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Abstract. Despite early interest Predicate Invention has lately been under-explored within ILP. We
develop a framework in which predicate invention and recursive generalisations are implemented using
abduction with respect to a meta-interpreter. The approach is based on a previously unexplored case
of Inverse Entailment for Grammatical Inference of Regular languages. Every abduced grammar H is
represented by a conjunction of existentially quantified atomic formulae. Thus ¬H is a universally quantified
clause representing a denial. The hypothesis space of solutions for ¬H can be ordered by θ-subsumption.
We show that the representation can be mapped to a fragment of Higher-Order Datalog in which atomic
formulae in H are projections of first-order definite clause grammar rules and the existentially quantified
variables are projections of first-order predicate symbols. This allows predicate invention to be effected
by the introduction of first-order variables. This application of abduction to conduct predicate invention
is related to that of previous work by Inoue and Furukawa. We show that the approach is sufficiently
flexible to support learning of Context-Free grammars from positive and negative example, a problem
shown to be theoretically possible by E.M. Gold in the 1960s, though to the authors’ knowledge, not
previously demonstrated within Grammatical Inference. We describe the implementation of MetagolR and
MetagolCF for learning Regular and Context-Free grammars respectively. Experiments indicate that on
randomly chosen grammars both systems run significantly faster (100 to 1000 times) than the state-of-the-
art ILP system MC-TopLog and have significantly higher predictive accuracies than MC-TopLog. Lastly
we demonstrate that by combining MetagolR and MetagolCF we can formulate a system, MetagolRCF ,
which can change representation by firstly assuming the target to be Regular, and then failing this, switch
to assuming it to be Context-Free. Once again, MetagolRCF runs up to 100 times faster than MetagolCF

on grammars chosen randomly from Regular and non-Regular Context-Free grammars. In conclusion we
discuss ways in which the approach could be extended to predicate invention in fragments of first-order
logic other than grammars.

1 Introduction

Consider the problem of using an ILP system to learn a Regular grammar which accepts all and only
those binary sequences containing an even number of 1s (see Figure 1). It has been shown [12] that
this so-called Parity grammar is unlearnable for decision tree learning algorithms applied to k-length
sequences. By contrast, since the 1950s automaton-based learning algorithms have existed [11] which
inductively infer Regular languages, such as Parity, from positive and negative examples. If we try to
learn Parity using an ILP system the obvious representation of the target would be a Definite Clause
Grammar (DCG) (see Figure 1a). However, if the ILP system were provided with examples for the
predicate q0 then the predicate q1 would need to be invented. It is widely accepted that Predicate
Invention is a hard and under-explored topic within ILP [18], and indeed state-of-the-art ILP systems,
including MC-TopLog [17] and Progol [13, 15], are unable to learn grammars such as Parity in the
form of a DCG since these systems do not support Predicate Invention. However, note that in Figure
1a each clause of the DCG has one of the following two forms.

Q([], []) ←

Q([C|x], y) ← P (x, y)

where Q, C, P are the only symbols which vary between the clauses. Figure 1b shows how these two
forms of clauses above can be captured within the two clauses of a recursive meta-interpreter parse/3



2

a)

Finite Production Definite Clause Positive Negative
acceptor rules Grammar (DCG) examples examples

q q10

0 0

1

1

 

q0 →
q0 → 0 q0

q0 → 1 q1

q1 → 0 q1

q1 → 1 q0

q0([], []) ←
q0([0|A], B) ← q0(A, B)
q0([1|A], B) ← q1(A, B)
q1([0|A], B) ← q1(A, B)
q1([1|A], B) ← q0(A, B)

λ
0
00
11
000
011
101

1
01
10
001
010
100
111

b)
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parse(S) ← parse(q0, S, []).

parse(Q, [], []) ← acceptor(Q).
parse(Q, [C|X], Y ) ← delta1(Q, C, P ), parse(P, X, Y ).

acceptor(q0) ←
delta1(q0, 0, q0) ←
delta1(q0, 1, q1) ←
delta1(q1, 0, q1) ←
delta1(q1, 1, q0) ←

Fig. 1. a) Parity acceptor with associated production rules, DCG, positive and negative examples; b) Meta-interpreter
with ground facts representing Parity grammar

which uses the auxilliary predicates acceptor/1 and delta1/312 to instantiate the predicate symbols
and constants from the original DCG. The predicates acceptor/1 and delta1/3 can each be interpreted
as Higher-Order Datalog [20] predicates since they take arguments which are predicate symbols q0, q1

from the DCG. By making acceptor/1 and delta1/3 abducible, Parity, and indeed any other Regular
grammar, could in principle be learned from ground instances of parse/1 using abduction. The paper
explores this form of learning with respect to a meta-interpreter.

