundness of Translation

Our Boogie subset mirrors our Chalice subset

We give an operational semantics for our Boogie subset Motivated in Rustan Leino's talk at Imperial College London (2012)

$$\varphi(mask)(r, C.f) = v$$

$[\![\texttt{CanAccess}\,(mask\,,r\,,f)\,]\!]_{\varphi}=v$

 $\begin{aligned} \forall r : ObjectReference, f : FieldId.(CanAccess(mask,r,f)) \\ \Rightarrow \varphi(h_i)(r,C.f) &= \varphi(h)(r,C.f)) \\ \hline & [\texttt{IsGoodInhaleState}(h_i,h,mask)] _{\varphi} = 1 \end{aligned}$

 $\llbracket mask[r, C.f] \rrbracket_{\varphi} = \varphi(mask)(r, C.f)$

$$\llbracket h[r, C.f] \rrbracket_{\varphi} = \varphi(h)(r, C.f)$$

$$\begin{array}{c} \varphi \models B \\ \hline assume \ B, \varphi \rightsquigarrow \varphi \end{array} \qquad \qquad \begin{array}{c} \varphi \models B \\ \hline assert \ B, \varphi \rightsquigarrow \varphi \end{array}$$

$$\begin{array}{c} \varphi \models B \\ \hline assert \ B, \varphi \rightsquigarrow \varphi \end{array}$$

$$\begin{array}{c} \varphi \nvDash B \\ \hline assert \ B, \varphi \rightsquigarrow \varphi \end{array}$$

$$\varphi(mask)(r, C.f) = v$$

$[\![\texttt{CanAccess}\,(mask\,,r\,,f)\,]\!]_{\varphi}=v$

 $\begin{aligned} \forall r: ObjectReference, f: FieldId.(CanAccess(mask,r,f)) \\ \Rightarrow \varphi(h_i)(r,C.f) = \varphi(h)(r,C.f)) \\ \hline & [\texttt{IsGoodInhaleState}(h_i,h,mask)]]_{\varphi} = 1 \end{aligned}$

 $\llbracket mask[r, C.f] \rrbracket_{\varphi} = \varphi(mask)(r, C.f) \qquad \qquad \boxed{\llbracket h[r, C.f]} = \varphi(mask)(r, C.f)$

$$h[r, C.f]]_{\varphi} = \varphi(h)(r, C.f)$$

$$\begin{array}{c} \varphi \models B \\ \hline assume \ B, \varphi \rightsquigarrow \varphi \end{array} \qquad \begin{array}{c} \varphi \models B \\ \hline assert \ B, \varphi \rightsquigarrow \varphi \end{array}$$

$$\begin{array}{c} \varphi \models B \\ \hline assert \ B, \varphi \rightsquigarrow \varphi \end{array}$$

$$\begin{array}{c} \varphi \nvDash B \\ \hline assert \ B, \varphi \rightsquigarrow \varphi \end{array}$$

Challenges

- Scoping, Simplification, Design
- Formalization of Boogie-specific commands

Without the benefit of existing literature!

Contributions

- 1. Formalization of a Chalice subset
- 2. Formalization of a Boogie subset
- 3. Formalization of a subset translation from Chalice to Boogie
- 4. Proof of Soundness of Translation

Boogie

Has special commands and predicates

< frame_B >

Translation needs to be meaning-preserving

Method Call

exhale(acc(x.f) , mask) = assert 0 < mask[x , C.f]; mask[x , C.f] := mask[x , C.f] – 1; assume IsGoodMask (mask);

exhale(a1 &*& a2 , mask) = exhale(a1 , mask); exhale(a2 , mask);

exhale(b , mask) = assert translate (b);

inhale(b , mask , heap_i) = assume translate (b);

```
inhale( a1 &*& a2 , mask , heap_i ) = inhale( a1 , mask , heap_i );
inhale( a2 , mask , heap_i );
```

inhale(acc(x.f) , mask , heap_i) = heap[x , C.f] := heap_i[x , C.f]; mask[x , C.f] := mask[x , C.f] + 1; assume IsGoodMask (mask);

Checking self-framedness of assertions in Boogie (1)

Not self-framing: A = x.f == 3 & & y.f == 3;

Checking self-framedness of assertions in Boogie (2)

Self-framing:

A = acc(x.f) & & acc(y.f) & & x.f == 3 & & y.f == 3;

where x and y not aliases of each other!

Car program still running ...

```
class Car
  var fuel : int;
  void refuel ( amount : int )
  requires acc (this.fuel);
  ensures acc ( this fuel ) &*& this fuel == amount;
     this.fuel := amount;
  void main ()
     var c1 := new Car;
     var c2 := new Car;
     call c1.refuel (3);
     call c2.refuel (5);
     assert ( c1.fuel == 3 );
```


Contributions

- 1. Formalization of a Chalice subset
- 2. Formalization of a Boogie subset
- 3. Formalization of a subset translation from Chalice to Boogie
- 4. Proof of Soundness of Translation

Soundness Argument

The translation of a Chalice program **P** is sound

if and only if

given that *P* verifies in the Boogie environment, it also verifies in the Chalice environment.

