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Inductive Logic Progrdng (ILP) involves the
construction of first-order definite clause theories

from examples and background knowledge, Un-
like both traditional Machine Learning and Com-
putational Learning Theory, ILP is based on lock-
step development of Theory, Implementations and

Applications. ILP systems have successful appli-
cations in the learning of structure-activity rules
for drug design, semantic grammars rules, finite
element mesh design rules and rules for prediction
of protein structure and mutagenic molecules. The
strong applications in ILP can be contrasted with
relatively weak PAC-learning results (even highly-
restricted forms of logic programs are known to

be prediction-hard). It has been recently argued
that the mismatch is due to distributional assump-
tions made in application domains. These assump-
tions can be modelled as a Bayesiau prior prob-
ability representing subjective degrees of belief.
Other authors have argued for the use of Bayesian
prior distributions for reasons different to those
here, though this has not lead to a new model
of polynomial-time learnability. Incorporation of
Bayesian prior distributions over time-bounded hy-
potheses in PAC leads to a new model called U-
Learnability. It is argued that U-learnability is
more appropriate than PAC for Universal (Tur-
ing computable) languages. Time-bounded logic
programs have been shown to be polynomially
U-learnable under certain distributions. The use
of time-bounded hypotheses enforces decidability
and allows a unified characterisation of speed-up
learning and inductive learning. U-learnability has
as special cases PAC and Natarajan’s model of
speed-up learning.
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1 INTRODUCTION

This paper is written for two separate audiences: 1) a Ma-
chine Learning audience, interested in implementations and
applications and 2) a Computational Learning Theory audl-
ence interested in models and results in learnability. The
paper should thus be taken as two loosely connected papers
with a common theme involving the use of distributional
information in Inductive Logic Programming (ILP).

In the last few years ILP [23, 24,20, 31] has developed from
a theoretical backwater to a rapidly growing area in Machine
Learning. This is in part due to the fact that pure logic
programs provide Machine Learning with a representation
which is general purpose (Turing-computable), and has a
simple, and rigorously defined, semantics. In addition, logic
programs tend to be easy to comprehend as hypotheses in
scientific domains.

ILP is based on interaction between Theory, Implementations
and Applications. The author has argued [25] that the devel-
opment of a formal semantics of ILP (see Section 2) allows
the direct derivation of ILP algorithms. Such derivational
techniques have been at the centre of specific-to-general
ILP techniques such as Plotkin’s least general generalisation
[37, 36], Muggleton and Buntine’s inverse resolution [27, 23]
and Idestam-Almquist’s inverse implication [ 15]. TWO con-
tending semantics of ILP have been developed [31]. These
are the so-called ‘open-world’ semantics [31 ] and ‘closed-
world’ semantics [13].

A number of efficient ILP systems have been developed, in-
cluding FOIL [38], Golem [28], LINUS [21], CLAUDIEN

[39] and Progol [26]. The use of a relational logic formalism
has allowed successful application of ILP systems in a num-
ber of domains in which the concepts to be learned cannot
easily be described in an attribute-value, propositional-level,
language. These applications (see Section 3) include struc-
ture activity prediction for drug design [19, 44, 43], protein
secondary-structure prediction [29], finite-element mesh de-
sign [9] and learning semantic grammars [45].

A variety of positive and negative PAC-learnability results ex-
ist for subsets of definite clause logic [11, 34, 10, 18, 7, 40].
However, in contrast to experimentally demonstrated abili-
ties of ILP systems in applications, the positive PAC results
are rather weak, and even highly restricted forms of logic
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programs have been shown to be prediction hard [7]. Like
many other results in PAC-learning, positive results are only
achieved for ILP by setting language parameters to constant
values (eg. k-clauses and l-literals). This provides ‘hard’
boundaries to the hypothesis space, which often reduces
the representation to a propositional level. An alternative
model, U-learnability [30], is better suited to Universal (Tur-
ing computable) representations, such as logic programs. U-
learnability provides a ‘soft’ boundary to hypothesis spaces in
the form of a prior probability distribution over the complete
representation (eg. time-bounded logic programs). Other

