
Meta-Interpretive Learning of Data
Transformation Programs

Andrew Cropper(B), Alireza Tamaddoni-Nezhad, and Stephen H. Muggleton

Department of Computing, Imperial College London, London, UK
a.cropper13@imperial.ac.uk

Abstract. Data transformation involves the manual construction of
large numbers of special-purpose programs. Although typically small,
such programs can be complex, involving problem decomposition, recur-
sion, and recognition of context. Building such programs is common in
commercial and academic data analytic projects and can be labour inten-
sive and expensive, making it a suitable candidate for machine learning.
In this paper, we use the meta-interpretive learning framework (MIL)
to learn recursive data transformation programs from small numbers of
examples. MIL is well suited to this task because it supports problem
decomposition through predicate invention, learning recursive programs,
learning from few examples, and learning from only positive examples.
We apply Metagol, a MIL implementation, to both semi-structured and
unstructured data. We conduct experiments on three real-world datasets:
medical patient records, XML mondial records, and natural language
taken from ecological papers. The experimental results suggest that high
levels of predictive accuracy can be achieved in these tasks from small
numbers of training examples, especially when learning with recursion.

1 Introduction

Suppose you are given a large number of patient records in a semi-structured
format and are required to transform them to a given structured format. Figure 1
shows such a scenario relating to medical patient records, where (a) is the input
and (b) is the desired output. To avoid manually transforming the records, you
might decide to write a small program to perform this task. Figure 1c shows a
Prolog program for this task which transforms the input to the output. However,
manually writing this relatively simple program is somewhat laborious. In this
paper, we show how such data transformation programs can be machine learned
from a small number of input/output examples. Indeed, the program shown
in Fig. 1c was learned from the given input/output examples by our system,
described in Sect. 4. In this program, predicate invention is used to introduce the
predicates f1 and f2 and the primitive background predicates find patient id/2,
find int/2, and open interval/4 are used to identify the various fields to be trans-
posed from the input to the output.

In this paper, we investigate the problem of learning data transformation
programs as an ILP application. In general, this is a challenging problem for
c© Springer International Publishing Switzerland 2016
K. Inoue et al. (Eds.): ILP 2015, LNAI 9575, pp. 46–59, 2016.
DOI: 10.1007/978-3-319-40566-7 4



Meta-Interpretive Learning of Data Transformation Programs 47

P 001

67 year

lung disease: n/a, Diagnosis: Unknown

80.78

P 003

56

Diagnosis: carcinoma , lung disease: unknown

20.78

P 013

70

Diagnosis: pneumonia

55.9

(a) Input

P 001 67 Unknown
P 003 56 carcinoma
P 013 70 pneumonia

(b) Output

f(A,B):-f2(A,C),f1(C,B).
f2(A,B):- find patient id(A,C), find int(C,B).

f1(A,B):- open interval(A,B,[‘:’,‘ ’],

f1(A,B):- open interval(A,B,[‘:’,‘ ’],[‘,’,‘ ’]).

(c) Learned Prolog program

 [‘\’,‘n’]). 

Fig. 1. Transformation of medical records from semi-structured format

ILP which for example requires learning recursive rules from a small number of
training examples. In order to address this problem, we use the recently devel-
oped meta-interpretive learning (MIL) framework [5,12,13] to learn data trans-
formation programs. MIL differs from most state-of-the-art ILP approaches by
supporting predicate invention for problem decomposition and the learning of
recursive programs.

Using MIL to learn recursive programs has been demonstrated [4] to be par-
ticularly powerful in learning robot strategies, which are applicable to a poten-
tially infinite set of initial/final state pairs, in contrast to learning non-recursive
robot plans, applicable to only a specific initial/final state pair. We investigate
learning recursive data transformation programs, applicable to a potentially infi-
nite set of input/output examples.