Verification Pipeline Revisited

If program verifies in Chalice environment ...

If program verifies in Boogie environment ...

Lemma 6.4.4. $\forall C : ClassId, m : MethId :$

If:

- 1. $Prog_C(C,m) = requires A; ensures A'; \{C_C\} \land$
- 2. $(inhale(A, mask, h_i); translate(C_C); exhale(A, mask_e)), \varphi_{\varepsilon} \not \rightarrow ABORT \land$
- 3. $\Pi, \varphi_C, h_C \models A \land$
- 4. $C_C, \Pi, \varphi_C, h_C \rightsquigarrow \Pi', \varphi'_C, h'_C$

Then $\Pi', \varphi'_C, h'_C \models A'$

Other Machinery

Auxiliary Definitions, Lemmas ...

Challenges

- **Design** of translation function
- Formulating & justifying soundness argument
- Lemmas and proofs

Highlights

- 1. Formalization of a Chalice subset
 - Approach to self-framing
- 2. Formalization of a Boogie subset
 - Operational semantics
- 3. Formalization of a sound translation from Chalice to Boogie
 - Translation function, soundness argument & proofs

Applications

- 1. Boogie-based verification
- 2. Pedagogic uses

Applications

- 1. Boogie-based verification
- 2. Pedagogic uses

http://rise4fun.com/

A Challenging Project

- Lots of background reading
- An open-ended project
- Balancing breadth and depth of investigation
- Experimenting with tools
- Formalizing approaches and arguments
- Making original contributions
- I am not JMC or MEng (but I am passionate about research!)

Time

Future Work

- 1. Formalize translation of while loop, and proof of method call
- 2. Extend language subsets to include concurrency
- 3. Consider translation from VeriFast to Chalice

Extra Slides

Usual approach to self-framing

An assertion A is **self-framing**

if and only if

The validity of *A* is preserved in all heaps which agree in the locations mentioned in the permissions. (*Parkinson & Summers, 2011*)

While loop

while (condition)

// check invariant holds upon loop entry (assert ...)

loop body ...

}

// check invariant holds after arbitrary loop iteration (havoc...)

Method call

lf:

- *x.m(y)*
- translation of x.m(y) gives a Boogie encoding C_B
- C_B verifies in Boogie
- Chalice and Boogie starting configurations are congruent
- and given preconditions of operational semantics for *x.m(y)*...

Then:

(esp. using Lemmas for Inhale / Exhale ...)

Show that there exists a terminal Boogie configuration φ_B s. t.

- C_B execution in Boogie leads to φ_B
- Terminal configurations in Chalice and Boogie match

Lemma 6.4.1. Given C: Command_C, $\forall \Pi$: Mask_C, φ_C : Store_C, h_C : Heap_C, φ_B : Store_B, If:

- 1. $translate(C), \varphi_B \not\rightsquigarrow ABORT$
- 2. $\Pi, \varphi_C, h_C \cong \varphi_B$
- 3. $C, \Pi, \varphi_C, h_C \rightsquigarrow \Pi', \varphi'_C, h'_C$

Then there exists a φ'_B : Store_B such that:

- 4. $translate(C), \varphi_B \rightsquigarrow \varphi'_B$
- 5. $\Pi', \varphi'_C, h'_C \cong \varphi'_B$

Lemma 6.4.2. Given A: Assertion_C, mask : Mask_B, h_B : Heap (where A is self-framing, mask is the current mask, and h_B is the current heap),

If:

- 1. $inhale(A, mask, h_B) = C_i where C_i : Command_B$
- 2. $C_i, \varphi_B \rightsquigarrow \varphi'_B$ where $\varphi'_B : Store_B$ such that $\varphi'_B \neq ABORT$
- 3. $\Pi', \varphi'_c, h'_c \cong \varphi'_B$, where $\Pi' : Mask_C, \varphi'_C : Store_C, h'_c : Heap_C$

Then:

- 4. $\Pi', \varphi'_c, h'_c \models A$
- 5. There exists a mask': $Mask_B$ such that $\varphi'_B \equiv \varphi_B[mask \mapsto mask']$, and $mask \leq_{\Pi} mask'$.

Lemma 6.4.3. Given A: Assertion_C, mask : Mask_B, (where A is self-framing, and mask is the current mask)

If:

- 1. $exhale(A, mask) = C_e where C_e : Command_B$
- 2. $C_e, \varphi_B \rightsquigarrow \varphi'_B$ where $\varphi'_B : Store_B$ such that $\varphi'_B \neq ABORT$
- 3. $\Pi, \varphi_c, h_c \cong \varphi_B$

Then:

- 4. $\Pi, \varphi_c, h_c \models A$, where $\Pi : Mask_C, \varphi_C : Store_C, h_c : Heap_C$
- 5. There exists a mask': $Mask_B$ such that $\varphi'_B \equiv \varphi_B[mask \mapsto mask']$, and $mask' \leq_{\Pi} mask$.