authors have argued for the use of Bayesian prior distribu-
tions for reasons different to those here, though this has not
lead to a new model of polynomial-time learnability. U-
Iearnability allows standard distributional assumptions, such
as Occam’s razor, to be used in a natural manner, without
parameter settings. Although Occam algorithms have been
studied in PAC-learning [3], this has not led to algorithms
capable of learning in universal representations, as it has in
Inductive Logic Programming. In the early 1980’s a distribu-
tion assumption very different to Occam’s razor was implic-
itly implemented by Arbab, Michie [1] and Bratko [4] in an
algorithm for constructing decision trees. The algorithm con-
structs a decision list (linear decision tree) where one exists
and otherwise returns the most linear decision tree which can
be constructed from the data. This distributional assumption
is based on the fact that decision lists are generally easier to
comprehend than arbitrary decision trees. Other interesting
kinds of distributions along these lines can be imagined; as-
signing higher prior probabilities to grammars that are regular
or almost so, logic programs that are deterministic or almost
so and logic programs that run in linear time or almost so.
One can imagine very different kinds of prior distributions
on hypotheses. For example, when learning concepts which
mimic human performance in skill tasks [41] predictive ac-
curacy is dependent on hypotheses being evaluable in time
similar to that of human reaction, and so such hypotheses
should be preferred a priori.

This paper is organised as follows. Section 2 gives a formal
definition of ILP in terms of Bayesian inference. Section 3
provides an overview of ILP applications in molecular bi-

ology and discusses some of the distributional assumptions
used in these applications. Section 4 defines U-learnability
and describes some general results on U-learnable distribu-
tions.

2 BAYES’ ILP DEFINITIONS

Familiarity with standard definitions from Logic Program-
ming [22, 14] is assumed in the following. A Bayesian ver-
sion of the usual (open world semantics) setting for ILP is as
follows. Suppose T, 7 and V are sets of predicate symbols,
function symbols and variables and cd and Ch are the classes
of definite and Horn clauses constructed from T, 7 and V.
The symbol En denotes SLDNF derivation bounded by n res-
olution steps. An ILP learner is provided with background
knowledge B z Cd and examples E = (E+, E- ) in which
E+ C cd are positive examples and E- C (Ch – cd) are
negat~ve examples. Each hypothesis is a p~r H. = (H, n)

where H Q cd, H 1= B and n is a a natural number. Hn
is said to hold for examples E, or holds(Hn, E), when both
the following are truel.

Sufficiency: H h. E+

Satisfiability: H A E- tjn ❑

The prior probability, p(Hn), of an hypothesis is defined by
a given distribution D. According to Bayes’ theorem, the
posterior probability is

P(~nl~)=
p(EIHn).p(Hn)

p(E)

where p(E[Hn) is 1 when holds(Hn, E) and O otherwise
and

p(E) = ~ p(H:)

holds (H& ,E)

Well known strategies for making use of distributional infor-
mation include a) maximisation of posterior probability b)
class prediction based on posterior weighted sum of predic-
tions of all hypotheses (Bayes optimal strategy) c) randomly
sampling an hypothesis from the posterior probability (Gibbs
algorithm). The sample complexities of strategies b) and c)
are analysed in [12].

Although no existing ILP system takes an hypothesis distri-

bution D as an input parameter, such distributions are implicit
in FOIL’s [38] information gain measure and Golem’s [32]
compression measure. Additionally, search strategies such
as general-to-specific or specific-to-general, use an implicit
prior distribution which favours more general hypotheses or,
conversely, more specific ones.

Bayesian approaches to Machine Learning have been dis-
cussed previously in the literature. For instance, Buntine
[6] develops a Bayesian framework for learning, which he
applies to the problem of learning class probability trees.
Also Haussler et al. [12] analyse the sample complexity of
two Bayesian algorithms. This analysis focuses on average
case, rather than worst case, accuracy. On the other hand
U-learnability uses average case time complexity and worst
case accuracy. Also unlike U-learnability (Section 4) neither

Buntine nor Haussler et al, develop a new learning model
which allows significantly larger polynomially-learnable rep-
resentations, such as logic programs. The applications in the
following section show that ILP systems are effective at learn-
ing logic programs in significant real-world domains. This
is consistent with the fact that time-bounded logic programs
are U-learnable under certain distributions (see Section 4).