We show that such abductively inferred grammars are a special case of Inverse Entailment. We
also show that the hypothesis space forms a lattice ordered by subsumption. The extensions of this
use of abduction with respect to a meta-interpreter lead to a new class of inductive algorithm for
learning Regular and Context-Free languages. The new approach blurs the normal distinctions be-
tween abductive and inductive techniques (see [5]). Usually abduction is thought of as providing an
explanation of a single ground fact in the form of a set of ground facts while induction provides an
explanation of a set of ground facts in the form of a set of universally quantified rules. However, the
meta-interpreter in Figure 1b can be viewed as projecting the universally quantified rules in Figure
1a onto the ground facts associated with acceptor/1 and delta1/3 in Figure 1b. In this way abducing
these ground facts with respect to a meta-interpreter is equivalent to induction, since it is trivial to
map the ground acceptor/1 and delta1/3 facts back to the original universally quantified DCG rules.

The paper is structured as follows. Section 2 introduces the theoretical framework for Meta-
interpretive learning and its application to grammatical inference. We then describe a system imple-
mentation for three related systems, MetagolR, MetagolCF and MetagolRCF in Section 3. In Section
4 the performance of these systems is compared experimentally against MC-Toplog on Regular and

1 Note that in the theory of automata [8] delta1/3 corresponds to the transition function of the finite acceptor shown
in Figure 1a.

2 Considering delta1/3 as an arity 3 ground relation, if c, k are bounds on the number of terminals and non-terminals

respectively then the number of possible definitions for delta1/3 is 2ck2

.
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Context-Free grammar learning problems. In Section 5 we describe related work. Lastly we conclude
and describe directions for further work in Section 6.

2 Meta-interpretive Learning framework

2.1 Logical notation

A variable is represented by an upper case letter followed by a string of lower case letters and digits. A
function symbol is a lower case letter followed by a string of lower case letters and digits. A predicate
symbol is a lower case letter followed by a string of lower case letters and digits. The arity of a function
or predicate symbol is the number of arguments it takes. A constant is a function or predicate symbol
which has arity zero. Variables and constants are terms, and a function symbol immediately followed
by a bracketed n-tuple of terms is a term. Thus f(g(X), h) is a term when f , g and h are function
symbols and X is a variable. A predicate symbol immediately followed by a bracketted n-tuple of terms
is called an atomic formula. The negation symbol is: ¬. Both A and ¬A are literals whenever A is an
atomic formula. In this case A is called a positive literal and ¬A is called a negative literal. A finite set
(possibly empty) of literals is called a clause. A clause represents the disjunction of its literals. Thus
the clause {A1, A2, ..¬Ai,¬Ai+1, ...} can be equivalently represented as (A1 ∨A2 ∨ ..¬Ai ∨¬Ai+1 ∨ ...)
or A1, A2, .. ← Ai, Ai+1, .... A Horn clause is a clause which contains at most one positive literal. A
Horn clause is unit if and only if it contains exactly one literal. A denial or goal is a Horn clause which
contains no positive literals. A definite clause is a Horn clause which contains exactly one positive
literal. The positive literal in a definite clause is called the head of the clause while the negative
literals are collectively called the body of the clause. A unit clause is positive if it contains a head
and no body. A unit clause is negative if it contains one literal in the body. A set of clauses is called
a clausal theory. A clausal theory represents the conjunction of its clauses. Thus the clausal theory
{C1, C2, ...} can be equivalently represented as (C1 ∧C2 ∧ ...). A clausal theory in which all predicates
have arity at most one is called monadic. A clausal theory in which all predicates have arity at most
two is called diadic. A clausal theory in which each clause is Horn is called a logic program. A logic
program is said to be definite in the case it contains only definite clauses. A logic program is said to
be a Datalog program if it contains no function symbols other than constants. A Datalog program is
said to be Higher-Order in the case that it contains at least one constant predicate symbol which is
the argument of a term. Literals, clauses and clausal theories are all well-formed-formulae (wffs) in
which the variables are assumed to be universally quantified. Let E be a wff or term. E is said to be
ground if and only if it contains no variables. Let C and D be clauses. We say that C ºθ D or C
θ-subsumes D if and only if there exists a substitution θ such that Cθ ⊆ D.

