
Sound and Complete Typing for λµ*

(ITRS’10, EPTCS volume 45, page 31-44, 2010)

Steffen van Bakel

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, UK
s.vanbakel@imperial.ac.uk

Abstract

In this paper we define intersection and union type assignment for Parigot’s calculus λµ. We
show that this notion is complete (i.e. closed under subject-expansion), and show also that
it is sound (i.e. closed under subject-reduction). This implies that this notion of intersection-
union type assignment is suitable to define a semantics.

keywords: Classical Logic, λµ-Calculus, intersection types, union types.

Introduction

The Intersection Type Discipline has proven to be an expressive tool for studying termination

and semantics for the λ-calculus [12, 10]. Intersection type assignment is defined as an ex-

tension of the standard, implicative type assignment known as Curry’s system [15] (see also

[24]), which expresses function composition and application; the extension made consists of

relaxing the requirement that a parameter for a function should have a single type, adding

the type constructor ∩ next to →. This simple extension allows for a great leap in complexity:

not only can a (filter) model be built for the λ-calculus using intersection types, also strong

normalisation (termination) can be characterised via assignable types; however, type assign-

ment becomes undecidable. The literature on intersection types is vast; it was first defined by

Coppo and Dezani-Ciancaglini in [13] and its development took place over a number of years,

culminating in the paper by Barendregt, Coppo, and Dezani-Ciancaglini [11], and has been

explored by many people since.

It is natural to ask if these results can be achieved for other calculi (reduction systems) as

well, and in previous papers the author investigated (in collaboration) Term Rewriting Sys-

tems [6], and Object Oriented Calculi [5]; Maffeis looked at intersection types in the context

of the π-calculus [26]. In order to come to a characterisation of strong normalisation for

Curien and Herbelin’s (untyped) sequent calculus λµµ̃ [14], Dougherty, Ghilezan and Les-

canne presented System M∩∪ [17], that defines a notion of intersection and union typing

for that calculus; in a later paper [18], they presented an improved version of their original

system.

In [3], the author revisited System M∩∪, and showed that that system was neither sound

(i.e. closed under reduction), nor complete (i.e. closed under reverse reduction); the same holds

for the system presented in [18]. To address completeness, [3] adds ⊤ as the maximal and ⊥ as

the minimal type, and extends the set of derivation rules; however, soundness is shown to be

impossible to achieve without restricting typeability (effectively making less terms typeable).

In [4], the author attempted to solve the same issue, but this time in the context of the sequent

* Small mistakes in proofs are corrected here.

ITRS’10, EPTCS volume 45, page 31-44, 2010 2

calculus X , as defined by Lengrand [25], and later studied by Lescanne and the author [7, 8];

X is a sequent calculus in that it enjoys the Curry-Howard isomorphism with respect to the

implicative fragment of Gentzen’s lk [20]. The advantage of using the sequent approach is

that it is now possible to explore the duality of intersection and union fully, through which we

can study and explain various anomalies of union type assignment [32, 9] and quantification

[22, 27]. Also for X , the completeness result follows relatively easily, but soundness can only

be shown for restricted systems (effectively call-by-name and call-by-value reduction, but it

might be possible that other sound restrictions exist as well). The main conclusion of those

papers is that, in symmetric calculi (like λµµ̃ and X) it is inevitable that intersection and union

are truly dual, and that the very nature of those calculi makes a sound and complete system

unachievable.

In this paper we will continue on this path and bring intersection types to the context

of classical logic, by presenting a notion of intersection and union type assignment for the

(untyped) calculus λµ, that was first defined by Parigot in [31], and was later extensively

studied by various authors.

Intersection and union types have also been studied in the context of the λ-calculus in [9];

also for the system defined in that paper soundness is lost, which can only be recovered by

limiting to parallel reduction, i.e. all residuals of a redex need to be contracted in parallel. The

problem of loss of soundness also appears in other contexts, such as that of ml with side-

effects [22, 33, 27], and that of using intersection and union types in an operational setting

[16, 19]. As here, also there the cause of the problem is that the type-assignment rules are not

fully logical, making the context calls (which form part of the reduction in X) unsafe; this has,

in part, already been observed in [23] in the context of Curien and Herbelin’s calculus λµµ̃

[14]. This also explains why, for ml with side-effects, quantification is no longer sound [22,

27]: also the (∀I) and (∀E) rules of ml are not logical.