3 APPLICATIONS IN MOLECULAR
BIOLOGY

ILP applications in Molecular Biology extend a long tradi-
tion in approaches to scientific discovery that was initiated by
Meta-Dendral’s [5] application in mass spectrometry. Molec-
ular biology domains are particularly appropriate for ILP due

1Though most ILp systems can deal with noise, this is ignored

in the above definition for the sakeof simplicity.
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to the rich relational structure of the data. Such relationships
make it hard to code feature-based representations for these
domains. ILP’s applications to protein secondary structure
prediction [29], structure-activity prediction of drugs [19] and
mutagenicity [42] of molecules have produced new knowl-
edge, published in respected scientific journals in their area.

3.1 PROTEIN SECONDARY STRUCTURE
PREDICTION

When a protein (amino acid sequence) shears from the RNA
that codes it, the molecule convolves in a complex though
deterministic manner. However, it is largely the final shape,
known as secondary and tertiary structure, which determines
the protein’s function. Determination of the shape is a long
and Iabour intensive procedure involving X-ray crystallogra-
phy. On the other hand the complete amino acid sequence is
relatively easy to determine and is known for a large number
of naturally occurring proteins. It is therefore of great in-
terest to be able to predict a protein’s secondary and tertiary
structure directly from its amino acid sequence.

Many attempts at secondmy structure prediction have been
made using hand-coded rules, statistical and pattern matching
algorithms and neural networks. However, the best results for
the overall prediction rate are still disappointing (65-70%).
In [29] the ILP system Golem was applied to learning sec-
ondary structure prediction rules for the sub-domain of a/a
proteins. The input to the program consisted of 12 non-

homologous proteins (1612 amino acid residues) of known
secondary structure, together with background knowledge
describing the chemical and physical properties of the nat-
urally occurring amino acids. Golem learned a set of 21
rules that predict which amino acids are part of the a-helix
based on the positional relationships and chemical and phys-
ical properties. The rules were tested on four independent
non-homologous proteins (416 amino acid residues) giving
an accuracy of 8190 (with 2% expected error). The best pre-
viously reported result in the literature was 76%, achieved
using a neural net approach. Although higher accuracy is
possible on sub-domains such as a/a than is possible in the
general domain, ILP has a clear advantage in terms of com-
prehensibility over neural network and statistical techniques.

However, according to the domain expert, Mike Sternberg,
Golem’s secondary-structure prediction rules were hard to
comprehend since they tended to be overly specific and highly
complex. In many scientific domains, comprehensibility of
new knowledge has higher priority than accuracy. Such a
priori preferences can be modelled by a prior distribution on
hypotheses.

A
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Figure 1: The family of analogues in the first ILP study. A)
Template of 2,4-diamino-5(substituted-benzyl)pyrimidines
R3, R4, and R5 are the three possible substitution positions.
B) Example compound: 3 – Cl, 4 – iViZZ, 5 – C’HJ

drug development projects. However, the in vitro activity of
members of a family of drugs can be determined experimen-
tally in the laboratory. This data is usually analysed by drug
designers using statistical techniques, such as regression, to
predict the activity of untested members of the family of

drugs. This in turn leads to directed testing of the drugs
predicted to have high activity.

An application of ILP to structure-activity prediction was re-
ported in [19]. The ILP program Golem [28] was applied
to the problem of modelling the structure-activity relation-
ships of trimethoprim analogues binding to dihydrofolate
reductase. The training data consisted of 44 trimethoprim
analogues and their observed inhibition of Escherichia coli
dihydrofolate reductase. A further 11 compounds were used
as unseen test data. Golem obtained rules that were statisti-
cally more accurate on the training data and also better on the
test data than a previously published linear regression model.
Figure 1 illustrates the family of analogues used in the study.

Owing to the lack of variation in the molecules, a highly
deterministic subset of the class of logic programs was suffi-
cient to learn in this domain. Unlike the protein domain, the
domain expert found the rules to be highly compact and thus
easy to comprehend.