2.2 Formal language notation

Let Σ be a finite alphabet. Σ∗ is the infinite set of strings made up of zero or more letters from Σ.
λ is the empty string. uv is the concatenation of strings u and v. |u| is the length of string u. A
language L is any subset of Σ∗. Let ν be a set of non-terminal symbols disjoint from Σ. A production
rule r = LHS → RHS is well-formed in the case that LHS ∈ (ν ∪ Σ)∗, RHS ∈ (ν ∪ Σ ∪ λ)∗ and
when applied replaces LHS by RHS in a given string. A grammar G is a pair 〈s, R〉 consisting of a
start symbol s ∈ ν and a finite set of production rules R. A grammar is Regular Chomsky-normal in
the case that it contains only production rules of the form S → λ or S → aB where S, B ∈ ν and
a ∈ Σ. A grammar is Linear Context-Free in the case that it contains only Regular Chomsky-normal
production rules or rules of the form S → Ab where S, A ∈ ν and b ∈ Σ. A grammar is Context-Free
in the case that it contains only Linear Context-Free Chomsky-normal production rules or rules of
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the form S → AB where S, A, B ∈ ν.3 A Context-Free grammar is said to be deterministic in the
case that it does not contain two Regular Chomsky-normal production rules S → aB and S → aC
where B 6= C. A sentence σ ∈ Σ∗ is in L(G) iff given a start symbol S ∈ ν there exists a sequence
of production rule applications S →R1

. . . →Rn σ where Ri ∈ G. A language L is Regular, Linear
Context-free or Context-Free in the case there exists a grammar G for which L = L(G) where G is
Regular, Linear Context-Free or Context-Free respectively. According to the Context-Free Pumping
Lemma, if a language L is Context-Free, then there exists some integer p ≥ 1 such that any string s
in L with |s| ≥ p (where p is a pumping length) can be written as s = uvxyz with substrings u, v, x,
y and z, such that |vxy| ≤ p, |vy| ≥ 1 and uvnxynz is in L for every integer n ≥ 0.
2.3 Framework
The Meta-Interpretive Learning (MIL) setting is a variant of the normal setting for ILP.

Definition 1 (Meta-Interpretive Learning setting). A Meta-Interpretive Learning (MIL) prob-
lem consists of Input = 〈B, E〉 and Output = H ∈ HB,E where the background knowledge B =
〈BM , BA〉. BM is a logic program representing a meta-interperter and BA and H are ground definite
Higher-Order Datalog programs consisting of positive unit clauses. The predicate symbol constants in
BA and H are represented by Skolem constants. The examples are E = 〈E+, E−〉 where E+ is a
ground logic program consisting of positive unit clauses and E− is a ground logic program consisting
of negative unit clauses. The Input and Output are such that B, H |= E+ and for all e− in E−,
B, H 6|= e−.

Inverse Entailment can be applied to allow H to be derived from B and E+ as follows.

B, H |= E+

B,¬E+ |= ¬H (1)

Since both H and E+ can each be treated as conjunctions of ground atoms containing Skolem constants
in place of existential variables, it follows that ¬H and ¬E+ are universally quantified denials where
the variables come from replacing Skolem constants by unique variables. We now define the concept
of a Meta-interpretive learner.

Definition 2 (Meta-interpretive learner). Let HB,E represent the complete set of abductive solu-
tions for the MIL setting of Definition 1. Algorithm A is said to be a Meta-interpretive learner iff for
all B, E such that H = A(B, E) it is the case that H ∈ HB,E.

Example 1 (Parity example). Let B = 〈BM , BA〉, E = 〈E+, E−〉 and H ∈ HB,E represents the parity
grammar. Figure 2 shows H as a possible output of a Meta-interpretive learner.