In the view of those failures, the result presented here comes as a surprise. We will define

a notion of type assignment for λµ that uses intersection and union types, and show that it is

both sound and complete. The system presented is a natural extension of the strict intersection

type assignment system as defined in [2]; this implies that intersection models the distribution

of arguments in a parameter call. But it is also a natural extension of the system for λµ, and

in order to achieve completeness for structural reduction, as in the papers mentioned above,

union types are added. However, the union types are no longer dual to intersection types;

union types play only a marginal role, as was also the intention of [18]. Contrary to that paper,

however, we do not see union as negated intersection, but see a union type as a strict type;

in particular, we do not allow the normal (∪I) and (∪E) rules as used in [9], which we know

create the same soundness problem. Moreover, although one can link intersection types with

the logical connector and, the union types we use here have no relation with or; one could

argue that therefore perhaps union is not the right name to use for this type constructor, but

we will stick with it nonetheless.

The limited view of union types is mirrored by λµ’s limited (with respect to λµµ̃ and X) no-

tion of context1. In λµ, we distinguish control structures as those terms that start with a context

switch µα.[β]M, followed by a number of arguments; since union types allow us to express

that the various continuations (all called α) need not have the same type, we use a different

formulation for rule (→E), which has an implicit use of union elimination (see Definition 3.2).

The type system defined here will be shown to be the natural one, in that intersection and

union play their expected roles for completeness. Because the use of intersection and union

is limited in that a context variable cannot have an intersection type, and although we allow

1 In particular, λµµ̃’s µ̃x.c is not represented.

ITRS’10, EPTCS volume 45, page 31-44, 2010 3

union types for term variables, we do not have the normal union elimination rule; thanks to

these two restrictions, we can show soundness as well.

1 The calculus λµ

Parigot’s λµ-calculus [29] is a proof-term syntax for classical logic, expressed in Natural De-

duction, defined as an extension of the Curry type assignment system for the λ-calculus. We

quickly revise some basic notions:

Definition 1.1 (Lambda terms and β-contraction [10]) i) λ-terms are defined by:

M, N ::= x | λx.M | MN

ii) The reduction relation →β is defined as the contextual closure of the rule:

(λx.M)N →β M[N/x]

Curry (or simple) type assignment for the λ-calculus is defined as:

Definition 1.2 i) Let ϕ range over a countable (infinite) set of type-variables. The set of Curry-

types is defined by the grammar:

A, B ::= ϕ | (A→B)

ii) Curry-type assignment is defined by the following natural deduction system.

(Ax) :
Γ, x:A ⊢ x : A (→I) :

Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

With λµ Parigot created a multi-conclusion typing system which corresponds to classical

logic; the derivable statements have the shape Γ ⊢λµ M : A | ∆, where A is the main conclusion

of the statement, expressed as the active conclusion, and ∆ contains the alternative conclusions,

consisting of pairs of Greek characters and types; the left-hand context Γ, as usual, contains

pairs of Roman characters and types, and represents the types of the free term variables of

M. As with Implicative Intuitionistic Logic, the reduction rules for the terms that represent

the proofs correspond to proof contractions; the difference is that the reduction rules for the

λ-calculus are the logical reductions, i.e. deal with the elimination of a type construct that has

been introduced directly above. In addition to these, Parigot expresses also the structural rules,

where elimination takes place for a type constructor that appears in one of the alternative

conclusions (the Greek variable is the name given to a subterm): he therefore needs to express

that the focus of the derivation (proof) changes, and this is achieved by extending the syntax

with two new constructs [α]M and µα.M that act as witness to deactivation and activation,

which together move the focus of the derivation.

We will now present the variant of λµ we consider in this paper, as considered by Parigot in

[30]; for convenience, we split terms into two categories: we define terms, and control structure:

Definition 1.3 (Syntax of λµ) The λµ-terms we consider are:

M, N ::= x | λx.M | MN | µα.[β]M .