3.2 DRUG STRUCTURE-ACTIVITY PREDICTION
3.3 MUTAGENESIS PREDICTION

Proteins are large macro-molecules involving thousands of
atoms. Drugs tend to be small, rigid molecules, involving
tens of atoms. Drugs work by stimulating or inhibiting the
activity of proteins. They do so by binding to specific sites
on the protein, often in competition with natural regulatory
molecules, such as hormones. The 3-dimensional structure
of the protein binding site is not known in over 90% of all

In a third molecular biology study ILP has been applied to
predicting mutagenicity of molecules [42]. Mutagenicity is
highly correlated to carcinogenicity. Unlike activity of a
drug, mutagenicity is a property which pharmaceutical com-
panies would like to avoid. Also, unlike drug development
projects, the data on mutagenicity forms a highly heteroge-
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Figure 2: Examples of the diverse set of aromatic and
heteroaromatic nitro compounds used in the mutagene-
sis study. A) 3,4,4’-trinitrobiphenyl B) 2-nitro-l,3,7,8-
tetrachlorodibenzo-1 ,4-dioxin C) 1,6,-dinitro-9,10, 11,12-
tetrahydrobenzo [e]pyrene D) nitrofurantoin

neous set with large variations in molecular form, shape and
chame distribution. The data comes from a wide number of
sources, and the molecules involved are almost arbitrary in
shape and bond connectivity (see Figure 2).

The 2D bond-and-atom molecular descriptions of 229 aro-
matic and heteroaromatic nitro compounds taken from [8]
were given to the ILP system Progol [26]. The study was
confined to the problem of obtaining structural descriptions
that discriminate molecules with positive mutagenicity from
those which have zero or negative mutagenicity.

A set of 8 compact rules were discovered by Progol. These
rules suggested 3 previously unknown features leading to
mutagenicity. Figure 3 shows the structural properties de-
scribed by the rules in the Progol theory. The descriptions
of these patterns are as follows. 1) Almost half of all muta-
genic molecules contain 3 fused benzyl rings. Mutagenicity
is enhanced if such a molecule also contains a pair of atoms
connected by a single bond where one of the atoms is con-
nected to a third atom by an aromatic bond. 2) Another strong
mutagenic indicator is 2 pairs of atoms connected by a single
bond, where the 2 pairs are connected by an aromatic bond as
shown. 3) The third mutagenic indicator discovered by Pro-
gol was an aromatic carbon with a partial charge of +0. 191 in
which the molecule has three N02 groups substituted onto a
biphenyl template (two benzine rings connected by a single
bond).

An interesting feature is that in the original regression anal-
ysis of the molecules by [8], a special ‘indicator variable’
was provided to flag the existence of three or more fused
rings (this variable was then seen to play a vital role in the
regression equation). The first rule (pattern 1 in Figure 3), ex-
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Figure 3: Structural properties discovered by Progol

pressing precisely this fact, was discovered by Progol without
access to any specialist chemical knowledge. Further, there-
gression analysis suggested that electron-attracting elements
conjugated with nitro groups enhance mutagenicity. A par-
ticular form of this pattern was also discovered by Progol
(pattern 3 in Figure 3).

Previous published results for the same data [8] used linear
discriminant techniques and hand-crafted features. The ILP
technique allowed prediction of 49 cases which were statis-
tical outliers not predictable by the linear discriminant algo-
rithm. In addition, the ILP rules are small and simple enough
to provide insight into the molecular basis of mutagenicity.
Such a low-level representation opens up a range of arbitrary
chemical structures for analysis. This is of particular interest
for drug discovery, since all compounds within a database of
compounds have known atom and bond descriptions, while
very few have computed features available.

Owing to the large range of molecules the rules were highly
non-deterministic (of the form “there exists somewhere in
molecule M a structure S with property P“). Owing to sim-
plicity, the mutagenicity rules were the most highly favoured

by the expert among the Molecular Biology domains studied.
For all the domains in Molecular Biology comprehensibility,
rather than accuracy, provides the strongest incentive for an
Occam distribution (ie. shorter theories preferred a priori).