Note that in this example abduction with respect to BM produces Predicate Invention by introducing
Skolem constants representing new predicate symbols. By contrast an ILP system such as Progol uses
Inverse Entailment [13] to construct a single clause from a single example, while a Meta-interpretive
learner uses Inverse Entailment to construct the set of all clauses H as the abductive solution to
a single goal ¬E+ using E− as integrity constraints. In the example the hypothesised grammar H
correponds to the first-order DCG from Figure 1a, which contains both invented predicates and mutual
recursion. Neither predicate invention nor mutual recursion can be acheived with DCGs in this way
using ILP systems such as Progol or MC-TopLog.

3 This is an adaptation of Chomsky-normal form Context-free, which usually only permits productions of the form
S → λ, S → a and S → AB.
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E+ ¬E+ E− H ¬H

parse([]) ←
parse([1, 1]) ←
parse([0, 1, 1]) ←
parse([1, 0, 1]) ←
parse([1, 1, 0]) ←

← parse([]),
parse([1, 1]),
parse([0, 1, 1]),
parse([1, 0, 1]),
parse([1, 1, 0]).

← parse([1])
← parse([0, 1])
← parse([1, 0])
← parse([0, 0, 1])
← parse([1, 1, 1])

acceptor($0) ←
delta1($0, 0, $0) ←
delta1($0, 1, $1) ←
delta1($1, 0, $1) ←
delta1($1, 1, $0) ←

← acceptor(Q0),
delta1(Q0, 0, Q0),
delta1(Q0, 1, Q1),
delta1(Q1, 0, Q1),
delta1(Q1, 1, Q0).

Fig. 2. Parity example where BM is the Meta-interpreter shown in Figure 1b, BA = E− = ∅ and E+, ¬E+, H, ¬H, are
as shown above. ‘$0’ and ‘$1’ in H is a Skolem constant replacing existentially quantified variables.

2.4 Lattice properties of hypothesis space
In this section we investigate orderings over MIL hypotheses.

Definition 3 (ºB,E relation in MIL). Within the MIL setting we say that H ºB,E H ′ in the case
that H, H ′ ∈ HB,E and ¬H ′ ºθ ¬H.

We now show that ºB,E forms a quasi-ordering and a lattice.
Proposition 1 (Quasi-ordering). Within the MIL setting 〈HB,E ,ºB,E〉 forms a quasi-ordering.
Proof. Follows from the fact that 〈{¬H : H ∈ HB,E},ºθ〉 forms a quasi-ordering since each ¬H is a
clause [21].

Proposition 2 (Lattice). Within the MIL setting 〈HB,E ,ºB,E〉 forms a lattice.
Proof. Follows from the fact that 〈{¬H : H ∈ HB,E},ºθ〉 forms a lattice since each ¬H is a clause
[21].

We now show that this ordering has a unique top element.
Proposition 3 (Unique ⊤ element). Within the MIL setting there exists ⊤ ∈ HB,E such that for
all H ∈ HB,E we have ⊤ ºB,E H and ⊤ is unique up to renaming of Skolem constants.
Proof. Let ¬H ′ =

∨
H∈HB,E

¬H and ¬⊤ = ¬H ′θv where v is a variable and θv = {u/v : u variable in ¬H ′}.
By construction for each H ∈ HB,E it follows that ¬⊤ ºθ ¬H with subsitution θv. Therefore for all
H ∈ HB,E we have ⊤ ºB,E H and ⊤ is unique up to renaming of Skolem constants.

This proposition can be illustrated with a grammar example.

Example 2 (Subsumption example). In terms of the Meta-interpreter of Figure 1a the universal gram-
mar {0, 1}∗ can be expressed using ⊤ = {(acceptor($0) ←), (delta1($0, 0, $0) ←), (delta1($0, 1, $0) ←
)}. Letting H represent the Parity grammar from Example 1 it is clear that ¬H ºθ ¬⊤ and so
⊤ ºB,E H. So unlike the subsumption relation between universally quantified clauses, binding all the
(existentially quantified) variables in H to each other produces a maximally general grammar ⊤.