We also define control structure as a subset of terms: C ::= µα.[β]M | CM .

ITRS’10, EPTCS volume 45, page 31-44, 2010 4

To shorten proofs and notation, we will treat µα.M as a term as well, whenever convenient.

As usual, λx.M binds x in M, and µα.[β]M binds α in M, and the notions of free and

bound variables are defined accordingly; the notion of α-conversion extends naturally to

bound names, and we assume Barendregt’s convention on free and bound variables.

In λµ, reduction of terms is expressed via implicit substitution; as usual, M{N/x} stands for

the substitution of all occurrences of x in M by N, and M{N·γ/α} stands for the term obtained

from M in which every (pseudo) sub-term of the form [α]M′ is substituted by [γ](M′N) (γ is

a fresh variable) (in Parigot’s notation: (µα.[β]M)N → µγ.[β]M[[γ]PN/[α]P]).

We define formally how to preform the µ-substitution; this is convenient in later proofs.

Definition 1.4 We define M{N·γ/α} by induction over the structure of terms by:

x {N·γ/α} =
∆ x

(λx.M) {N·γ/α} =
∆ λx.(M{N·γ/α})

(PQ) {N·γ/α} =
∆ P{N·γ/α} Q{N·γ/α}

(µδ.[α]M) {N·γ/α} =
∆ µδ.[γ](M{N·γ/α}N)

(µδ.[β]M) {N·γ/α} =
∆ µδ.[β](M{N·γ/α}) β 6= α

We have the following rules of computation in λµ:

Definition 1.5 (λµ reduction) Parigot defines a number of reduction rules; two computa-

tional rules:

logical (β) : (λx.M)N → M[N/x]

structural (µ) : (µα.[β]M)N → µγ.([β]M{N·γ/α})

as well as the simplification rules:

renaming : µα[β](µγ.[δ]M) → µα.[δ]M[β/γ]

erasing : µα.[α]M → M if α does not occur in M.

ηµ : µα.[β]M → λxµγ.[β]M{x·γ/α}

which are added mainly to simplify the presentation of his results2.

Reduction on λµ-terms is defined as the compatible closure of these rules.

It is possible to define more reduction rules, but Parigot refrained from that since he aimed at

defining a confluent reduction system.

The intuition behind the structural rule is given by de Groote [21]: “in a λµ-term µα.M

of type A→B, only the subterms named by α are really of type A→B (. . .); hence, when such a µ-

abstraction is applied to an argument, this argument must be passed over to the sub-terms named by

α.” In this paper, we will only deal with the logical, structural and renaming rule; this is also

the restriction made by de Groote in [21].

Type assignment for λµ is defined by the following natural deduction system; there is a

main, or active, conclusion, labelled by a term of this calculus, and the alternative conclusions

are labelled by the set of Greek variables α, β,etc.

Definition 1.6 (Typing rules for λµ) Our types are those of Definition 1.2, extended with

the type constant ⊥ that is essentially added to express negation, i.e.:

A, B ::= ϕ | ⊥ | (A→B) (A 6= ⊥)

2 In fact, Parigot formulates the renaming rule as [β](µγ.M)→ M[β/γ]; since [β](µγ.M) is not a term, we write
the rule differently.

ITRS’10, EPTCS volume 45, page 31-44, 2010 5

The type assignment rules are:

(Ax) : (x:A ∈ Γ)
Γ ⊢ x : A | ∆

(µ) :
Γ ⊢ M : B | α:A, β:B,∆

Γ ⊢ µα.[β]M : A | β:B,∆

Γ ⊢ M : A | α:A,∆

Γ ⊢ µα.[α]M : A | ∆

(→I) :
Γ, x:A ⊢ M : B | ∆

Γ ⊢ λx.M : A→B | ∆
(→E) :

Γ ⊢ M : A→B | ∆ Γ ⊢ N : A | ∆

Γ ⊢ MN : B | ∆

We can think of [α]M as storing the type of M amongst the alternative conclusions by giving

it the name α - the set of Greek variables is called the set of context variables (or names).

