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ABSTRACT
Inductive Logic Programming (ILP) systems have been suc-
cessfully applied to solve complex problems in bioinformatics
by viewing them as binary classification tasks. It remains
an open question how an accurate solution to a multi-class
problem can be obtained by using a logic based learning
method. In this paper we present a novel logic based ap-
proach to solve complex and challenging multi-class classifi-
cation problems by focusing on a key task, namely protein
fold recognition. Our technique is based on the use of large
margin methods in conjunction with the kernels constructed
from first order rules induced by an ILP system. The pro-
posed approach learns a multi-class classifier by using a di-
vide and conquer reduction strategy that splits multi-classes
into binary groups and solves each individual problem re-
cursively hence generating an underlying decision list struc-
ture. The method is applied to assigning protein domains to
folds. Experimental evaluation of the method demonstrates
the efficacy of the proposed approach to solving multi-class
classification problems in bioinformatics.

1. INTRODUCTION
The underlying aim of a multi-class approach is to learn a
highly accurate function that categorizes examples into pre-
defined classes. Effective multi-class techniques are crucial
to solving the challenging and complex problems in bioin-
formatics such as multi-class protein fold recognition.

The two areas of machine learning, namely Inductive Logic
Programming (ILP) and Kernel based methods (KMs) are
well known for their distinguishing features: ILP techniques
are characterized by their use of background knowledge and
expressive language formalism whereas strong mathematical
foundations and high generalization ability are remarkable
characteristics of KMs. Recently some useful techniques
(Support Vector Inductive Logic Programming (SVILP) [8],
kFOIL [6] and RUMBLE [10]) have been designed by ex-
ploiting the characteristics of KMs and ILP to solving binary
classification problems and performing real-valued predic-
tions. In this paper we study multi-class classification in
the combined ILP and kernel based learning scenario by ex-
tending SVILP for bioinformatics tasks.

SVILP solves binary classification problems in a multi-stage
learning process. In the first stage, a set of first order Horn

clauses (rules) are obtained from an ILP system. In the next
stages similarity between examples is computed by the use
of a novel kernel function that captures semantic and struc-
tural commonalities between the examples. The computed
relational and logic based kernel is used in conjunction with
a large margin learning algorithm to induce a binary clas-
sifier. In this way, SVILP performs classification task by
training a large margin first order classifier.

In order to solve multi-class problems we propose a simple
but accurate approach. The method is designed by reduc-
ing multi-class classification task to binary problems. How-
ever our approach is different from the existing reduction
techniques as it learns hidden structure and characteristics
from data and hence improves the performance of the classi-
fier. The proposed method is based on a divide and conquer
strategy and it discriminates different classes by using an un-
derlying structure based on decision lists. The multi-class
problem is reduced by recursively breaking it down into bi-
nary problems where each binary task is solved by invoking
an SVILP machine. At each node of the decision list the al-
gorithm induces a classifier and updates the training set by
removing the examples of the class chosen at the previous
node. A label is assigned to a new example by traversing
the list.

The recognition of proteins having similar structure is a
challenging and complex task in bioinformatics. It has key
importance in studying protein structure and function and
can provide answers to biological problems. In fold recogni-
tion, labels are assigned to proteins from a set of predefined
annotations (labels, folds). In this way protein fold recog-
nition can be viewed as the multi-class classification task.
The aim of a protein fold classification system is to assign
proteins to one of many folds with high accuracy. Machine
learning methods have been applied to investigate the prob-
lem. The studies reported in [11; 3]) applied Support Vector
Machines (SVMs) to solving multi-class protein fold classi-
fication problem. Chen and Kurgan [1] and Shen and Chou
[12] studied ensemble methods to assign proteins to 27 folds
from SCOP [9]. In this paper we present a novel logic based
approach to solving protein fold recognition problem. We
also compare the proposed approach with standard multi-
class logic based method and multi-class SVMs. The ex-
perimental results demonstrate the efficacy of the proposed
technique in assigning protein folds.
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Figure 1: Protein domain ’d1all ’

dom t(d1alla ).
len(d1alla , 161). nb alpha(d1alla ,7).
nb beta(d1alla ,0). has pro(d1alla h1).
sec struc(d1alla , d1alla h3). unit t(d1alla h3).
sst(d1alla h3,4,4,a,104,9,h,0.443,3.003,116.199,
[v,t,p,i,e,e,i,g,v]). unit hmom(d1alla h2, hi). · · ·

Figure 2: Relationally encoded features of protein domain.
’d1all ’.