We now show the conditions under which there is a unique bottom element of the lattice.
Proposition 4 (Unique ⊥ element). In the case that HB,E is finite up to renaming of Skolem
constants there exists ⊥ ∈ HB,E such that for all H ∈ HB,E we have H ºB,E ⊥ and ⊥ is unique up
to renaming of Skolem constants.
Proof. Since HB,E is finite ¬⊥ = lgg({¬H : H ∈ HB,E}) where lgg is Plotkin’s algorithm for
computing the least general generalisation of a set of clauses under subsumption [22].

For most purposes the construction of the unique bottom clause is intractable since the cardinality of
the lgg clause increases exponentially in the cardinality of HB,E . We now show a method for reducing
hypotheses.
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Language Meta-interpreter Example Example
type Grammar Language

a) Regular
parse(S) ← parse(Q, S, []).
parse(Q, X, X) ← acceptor(Q).
parse(Q, [C|X], Y ) ← delta1(Q, C, P ), parse(P, X, Y ).

S → 0 S
S → 1 T
T → λ
T → 1 T

0+1+

b) Context-Free

parse(S) ← parse(Q, S, []).
parse(Q, X, X) ← acceptor(Q).
parse(Q, [C|X], Y ) ← delta1(Q, C, P ), parse(P, X, Y ).
parse(Q, X, Y ) ← delta2(Q, P, C), parse(P, X, [C|Y ]).
parse(Q, X, Y ) ← delta3(Q, P, R), parse(P, X, Z), parse(R, Z, Y ).

S → λ
S → T S
T → 0 U
U → T 1

(0n1n)∗

Fig. 3. Meta-interpreters, example Chomsky-normal form grammars and example languiages for a) Regular and b)
Context-Free languages

2.5 Reduction of hypotheses
Proposition 5 (Logical reduction of hypotheses.). Suppose H ′ is an hypothesis in the MIL
setting and ¬H is the result of applying Plotkin’s clause reduction algorithm [22] to ¬H ′. Then H is
a reduced hypothesis equivalent to H ′.
Proof. Follows from the fact that ¬H ′ is θ-subsumption equivalent to ¬H by construction.

Example 3 (Reduction example). Let H ′ = H ∪{r} where H is the Parity grammar from Figure 2 and
r = (delta1($0, 0, $2) ←) represents an additional redundant grammar rule. Now Plotkin’s reduction
algorithm would reduce ¬H ′ to the equivalent clause ¬H and consequently grammar H is a reduced
equivalent form of H.

In the following section we show the existence of a compact bottom hypothesis in the case of MIL for
Regular languages.

2.6 Framework applied to grammar learning
Figure 3 shows how the Meta-interpreter for Regular Grammars, can be extended to Context-Free
Grammars. The Chomsky language types form an inclusion hierarchy in which Regular ⊆ Context-
Free. Algorithms for learning the Regular languages have been widely studied since the 1970s within
the topic of Grammatical Inference [3]. Many of these start with a prefix tree acceptor, and then
progressively merge the states.
Proposition 6 (Unique ⊥ for Regular languages). Prefix trees act as a compact bottom theory
in the MIL setting for Regular languages.
Sketch Proof. Follows from the fact that all deterministic Regular gramamrs which include the posi-
tive examples can be formed by merging the arcs of a prefix tree acceptor [12]. Merging the arcs of the
prefix tree is achieved by unifying the delta1 atoms in ¬H within the MIL setting.

Example 4 (Prefix tree). Assume the MIL setting with BM being the meta-interpreter for Regular lan-
guages. Let E+ = {parse([1, 1]), parse([1, 1, 0])} then ⊥ = {delta1($0, 1, $1),delta1($1, 1, $2),acceptor($2),
delta1($2, 0, $3),acceptor($3)} represents the prefix tree automaton.

Proposition 7 (⊥ for Context-Free languages). Any bottom theory ⊥ for a Context-Free language
contains a set of delta1 atoms representing a Regular prefix tree.
Sketch Proof. Follows from the fact that the Regular subset of MIL hypotheses are all subsumed by
¬⊥R where ⊥R represents the Regular prefix tree.
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3 Implementations

The systems MetagolR, MetagolCF and MetagolRCF are three simple Prolog implementations of Meta-
interpretive learning.