As an example illustrating the fact that this system is more powerful than the system for

the λ-calculus, here is a proof of Peirce’s Law (due to Ong and Steward [28]):

(Ax)
x:(A→B)→A ⊢ x : (A→B)→A | α:A

(Ax)
x:(A→B)→A,y:A ⊢ y : A | α:A, β:B

(µ)
x:(A→B)→A,y:A ⊢ µβ.[α]y : B | α:A

(→I)
x:(A→B)→A ⊢ λy.µβ.[α]y : A→B | α:A

(→E)
x:(A→B)→A ⊢ x(λy.µβ.[α]y) : A | α:A

(µ)
x:(A→B)→A ⊢ µα.[α](x(λy.µβ.[α]y)) : A |

(→I)
⊢ λx.µα.[α](x(λy.µβ.[α]y)) : ((A→B)→A)→A |

Notice that ⊥ plays no part in this proof. Indeed, we can define the set of types without ⊥;

the underlying logic of such a system then corresponds to minimal classical logic [1].

Since we allow ⊥ as a proper type, we can even express negation (of course, it is also

implicitly present in the right-hand type environment), and can give a derivation for ¬¬A→A,

so can express double negation elimination; so in λµ we can represent full Classical Logic.

(Ax)
y:(A→⊥)→⊥ ⊢ y : (A→⊥)→⊥ | β:⊥

(Ax)
x:A ⊢ x : A | α:A,δ:⊥

(µ)
x:A ⊢ µδ.[α]x : ⊥ | α:A

(→I)
⊢ λx.µδ.[α]x : A→⊥ | α:A

(→E)
y:(A→⊥)→⊥ ⊢ y(λx.µδ.[α]x) : ⊥ | α:A, β:⊥

(µ)
y:(A→⊥)→⊥ ⊢ µα.[β]y(λx.µδ.[α]x) : A | β:⊥

(→I)
⊢ λy.µα.[β]y(λx.µδ.[α]x) : ((A→⊥)→⊥)→A | β:⊥

Notice that this term is not closed, since β is free, albeit of type ⊥.

De Groote [21] considers a variant of λµ which separates the naming and µ-binding fea-

tures3. This gives a considerable different system, that allows for ¬¬A→A to be inhabited via

(the closed term) λy.µα.y(λx.[α]x). De Groote’s variant of λµ [21] uses the syntax

M, N ::= x | λx.M | MN | µα.M | [β]M

and splits rule (µ) into

(µ) :
Γ ⊢ M : ⊥ | α:A,∆

Γ ⊢ µα.M : A | ∆
(⊥) :

Γ ⊢ M : A | β:A,∆

Γ ⊢ [β]M : ⊥ | β:A,∆

3 Notice that then Parigot’s renaming rule is correct. We could have presented our results for this more
permissive system, but would have had to sacrifice soundness and completeness for the renaming rule. Notice
that we would still have soundness and completeness for the two computational rules, which are arguably the
most important.

ITRS’10, EPTCS volume 45, page 31-44, 2010 6

In this system we can derive

(Ax)
y:(A→⊥)→⊥ ⊢ y : (A→⊥)→⊥ |

(Ax)
x:A ⊢ x : A | α:A

(⊥)
x:A ⊢ [α]x : ⊥ | α:A

(→I)
⊢ λx.[α]x : A→⊥ | α:A

(→E)
y:(A→⊥)→⊥ ⊢ y(λx.[α]x) : ⊥ | α:A

(µ)
y:(A→⊥)→⊥ ⊢ µα.y(λx.[α]x) : A |

(→I)
⊢ λy.µα.y(λx.[α]x) : ((A→⊥)→⊥)→A |

For the moment, we will deal with Parigot’s original system only; we aim to extend our

results to de Groote’s variant in future work.

2 The Strict Intersection Type Assignment System for the

λ-calculus

The remainder of this paper will be dedicated a notion of intersection/union typing on

λµ. This will be defined as a natural extension of the Strict Intersection System [2] for the

λ-calculus. Before we come to that, we will briefly summarise the latter.