4 U-LEARNABILITY

The learnability model defined in this section allows for the
incorporation of a priori distributions over hypotheses. The
definition of this model, U-learnability, is motivated by the
general problems associated with learning Universal (Turing
computable) representations, such as logic programs. Never-
theless U-learnability can be easily applied to other represen-
tations, such as decision trees. U-learnability is defined using
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the traditional notation from computational learning theory
rather than that typically used in ILP (see Section 2).

4.1 BACKGROUND FOR U-LEARNING

Let (ZE, X, Zc, R, c) be the representation of a learning

problem (as in PAC-learning), where X is the domain of
examples (finite strings over the alphabet ZE), R is the class
of concept representations (finite strings over the alphabet
Xc), and c : R + 2X maps concept representations to con-
cepts (subsets of X). Hence the conce t class being learned

$is the actual range of c (a subset of 2 ), Let P be a subset
of the class of polynomial functions in one variable, From
this point on, a concept representation will be a pair (r, p),
forr ERandp EP.

Let A(r, p, z) be an algorithm that maps any tuple (r, p, z),
forrg R,p CP, andz EX, toO orl. Let Arun
in time bounded by q( lrl, P(IZ [)), where q is a polynomial
in two variables. Furthermore, let A have the following
properties. First, for all r 6 R and z c X, if z @ c(r)
then for every p E P: A(r, p, z) = O. Second, for all
r E R and z E X, if z E c(r) then there exists p E P such
that for every p’ E P with p’(lzl) z p(lxl): A(r, p’, ~) =
1. Intuitively, p specifies some form of time bound that
is polynomially related to the size of the example. It might
specify the maximum derivation length (number of resolution
steps) for logic programs or the maximum number of steps
in a Turing Machine computation. Greater derivation lengths

or more computation steps are allowed for larger inputs.

Let F be any family of probability distributions over R x P,
where the distributions in F have an associated parameter
n >0. Let G be any family of probability distributions over
x.

4.2 PROTOCOL FOR U-LEARNING

In U-learning, a Teacher randomly chooses a pair (r, p), for
r E R and p c P, according to some distribution D1 in
F. The Teacher presents to a learning algorithm L an infi-
nite stream of labeled examples {(z1, 11), (Z2, 12), ...) where:
each example xi is drawn randomly, independently of the
preceding examples, from X according to some fixed, un-
known distribution D2 in G and labeled by li = A(r, p, ~i).
After each example Zj in the stream of examples, L outputs
a hypothesis Hi = (ri, pi), where ri E R and pi c P.

4.3 DEFINITION OF U-LEARNABILITY

Definition 1 Polynomial U-learnability. Let F be a family
of distributions (with associatedparameters) over R x P, and
let G be a family of distributions over X. The pair (F,G)
is polynomially U-learnable just if there exist polynomial
functions pI (y) = y’, for some constant c, P2(V), p3(yI, y2),
and a learning algorithm L, such that for every distribution
D1 (with parameter n) in F, and every distribution D2 in G,
~hefollowing hold.

● The average-case time complexi~ of L at any point in
a run is bounded by p] (M), where M is the sum of

●

As

q(lr[, P( Iwl)) over the examples xi seen m that point,2
(Recall that (r, p) is the target concept chosen randomly

according to D1, and that q describes the time compkx-
ity of the evaluation algorithm A.)

For all m > p2(n), there aist values E and d, O <

c, 8< 1, such that: p3 ( ~, ~) > m, and with probability
at least 1 – J the hypothesis Hm = (rm, pm) is (1 –
C)-accurate. By (1 - t)-accurate, we mean that the
probability (according to D2) that A(rm, pm, Xm+l ) #
lm+l is less than e.

with PAC-learning, we can also consider a prediction
variant, in which the hypotheses llm need not be ‘built from
R (in addition to P), but can come from a different class R’
and can have a different associated evaluation algorithm A’.