MetagolR The MetagolR system is based on the following abductive variant of the Regular Meta-
interpreter from Figure 3 (the standard definition of member/2 is omitted for brevity).

parse(S,G1,G2) :- parse(s(0),S,[],G1,G2).

parse(Q,X,X,G1,G2) :- abduce(acceptor(Q),G1,G2).
parse(Q,[C|X],Y,G1,G2) :- skolem(P), abduce(delta1(Q,C,P),G1,G3), parse(P,X,Y,G3,G2).

abduce(X,G,G) :- member(X,G).
abduce(X,G,[X|G]) :- not(member(X,G)).

skolem(s(0)). skolem(s(1)). . . .

The abduced atoms are simply accumlulated in the extra variables G1, G2, G3. The term s(0) rep-
resents the start symbol and a finite set of Skolem constants is provided by the monadic predicate
skolem. Hypotheses are now the answer substitutions of a goal such as the following.

:- parse([],[],G1), parse([0],G1,G2), parse([0,0],G2,G3), parse([1,1],G3,G4), % Positives
parse([0,0,0],G4,G5), parse([0,1,1],G5,G6), parse([1,0,1],G6,G),
not(parse([1],G,G)), not(parse([0,1],G,G)). % Negatives

Note that each of the positive examples are provided sequentially within the goal and the resulting
grammar is then tested for non-coverage of each of the negative examples. In the case shown above
the first hypothesis found by Prolog is as follows.

G = [delta1(s(1),0,s(1)),delta1(s(1),1,s(0)),delta1(s(0),1,s(1)),delta1(s(0),0,s(0)),acceptor(s(0))]

This hypothesis correctly represents the Parity acceptor of Figure 1. All other consistent hypotheses
can be generated by making Prolog backtrack through the SLD proof space.

MetagolCF The MetagolCF system is based on an abductive variant of the Context-Free Meta-
interpreter from Figure 3, though we omit the full Prolog description due to space restrictions. Once
more, abduction is carried out with respect to a single goal as in MetagolR. However, in order to
increase efficiency the goal first abduces a skolemised bottom theory for a seed example. This bottom
theory is a special case instance of a prefix tree acceptor (see Proposition 7). The remainder of the
goal uses the meta-interpreter to abduce a set of additional productions which satisfy the remaining
positive and negative examples.

MetagolRCF The MetagolRCF system simply combines MetagolR and MetagolCF sequentially. Thus
the hypothesis returned will be Regular in the case MetagolR finds a consistent grammar and otherwise
will be context-free if MetagolCF finds a consistent grammar.
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Fig. 4. Average predictive accuracies and running times for Null hypotheses 1,2 and 3

4 Experiments

In this section we describe experiments on learning Regular and Context-Free grammars4. It was
shown in Section 1 that ILP systems cannot learn grammars in a DCG representation with predicate
invention. However, an ILP system given a meta-interpreter as background knowledge can be used to
learn within the MIL framework. In the experiments described below we compare the performance of
a state-of-the-art ILP system MC-TopLog, loaded with suitable meta-interpretive background against
the simple Prolog MIL implementations described in Section 3.

4.1 Learning Regular Languages

Null Hypothesis 1.1 MetagolR cannot learn randomly chosen Regular languages.

4 The Metagol code and datasets for these experiments will be made available on a website associated with the final
paper
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Null Hypothesis 1.2 MetagolR cannot outperform a state-of-the-art ILP system on learning ran-
domly chosen Regular languages.

Materials and Methods Randomly chosen Regular grammars were generated by sampling from a
Stochastic Logic Program (SLP) [14] which defined the space of grammars. Each randomly generated
grammar was reduced using the Plotkin reduction algorithm (see Section 2.5) in order to remove
redundancy and equivalent non-terminals.

A randomly generated grammar was discarded if it was non-deterministic or corresponded to a finite
language. The maximum number of non-terminals allowed in this experiment was 5. The examples
were randomly chosen from Σ∗ for Σ = {a, b}. The maximum length of sequences considered in this
experiment was 15. The sampling of examples was also done using an SLP. Sampling was conducted
with replacement, therefore there were duplicates among the sampled examples and shorter sequences
had higher probabilities. The label of each example was decided by querying against the sampled
grammar and background knowledge. We used MC-TopLog with Regular Meta-interpreter background
knowledge against MetagolR.