Definition 2.1 (Strict types) i) Let ϕ range over an infinite, enumerable set of type variables.

The set Ts of strict types, ranged over by A, B, etc is defined through the grammar:

A, B ::= ϕ | ⊤→B | (A1∩ · · ·∩ An)→B (n ≥ 1)

The set T of intersection types is defined as the union of {⊤} and the closure of Ts under

intersection; we will use A, B, etc for intersection types as well, and mention which set

they belong to when necessary.

ii) A statement is an expression of the form M : A, with M∈Λ and A∈T . M is the subject

and A the predicate of M : A.

iii) A type-environment Γ is a partial mapping from term variables to intersection types, and

we write x:A∈Γ if Γ (x) = A.

So if we write a type as A→B, then B∈TS, and A∈T .

In the notation of types, as usual, right-most outer-most parentheses in arrow types will be

omitted, and we assume ∩ to bind stronger than →. From hereon, we will write n for the set

{1, . . . ,n}.

We will consider a pre-order on types which takes into account the idem-potence, commu-

tativity and associativity of the intersection type constructor, and defines ⊤ to be the maximal

element.

Definition 2.2 i) The relation ‘≤’ is defined as the least pre-order on T such that:

A1∩ · · ·∩ An ≤ Ai, for all i∈n,n ≥ 1

B ≤ Ai, for all i∈n ⇒ B ≤ A1∩ · · ·∩ An, n ≥ 0

ii) On T , the relation ‘∼’ is defined by:

A ≤ B ≤ A ⇒ A ∼ B A ∼ B ∧ C ∼ D ⇐⇒ A→C ∼ B→D

iii) The relations ‘≤’ and ‘∼’, are extended to contexts by: Γ ≤ Γ
′ if and only if for every

x:A′∈Γ
′ there is an x:A∈Γ such that A ≤ A′, and: Γ ∼ Γ

′ ⇐⇒ Γ ≤ Γ
′ ≤ Γ.

ITRS’10, EPTCS volume 45, page 31-44, 2010 7

T will be considered modulo ∼; then ≤ becomes a partial order. It is easy to show that

both (A∩B)∩C ∼ A ∩ (B∩C) and A∩B ∼ B∩ A, so the type constructor ∩ is associative

and commutative, and we will write ∩n Ai for A1∩ · · ·∩ An, and consider ⊤ to be the empty

intersection: ⊤ = ∩0 Ai. Moreover, we will assume, unless stated explicitly otherwise, that in

∩n Ai each Ai is strict.

Definition 2.3 The strict type assignment is defined by the following natural deduction system

(where all types mentioned are strict, with the exception of A in rule (→I) and (→E)):

(∩E) : (n≥1,1 ≤ j ≤ n)
Γ, x:∩n Ai ⊢ x : Aj

(∩I) :
Γ ⊢ M : Ai (∀i∈n)

(n≥0)
Γ ⊢ M : ∩n Ai

(→I) :
Γ, x:A ⊢ M : B

Γ ⊢ λx.M : A→B
(→E) :

Γ ⊢ M : A→B Γ ⊢ N : A

Γ ⊢ MN : B

We will write Γ ⊢ M : A for statements that are derived using these rules.

Notice that Γ ⊢ M : ⊤ for all Γ, M by rule (∩I).

Properties of this system have been studied in [2].

3 Intersection and union type assignment for λµ

We will now define a notion of type assignment for λµ that uses intersection and union types.

We see the context variables α as names for possible continuations that in the philosophy of

intersection types need not all be typed with the same type; we therefore allow multiple types

for a context variable in the environment ∆, grouped using a new type constructor, which we

call union.

Binding a context variable then generates a context switch µα.[β]M, which naturally has a

union type ∪n Ai; reduction of the term (µα.[β]M)N will bring the operand N to each of the

pseudo subterms in M of the shape [α]Q (‘named’ with α), where Q has type Ai; since N gets

placed behind Q, this implies that Ai = Ci→Bi and that therefore the type for α should be

∪n(Ci→Bi); this then also implies that N should have all the types Ci (∀i∈n); rule (→E) as

below expresses exactly that. The only ‘functionality’ we need for union types therefore is the

ability to choose a collection of types for α amongst those stored in ∆; this is represented by

rule (∪E).