The paper is arranged as follows. Section 2 describes related work. Section 3
describes the theoretical framework. Section 4 describes the transformation lan-
guage used in the experiments. Section 5 describes experiments in learning recur-
sive data transformation programs in three domains: medical patient records,
XML mondial documents, and ecological scholarly papers. Finally, Sect. 6 con-
cludes the paper and details future work.

2 Related Work

In [3] the authors compared statistical and relational methods to extract facts
from a MEDLINE corpus. The primary limitation of the statistical approach,
they state, is its inability to express the linguistic structure of the text; by con-
trast, the relational approach allows these features to be encoded as background
knowledge, as parse trees, specifically. The relational approach used an ILP sys-
tem similar to FOIL [14] to learn extraction rules. Similar works include [6],
who used the ILP system Aleph [16] to learn rules to extract relations from
a MEDLINE corpus; and [1], who used the ILP system FOIL to learn rules to
extract relations from Nature and New Scientist articles. These works focused on



48 A. Cropper et al.

constructing the appropriate problem representation, including determining the
necessary linguistic features to be included in the background knowledge. In con-
trast to these approaches, we use the state-of-the-art ILP system Metagol, which
supports predicate invention, the learning of recursive theories, and positive-only
learning, none of which is supported by FOIL nor Aleph.

FlashExtract [8] is a framework to extract fields from documents, such as
text files and web pages. In this framework, the user highlights one or two exam-
ples of each field in a document and FlashExtract attempts to extract all other
instances of such fields, arranging them in a structured format, such as a table.
FlashExtract uses an inductive synthesis algorithm to synthesise the extraction
program using a domain-specific language built upon a pre-specified algebra of
a few core operators (map, filter, merge, and pair). In contrast to FlashExtact,
our approach allows for the inclusion of background knowledge.

Wu et al. [19] presented preliminary results on learning data transformation
rules from examples. They demonstrated that specific string transformation rules
can be learned from examples, given a grammar describing common user editing
behaviors (i.e. insert, move, and delete). Their approach then uses a search algo-
rithm to reduce the larger grammar space to a disjunction of subgrammar spaces
(i.e. transformation rules) which are consistent with the examples. Depending
on the grammar, the search could still generate many consistent transformations
and they use a ranking algorithm to order transformation rules, e.g. based on the
homogeneity of the transformed data. In their approach the set of transformation
rules that the system can generate are pre-defined and not universal. By con-
trast, in our work, the transformation programs are not pre-defined and can be
learned using predicate invention. Wu and Knoblock [18] recently extended their
approach into a Programming-by-Example technique which iteratively learns
data transformation programs by example. Their technique works by identifying
previous incorrect subprograms and replacing them with correct subprograms.
They demonstrated their technique on a set of string transformation problems
and compared the results with the Flashfill approach [7] and MetagolDF [9].
While the overall aims of their approach are similar to ours, their approach does
not support automatic problem decomposition using predicate invention, nor
learning recursive programs. In this paper we also demonstrated our approach
on a wider range of applications.

In [9], MIL was used to learn string transformation programs. In this app-
roach, the authors perform transformations at the character level. However, this
approach significantly increases the search space, and is unsuitable for learning
from large input/output examples. By contrast, in this work, we look at the more
general problem of learning data transformation programs, which are applicable
to larger inputs/outputs and also a wider range of inputs/outputs. For instance,
in Sect. 5, we apply our technique to relatively larger (55 kb) XML files.

ILP has been used in the past for the task of learning recursive rules from
biological text. For example in [2], recursive patterns are discovered from bio-
medical text by inducing mutually dependent definitions of concepts using the
ILP system ATRE. However, this is restricted in that they have a fixed number



Meta-Interpretive Learning of Data Transformation Programs 49

of slots in the output which need to be filled. By comparison, both the ecological
and XML experiments in this paper show that we are not limited to this in our
approach.