4.4 INITIAL RESULTS AND PROPOSED
DIRECTIONS

This section presents initial results about polynomial U-
Iearnability and suggests directions for further work. To
conserve space the proofs are omitted, but they appear in a
full paper on U-learnability [30]. In each of these results, let
(X~, X, XC, R, c) be the representation of any given learning
problem. The following theorem shows that PAC-learnability
is a special case of U-learnability,

Theorem 2 U-learnability generalises PAC. Letp be the
polynomialjimction p(x) = x. Let F be afamily of distribu-
tions that contains one distribution Di for each ri c R, such
that Di assigns probability 1 to (ri, p). Let n = O be the pa-
rameterfor each member of F. Let G be thefamily of all dis-
tributionsover X. Then the representation (ZE, X, xc, R, c)
is PAC-leamable (PAC-predictable) if and only if (F, G] is
polynomially U-learnable (U-predictable).

This observation raises the question of how, exactly, polyno-
mial U-learnability differs from PAC-learnability. There is a
cosmetic difference that polynomial U-learnability has been
defined to look more similar to identi$cation in the limit
than does the definition of PAC-learnability. Ignoring this
leaves the following distinguishing features of polynomial
U-learnability.

@~ be rn~re precise, let m be any positive integer. bt

PrD, (r, p) be the probability assigned to (r, p) by DI, and (with
a stight abuse of notation) let PrD1,Dz (r, P, (~1, ... . z~)) be the
product of PrDl (r, p) and the probability of obtaining the sequence
(x,, .... z~) when drawing m examples randomly and indepen-
dently according to Dz. LetlTME~(r, p, (X I,.... z~)) be the time
spent by L until output of its hypothesis I-f~, when the target is
(r, p) and the initial sequenceof m examples is (XI, .... z~). Then
we say that the average-casetime complexity of L to output Ifm is
bounded by pI (y) = y= just if the sum (or integral), over all tuples
(r,p, (m, ....zm)). of

is less than infinity, where M is the sum of g(lrl, p(lz, l)) over all
%, in a 1,.... x~. See [2] for the motivation of this definition of
average-casecomplexity.
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●

●

●

●

Assumption of a prior distribution on target concept
representations.

Sample size is related to e, d, and (by means of the pa-
rameter n) the reciprocal of the probability of the target
representation rather than the target representation size.

Use of average case time complexity, relative to the
prior distribution on hypotheses and the distribution on
examples, in place of worst case time complexity.

Concept representations need not bepolynomially evalu-
able in the traditional sense, but only in the weaker sense
that some polynomial p must exist for each concept rep-
resentation such that the classification of an example z
can be computed in time P( lx 1). This distinction and the
next are irrelevant for concept representations that are
already polynomially evaluable and hence do not need
time bounds.

The learning algorithm runs in (expected) time polyno-
mial in the ‘(w&st-case) time r~uired to compute the
classification, by the target, of the examples seen thus
far, rather than in the sum of the sizes of the examples
seen thus far.

Definition 3 The distribution family Dp. Let R be count-

able, let p’(y) be a polynomial function, and let EPI =
(EI, E2, ...) bean enumeration of subsets of R such that:
(1) for all i ~ 1, the caniinality of E~ is at most p’(i), (2)
every r E R ls in some Ei, and (3) the members of E~, for
each i, can be determined eflciently (by an algorithm that
runs in time polynomial in the sum of the sizes of the members
of E~J Let F’ be the family of all distributions D), with finite
variance, over the positive integers, and let the parameter n)

of D’ be the maximum of the mean and standard deviation
of D’. For each such distribution D’ in F’, define a corre-
sponding distrt”bution D{{ over R as follows: for each i ~ 1,
let the probabilities of the r G Ei be unijomtly distributed
with sum PrDl (i). Let the parameter associated with D“
also be n’. Let P be the set of all linear functions of the
form p(x) = CX, where c is a positive integer Let D~ be
any probability distribution over the positive integers that
has apmbabilitydensi~ finction (p.d.$) prD; (x) = $, for

some k >3 (appropriately normalised so that it sums to 1).
For each distribution D~, dejine a distribution DL over P
to assign to the function p(z) = cx the probability assigned
to c by D~. Finally, for each pair of distributions D“ and
DL as de$ned above, define a distribution D over R x P
as follows: for each pair (r, p), where r E R and p ~ P,
prD (r, p) = [PrD1/ (r)] [PrDL (p)]. ~t the parameter n of D
be n’. DP is the family of all such distributions D, each with
associated parameter n.