Definition 3.1 (The system ⊢∩∪

λµ) i) The set of strict types we consider for the intersection-

union type assignment is:

A, B ::= ϕ | B1∪· · ·∪Bm | σ→B (n,m ≥ 0)

σ,τ ::= A1∩ · · · ∩ An (n ≥ 0)

As above, we call A1∩ · · ·∩ An (with n ≥ 0) an intersection type, and call B1∪ · · ·∪Bm (with

m ≥ 0) a union type; we use ⊤ for the empty intersection type, and ⊥ for the empty union

type.

ii) The relation ≤ of Definition 2.2 is extended to intersection-union types by:

A1∩ · · ·∩ An ≤ Ai, for all i∈n,n ≥ 1

B ≤ Ai, for all i∈n ⇒ B ≤ A1∩ · · ·∩ An, n ≥ 0

Bj ≤ B1∪ · · ·∪Bm, for all j∈m,m ≥ 1

Bj ≤ A, for all j∈m ⇒ B1∪ · · ·∪Bm ≤ A, m ≥ 0

On T , the relation ‘∼’ is defined by the same way as in Definition 2.2.

ITRS’10, EPTCS volume 45, page 31-44, 2010 8

iii) A left environment Γ is a partial mapping from term variables to intersections of strict

types, and we write x:A∈Γ if Γ (x) = A. Similarly, a right environment ∆ contains only

strict types, which can be union types.

iv) The relations ‘≤’ and ‘∼’, are extended to left and right environments by: Γ ≤ Γ
′ if and

only if for every x:σ′∈Γ
′ there is an x:σ∈Γ such that σ ≤ σ′, and Γ ∼ Γ

′ ⇐⇒ Γ ≤ Γ
′ ≤ Γ,

and ∆ ≤ ∆
′ if for every α:A∈∆ there exists α:A′∈∆

′ such that A ≤ A′, and ∆ ∼ ∆
′ ⇐⇒

∆ ≤ ∆
′ ≤ ∆.

Notice that we consider union types to be strict as well; this implies that we allow an intersec-

tion of union types, a union of union types, but not a union of intersection types.

Definition 3.2 (The system ⊢∩∪

λµ) Intersection-union type assignment for λµ is defined via:

(∩E) :
Γ, x:∩n Ai ⊢ x : Ai | ∆

(∩I) :
Γ ⊢ M : Ai | ∆ (∀i∈n)

(n ≥ 0,n 6= 1)
Γ ⊢ M : ∩n Ai | ∆

(→I) :
Γ, x:σ ⊢ M : B | ∆

Γ ⊢ λx.M : σ→B | ∆
(→E) :

Γ ⊢ M : ∪n(σi→Bi) | ∆ Γ ⊢ N : σi | ∆ (∀i∈n)
(n ≥ 1)

Γ ⊢ MN : ∪nBi | ∆

(∪E) :
Γ ⊢ M : ∪mBj | β:∪n Ai,α:B,∆

(∪mBj ≤ ∪n Ai)
Γ ⊢ µα.[β]M : B | β:∪n Ai,∆

Γ ⊢ M : ∪mBj | β:∪n Ai,∆
(∪mBj ≤ ∪n Ai)

Γ ⊢ µβ.[β]M : ∪n Ai | ∆

We write Γ ⊢∩∪

λµ M : A | ∆ if this statement is derivable using these rules.

We will normally not distinguish between the two variants of (∪E).

Notice that the traditional (→E) of Definition 2.3 is obtained by taking n = 1. Moreover, all

σi can be intersection types, so each can be ⊤; this is why that rule is not formulated using

Γ ⊢∩∪

λµ N : ∩nσi | ∆. If x:∪mBj∈Γ, then we can only derive Γ ⊢∩∪

λµ x : ∪mBj | ∆, i.e. we have no way

of eliminating a union assigned to a term variable. Moreover, we have no traditional rules

(∪I) and (∪E) on terms, which would be formulated (as in [9]), via

(∪I) :
Γ ⊢ M : A | ∆

Γ ⊢ M : A∪B | ∆
(∪E) :

Γ ⊢ N : A∪B | ∆ Γ, x:A ⊢ M : C | ∆ Γ, x:B ⊢ M : C | ∆

Γ ⊢ M{N/x} : C | ∆

These create the subject-reduction problem dealt with in that paper by limiting to parallel

reduction.

