
Duce, an oracle based approach to constructive induction

Stephen Muggleton

Turing Institute,

36 North Hanover Street,

Glasgow,

G1 2AD,

UNITED KINGDOM.

Abstract

Duce1 is a Machine Learning system which sug-
gests high-level domain features to the user (or
oracle) on the basis of a set of example ob-
ject descriptions. Six transformation operators
are used to successively compress the given ex-
amples by generalisation and feature construc-
tion. In this paper Duce is illustrated by way
of its construction of a simple animal taxon-
omy and a hierarchical parity checker. How-
ever, Duce’s main achievement has been the
restructuring of a substantial expert system
for deciding whether positions within the chess
endgame of King-and-Pawn-on-a7 v. King-
and-Rook (KPa7KR) are won-for-white or not.
The new concepts suggested by Duce for the
chess expert system hierarchy were found to be
meaningful by the chess expert Ivan Bratko.
An existing manually created KPa7KR solu-
tion, which was the basis of a recent PhD thesis
[20], is compared to the structure interactively
created by Duce.

A second major expert system application of
Duce was made within a diagnostic field of
neuro-psychology. This is described in Section
8.

1 Introduction

It is well recognised [4] that acquisition of expert knowl-
edge is the major “bottleneck” in expert system devel-
opment. However, Michalski and Chilausky [8] and later

1This paper describes work which was funded in part by
the British Government’s Alvey Logic Database Demonstra-
tor. Research facilities were provided by the Turing Institute,
Glasgow, UK. Computational facilities for the preparation of
this paper were provided by Interact R&D Corporation, Vic-
toria, BC, Canada. A similar description appeared in the
Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 1987.

Quinlan [15] have shown that this bottleneck can be con-
siderably eased by generalising low-level data to form
high-level rules. Shapiro [20] extended this methodol-
ogy to deal effectively with extensive bodies of knowl-
edge by employing structured programming techniques.
Thus the expert structures the knowledge in a top-down
fashion manually, and then provides examples which can
be used to inductively generate each module in the hi-
erarchy separately. Using this technique, Shapiro and
Kopec created knowledge structures for correctly decid-
ing a forced win for white in any position within the chess
endgames of King-and-Pawn v. King (KPK) and King-
and-Pawn-on-a7 v. King-and-Rook (KPa7KR). Both so-
lutions were completely verified by exhaustive computa-
tion. However, using an information theoretic approach
Shapiro showed[20] that 84% of the endgame knowledge
was provided by the expert in the creation of the knowl-
edge structure. Thus almost all the work was still being
done by the expert rather than by the machine. In an
attempt to overcome this structuring bottleneck Pater-
son [13] tried to use the statistical clustering algorithm
CLUSTER [9] to automatically restructure the knowl-
edge for the simpler of the two endgames, KPK. Pater-
son’s results were not promising, with the machine’s sug-
gested hierarchy not having any significance to domain
experts.

In the context of Machine Learning, Michalski [7] has
called the problem of originating terms constructive in-
duction. CLUSTER [9], perhaps the best known con-
structive induction algorithm, uses a statistical cluster-
ing technique to group objects into conceptual clusters.
Each object is initially described in terms of a vec-
tor of primitive attribute values. Objects are grouped
using a heuristic inter-object distance metric. Ren-
dell [16], and Fu and Buchanan [5] describe alternative
similarity-based approaches to creating taxonomic hier-
archies which work on much the same basis as CLUS-
TER.

2 Transformation-based induction

In Duce the approach to constructive induction differs
considerably from that of Michalski and Stepp [9], Ren-
dell [16], and Fu and Buchanan [5], and can be more eas-
ily compared to the deductive transformational program-
ming techniques of Burstall and Darlington [2]. Burstall
and Darlington, and later Dershowitz [3], suggest that
deductive program synthesis can be carried out by grad-
ual truth-preserving transformations of a program spec-
ification. At first sight, these techniques seem not to
be applicable to inductive inference, which by definition
progresses by performing non-truth-preserving generali-
sations of the supplied training set. However, if each in-
ductive transformation is tested against an oracle which
ensures the validity of any transformation, any such in-
ductive transformation is as legal and safe as its deduc-
tive counterparts. This use of an oracle is closely related
to Sammut and Banerji’s [19] method of learning con-
cepts by asking questions. Indeed, one of the generali-
sation operators described in the next section is directly
due to Sammut and Banerji.

Constructive induction carries out transformations
which introduce new terms into the learner’s vocabulary.
Though such transformations can be truth-preserving,
they are not what might be called semantics-preserving.
Thus the primary concern in constructive induction
should not be “how can new terms be introduced into
the vocabulary?” but rather “how can meaningful new
terms be introduced?”. Again by using an oracle to
either name or reject machine-suggested concepts, the
difficult philosophical problems involved in defining the
word meaningful can be sidestepped. Given a meaning-
ful and valid training set, every transformation of which
is both meaningful and valid (by agreement of the ora-
cle), the resultant rule set will be meaningful and valid.