Similarly, ATRE has been used in [10] to learn a recursive logical theory of
the ontology from a biological text corpus. However these ILP approaches cannot
be easily extended for the general task of learning data transformation programs
from examples. Both [2,10] have only been demonstrated on extraction of specific
types of information from biological text, and did not attempt more general text
transformation tasks of the kinds demonstrated in our paper. Moreover, these
approaches were not shown to learn recursive rules from a small number of
training examples and also do not support predicate invention.

3 Framework

MIL [12,13] is a form of ILP based on an adapted Prolog meta-interpreter.
Whereas a standard Prolog meta-interpreter attempts to prove a goal by repeat-
edly fetching first-order clauses whose heads unify with a given goal, a MIL
learner attempts to prove a set of goals by repeatedly fetching higher-order
metarules (Fig. 3) whose heads unify with a given goal. The resulting meta-
substitutions are saved in an abduction store, and can be re-used in later proofs.
Following the proof of a set of goals, a hypothesis is formed by applying the
meta-substitutions onto their corresponding metarules, allowing for a form of
ILP which supports predicate invention and the learning of recursive theories.

General formal framework. In the general framework for data transformation we
assume that the user provides examples E of how data should be transformed.
Each example e ∈ E consists of a pair 〈d1, d2〉 where d1 ∈ D1 and d2 ∈ D2 are
input and output data records respectively. Given background knowledge B, in
the form of existing transformations and the user-provided examples E the aim
of the learning is to generate a transformational function τ : D1 → D2 such that
B, τ |= E.

4 Implementation

Figure 2 shows the implementation of Metagol1 as a generalised meta-interpreter
[13], similar in form to a standard Prolog meta-interpreter.

Metagol works as follows. Metagol first tries to prove a goal deductively del-
egating the proof to Prolog (call(Atom)). Failing this, Metagol tries to unify the
goal with the head of a metarule (metarule(Name,Subs,(Atom :- Body))) and
to bind the existentially quantified variables in a metarule to symbols in the
signature. Metagol saves the resulting meta-substitutions (Subs) in an abduc-
tion store and tries to prove the body goals of the metarule. After proving all
goals, a Prolog program is formed by projecting the meta-substitutions onto
their corresponding metarules.
1 https://github.com/metagol/metagol.

https://github.com/metagol/metagol


50 A. Cropper et al.

prove([],H,H).
prove([Atom|Atoms],H1,H2):-

prove aux(Atom,H1,H3),
prove(Atoms,H3,H2).

prove aux(Atom,H,H):-
call(Atom).

prove aux(Atom,H1,H2):-
member(sub(Name,Subs),H1),
metarule(Name,Subs,(Atom :- Body)),
prove(Body,H1,H2),

prove aux(Atom,H1,H2):-
metarule(Name,Subs,(Atom :- Body)),
new metasub(H1,sub(Name,Subs)),
abduce(H1,H3,sub(Name,Subs)),
prove(Body,H3,H2).

Fig. 2. Prolog code for Metagol, a generalised meta-interpreter

Name Metarule Order

Base P (x, y) ← Q(x, y) P � Q

Chain P (x, y) ← Q(x, z), R(z, y) P � Q,P � R

Curry P (x, y) ← Q(x, y, c1, c2) P � Q

TailRec P (x, y) ← Q(x, z), P (z, y) P � Q, x � z � y

Fig. 3. Metarules with associated ordering constraints, where � is a pre-defined order-
ing over symbols in the signature. The letters P , Q, and R denote existentially quan-
tified higher-order variables; x, y, and z denote universally quantified first-order vari-
ables; and c1 and c2 denote existentially quantified first-order variables