We tested MetagolR and MC-TopLog’s performance on learning Regular grammars using 200
different randomly chosen Regular grammars. Their performance was evaluated by the predictive
accuracies and running time. The results were averaged over the 200 sampled grammars. For each
sample, the learning curve was obtained by varying the size of training set from 2 to 50, while a fixed
test set of size 1000 was used for evaluating predictive accuracy.

Results and Discussion As shown by Figure 4a, the predictive accuracy of MetagolR increases with
increasing numbers of training examples, and it approaches 100% when the size of training set is larger
than 25. Therefore Null hypothesis 1.1 is refuted. The MetagolR accuracy is signficantly higher than
that of MC-TopLog. However, MC-TopLog’s running time is significantly longer (around 100 times)
than that of MetagolR as shown in Figure 4a. This is because MC-TopLog does not have an ordered
search space so that it has to enumerate all candidate hypotheses within the version space. In contrast,
MetagolR does a bounded search. Null hypothesis 1.2 is also refuted with respect to both predictive
accuracy and running time.

4.2 Learning Context-Free Languages

Null Hypothesis 2.1 MetagolCF cannot learn randomly chosen Context-Free languages.
Null Hypothesis 2.2 MetagolCF cannot outperform a state-of-the-art ILP system on learning ran-

domly chosen Context-Free languages.

Materials and Methods Once more the randomly chosen Context-Free grammars were generated
using an SLP and reduced using the Plotkin reduction algorithm (see Section 2.5). Apart from fil-
tering grammars corresponding to finite languages, we also filtered Regular grammars which could
be recognised using the pumping lemma for Context-Free grammars. However, it is not guaranteed
that all Regular grammars can be filtered in this way, since it is undecidable whether a Context-Free
grammar is not Regular. More specifically, if a grammar is not pumpable, then it is definitely Regular,
while a pumpable grammar is not necessarily non-Regular.

The maximum number of non-terminals allowed in this experiment is 10. The examples were
generated in the same way as that in the experiment about Regular-language. However, there were
more duplicates in the sampled examples, because there were fewer positive examples. We used MC-
TopLog with the Context-Free Meta-interpreter background knowledge against MetagolCF .

We tested MetagolCF ’s and MC-TopLog’s performance on learning Context-Free grammars using
200 different randomly chosen Context-Free grammars. The evaluation method is the same as that in
Section 4.1.
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Results and Discussion As shown in Figure 4b, the predictive accuracies of MetagolCF increase
with increasing numbers of training examples. They are significantly higher than the default accuracy,
therefore Null hypotheses 2.1 is refuted. Compared to MetagolCF , MC-TopLog has consistenly higher
averaged predictive accuracies. MC-TopLog average predictive accuracies surprisingly decreased after
around 10 training examples. On investigation this was found to be due to the fact that larger example
sets tended to contain longer examples, which increased the hypothesis space being searched. The
overall effect was a radical increase in running time and simultanaeous decrease in predictive accuracy.
The decrease in accuracy is consistent with the Blumer Bound [1], according to which the error bound
decreases with the size of the hypothesis space.

By contrast, MetagolCF does a bounded search using a bottom clause so that it is feasible even
though the version space is potentially infinite. Null hypothesis 2.2 is refuted with respect to running
time but not predictive accuracy.

4.3 Representation Change

Null Hypothesis 3 MetagolRCF cannot improve performance by changing representation from Reg-
ular to Context-Free languages

Materials and Methods The material of this experiment comes from the previous two experiments.
Therefore, there were 400 sampled grammars in total, half of them were Regular while the other half
were mostly Context-Free and non-Regular.

We compared MetagolRCF (variable hypothesis space) against MetagolCF (fixed hypothesis space).
The predictive accuracies and running time were measured as before. The results were averaged over
the 400 grammars.

Results and Discussion As shown in Figure 4c, MetagolRCF has slightly higher predictive accuracies
than MetagolCF . This refutes Null hypothesis 3. The accuracy difference is once more consistent with
the Blumer Bound [1], according to which the error bound decreases with the size of the hypothesis
space.