3 Operators

Duce takes as input a set of conjunctive productions, or
rules, in a form close to that of disjunctive-normal-form
propositional calculus. Six operators are employed to
progressively transform subsets of the rule base. These
operators are described below.

1. Inter-construction. This transformation takes a
group of rules, such as

X ← B ∧ C ∧ D ∧ E (1)

Y ← A ∧ B ∧ D ∧ F (2)

and replaces them with the rules

X ← C ∧ E ∧ Z? (3)

Y ← A ∧ F ∧ Z? (4)

Z? ← B ∧ D (5)

Here the rule for the new concept Z? (5) is the most
specific generalisation of the rules for X (1) and Y
(2).

2. Intra-construction. This is simply the distribu-
tive law of Boolean equations. Intra-construction
takes a group of rules all having the same rule head,
such as

X ← B ∧ C ∧ D ∧ E (6)

X ← A ∧ B ∧ D ∧ F (7)

and replaces them with

X ← B ∧ D ∧ Z? (8)

Z? ← C ∧ E (9)

Z? ← A ∧ F (10)

Note that while operator 1, inter-construction,
could legitimately be applied to rules 6 and 7, the
result would be less compact.

3. Absorption. This operator is due to Sammut and
Banerji [19], who use it to generate recursive Prolog
clauses. Even though recursion is not meaningful
within propositional calculus, this operator can be
employed profitably in generalising rule sets. Given
a set of rules, the body of one of which is completely
contained within the bodies of the others, such as

X ← A ∧ B ∧ C ∧ D ∧ E (11)

Y ← A ∧ B ∧ C (12)

one can hypothesise

X ← Y ∧ D ∧ E (13)

Y ← A ∧ B ∧ C (14)

Note that the preconditions for applying this op-
erator are stronger than those for applying inter-
construction. Also, if rule 12 were the only rule
with rule head Y, then the new rule is necessarily
valid. Otherwise it is a generalisation and must be
verified by the oracle. In general, asking the oracle
unnecessary questions can be avoided by first at-
tempting to answer the question deductively from
the rule base.

4. Identification. The identification operator is
again a potential generalisation, whose precondi-
tions are stronger than those of intra-construction.
A set of rules which all have the same head, the
body of at least one of which contains exactly one
symbol not found within the other rules, such as

X ← A ∧ B ∧ C ∧ D ∧ E (15)

X ← A ∧ B ∧ Y (16)

can be replaced by the rules

X ← A ∧ B ∧ Y (17)

Y ← C ∧ D ∧ E (18)

5. Dichotomisation. This operator works on sets of
mixed positive and negative examples. Thus a set
of rules which contain positive and negative heads,
and which all have some common symbols within
the bodies, such as

X ← A ∧ B ∧ C ∧ D (19)

X ← A ∧ C ∧ J ∧ K (20)

X ← A ∧ B ∧ C ∧ L (21)

are replaced with the rules

X ← A ∧ C ∧ Z? (22)

X ← A ∧ C ∧ Z? (23)

Z? ← B ∧ D (24)

Z? ← J ∧ K (25)

Z? ← B ∧ L (26)

where the replacement is dependent on the oracle
naming Z?. Dichotomisation is a generalisation of
the the way that ID3 [15] creates the internal nodes
of decision trees.

6. Truncation. The truncation operator, like di-
chotomisation, is intended for use with rule sets con-
taining positive and negative examples of the same
concept. However, truncation generalises by drop-
ping conditions. A set of rules which all contain the
same head, such as

X ← A ∧ B ∧ C ∧ D (27)

X ← A ∧ C ∧ J ∧ K (28)

is replaced by

X ← A ∧ C (29)

This operator generalises in a similar manner to that
of the AQ learning algorithms [8]. Its use is re-
stricted by the precondition that the resultant rule
(29) must not clash (i.e. be inconsistent) with any
other rule within the rule base. Of all the operators
truncation is the only one which reduces the num-
ber of rules. All other operators compact the rules
by shortening the average rule length.

4 The search algorithm

For any state of a rule base, there are many possible op-
erator applications. Any subset of rules within the rule

base R is a candidate for the application of one of the 6
operators. Thus the search-space for the “best” operator
application is of size 2|R|, the size of the power set of R.
What is meant by a “good” operator application? Since
each of the operators can reduce the number of symbols
in the rule base, Duce searches for the application which
produces the largest symbol reduction, i.e. Occam’s ra-
zor is applied. If each rule is taken as having a symbol
size equal to the number of conjunctive terms in the rule
body plus one (for the rule head), then for each operator
there exists an equation which can be used to predict
the exact symbol reduction for any operator. Let R′ be
a subset of the rule base R and I ′ be a common subset of
all the bodies of rules within R′. In the following equa-
tions Voperator is the symbol reduction produced when
the operator is applied to R′. The total number of sym-
bols within the rule set R′ is written as total(R′). The
symbol reduction equations are