4.1 Transformation Language

In the transformation language, we represent the state as an Input/Output
pair, where Input and Output are both character lists. The transforma-
tion language consists of two predicates skip to/3 and open interval/4. The
skip to/3 predicate is of the form skip to(A,B,Delim), where A and B are
states, and Delim is a character list. This predicate takes a state A =
InputA/OutputA and skips to the delimiter Delim in InputA to form an out-
put B = InputB/OutputA. For example, let A = [i, n, d, u, c, t, i, o, n]/[] and
Delim = [u, c], then skip to(A,B,Delim) is true where B = [u, c, t, i, o, n]/[].
The open interval/4 predicate is of the form open interval(A,B, Start, End),
where A and B are states, and Start and End are character lists. This predi-
cate takes a state A = InputA/OutputA, finds a sublist in InputA denoted by
Start and End delimiters, appends that sublist to OutputA to form OutputB,
and skips all elements up to End delimiter in InputA to form InputB. For
example, let A = [i, n, d, u, c, t, i, o, n]/[], Start = [n, d], and End = [t, i], then
open interval(A,B,Start,End) is true where B = [t, i, o, n]/[u, c].



Meta-Interpretive Learning of Data Transformation Programs 51

5 Experiments

We now detail experiments2 in learning data transformation programs. We test
the following null hypotheses:

Null hypothesis 1. Metagol cannot learn data transformation programs with
higher than default predictive accuracies.

Null hypothesis 2. MetagolR (with recursion) cannot learn data transforma-
tion programs with higher predictive accuracies than MetagolNR (without
recursion).

To test these hypotheses, we apply our framework to three real-world datasets:
XML mondial files, patient medical records, and ecological scholarly papers. To
test null hypothesis 2, we learn using two versions of Metagol: MetagolR and
MetagolNR. Both versions use the chain and curry metarules, but MetagolR
also uses the tailrec metarule.

We do not compare our results with other state-of-the-art ILP systems
because they cannot support predicate invention, nor, crucially, the learning
of recursive programs, and so such a comparison would be unfair.

5.1 XML Data Transformations

In this experiment, the aim is to learn programs to extract values from semi-
structured data. We work with XML files, but the methods can be applied to
other semi-structured mark-up languages, such as JSON.

Materials. The dataset3 is a 1mb worldwide geographic database XML file which
contains information about 231 countries, such as population, provinces, cities,
etc. We split the file so that each country is a separate XML file. We consider
the task of extracting all the city names for each country. Figure 4 shows three
simplified positive examples, where the left column (input) is the XML file and
the right column (output) is the city names to be extracted. Appendix A shows
a full input example used in the experiments. Note the variations in the dataset,
such as the varying number of cities (from 1 to over 30) and the differing XML
structures. To generate training and testing examples, we wrote a Python script
(included as Appendix B) to extract all the city names for each country. This was
a non-trivial task for us, and it would be even more difficult for non-programmers,
which supports the claim that this should be automated). The 231 pairings of a
country XML file and the cities in that country form the positive examples. We
do not, however, use all the positive examples as training examples because the
amount of information varies greatly depending on the country. For instance,
the file on the British crown dependency of Jersey is 406 bytes, whereas the file
on the USA is 55 kb. We postulate that in a real-world setting a user is unlikely
2 Experiments available at https://github.com/andrewcropper/ilp15-datacurate.
3 http://www.cs.washington.edu/research/xmldatasets/www/repository.html#

mondial.

https://github.com/andrewcropper/ilp15-datacurate
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#mondial
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#mondial


52 A. Cropper et al.

Input Output
<country id=’f0_136’ name=’Albania’

capital=’f0_1461’>

<name>Albania</name>

<city><name>Tirane</name></city>

<city><name>Shkoder</name></city>

<city><name>Durres</name></city>

</country>

Tirane, Shkoder, Durres

<country id=’f0_144’ name=’Andorra’

capital=’f0_1464’>

<name>Andorra</name>

<city><name>Andorra la Vella</name></city>

</country>

Andorra la Vella

<country id=’f0_149’ name=’Austria’