2. MULTI-CLASS INDUCTIVE LOGIC PRO-
GRAMMING (MC ILP)

ILP systems have been successfully applied to binary classi-
fication tasks in bioinformatics. There are few ILP systems
that can perform multi-class classification tasks [5]. The
standard multi-class logic based method, described below, is
biased towards the majority class. The method is based on
learning theories Hj(first order horn clauses) for each class
j. The obtained theories for r classes are merged into a
multi-theory H. For each class the number of correctly clas-
sified training examples are recorded. A class is assigned
to a new example if the example satisfies the conditions of
the rules. In the case that an example is predicted to have
multiple classes, then the class with the maximum number
of predicted training examples is assigned to the example.
If an example fails to satisfy the conditions of all the rules
in H, a default class (majority class) is assigned to it. The
method is termed as multi-class ILP (MC ILP).

3. SUPPORT VECTOR INDUCTIVE LOGIC
PROGRAMMING

Support Vector Inductive Logic Programming [8] is a new
machine learning technique that integrates Inductive Logic
Programming and Support Vector Machines. SVILP learn-
ing can be viewed as a multi-stage induction process. The
four stages that comprise SVILP learning are described as
follows.

In the first stage a set of rules H is obtained from an ILP
system that takes relationally encoded examples (positive,
negative) and background knowledge as input. This stage
maps the examples into a logic based relational space. A
first order rule, h ∈ H, can be viewed as a boolean function
of the form, h : D → {0, 1}.
In the next stage a subset H ∈ H is selected using an infor-
mation theoretic measure, namely compression, described
below. The subset of rules, H, is selected by thresholding

Figure 3: Protein domain ’d2hbg ’

dom t(d2hbg ).
len(d2hbg , 147). nb alpha(d2hbg ,6).
nb beta(d2hbg ,0). has pro(d2hbg h5).
sec struc(d2hbg , d2hbg h2). unit t(d2hbg h2).
sst(d2hbg h2,3,3,blank,40,7,h,0.540,1.812,213.564,
[q,m,a,a,v,f,g]). · · · · · · · · ·

Figure 4: Relational encoded features of protein domain
’d2hbg ’.

the compression value. This stage maps the examples into
another lower dimensional space containing the information
relevant to the task at hand. The compression value of a rule

is computed by the expression, C = PT∗(ps−(ng+c))
ps

, where
ps is the number of positive examples correctly deducible
from the rule, ng is the number of negative examples that
satisfy the conditions of the rules, c is the length of the rule
and PT is the total number of positive examples.

In the third stage a kernel function is defined on the se-
lected set of rules that can be weighted/unweighted. The
kernel is based on the idea of comparing two examples by
means of structural and relational features they contain;
the more features in common the more similar they are.
The function is given by the inner product between the
mapped examples where the mapping φ is implied by the
set of rules H. The mapping φ for an example d is given

by, 1. φ : d →
(√

π(h1(d)),
√

π(h2(d)), . . . ,
√

π(ht(d))
)′

,

where h1, . . . , ht are rules and π is the weight assigned to
each rule hi. The construction embeds the data into a fea-
ture space, where dimensionality of the space is the same
as the cardinality of the set of rules. In this way, an ex-
ample is viewed as a column vector where each entry of
the vector is indexed by a specific rule. The kernel for ex-
amples di and dj is given by, k(di, dj) = 〈φ(di), φ(dj)〉 =∑t

l=1

√
π(hl(di))

√
π(hl(dj)). The kernel specified by an in-

ner product between two mapped examples is a sum over all
the common hypothesized rules. Given that φ maps the data
into feature space spanned by ILP rules, we can construct

Gaussian RBF kernels, kRBF (di, dj) = exp
(−‖(φ(di)−φ(dj)‖2

2σ 2

)
,

where ‖(φ(di)−φ(dj)‖ =
√

k(di, di)− 2k(di, dj) + k(dj , dj).

In the final stage learning is performed by using an SVM in
conjunction with ILP kernel. SVILP is flexible to construct
any kernel in the space spanned by the rules. However, in
the present work we used kRBF .