VInter = (|I ′| − 1).(|R′| − 1) − 2

VIntra = |I ′|.(|R′| − 1) − 2

VAbsorp = (|I ′| − 1).(|R′| − 1)

VIdent = |I ′|.(|R′| − 1)

VDichot = |I ′|.(|R′| − 2) − 4

VTrunc = total(R′) − |I ′| − 1

Note that VOp can take a zero or negative value, in
which case there is no symbol reduction. Searching
for the best operator application is clearly intractable.
Moreover, there is no guarantee that such an operator
application, once found, would be acceptable to the or-
acle. In Duce the next operator application is chosen
using a best first search through the power set of the
symbols in the rule base R. Let a subset of symbols I ′

be found among the bodies of the rule set R′, where R′

is the largest subset of R containing I ′. The operator
application apply(Op, I ′, R′), using operator Op, is only
suggested to the oracle when some I ′ has been found for
which VOp is locally maximal. Any rejection of an oper-
ator application by the oracle leads to continued search.
Transformations are carried out iteratively until no fur-
ther operations can reduce the rule base size further. At
termination, by nature of the operators, almost all sym-
bols occur within a restricted number of rules. Thus, al-
though the termination condition requires searching the
entire remaining space, the search space has shrunk to
manageable proportions. Since only operations which
reduce the number of symbols are applied termination is
guaranteed.

5 Animal taxonomy

This section illustrates the behaviour of Duce when cre-
ating a simple animal taxonomy. Figure 1 shows the set

(blackbird [beak t] ∧ [colour black] ∧ [legs 2] ∧ [tail t]
∧ [wings t]) eg (blockhead-the-blackbird)

(chimp [colour brown] ∧ [hairy t] ∧ [legs 2] ∧ [tail t]
∧ [wings f]) eg (maggie-the-chimp)

(eagle [beak t] ∧ [colour golden] ∧ [legs 2] ∧ [tail t]
∧ [wings t]) eg (egg-the-eagle)

(elephant [colour grey] ∧ [legs 4] ∧ [size big] ∧ [tail t]
∧ [trunk t] ∧ [wings f]) eg (adult-elephant)

(elephant [colour grey] ∧ [legs 4] ∧ [size small] ∧ [tail t]
∧ [trunk t] ∧ [wings f]) eg (baby-elephant)

(falcon [beak t] ∧ [colour brown] ∧ [legs 2] ∧ [size big] ∧
[tail t] ∧ [wings t]) eg (flap-the-falcon)

(gorilla [colour black] ∧ [hairy t] ∧ [legs 2] ∧ [tail f]
∧ [wings f]) eg (ronnie-the-gorilla)

(lemur [colour grey] ∧ [legs 2] ∧ [tail t]
∧ [wings f]) eg (lemur-alone)

(man [colour brown] ∧ [hairy f] ∧ [legs 2] ∧ [size big] ∧
[tail f] ∧ [wings f]) eg (harry-the-hamite)

(man [colour pink] ∧ [hairy f] ∧ [legs 2] ∧ [size small] ∧
[tail f] ∧ [wings f]) eg (clap-the-caucasian)

(sparrow [beak t] ∧ [colour brown] ∧ [legs 2] ∧
[size small] ∧ [tail t] ∧ [wings t]) eg (sparky-the-sparrow)

Figure 1: Initial set of animal examples

!- induce
TRUNCATION – (-12)
Is (elephant [legs 4]) a valid rule? (y/n/i) n
TRUNCATION – (-11)
Is (elephant [legs 4] ∧ [wings f]) a valid rule? (y/n/i) n
TRUNCATION – (-11)
Is (elephant [legs 4] ∧ [trunk t]) a valid rule? (y/n/i) y

!- induce
TRUNCATION – (-9)
Is (man [hairy f] ∧ [legs 2] ∧ [tail f] ∧ [wings f])

a valid rule? (y/n/i) y
!- induce

INTER-CONSTRUCTION – (-1)
Rule:

(? [legs 2] ∧ [wings f])
What shall I call 〈?〉? (name/n/i) primate

!- induce
INTER-CONSTRUCTION – (-7)

Rule:
(? [beak t] ∧ [legs 2] ∧ [tail t] ∧ [wings t])

What shall I call 〈?〉? (name/n/i) bird
!- induce

No applicable transformation

Figure 2: Animal taxonomy session

(bird [beak t] ∧ [legs 2] ∧ [tail t] ∧ [wings t]) eg (blockhead-the-blackbird
egg-the-eagle flap-the-falcon sparky-the-sparrow)