Notice that both the strict system for the λ-calculus and the system for λµ are true subsys-

tems; the first by not allowing union types, or alternative conclusions, the second by limiting

to Curry types.

Lemma 3.3 (Generation lemma) • If Γ ⊢∩∪

λµ x : A | ∆, then there exists x:σ∈Γ such that σ ≤ A.

• If Γ ⊢∩∪

λµ λx.M : A |∆, then there exists σi,Ci (∀i∈n) such that A = ∩n(σi→Ci), and, for all i∈n,

Γ, x:σi ⊢
∩∪

λµ M : Ci | ∆.

• If Γ ⊢∩∪

λµ MN : A | ∆, then A = ∪n Ai, and for every i∈n there exists σi ∈T such that Γ ⊢∩∪

λµ M :

∪n(σi→Ai) | ∆ and Γ ⊢∩∪

λµ N : σi | ∆.

• If Γ ⊢∩∪

λµ µα.[β]M : A |∆, then there are Ai (∀i∈n) such that A = ∩n Ai, and, for every i∈n, there

are mi,m
′
i with m′

i ≤ mi and Bi
j (∀j∈mi) such that Γ ⊢∩∪

λµ M : ∪m′
i
Bi

k | β:∪mi
Bi

j,α:Ai,∆.

Proof. By easy induction.

The system ⊢∩∪

λµ does not have choice, i.e. we cannot show that, if Γ ⊢∩∪

λµ M : A∪B | ∆, then

ITRS’10, EPTCS volume 45, page 31-44, 2010 9

either Γ ⊢∩∪

λµ M : A | ∆ of Γ ⊢∩∪

λµ M : B | ∆ as would hold in an intuitionistic system. Take:

(∩E)
x:A ⊢ x : A | β:B,δ:A ∪ (A→B)

(∪E)
x:A ⊢ µβ.[δ]x : B | δ:A ∪ (A→B)

(→R)
⊢ λx.µβ.[δ]x : A→B | δ:A ∪ (A→B)

(∪E)
⊢ µδ.[δ](λx.µβ.[δ]x) : A ∪ (A→B) |

Notice that we cannot derive ⊢∩∪

λµ µδ.[δ](λx.µβ.[δ]x) : A | , nor ⊢∩∪

λµ µδ.[δ](λx.µβ.[δ]x) : A→B | ,

since the two occurrences of [δ] need to be typed differently, but with related types. This is

comparable to both A and A→B to be needed as assumption for x to type λx.xx.

We can show that a general (∩E) (for all terms) is admissible.

Lemma 3.4 If Γ ⊢∩∪

λµ M : ∩n Ai | ∆, then Γ ⊢∩∪

λµ M : Ai | ∆, for all i∈n.

Proof. Easy.

The following result is standard.

Lemma 3.5 (Thinning & Weakening) i) Let Γ ⊢∩∪

λµ M : A |∆; take Γ
′ = {x:σ∈Γ | x∈ fv(M)} and

∆
′ = {α:σ∈∆ | α∈ fv(M)}, then Γ

′ ⊢∩∪

λµ M : A | ∆
′ .

ii) Let Γ ⊢∩∪

λµ M : A | ∆, and Γ
′ ≤ Γ and ∆ ≤ ∆

′, then Γ
′ ⊢∩∪

λµ M : A | ∆
′ .

Proof. By easy induction.

As a consequence, the following rules are admissible:

(Th) :
Γ ⊢ M : A | ∆

{x:σ∈Γ | x∈ fv(M)} ⊢ M : A | {α:σ∈∆ | α∈ fv(M)}

(Wk) :
Γ ⊢ M : A | ∆

(Γ′ ≤ Γ,∆ ≤ ∆
′)

Γ
′ ⊢ M : A | ∆

′

4 Subject reduction and expansion

We will now show our main results, by showing that our notion of type assignment is sound

and complete. We start by showing two variants of the substitution lemma.