1′ specifies column vector
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fold(Globinlike,A) ←
adjacent(A,B,C,1,h,h), adjacent(A,C,D,2,h,h), coil(B,C,4).
/*A domain is classified 1 (belongs to Fold ’Globinlike’) if helices B (at position 1) and C
are adjacent, C (at position 2) and D are adjacent and length of loop connecting B and C
is 4.*/

fold(Globinlike,A) ←
adjacent(A,B,C,1,h,h), has pro(C).
/*A domain is classified 1 if helices B(at position 1) and C are adjacent and C has proline.*/

fold(’Globinlike’,A) ←
adjacent(A,B,C,1,h,h), coil(B,C,4), nb α interval(4=<(A=<8)).
/*A domain is classified 1 if helices B (at position 1) and C are adjacent, number of α helices
are in range [4,8] and length of loop connecting B and C is 4*/.

Figure 5: Rules followed by English conversion for Protein domains in Globin-like fold.

We now show how ILP kernel measures similarity in logic
and relational space by considering a pair of protein do-
mains, ’2hbg ’ and ’1alla ’. The domains belong to α struc-
tural class and ’Globin-like’ fold (SCOP classification scheme).
Figures 1, 2, 3 and 4 show the two domains and their rela-
tionally encoded features. Here predicates ’len’, ’nb alpha’,
and ’nb beta’ denote the length of the polypeptide chain,
number of α-helices and β strands respectively. The other
predicates represent the relationship between the secondary
structure elements and their properties (hydrophobicity, the
hydrophobic moment, the length of proline and etc.).

Figure 5 shows a set of induced rules together with their En-
glish conversion. A rule classifies an example positive (1) if
it fulfils the conditions of the rule while an example that fails
to satisfy the conditions is classified negative (0). The set
of equally weighted rules maps the two examples as follows:

φ(d1alla ) = φ(d1) =
(
1×1 1×1 1×1

)′
and φ(d2hbg ) =

φ(d2) =
(
1 × 1 0 × 1 1 × 1

)′
. Given that the rules are

equally weighted, each entry of the vector is multiplied by
1. The kernel values between the examples are as follows:
k(d1, d2) = k(d2, d1) = 2, k(d1, d1) = 3 and k(d2, d2) = 2.

4. SUPPORT VECTOR INDUCTIVE LOGIC
PROGRAMMING BASED MULTI-CLASS
CLASSIFICATION

We now propose a novel logic based method to solving multi-
class classification problems like protein fold recognition.
We apply inductive learning in which a learning algorithm
is provided with a set of examples, D, of the form D =
{(d1, c1), (d2, c2), . . . , (dn, cn)} where di are training exam-
ples and ci ∈ {1, 2, . . . , r} are classes (labels). The goal of
the classification algorithm is to generate a function f : d →
{1, 2, . . . , r} that assigns a new example d to the class with
low error probability.

In order to solve multi-class problems we apply powerful
but simple divide and conquer strategy. The complex multi-
class classification task is divided into binary problems and
each problem is solved recursively. The method constructs
a decision list as shown in figure 6. Here each non-leaf node
has two children. Classes are represented by non leaf nodes
where edges are labeled by the binary classifier’s output. We
term the divide and conquer technique as decision list based
SVILP (DL SVILP). The method is shown as Algorithm 1.
The technique reduces multi-class classification problem to
r−1 binary problems, where r is the total number of classes.

DNA 3 −helical(+), EF 
hand−like(−), Globin−

{

}like(−), Interleukin 8(−)

{ hand−like(−), 
Globin−like(−), 
Interleukin 8(−) }

Interleukin 8(−)
Globin−{ like(−), 

}

DNA 3

Globin−

Interleukin 8(−)

hand−like 

−helical 

 EF  EF 

like

Figure 6: A decision list, learned by the large margin first
order rule learner, for multi-class protein fold recognition.

The algorithm can be viewed as comprising r− 1 iterations.
In each iteration a class is selected as the positive class and
the remaining classes are reduced to the negative class. The
binary problem is solved by using a large margin first order
rule learner. The training set is updated by removing the
examples of the chosen class. In this way the root node
contains all the classes whereas the node at depth r − 1
contains two classes. The size of the training set used at
depth r − 1 is (much) smaller than the size of the training
set for the root node. DL SVILP assigns a class j to a new
example d as follows:

1. Begin at the root node

2. Apply the classifier associated with the node to exam-
ple d

3. Travel down the edge labeled by the classifier’s output

4. If the edge is labeled positive output the class asso-
ciated with the leaf. If the edge is labeled negative
repeat steps 2 and 3 until the last positive edge is
reached. Output the label given by the node.
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Algorithm 1 Support Vector Inductive Logic Programming
(DL SVILP) for multi-class classification

Input: A set of training examples
{(d1, c1), (d2, c2), . . . , (dn, cn)}, where di ∈ D and
ci ∈ {1, 2, . . . , r} and a vector index that represents
learned structure of the list.
for j = 1 to r − 1 do