Definition 6.3.1. combine : $Mask_C \times Store_C \times Heap_C \rightarrow Store_B$ such that, for Π : $Mask_C, \varphi_C$: $Store_C, h_C$: $Heap_C$ we:

- 1. Create a fresh Boogie variable $mask_B : Mask_B$ and populate it with the access permissions found in Π , such that $\forall v : \{0,1\}, r : ObjectReference, f : FieldId.(\Pi[r, f] = v \Rightarrow mask[(r, C, f) \mapsto v])$ where f is a field of class C.
- 2. Create a fresh Boogie variable h_B : Heap_B and populate it with the values found in h_C , such that $\forall r$: ObjectReference, f: FieldId. $(h_B[(r, C.f) \mapsto [\![r.f]\!]_{\varphi,h_C}])$ where f is a field of class C.
- 3. Now take an empty store φ_{ε} : Store_B, such that $\varphi_{\varepsilon} = \{mask \mapsto \emptyset, heap \mapsto \emptyset\}$.
- 4. Construct a φ_B : Store_B, such that $\varphi_B = \varphi_{\varepsilon}[mask \mapsto mask_B, h \mapsto h_B] \cup \varphi_C$

Definition 6.3.2. \cong : $Mask_C \times Store_C \times Heap_C \times Store_B$ such that, for Π : $Mask_C, \varphi_C$: $Store_C, h_C$: $Heap_C, \varphi_B$: $Store_B$, we have

 $\Pi, \varphi_C, h_C \cong \varphi_B \iff combine(\Pi, \varphi_C, h_C) = \varphi_B$

 $Program : ClassId \rightarrow FieldId \times (MethId \times MethDef)$

$$\begin{split} B \in Boolean ::= \operatorname{true} \mid \operatorname{false} \mid \neg B \mid E == E \\ E \in Expression ::= n \mid x \mid x.f \mid E + E \mid x.m_{pure}(E) \\ C \in Command ::= x := y.f \mid x.f := y \mid \operatorname{if} B \text{ then } C \text{ else } C \mid \\ & \text{while } B \text{ do } C \mid C; C \mid \operatorname{skip} \mid x := y.m(E) \mid \\ & x := \operatorname{new } C \mid \operatorname{assert } A \\ A \in Assertion ::= B \mid \operatorname{acc} (x.f) \mid A * A \\ ClassID, FieldID ::= (a - zA - Z) + \end{split}$$

Term ::= Boolean | Expression | Command | Assertion

Figure 3.1: Our Subset of the full Chalice Syntax
$$\begin{split} \llbracket \cdot \rrbracket : (Assertion \cup Expression) \times Mask \times Store \times Heap \rightharpoonup \mathbb{Z} \\ & \rightsquigarrow : Command \times Mask \times Store \times Heap \rightarrow Mask \times Store \times Heap \\ \Pi \in Mask : ObjectReference \times (ClassId \times (FieldId \rightarrow \{0,1\})) \\ \varphi \in Store : Variable \rightarrow \mathbb{Z} \\ h \in Heap : ObjectReference \rightarrow (ClassId \times (FieldId \rightarrow \mathbb{Z})) \\ ObjectReference ::= \mathbb{Z}^+ \\ Variable, ClassID, FieldID ::= (a - zA - Z) + \end{split}$$

Figure 3.2: Runtime Configuration for Our Chalice Subset

$$\begin{split} B \in Boolean ::= \texttt{true} \mid \texttt{false} \mid \neg B \mid E == E \mid \\ & \texttt{CanAccess}(mask, r, f) \mid \\ & \texttt{IsGoodInhaleState}(h, h, mask) \mid \\ & \texttt{IsGoodMask}(mask) \end{split}$$

 $E \in Expression ::= n \mid x \mid h[r, C.f] \mid mask[r, C.f] \mid E + E$

$$\begin{split} C \in Command ::= var \; x \; : \; t \mid x := E \mid h[r, C.f] := E \mid mask[r, C.f] := E \mid \\ & \text{havoc} \; (x) \mid \text{if} \; B \; \text{then} \; C \; \text{else} \; C \mid C; C \mid \\ & \text{assume} \; B \mid \text{assert} \; B \end{split}$$

Term ::= Boolean | Expression | Command

Figure 4.1: Our Subset of the full Boogie Syntax

$$\begin{split} \llbracket \cdot \rrbracket : (Boolean \cup Expression) \times Store \rightharpoonup \mathbb{Z} \\ & \sim : Command \times Store \rightarrow Store \\ \varphi \in Store : Variable \rightarrow Value \\ & mask \in Mask : ObjectReference \times (ClassId \times (FieldId \rightarrow \{0,1\})) \\ & h \in Heap : ObjectReference \times (ClassId \times (FieldId \rightarrow Value)) \end{split}$$

 $Variable, ClassId, FieldId ::= (a - zA - Z) + ObjectReference ::= \mathbb{Z}^+$ $Value ::= \mathbb{Z}|Heap|Mask$

Figure 4.2: Runtime Configuration for Our Boogie Subset