capital=’f0_1467’>

<name>Austria</name>

<province name="Burgenland">

<city><name>Eisenstadt</name></city>

</province>

<province name="Vienna">

<city><name>Vienna</name></city>

</province>

</country>

Eisenstadt, Vienna

Fig. 4. Three simplified XML transformation positive examples where all the city
names have been extracted. Most of the XML has been removed for brevity, but is
included in the experiments. The actual examples contain a lot more information and
a full example is included as Appendix A

to manually annotate (i.e. label) a 55 kb file. Therefore, we only use country
files less than 2 kb as positive training examples, of which there are 182. We do,
however, use the larger country files for testing. To generate negative examples,
for each XML file we extracted all k text entries and randomly selected j values
to form the negative output, ensuring that the random sample did correspond
to the expected output. Figure 5 displays an example negative instance.

Methods. For each m in the set {1, . . . , 10} we randomly select without replace-
ment m positive and m negative training examples. The default predictive accu-
racy is therefore 50 %. We average predictive accuracies and learning times over
10 trials. We set a maximum solution length to 5.

Results. Figure 6 shows that Metagol learns solutions with higher than default
predictive accuracies, refuting null hypothesis 1. Figure 6 also shows that learn-
ing with recursion results in higher predictive accuracies compared to learning
without recursion, refuting null hypothesis 2. The difference in performance is
because the non-recursive learner cannot handle the varying number of cities,
whereas the recursive solution (Fig. 7) can handle any number of cities.



Meta-Interpretive Learning of Data Transformation Programs 53

Input
<country capital="f0_1557" name="Liechtenstein">

<name>Liechtenstein</name>

<city>

<name>Vaduz</name>

<population>27714</population>

</city>

<ethnicgroups>Italian</ethnicgroups>

<ethnicgroups>Alemannic</ethnicgroups>

<religions>Roman Catholic</religions>

<religions>Protestant</religions>

</country>

Output

Italian, 27714, Vaduz, Liechtenstein, Alemannic, Protestant, Roman Catholic

Fig. 5. Simplified XML transformation negative example

2 4 6 8 10
20

40

60

80

100

No. training examples

M
ea

n
p
re

d
ic

ti
v
e

a
cc

u
ra

cy
(%

)

Recursion
No recursion
Default

Fig. 6. XML learning performance when varying number of training examples

5.2 Ecological Scholarly Papers

In this experiment, the aim is to learn programs to extract relations from natural
language taken from ecological scholarly papers.

Materials. The dataset contains 25 positive real-world examples of a natural
language sentence paired with a list of values to be extracted. These examples
are taken from ecological scholarly papers adopted from [17]. Figure 8 shows two
example pairings where we want to extract the predator name, the predation
term, and a list of all prey. We provide all species and predication terms in the
background knowledge. No negative examples are provided, so we learn using
positive examples only.



54 A. Cropper et al.

f(A,B):- f1(A,C), f(C,B).
f1(A,B):- open interval(A,B,[‘a’,‘m’,‘e’,’>’],[‘<o’,‘/’,‘n’,‘a’]).
f(A,B):- skip to(A,B,[‘<’,‘/’,‘n’,‘a’]).

Fig. 7. Example recursive solution learned by Metagol on the XML dataset

input 1: This species also has a wide food range, but whereas Feronia melanaria took
Coleoptera adults as the main item of the diet, Nebria brevicollis took spiders,
Collembola, Coleoptera adults and larvae in equal number in the present study.

output 1: [‘Nebria brevicollis’, ‘took’, ‘spiders’, ‘Collembola’, ‘Coleoptera adults and
larvae’]

input 2: Bembidion lampros. This species is an important predator of cabbage root
fly eggs (Hughes 1959; Coaker & Williams 1963) and it also feeds on Collembola,
mites, pseudo-scorpions, earthworms and small bettles (Mitchell 1963a).

output 2: [‘Bembidion lampros’, ‘predator’, ‘cabbage root fly eggs’, ‘Collembola’,
‘mites’, ’pseudo-scorpions’, ‘earthworms’, ‘small bettles’]