/* Select a class p from r classes */
p = index[j]
/* Formulate the binary class problem by assigning la-
bel ’1’ to examples of class p and ’-1’ to examples of
remaining classes */
Di = {(d1, c1), (d2, c2), . . . , (dn, cn)}, where di ∈ D and
ci ∈ {1,−1}
/* Induce a binary classification function fi by applying
SVILP to set Di */
fi : Di → {1,−1}
/* Reduce the size of set Di by removing the examples
belonging to class p */
Di+1 = Di \Dp

end for
return fi for i = 1, . . . , r − 1

We now describe how the underlying structure of the list is
constructed. The method is dynamic and adaptive to learn-
ing process. At each node the selection of the positive class
is made in such a way so as the classifier can have high gen-
eralization ability. The method is presented as Algorithm
2. For each class j a binary class problem is formulated by
assigning label ’1’ to examples of the class j and ’-1’ to ex-
amples of remaining classes. The classifier, induced from the
dataset, is evaluated on a validation set and its performance
is measured and stored in a list. The process of inducing
the classifiers and recording their performances in a list is
repeated for all the r classes. Finally the list is sorted and
this ranked list defines the underlying structure. In order to
measure the performance of the underlying binary classifier
we define the expression given by,

WP ∗ P− + WN ∗N+

Here P denotes the number of positive example, and N rep-
resent number of negative examples. Similarly, the number
of positive examples that are misclassified are represented by
P−, where N+ shows the number of negative examples that
are classified positive. WP and WN are the weights assigned
to P−, and N+ respectively. The weights are assigned to
give equal importance to all the classes in a dataset that
is characterized by uneven class distribution. We select the
weights by using a heuristic and set WP to N

P
where WN is

set to 1.

5. EXPERIMENTS AND RESULTS
We conducted experiments to evaluate the performance of
the proposed method to solving multi-class protein fold recog-
nition problem.

We used accuracy as evaluation measures. Let Pj denote

the number of examples belonging to class j, P =
∑j=k

j=1 Pj

represent total number of examples belonging to k classes,
and TPj denote the number of correctly classified examples
belonging to class j. The accuracy for each class j is given by
TPj

Pj
whereas the overall accuracy is given by the expression

Algorithm 2 Learning underlying structure for DL SVILP

Input: Training set, d1, d2, . . . , dn, validation set,
d′1, d

′
2, . . . , d

′
s, r classes and a large margin first or-

der rule learner (for example SVILP)
for j = 1 to r do

/* Formulate the binary class problem by assigning la-
bel ’1’ to examples of class j and ’-1’ to examples of
remaining classes */
/* Induce a binary classification function by applying
SVILP to training data, d1, d2, . . . , dn */
/* Apply the learned function to validation set,
d′1, d

′
2, . . . , d

′
s */

/* Measure performance of classifier using expression
given below */
S[j]′ = WP ∗ P− + WN ∗N+

where P = total number of positive example, N = total
number of negative examples, P− = number of misclas-
sified positive examples, N− = number of misclassified
negative examples, WP = N

P
and WN = 1

index[j]′ = j
end for
/* Sort list S′ in ascending order and reorder list index′

accordingly */
S = sort(S′)
index = reorder(index′)
return index and S

Table 1: Class distribution for 20 protein folds.
Fold #Exm Fold #Exm
α α/β
1 30 11 55
2 14 12 21
3 13 13 14
4 10 14 13
5 10 15 12

β α + β
6 45 16 26
7 21 17 13
8 20 18 13
9 16 19 12
10 14 20 9

∑j=k
j=1 TPj

P
.

We solved protein fold classification problem by applying
the proposed method to the dataset presented in [13]. In or-
der to compare the performance of SVILP based multi-class
classification scheme with non-SVILP based methods we
used multi-class SVM (MC SVM) and MC ILP. MC SVM
was trained by using SVMlight [4] where the method was
presented in [2]. For MC SVM, we represented protein do-
mains by using non-relational features namely, total num-
ber of residues, α-helices and β-strands. Previous research
demonstrated the effectiveness of these features for protein
fold classification task. For MC ILP and SVILP based tech-
niques we used relational fold discriminatory features de-
scribed in [13]. These features are polypeptide chain length,
number of α-helices and β-strands, adjacent secondary struc-
ture elements, properties of the secondary structure such as
the hydrophobicity, the hydrophobic moment, the length of
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Table 2: 5-fold cross-validated over all accuracy (OA) ±
standard deviation for protein fold dataset for MC ILP,
DL SVILP and MC SVM. We also report cross-validated
accuracy ± standard deviation for 20 folds.