(blackbird bird ∧ [colour black]) eg (blockhead-the-blackbird)
(chimp primate ∧ [colour brown] ∧ [hairy t] ∧ [tail t]) eg (maggie-the-chimp)
(eagle bird ∧ [colour golden]) eg (egg-the-eagle)
(elephant [legs 4] ∧ [trunk t]) eg (adult-elephant baby-elephant)
(falcon bird ∧ [colour brown] ∧ [size big]) eg (flap-the-falcon)
(gorilla primate ∧ [colour black] ∧ [hairy t] ∧ [tail f]) eg (ronnie-the-gorilla)
(lemur primate ∧ [colour grey] ∧ [tail t]) eg (lemur-alone)
(man primate ∧ [hairy f] ∧ [tail f]) eg (clap-the-caucasian harry-the-hamite)
(primate [legs 2] ∧ [wings f]) eg (maggie-the-chimp clap-the-caucasian

ronnie-the-gorilla harry-the-hamite lemur-alone)
(sparrow bird ∧ [colour brown] ∧ [size small]) eg (sparky-the-sparrow)

Figure 3: Resultant animal rule base

of example animal descriptions given to Duce. In English
the first example says

A blackbird has a beak, is black, has two legs,
a tail and wings. “blockhead-the-blackbird” is
an instance of the “blackbird” concept.

Note the inclusion of the instance set (blockhead-the-
blackbird) within the rule. This can be used as a pow-
erful tool for illustrating the meaning of new rules and
concepts.

Figure 2 shows user interaction for this example set.
User input is shown in bold type. When asked to in-
duce, Duce searches for an operation and suggests an
application of the truncation operator which will save
12 symbols. The operation is valid if and only if every-
thing having four legs is an elephant. The user can ei-
ther answer affirmatively (“y”), negatively (“n”) or ask
for illustrative examples (“i”). If Duce is asked for il-
lustrative examples it lists the instances adult-elephant
and baby-elephant. The suggestion, although consistent
with the limited universe of the examples, is too general,
and is rejected. Duce continues its search and finds a
slightly less advantageous truncation, which would save
11 symbols. The new suggestion, that anything with four
legs and no wings is an elephant is similarly rejected.
There is no particular mechanism for specialising over-
generalised hypotheses. This is merely a by-product of
the search mechanism. On the third attempt, Duce ques-
tions whether everything that has four legs and a trunk
is an elephant. Since this is affirmed, Duce replaces all
elephant rules by the new more general rule and returns
to the “!-” prompt.

The second generalisation, concerning man is accepted
first time around, producing a saving of 9 symbols. In
the third interaction Duce finds that using the intercon-
struction operator, one symbol can be saved by defining
a new concept for all things which have two legs and
no wings. The user can either reject this new concept
(“n”), ask for illustrative examples (“i”), or give a name
for the concept. The name “primate” is given to the con-

(even [v1 t] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ [v5 t] ∧ [v6 t] ∧
[v7 t] ∧ [v8 t]) eg (tttttttt)

(even [v1 t] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ [v5 f] ∧ [v6 f] ∧
[v7 f] ∧ [v8 f]) eg (ttttffff)

(even [v1 f] ∧ [v2 f] ∧ [v3 t] ∧ [v4 t] ∧ [v5 f] ∧ [v6 f] ∧
[v7 f] ∧ [v8 f]) eg (ffttffff)

(even [v1 f] ∧ [v2 f] ∧ [v3 f] ∧ [v4 f] ∧ [v5 f] ∧ [v6 f] ∧
[v7 f] ∧ [v8 f]) eg (ffffffff)

(¬even [v1 t] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ [v5 t] ∧ [v6 t] ∧
[v7 t] ∧ [v8 f]) eg (tttttttf)

(¬even [v1 t] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ [v5 f] ∧ [v6 f] ∧
[v7 f] ∧ [v8 t]) eg (ttttffft)

(¬even [v1 t] ∧ [v2 f] ∧ [v3 t] ∧ [v4 t] ∧ [v5 f] ∧ [v6 f] ∧
[v7 f] ∧ [v8 f]) eg (tttfffff)

(¬even [v1 f] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ [v5 t] ∧ [v6 t] ∧
[v7 t] ∧ [v8 t]) eg (fttttttt)

Figure 4: Even-parity examples

cept. Duce goes on to suggest another new concept for
all things which have a beak, two legs, a tail and wings.
This concept is named “bird”. When asked to search for
another operator application Duce comes back with the
message, “No applicable transformation”, meaning that
none of the operators reduce the rule base. The time
between each prompt in this example is in the order of
one second.

Figure 3 shows the result of the transformations. Not
only is the rule base more compact but also the new
concepts have made the rules more conceptually trans-
parent. For example, a blackbird is simply defined as a
bird which is black. Note that the illustrative examples
are propagated to all new rules.