Fig. 8. Two input/output examples from the ecological experiment

1 2 3 4 5
0

20

40

60

80

100

No. training examples

M
ea

n
p
re

d
ic

ti
v
e

a
cc

u
ra

cy
(%

)

Recursion
No recursion

Fig. 9. Ecological learning performance when varying number of training examples

Methods. For each m in the set {1, . . . , 10}, we randomly select without replace-
ment m positive training examples and 10 positive testing examples. We average
predictive accuracies and learning times over 20 trials. We set a maximum solu-
tion length to 5.

Results. Figure 9 shows that learning with recursion significantly improves pred-
icate accuracies compared to learning without recursion, again refuting null
hypothesis 2. Figure 10 shows an example learned recursive solution.



Meta-Interpretive Learning of Data Transformation Programs 55

f(A,B):- f3(A,C), f2(C,B).
f3(A,B):- f2(A,C), find predation(C,B).
f2(A,B):- find species(A,B).
f2(A,B):- find species(A,C), f2(C,B).

Fig. 10. Example recursive solution learned by Metagol on the ecological dataset

1 2 3 4 5
0

20

40

60

80

100

No. training examples

M
ea

n
p
re

d
ic

ti
v
e

a
cc

u
ra

cy
(%

)

Fig. 11. Medical record learning performance when varying number of training exam-
ples

5.3 Patient Medical Records

In this experiment, the aim is to learn programs to extract values from patient
medical records.

Materials. The dataset contains 16 positive patient medical records, modelled on
real-world examples4, paired with a list of values to be extracted. Figures 1a and
1b show simplified input/output example pairings. The experimental dataset,
however, contains one additional input and output value, which is a float-
ing integer value. We provide the following background predicates: find int/2,
find float/2, and find patient id/2. We do not, however, provide a predicate to
identify the diagnosis field, so Metagol must use the general purpose background
predicates, described in Sect. 4, to learn a solution. To generate negative test-
ing examples, we create a frequency distribution over input lengths from the
training examples and a frequency distribution over words and punctuation in
the training examples. To create a negative testing example input, we randomly
select a length n from the length distribution and then randomly select with
replacement n words or punctuation characters.

4 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8581.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8581.


56 A. Cropper et al.

f(A,B):- f2(A,C), f2(C,B).
f2(A,B):- find patient id(A,C), find int(C,B).
f2(A,B):- f1(A,C), find float(C,B).
f1(A,B):- open interval(A,B,[‘:’,‘ ’],[‘\’,‘n’]).
f1(A,B):- open interval(A,B,[‘:’,‘ ’],[‘,’,‘ ’]).

Fig. 12. Learned program

Methods. For each m in the set {1, . . . , 5}, we randomly select without replace-
ment m positive training examples. We test using 20 positive and 20 negative
testing examples. The default predictive accuracy is therefore 50 %. We aver-
age predictive accuracies and learning times over 20 trials. We set a maximum
solution length to 5.

Results. Figure 11 shows that predictive accuracies improve with an increasing
number of training examples, with over 80 % predictive accuracy from a single
example. In all cases, the predictive accuracies of learned solutions are greater
than the default accuracy, and thus null hypothesis 1 is refuted. Figure 12 shows
an example solution.

6 Conclusion and Further Work

We have investigated learning programs which transform data from one format
to another, and we have introduced a general framework for the problem. Our
experiments on medical patient records, XML mondial files, and ecological nat-
ural language texts, indicate that MIL is capable of generating accurate recursive
data transformation programs from small numbers of user-provided examples.

This paper provides an initial investigation into an important new group
of ILP applications relevant to information extraction by example problems.
Further work remains to achieve this potential.