Fold MC ILP DL SVILP MC SVM

α
1 43.3 ± 9.0 73.3 ± 8.1 43.3 ± 9.0
2 28.6 ± 12.1 21.4 ± 11.0 14.3 ± 9.4
3 46.2 ± 13.8 61.5 ± 13.5 53.8 ± 13.8
4 10.0 ± 9.5 40.0 ± 15.5 0.0 ± 0.0
5 40.00 ± 15.5 40.00 ± 15.5 20.0 ± 12.6
OA 36.4 ± 5.5 53.3 ± 5.7 31.2 ± 5.3

β
6 73.3 ± 6.6 91.1 ± 4.2 71.1 ± 6.8
7 57.1 ± 10.8 95.2 ± 4.7 66.7 ± 10.3
8 0.0 ± 0.0 15.00 ± 8.0 15.0 ± 8.0
9 43.8 ± 12.4 75.0 ± 10.8 68.8 ± 12.8
10 64.3 ± 12.8 71.4 ± 12.1 64.3 ± 12.8
OA 52.6 ± 4.6 74.1 ± 4.1 59.5 ± 4.6

α/β
11 85.5 ± 4.8 67.3 ± 6.3 58.2 ± 6.7
12 52.4 ± 10.9 76.2 ± 9.3 28.6 ± 9.9
13 28.6 ± 12.1 50.0 ± 13.4 7.1 ± 6.9
14 7.7 ± 7.4 30.8 ± 12.8 0.0 ± 0.0
15 0.0 ± 0.0 8.3 ± 8.0 16.7 ± 10.8
OA 54.8 ± 4.6 56.5 ± 4.6 35.7 ± 4.5

α+
β
16 53.8 ± 9.8 69.2 ± 9.1 23.1 ± 8.3
17 15.4 ± 10.0 53.9 ± 13.8 30.8 ± 12.8
18 7.7 ± 7.4 46.2 ± 13.8 30.8 ± 12.8
19 0.0 ± 0.0 8.3 ± 8.0 25.0 ± 12.5
20 77.8 ± 13.9 66.7 ± 15.7 22.2 ± 13.9
OA 32.9 ± 5.8 52.1 ± 5.8 26.0 ± 5.6

OA 46.2 ± 2.6 60.4 ± 2.5 40.2 ± 2.5

proline (number of proline residues) and the length of the
loop. In order to construct underlying binary SVILP clas-
sifiers we used CProgol5 (PROGOL) [7] and SVMlight. For
MC ILP theories for were obtained by using CProgol5.

The dataset comprises 381 protein domains. They belong
to 20 folds of SCOP that have been categorized into 4 struc-
tural classes, namely α, β, α/β and α + β. Table 1 shows
the class distribution for 20 protein folds. The indices 1 to
20 shown in Tables 2 and 1 represent SCOP folds DNA 3-
helical, EF hand-like, Globin-like, 4-Helical cytokines, Lambda
repressor, Ig beta-sandwich, Tryp ser proteases, OB-fold,
SH3-like barrel, Lipocalins, α/β (TIM)-barrel, Rossmann-
fold, P-loop, Periplasmic II, α/β-Hydrolases, Ferredoxin-
like, Zincin-like, SH2-like, β-Grasp, and Interleukin respec-
tively. The dataset is characterized by uneven class distri-
bution as shown in table 1.

We randomly divided the dataset into 5 equal-sized folds
and applied the experimental methodology as follows. At
each cross-validation round 3-folds were used for training
the classifiers where the remaining two folds were used as
validation set and test set. The free parameter of SVM MC
(C, width of the Gaussian kernel) and SVILP DL (C, width

of the Gaussian kernel) were tuned by using the validation
set.

Table 2 lists the cross-validated accuracy for each protein
fold for multi-class classification methods. Overall accuracy
over 20 folds is also given. Table 2 shows that the accuracy
values of DL SVILP are significantly higher than the other
methods and it outperforms MC SVM and MC ILP.

6. CONCLUSION
In this paper we presented a novel logic based multi-class
classification method, DL SVILP. It produced an accurate
solution to a complex bioinformatics problem, namely multi-
class protein fold recognition. Experimental results showed
that DL SVILP captured structural and relational similar-
ities between proteins. It accurately assigned protein do-
mains to folds and outperformed all the other methods in
the study.
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