6 Even-parity

According to Minsky and Papert [10] the “parity” func-
tion is unlearnable by single-layer perceptrons. Recent
techniques using multi-layered perceptron networks [18]

have been shown to be capable of learning parity effec-
tively. However, in the paradigm of explicit rule for-
mation, algorithms such as ID3 [14] and AQ11 [8] turn
out to be rather inadequate when used to learn such
functions. It has been shown [11] that whereas single-
level concept representations of parity have a description
complexity which is necessarily non-polynomially depen-
dent on the number of attributes, multi-level descrip-
tions can be built whose size is only linearly dependent
on the number of primitive attributes. Efficient multi-
concept solutions inevitably rely on a divide-and-conquer
approach. Thus the decision of the top-level concept is
based on the combination of values of lower-level pred-
icates. Each lower-level predicate has a domain which
depends on a restricted subset of the total set of prob-
lem attributes.

Figure 4 depicts examples of 8-variable even-parity.
The variables (or primitive attributes) are numbered v1

!- induce
DICHOTOMISATION – (-6)
(even [v3 t] ∧ [v4 t] ∧ ?)
(¬even [v3 t] ∧ [v4 t] ∧ ?)

What shall I call 〈?〉? (name/n/i) n
DICHOTOMISATION – (-5)
(even [v1 t] ∧ [v3 t] ∧ [v4 t] ∧ ?)
(¬even [v1 t] ∧ [v3 t] ∧ [v4 t] ∧ ?)

What shall I call 〈?〉? (name/n/i) n
DICHOTOMISATION – (-5)
(even [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ ?)
(¬even [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ ?)

What shall I call 〈?〉? (name/n/i) n
DICHOTOMISATION – (-4)
(even [v1 t] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ ?)
(¬even [v1 t] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t] ∧ ?)

What shall I call 〈?〉? (name/n/i) ¬sev
!- induce

ABSORPTION – (-3)
Is (¬even ¬sev ∧ [v1 f] ∧ [v2 t] ∧ [v3 t] ∧ [v4 t])

a valid rule? (y/n/i) y
!- induce

ABSORPTION – (-9)
Is (even ¬sev ∧ [v1 f] ∧ [v2 f] ∧ [v3 t] ∧ [v4 t])

a valid rule? (y/n/i) y
Is (even ¬sev ∧ [v1 f] ∧ [v2 f] ∧ [v3 f] ∧ [v4 f])

a valid rule? (y/n/i) y
Is (¬even ¬sev ∧ [v1 t] ∧ [v2 f] ∧ [v3 t] ∧ [v4 t])

a valid rule? (y/n/i) y
!- induce

DICHOTOMISATION – (-2)
(even ¬sev ∧ [v3 t] ∧ [v4 t] ∧ ?)
(¬even ¬sev ∧ [v3 t] ∧ [v4 t] ∧ ?)

What shall I call 〈?〉? (name/n/i) ¬ffev
!- induce

ABSORPTION – (-1)
Is (¬even ¬ffev ∧ [v3 t] ∧ [v4 t] ∧ v) a valid rule? (y/n/i) y

!- induce
ABSORPTION – (-1)
Is (even ¬ffev ∧¬sev ∧ [v3 f] ∧ [v4 f]) a valid rule? (y/n/i) y

!- induce
TRUNCATION – (-7)
Is (even ¬ffev ∧¬sev a valid rule? (y/n/i) n

No applicable transformation

Figure 5: Parity session

(even ¬ffev ∧¬sev ∧ [v3 t] ∧ [v4 t]) eg (ffttffff ttttffff tttttttt)
(even ¬ffev ∧¬sev ∧ [v3 f] ∧ [v4 f]) eg (ffffffff)
(ffev [v1 t] ∧ [v2 t]) eg (ttttffff tttttttt)
(ffev [v1 f] ∧ [v2 f]) eg (ffttffff)
(sev [v5 t] ∧ [v6 t] ∧ [v7 t] ∧ [v8 t]) eg (tttttttt)
(sev [v5 f] ∧ [v6 f] ∧ [v7 f] ∧ [v8 f]) eg (ttttffff)
(¬even sev ∧ [v3 t] ∧ [v4 t] ∧ ¬ffev) eg (fttttttt tttfffff)
(¬even ffev ∧ [v3 t] ∧ [v4 t] ∧ ¬sev) eg (ttttffft tttttttf)
(¬ffev [v1 t] ∧ [v2 f]) eg (tttfffff)
(¬ffev [v1 f] ∧ [v2 t]) eg (fttttttt)
(¬sev [v5 t] ∧ [v6 t] ∧ [v7 t] ∧ [v8 f]) eg (tttttttf)
(¬sev [v5 f] ∧ [v6 f] ∧ [v7 f] ∧ [v8 t]) eg (ttttffft)

Figure 6: Resultant parity rule base

to v8, and each is bound to a value from the set f t
(rather than 0 1). In the first example, the variables
have even-parity, since all eight have the value t, i.e. an
even number of variables are bound to t. The “eg” part
of the example shows a string of this form. Figure 5
shows the session in which Duce transforms the training
set of Figure 4 into the partial, hierarchical solution of
Figure 6. The responses are based on a standard solu-
tion in which the variables are recursively broken into
two equal sized sets at each level. The total set of vari-
ables have even-parity if and only if both subsets have
even-parity, or both have odd-parity. The first three
concept suggestions do not follow this scheme, and are
rejected. The fourth is recognised as “the second-half of
the variables have even-parity” (sev). The user then af-
firmatively answers questions concerning the application
of the absorption operator. The next suggested con-
cept is named ffev or “first-half of the first-half of the
variables are even”. Given the original eight examples,
Duce’s solution is generalised to cover 16 of the 256 pos-
sible instances. If presented initially with the complete
instance set, Duce tends towards a solution consisting
of an 8-level deep hierarchy in which levels are used to
count the number of variables set to t.