Several issues need to be studied further in scaling-up the work reported.
To begin with, although training data required will be small, owing to the
requirements of user-provided annotation, test data will typically consist of
large numbers of instances. Running Prolog hypotheses on such data will be
time-consuming, and we would like to investigate generating hypotheses in a
scripting language, such as Python.

For data transformation problems such as the ecological dataset we would
also like to investigate the value of large-scale background knowledge, which
might provide deeper natural language analysis based on dictionaries, tokenisa-
tion, part-of-speech tagging, and specialised ontologies.

We would also like to investigate Probabilistic ILP approaches [15], such as [11],
which have the potential to not only provide probabilistic preferences over hypoth-
esised programs, but also the potential of dealingwith issues such as noisewhich are
ubiquitouswithin real-world data. In the context of free-text data these approaches
might also be integrated with finding highest probability parses.



Meta-Interpretive Learning of Data Transformation Programs 57

Acknowledgements. The first author acknowledges the support of the BBSRC and
Syngenta in funding his PhD Case studentship. The second author acknowledges the
support from the IMI eTRIKS project. The third author would like to thank the Royal
Academy of Engineering and Syngenta for funding his present 5 year Research Chair.

A Appendix 1

<?xml version="1.0" encoding="UTF-8"?>

<country capital="f0_2148" car_code="GH" datacode="GH"

gdp_agri="47" gdp_ind="16" gdp_serv="37" gdp_total="25100"

government="constitutional democracy" id="f0_1269"

indep_date="06 03 1957" infant_mortality="80.3"

inflation="69" name="Ghana" population="17698272"

population_growth="2.29" total_area="238540">

<name>Ghana</name>

<city country="f0_1269" id="f0_2148" latitude="5.55" longitude="-0.2">

<name>Accra</name>

<population year="84">867459</population>

<located_at type="sea" water="f0_38068" />

</city>

<city country="f0_1269" id="f0_16328">

<name>Kumasi</name>

<population year="84">376249</population>

</city>

<city country="f0_1269" id="f0_16333">

<name>Cape Coast</name>

<population year="84">57224</population>

</city>

<city country="f0_1269" id="f0_16338">

<name>Tamale</name>

<population year="84">135952</population>

</city>

<city country="f0_1269" id="f0_16343">

<name>Tema</name>

<population year="84">131528</population>

</city>

<city country="f0_1269" id="f0_16348">

<name>Takoradi</name>

<population year="84">61484</population>

</city>

<city country="f0_1269" id="f0_16353">

<name>Sekondi</name>

<population year="84">31916</population>

</city>

<ethnicgroups percentage="0.2">European</ethnicgroups>

<ethnicgroups percentage="99.8">African</ethnicgroups>

<religions percentage="30">Muslim</religions>

<religions percentage="24">Christian</religions>

<encompassed continent="f0_132" percentage="100" />



58 A. Cropper et al.

<border country="f0_1189" length="548" />

<border country="f0_1231" length="668" />

<border country="f0_1422" length="877" />

</country>

B Appendix 2

from xml.dom import minidom

doc = minidom.parse(’mondial.xml’)

countries = doc.getElementsByTagName(’country’)

i=1

for country in countries:

cities = country.getElementsByTagName(’city’)

names = [city.getElementsByTagName(’name’)[0].childNodes[0].data.strip()

for city in cities]

with open(’parsed/output-{0}.txt’.format(i),’w’) as f:

f.write(’,’.join(names))

i+=1

References

1. Aitken, J.S.: Learning information extraction rules: An inductive logic program-
ming approach. In: ECAI, pp. 355–359 (2002)

2. Berardi, M., Malerba, D.: Learning recursive patterns for biomedical information
extraction. In: Muggleton, S.H., Otero, R., Tamaddoni-Nezhad, A. (eds.) ILP 2006.
LNCS (LNAI), vol. 4455, pp. 79–93. Springer, Heidelberg (2007)

3. Craven, M., Kumlien, J., et al.: Constructing biological knowledge bases by extract-
ing information from text sources. ISMB 1999, 77–86 (1999)