Theorem 4 Polynomial U-learnability under Dp. Let F
be the distribution family DP defined by a particular enu-
meration of subsets of R. Let G be any family of distributions
over .X. The pair (F, G) is polynomially U-learnable.

The following example relates U-learnability to the ILP def-
initions given in Seetion 2.

Example 5 Time-bounded logic programs are U-learnable
under DP. Let R be the set of all logic programs that can be

builtfmm a given alphabet of predicate symbols P, jimction
symbols F, and variables V. Notice that R is countable.
Let P be the set of all bounds p(x) on derivation length of
the form p(z) = CX, where c is a positive integer and x is
the size of (number of terms in) the goal. Let the domain
X of examples be the ground atomic subset of cd, which is
the set of dejinite clauses that can be built from the given
alphabet. Notice also that a concept (r, p) classifies as pos-
itive just the dejinite clauses d E X such that r I-P(IdlJ d,

where Idl is the number of terms in d. Let F be the family of
distributions DP built using some particular enumeration of
polynomially-growing subsets of R, and let G be thefamily of
all distributions over examples. From Theorem 4, it follows
that (F, G) is polynomially U-learnable.

Definition 6 The distribution family DE.. Let R be count-
able, let k be a positive intege~ and let Ee = (El, E2, ...) be
an enumeration of subsets of R such that: (1) for all i ~ 1,
the cardinality of Ei is at most ki, (2) every (r, p), for r c R
and p G P, is in some Ei, and (3) the members of Ei, for
each i, can be determined efficiently (by an algorhhm that
runs in timepolynomial in the sum of the sizes of the members
of Ei). Let D~ be the discrete exponential distribution with
probability densi~finction

Pr(x) = (k – l)k-x for all integers x ~ 1

and let the parameter n’ of D~ be its mean {~). From D;,

de$ne a corresponding distribution Dk over R asfollows: for
each i ~ 1, let the probabilities of the r c Ei be uniformly
distributed with sum Prl); (i). Let the parameter associated

with Dk also be n’. Let P be the set of all linear functions
of the form p(x) = CX, where c is a positive integer Let the
distributions DL over P be as defined earlier (see definition
of Dp }. Finally, for the distribution Dk (with parameter
nl) and each distribution DL, dejine a distn”bution D over
R x Pas follows: for each pair (r, p), for r E R andp G P,

prD (r, P) = [prD, (r)] [prDL (P)]. Let the parameter n of D
be the parameter n’ of Dk. DE, is the family of distributions
consisting of each such distribution D.

Theorem 7 Polynomial U-1earnability under DE.. Let
F be the distribution family DE, dejined by a particular
enumeration of subsets of R and a particular choice of k,
Let G be any family of distributions over X, The pair of
distributions (F, G) is polynomially U-learnable.

Example 8 Time-bounded logic programs are U-learnable
under DEh. Again let R be the set of all logic programs that
can be builtfrom a given$nite alphabet ofpredicate symbols