7 Recreation of the KPa7KR structure

Both the animal taxonomy and parity problem have
highly restricted domains. The real test of Duce’s capa-
bilities has been the attempt to restructure Shapiro and
Kopec’s expert system [20] for deciding whether posi-
tions within the chess endgame of King-and-Pawn-on-a7
v. King-and Rook (KPa7KR) are won-for-white or not.
The domain contains around 200,000 positions. Shapiro
generated a database of all positions, labelling each with
its minimax backup value of forced win-for-white or not.
A set of 36 primitive board features were calculated for
each position. Since many positions had the same feature
vector and won-for-white value, the number of distinct
examples was reduced to 3196. With this number of ex-
amples Duce’s search-space for applying the first opera-
tion is 23196 (see Section 4), or approximately 101000.
Nilsson [12] states that the complete game tree for chess
has approximately 10120 nodes; even that well-known
hard problem has a considerably smaller search space
than that attempted here.

For the purposes of the experiment, Shapiro provided
a randomly chosen board position for each example.
Thus the initial rule base given to Duce consisted of ex-
amples of the form

(won-for-white feature1 ∧ feature2 ∧ .. feature36) eg (position)

Two chess experts, Ivan Bratko and Tim Niblett, helped
in giving oracle answers to questions asked by Duce. The
rule base started with 118,252 symbols. The first sugges-

Pa7
bxqsq
rimmx
stlmt
Delayed-queening

hdchk
Mate-threat

bkxbq
bkxwp
qxmsq
rxmsq
r2ar8

WK-on-a8
blxwp
r2ar8
simpl
wkna8

WK-in-check
bkxcr
mulch
rimmx
rkxwp
thrsk
wknck

Black-attacks-queening-square-soon
bknwy
bkona
bkon8
skrxp
wkovl

Double-attack-threat
bkblk
bkxbq
cntxt
katri
wkpos
Black-advantage-from-potential-skewer

bkspr
reskd
reskr
r2ar8
skach
wkcti

Delayed-skewer
bkxbq
dsopp
dwipd
skewr
spcop
wtoeg

Figure 7: Human expert’s KPa7KR problem decompo-
sition

Pa7
bxqsq hdchk
rimmx spcop
stlmt
Delayed-queening-1

bknwy bkon8
dsopp mulch
rxmsq skach
skrxp wkna8
Delayed-queening-2

bkblk
White-king-in-check-delay

bkxcr bkxwp
cntxt simpl
skewr wknck
wtoeg

Skewer-threat
bkspr rkxwp
r2ar8 rkxwp
wkcti wkovl
wkpos

Double-attack-threat-2
bkona bkxwp
bkxbq blxwp
dwipd katri
reskr

Mate-threat-1
cntxt wkna8
Mate-and-double-attack

bkblk bkxbq
bkxcr katri
thrsk
Mate-and-double-attack-safe-from-promoted-queen

dsopp qxmsq
r2ar8 rkxwp
wkcti wknck

Mate-threat-2
bkon8 bkspr
bkxcr r2ar8
skrxp thrsk
wknck wkovl
Mate-threat-safe-from-promoted-q

bkxbq blxwp
dsopp dwipd
rkxwp rxmsq
simpl skewr
wtoeg

Double-attack-1
bkblk bkona
bkspr bkxcr
bkxwp blxwp
dwipd skrxp
Potential-double-attack-useful-to-black

bknwy bkxbq
cntxt katri
r2ar8 wkcti
wknck wkovl
wkpos

Figure 8: KPa7KR knowledge structure generated by
Duce

tion reduced 21,606 of these, a reduction of around 20%.
After three questions, around 60% of the rule base had
been reduced. After 41 transformations, the rule base
had been reduced to 553 rules, and contained a total of
9050 symbols. At this point there were still applicable
operations, but symbol reductions had been reduced to
the low hundreds.

In questions 3 and 5, in which new concepts were in-
troduced, the size of the common set of symbols, Int was
too large for a comprehensible rule description. It is here
that the illustrative board positions were indispensible.
For this experiment, a domain-dependent graphics front-
end was built into Duce, which gave the user the ability
to peruse a large number of board positions representing
the concept and counter-concept. Without this graphical
device, new concepts could not have been recognised and
named. As it was, concepts were named with confidence
within the presentation of 20 to 40 board positions. It
was rarely necessary to reject new concepts and general-
isations suggested by Duce in the KPa7KR experiment.