4. Cropper, A., Muggleton, S.H.: Learning efficient logical robot strategies involving
composable objects. In: Proceedings of the 24th International Joint Conference
Artificial Intelligence (IJCAI 2015), pp. 3423–3429. IJCAI (2015)

5. Cropper, A., Muggleton, S.H.: Logical minimisation of meta-rules within meta-
interpretive learning. In: Davis, J., Ramon, J. (eds.) ILP 2014. LNCS, vol. 9046,
pp. 62–75. Springer, Heidelberg (2015). doi:10.1007/978-3-319-23708-4 5

6. Goadrich, M., Oliphant, L., Shavlik, J.: Learning ensembles of first-order clauses
for recall-precision curves: a case study in biomedical information extraction. In:
Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194,
pp. 98–115. Springer, Heidelberg (2004)

7. Gulwani, S.: Automating string processing in spreadsheets using input-output
examples. In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, 26–28 Jan-
uary 2011, pp. 317–330 (2011)

8. Le, V., Gulwani, S.: Flashextract: A framework for data extraction by examples.
In: ACM SIGPLAN Notices, vol. 49, pp. 542–553. ACM (2014)

9. Lin, D., Dechter, E., Ellis, K., Tenenbaum, J.B., Muggleton, S.H.: Bias reformula-
tion for one-shot function induction. In: Proceedings of the 23rd European Confer-
ence on Artificial Intelligence (ECAI 2014), pp. 525–530. IOS Press, Amsterdam
(2014)

http://dx.doi.org/10.1007/978-3-319-23708-4_5


Meta-Interpretive Learning of Data Transformation Programs 59

10. Manine, A.-P., Alphonse, E., Bessières, P.: Extraction of genic interactions with
the recursive logical theory of an ontology. In: Gelbukh, A. (ed.) CICLing 2010.
LNCS, vol. 6008, pp. 549–563. Springer, Heidelberg (2010)

11. Tamaddoni-Nezhad, A., Muggleton, S.: Stochastic refinement. In: Frasconi, P., Lisi,
F.A. (eds.) ILP 2010. LNCS, vol. 6489, pp. 222–237. Springer, Heidelberg (2011)

12. Muggleton, S.H., Lin, D., Pahlavi, N., Tamaddoni-Nezhad, A.: Meta-interpretive
learning: application to grammatical inference. Mach. Learn. 94, 25–49 (2014)

13. Muggleton, S.H., Lin, D., Tamaddoni-Nezhad, A.: Meta-interpretive learning of
higher-order dyadic datalog: predicate invention revisited. Mach. Learn. 100(1),
49–73 (2015). doi:10.1007/s10994-014-5471-y

14. Quinlan, J.R., Cameron-Jones, R.M.: FOIL: a midterm report. In: Brazdil, P.B.
(ed.) ECML 1993. LNCS, vol. 667. Springer, Heidelberg (1993)

15. De Raedt, L., Kersting, K.: Probabilistic inductive logic programming. In: De
Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Induc-
tive Logic Programming. LNCS (LNAI), vol. 4911, pp. 1–27. Springer, Heidelberg
(2008)

16. Srinivasan, A.: The Aleph Manual. University of Oxford, Oxford (2007)
17. Sunderland, K.D.: The diet of some predatory arthropods in cereal crops. J. Appl.

Ecol. 12(2), 507–515 (1975)
18. Bo, W., Knoblock, C.A.: An iterative approach to synthesize data transformation

programs. In: Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI) (2015)

19. Bo, W., Szekely, P., Knoblock, C.A.: Learning data transformation rules through
examples: preliminary results. In: Proceedings of the Ninth International Workshop
on Information Integration on the Web, IIWeb 2012, pp. 8:1–8:6. ACM, New York,
NY, USA (2012)

http://dx.doi.org/10.1007/s10994-014-5471-y