P, function symbols F, and variables V. And again let P be
the set of all bounds p(z) on den’vation length of the form
p(x) = CX, where c is a positive integer and x is the size of
(number of terms in) the goal. Let the domain X of examples
be the ground atomic subset of cd. Let (S1, S2, ...) be an
enumeration of subsets of R such that Si contains all logic
programs of length i, for all i ~ 1. Let F be the distribu-
tion family DE, built fmm this enumeration and fmm the
positive integer k chosen to be the sum of the sizes of P, F,
and V. Let G be the family of all distn”butions over exam-
ples. From Theorem 7, it follows that (F, G) is polynomially
U-learnable.
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In many cases it may be incorrect to assume that the proba-
bilities of target representations vanish as quickly as they do
in the distributions considered in the preceding theorems. In
particular, a more appropriate distribution on target represen-
tations may be defined by combining an enumeration Ee, as in
Definition 6, with some distributionin which the probabilities
do not decrease exponentially, as in Definition 3. Polynomial
U-learnability should be considered with such distributions,
perhaps combined with restricted families of distributions on
examples. It can be expected that obtaining positive results
for “natural” such distributions will be theoretically challeng-
ing, and that such results will have a major impact on practical
applications of machine learning. It is also expected that it
will be challenging and useful to obtain negative results for
some such distributions. Whereas negative results for PAC-
learnability can be obtained by showing that the consistency
problem for a given concept representation is NP-hard (as-
suming RP # NP) [35], negative results for polynomial
U-learnability in some cases can be obtained by showing that
the consistency problem is NP-hard-on-average (or DistNP
hard) [2, 16] relative to particular distributions on hypothe-
ses and examples. In addition, just as negative results for
PAC-predictabiIity can be obtained (based on certain assump-
tions) using hard problems from cryptography [17], negative
results for polynomial U-predictability might possibly be ob-
tained in this same way, but would require additional effort.
Specifically, obtaining negative results for polynomial U-
Unpredictability will require specifying a particular distribution
(or family of distributions) to be used with a hard problem
from cryptography, such as inverting RSA, and it must be
verified, in some way, that the problem does not become sub-
stantially easier under this distribution (or every distribution
in this family). For example, inverting RSA is assumed hard
if encryptionldecryption is based on a choice of two large
random prime numbers according to a uniform distribution
over primes of some large size, but it becomes easy if the
distribution over primes of a given size assigns probability
1 to one particular prime number; what about for distribu-
tions “in between”, where some primes of a given size are
more likely than others? The distributions used in polyno-
mial U-predictability would correspond to such distributions
for RSA.

4.5 INCORPORATING BACKGROUND
KNOWLEDGE

Recall that background knowledge is often used in ILP. This
paper has not provided for the use of background knowl-
edge in polynomial U-learnability. The full paper on U-
learnability includes a definition of polynomial U-learnability
that allows the teacher to provide the learner with a back-
ground theory. A surprising aspect of this definition is that
it not only captures the notion of inductive learning relative
to background knowledge, as desired, but it also provides
a generalisation of Natarajan’s PAC-style formalisation of
speed-up learning [33]. Although Natarajan’s formalisation
is quite appealing, few positive have been proven within it be-
cause it is also very demanding. The use of a family of prior
distributions on hypotheses, as specified in the definition of
polynomial U-learnability, can in some cases effectively ease

these demands and lead to additional positive results.

5 DISCUSSION

As the ILP applications in Section 3 show, not only is Horn
clause logic a powerful representation language for scien-
tific concepts, but also one which is tractable in real-world
domains. This apparently flies in the face of negative PAC-
learnability results for logic programs. This may be explained
by the fact that despite logic programs being used as the rep-
resentation language throughout the applications in Section
3, very different distributional assumptions were necessary
in each application.

ILP has a clear model-theoretic semantics which is inherited
from Logic programming. However, without consideration
of the probabilistic nature of inductive inference, a purely
logic-based definition of ILP is always incomplete. For this
reason the Bayes’ oriented definitions of ILP found in Section
2 provide a more complete semantics for I~P than has pre-
viously been suggested. This introduces prior distributional
information into the definition of ILP. The introduction of
such information is also motivated both by the requirements
of practical experience and the ability to define a model of
learnability which is more appropriate for learning logic pro-
grams.

All ILP algorithms make implicit use of distributional in-
formation. One promising line of research would involve
explicit provision of distributions to general-purpose ILP sys-
tems.

The choice of representation is at the centre of focus in PAC-
learning. By contrast, the choice of distribution is the central
theme in U-learnability. The reason for the refocusing of
attention is that once one is committed to a Universal repre-
sentation, as in the case of ILP, differences in distributional
assumptions become paramount.

Some general initial results of U-learnability are stated in
this paper. Much more effort is required to clearly define the
boundaries of what is and is not U-learnable. It is believed
that U-learnability will not only be of interest to researchers in
ILP but also to the wider community within Machine Learn-
ing.
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