Figure 7 shows the structure created manually by
Shapiro and Kopec, which took an estimated 6 man
months of effort. Figure 8 shows Duce’s solution. Duce
carried out the 41 oracle agreed transformations during
a single working day. The computation time between
each question was in the order of a minute. It should be
noted that where Shapiro and Kopec have used nine hi-
erarchically arranged concepts, Duce has used thirteen.
Duce’s solution also contains 553 rules and 9050 symbols
where Shapiro and Kopec’s manually created solution
contains the equivalent of around 225 productions and
around 1000 symbols. Although Duce’s solution could
have been made more compact by applying more trans-
formations or by generating decision trees for each con-
cept using ID3, it seems unlikely to the author that this
would have resulted in a solution which was as compact
as that of Shapiro and Kopec.

By virtue of the operators used by Duce, the KPa7KR
solution is guaranteed correct by construction.

8 Neuropsychology application.

A second structuring experiment was carried out by the
author using Duce at Interact Corporation, Canada. In
this Duce was used to construct a problem decomposi-
tion for deciding on dysfunction of the left parietal brain
area of children with learning disabilities. The input to
the algorithm consisted of 227 diagnosed cases. Each
case contained the results of a battery of approximately
100 binary-valued clinical tests. Each case was marked
with a diagnosis of normal/abnormal left parietal lobe
by the resident clinical neuro-psychologist, Dr. Russell.
Using these cases Duce carried out an interactive ses-
sion in which Russell was asked to answer a total of 53
questions. During and subsequent to the construction of

the rulebase, a set of 48 independent cases were used to
test the performance of the new rule-set. Since the cases
and generated rules were inherently noisy, a majority-
vote mechanism was used for rule evaluation. After all
53 questions had been answered, 43 of the 48 test cases
agreed with Russell’s diagnosis, i.e. 90% agreement. In
contrast, an existing expert system developed by Rus-
sell had only a 63% agreement rate with Russell’s diag-
noses over the same test data. While Duce’s structured
rulebase took 2-3 person-days to build and verify, the
equivalent part of the hand-built expert system is con-
servatively estimated to have taken 2-3 person-months
to generate, improve and verify.

In parallel with the supervised construction of the
Duce rulebase, Duce was run on the same cases in un-
supervised mode. In this mode, all generalisation ques-
tions were answered affirmatively and all new concepts
were arbitrarily named. Performance with unsupervised
learning stabilised after 27 questions to a level of 25%
agreement with Russell’s diagnoses of the same test
cases.

Unlike the endgame experiment in which an exhaus-
tive example set was used, the neuro-psychological exam-
ple set was relatively sparse. As a consequence, whereas
no rejections were necessary in the case of the chess
experiment, an average of 10 rejections were required
per acceptance with the neuropsychological data. This
seems to indicate the need for expert supervision of Duce
where sparse data is involved, and explains the dramatic
difference in verification results between the supervised
and unsupervised data.

The structure of the rulebase created by Russell work-
ing with Duce is shown in Figure 9. This hierarchi-
cal structure contains groups of rules associated with
each node of the network. The sub-types implied by
this hierarchy were, according to Russell, “clinically sig-
nificant”, and relate directly to neuropsychological sub-
types based on Wide-range-achievement-test (WRAT)
results in arithmetic, reading and spelling.

9 Conclusion

Duce is a program which, with the aid of a human oracle,
discovers useful new concepts. AM [6], an early concept
discovery program, was criticised [17] for the obscurity of
the techniques involved. Unlike AM, Duce uses a simple
and explicit set of six operators to create and refine con-
cepts. In addition the meaning-giving agent, implicitly
present within any Machine Learning system, is explic-
itly represented as the oracle within Duce.

Extensive search is used to decrease the number of
questions asked by Duce of the oracle. However, in what
circumstances is the use of an oracle either justified or
feasible? In this respect it is worth noting that on the
basis of a meagre number of empirical studies the ratio

LPAb LPAb GoodV
LPAb PoorA1

LPAb PoorA
LPAb BadA1

LPAb BadA1 RS AST
LPAb BadA

LPAb BadA PoorS
LPAb BdA PrS BadAST GdSSPT

LPAb BadA BadAST
LPAb BadA AST S1

LPAb BadA AST S
LPAb BadA AST S1 V

Figure 9: Structure of neuropsychological expert system
constrcuted by Duce

of oracle rejections to acceptances seems to be inversely
related to the percentage of examples provided from the
domain. In the parity problem, where Duce was supplied
with a sparse set of examples, a large number of rejec-
tions were necessary (Figure 5). In the more complex
KPa7KR chess domain, Duce was given an exhaustive
set of examples, and required almost no rejections from
the oracle. Thus it might be expected that in domains in
which a moderate amount of example material is avail-
able the oracle would need to reject a moderate number
of proposals. Further research is necessary to show the
truth of this hypothesis.