As shown in Figure 4c, the running times of MetagolCF are significantly higher than MetagolRCF .
This can be explained by the fact that when the target grammar is Regular, Context-Free grammars
were still considered.

5 Related work

Grammatical inference (or grammatical induction) is the process of learning a grammar from a set of
examples. It is closely related to the fields of machine learning as well as the theory of formal languages
and has numerous real-world applications including speech recognition (e.g. [25]), computational lin-
guistics (e.g. [6]) and computational biology (e.g. [24]).

The problem of learning or inferring Regular languages, which can be represented by deterministic
finite state automata, has been well studied and efficient automaton-based learning algorithms have
existed since the 1950s [11]. Some heuristic approaches to machine learning context-free grammars
[26, 10] have been investigated, though the completeness of these approaches is unclear. Although
an efficient and complete approach exists for learning context-free grammars from parse trees [23],
no comparable complete approach exists in the literature for learning context-free grammars from
positive and negative samples of the language. According to a recent survey article learning context-
free languages is widely believed to be intractable and the state of the art mainly consists of negative
results [3]. There are some positive PAC (probably approximately correct) learning results concerning
Regular languages (e.g. [4]), but to the best of our knowledge, these have not been extended to the
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context-free case. The difficulty of learning context-free languages arises from a very large search space
compared to the Regular languages.

ILP, among other different learning methods, has been used for grammatical inference, for example
for learning finite automata (e.g. [2]). However, as discussed in Section 1, ILP systems normally require
predicate invention even for learning Regular languages. Predicate invention has been viewed as an
important problem since the early days of ILP (e.g. [16]), but it is widely accepted to be a hard and
under-explored topic within ILP [18].

In the Meta-interpretive Learning (MIL) framework introduced in this paper, predicate invention is
done via abduction with respect to a meta-interpreter and by the introduction of first-order variables.
This method is therefore related to other studies where abduction has been used for predicate invention
(e.g. [9]). One important feature of MIL, which makes it distinct from other existing approaches is a
bounded hypothesis space which is also ordered by θ-subsumption. We believe that this is an important
advantage allowing efficient search within the space of grammars which can be very large, especially
in the case of context-free languages.

6 Conclusion and further work

This paper explores the theory, implementation and experimental application of a new framework
(MIL) for machine learning by adbuction with respect to a given Meta-interpreter. The MIL framework
has been successfully applied to the problem of inductive inference of grammars, where our experiments
indicate that it competes favourably with the state-of-the-art ILP system MC-TopLog. The MIL
framework has a number of advantages with respect to the standard ILP framework. In particular,
predicate invention and mutual recursion can be incorporated with ease by way of Skolem constants.
The Meta-interpreter provides a natural and efficient declarative bias mechanism for controlling the
search for hypotheses, which takes advantage of the efficiency and completeness of SLD resolution
in Prolog. This mechanism is distinct from the use of first-order declarative bias in the form of a ⊤
theory [19, 17] since it is not assumed that the meta-interpreter entails each hypothesis.

In future work we hope to deal with a number of extensions of this study. Firstly, the experiments
in this paper were all aimed at ab initio learning of grammars from examples, ie the case that BA = ∅ in
Definition 1. We would now like to look at the case BA 6= ∅ in order to take account of existing bodies
of background knowledge. Secondly we hope to further improve efficiency in learning Context-free
grammars. One promising direction involves replacing the use of Prolog in the MIL framework with
an efficient Answer Set Programming system such as Clasp [7]. Such systems use a logic programming
framework with efficient constraint handling techniques to efficiently find stable models known as
answer sets. ASP solvers such as Clasp compete favourably in international competitions with SAT-
solvers and should be applicable to problems in the MIL framework. Thirdly we would like to extend
the applications of the MIL framework to non-grammar fragments of first-order logic. In particular, we
believe the framework might be fruitfully applied to the Monadic and Diadic fragments of first-order
logic. Lastly, we would like to incorporate a number of other features of ILP and SRL learning systems
such as probabilistic parameters (similar to SRL), noise handling and the use of compression to guide
the search.

In closing we believe the MIL framework provides a promising and novel form of Inductive Logic
Programming which avoids a number of the bottlenecks of existing approaches.
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