Duce works with statements in propositional logic.
One way of extending the present work would be to at-
tempt using similar techniques within other representa-
tions. Banerji [1] is presently looking at the problem of
constructive induction within first-order calculus. The
author believes that techniques akin to those used in
Duce could be profitably employed in learning hierarchi-
cally definable context free grammars.

Acknowledgements

I would like to thank Donald Michie for suggesting the
application of Duce to the KPa7KR problem. Thanks
are also due to Alen Shapiro for supplying the chess ex-
ample database, Ivan Bratko and Tim Niblett for acting
as chess oracles, Pete Mowforth for suggesting the name
”Duce” and Michael Bain, Dave Haussler, Claude Sam-
mut and Wray Buntine for helpful discussion.

References

[1] R.B. Banerji. Learning in the limit in a growing
language. In IJCAI-87, pages 280–282, Los Angeles,
CA, 1987. Kaufmann.

[2] R.M. Burstall and J. Darlington. A transformation
system for developing recursive programs. Journal

of the Association for Computing Machinery, 24:44–
67, 1977.

[3] N. Dershowitz. Synthesis by completion. In IJCAI-
85, pages 208–214, Los Altos, CA, 1985. Kaufmann.

[4] E.A. Feigenbaum. Themes and case studies of
knowledge engineering. In D. Michie, editor, Ex-
pert Systems in the Micro-electronic Age, pages 3–
25. Edinburgh University Press, Edinburgh, 1979.

[5] L.M. Fu and B.G. Buchanan. Learning intermediate
concepts in constructing a hierarchical knowledge
base. In IJCAI-85, pages 659–666, Los Altos, CA,
1985. Kaufmann.

[6] D.B. Lenat. On automated scientific theory forma-
tion: a case study using the AM program. In J.E.
Hayes and D. Michie, editors, Machine Intelligence
9. Horwood, New York, 1981.

[7] R.S. Michalski. Understanding the nature of learn-
ing: issues and research directions. In R. Michal-
ski, J. Carbonnel, and T. Mitchell, editors, Machine
Learning: An Artificial Intelligence Approach, vol-
ume 2, pages 3–25. Kaufmann, Los Altos, CA, 1986.

[8] R.S Michalski and R.L. Chilausky. Learning by be-
ing told and learning from examples: an experi-
mental comparison of the two methods of knowl-
edge acquisition in the context of developing an ex-
pert system for soybean disease diagnosis. Interna-
tional Journal of Policy Analysis and Information
Systems, 4(2):125–161, 1980.

[9] R.S. Michalski and R. Stepp. Learning from ob-
servation: conceptual clustering. In R. Michal-
ski, J. Carbonnel, and T. Mitchell, editors, Ma-
chine Learning: An Artificial Intelligence Approach,
pages 331–364. Tioga, Palo Alto, CA, 1983.

[10] M. Minsky and S. Papert. Perceptrons. MIT Press,
MA, 1969.

[11] S.H. Muggleton. Inductive Acquisition of Expert
Knowledge. PhD thesis, Edinburgh University,
1987.

[12] N.J. Nilsson. Principles of Artificial Intelligence.
Tioga, Palo Alto, CA, 1980.

[13] A. Paterson. An attempt to use cluster to synthesise
humanly intelligible subproblems for the kpk chess
endgame. Technical Report UIUCDCS-R-83-1156,
Univ. Illinois, Urbana, IL, 1983.

[14] J.R. Quinlan. Discovering rules from large collec-
tions of examples: a case study. In D. Michie, editor,
Expert Systems in the Micro-electronic Age, pages
168–201. Edinburgh University Press, Edinburgh,
1979.

[15] J.R. Quinlan. Semi-autonomous acquisition of
pattern-based knowledge. In D. Michie, editor, In-
troductory readings in expert systems, pages 192–
207. Gordon and Breach, New York, 1982.

[16] L. Rendell. Substantial constructive induction using
layered information compression: tractable feature
formation in search. In IJCAI-85, pages 650–658.
Kaufmann, 1985.

[17] G.D. Ritchie and F.K. Hanna. AM: a case study in
Ai methodology. Artificial Intelligence, 23(3):249–
268, 1984.

[18] D.E. Rumelhart and J.L. McClelland. Learning in-
ternal representations by error propogation. In Ex-
plorations in the Micro-Structure of Cognition Vol.
1 : Foundations, pages 318–362. MIT Press, Cam-
bridge, MA, 1986.

[19] C. Sammut and R.B Banerji. Learning concepts by
asking questions. In R. Michalski, J. Carbonnel, and
T. Mitchell, editors, Machine Learning: An Artifi-
cial Intelligence Approach. Vol. 2, pages 167–192.
Kaufmann, Los Altos, CA, 1986.

[20] A.D. Shapiro. Structured Induction in Expert Sys-
tems. Adison-Wesley, Wokingham, 1987.