Lemma 4.1 (Term substitution lemma) Let A be strict; Γ ⊢∩∪

λµ M{N/x} : A | ∆ if and only if there

exists σ∈T such that Γ, x:σ ⊢∩∪

λµ M : A | ∆ and Γ ⊢∩∪

λµ N : σ | ∆.

Proof. By induction on the structure of terms.

(M ≡ x) : (⇒) : If Γ ⊢∩∪

λµ x{N/x} : A, then Γ, x:A ⊢∩∪

λµ x : A and Γ ⊢∩∪

λµ N : A.

(⇐) : If Γ ⊢∩∪

λµ x : A | ∆, then there exists Ai (∀i∈n) such that A = Ak from some k∈n, and

Γ = Γ
′, x:∩n Ai, so Γ

′, x:∩n Ai ⊢
∩∪

λµ x : Ak | ∆. From Γ ⊢∩∪

λµ N : ∩n Ai | ∆ and Lemma 3.4, we

have Γ ⊢∩∪

λµ N : A | ∆, so Γ ⊢∩∪

λµ x{N/x} : A | ∆.

(M ≡ y 6= x) : (⇒) : By Lemma 3.5, since y{N/x} ≡ y, and x 6∈ fv(y).

(⇐) : Take C = ⊤; by Lemma 3.5, Γ, x:⊤ ⊢∩∪

λµ y : A | ∆.

(M′ = PQ) : Let A = ∪r Aj, with r ≥ 1. Notice that (PQ){N/x} = P{N/x}Q{N/x}.

(⇒) : Then, by Lemma 3.3, there are τj ∈T (∀j∈ r) such that Γ ⊢∩∪

λµ P [N/x] : ∪r(τj→Aj) | ∆

and Γ ⊢∩∪

λµ Q [N/x] : τj | ∆, for all j∈ r. Then by induction, there are σ1,σ1
2 , . . . ,σr

2 such

that:

ITRS’10, EPTCS volume 45, page 31-44, 2010 10

* Γ, x:σ1 ⊢
∩∪

λµ P : ∪r(τj→Aj) | ∆ and Γ ⊢∩∪

λµ N : σ1 | ∆, as well as

* Γ, x:σ
j
2 ⊢

∩∪

λµ Q : τj | ∆ and Γ ⊢∩∪

λµ N : σ
j
2 | ∆, for all j∈ r.

Take σ = σ1 ∩σ1
2 ∩ · · · ∩σr

2; then by weakening and (→E), we get Γ, x:σ ⊢∩∪

λµ PQ : A | ∆;

notice that Γ ⊢∩∪

λµ N : σ | ∆ by (∩I).

(⇐) : If Γ, x:σ ⊢∩∪

λµ PQ : ∪r Aj | ∆, then by Lemma 3.3 there exists τj ∈T (j∈ r) such that

Γ, x:σ ⊢∩∪

λµ P : ∪r(τj→Aj) | ∆ and Γ, x:σ ⊢∩∪

λµ Q : τj | ∆, for j∈ r. Then, by induction, we

have both Γ ⊢∩∪

λµ P[N/x] : ∪r(τj→Aj) | ∆ and Γ ⊢∩∪

λµ Q[N/x] : τj | ∆ for all j∈ r; the result

follows by (→E).

(M ≡ λy.M′; M ≡ µα.[β]M′) : By induction.

Because of Lemma 3.4, we can extend the above results also to the case that A is an intersec-

tion type; notice that this is implicitly used in the third case, where Dj can be an intersection

type.

Dually, we have:

Lemma 4.2 (Structural substitution lemma) Γ ⊢∩∪

λµ M{N·γ/α} : C | γ:∪nBi,∆ if and only if

there are σi (∀i∈n) such that, for all i∈n, Γ ⊢∩∪

λµ N : σi | ∆, and Γ ⊢∩∪

λµ M : C | α:∪n(σi→Bi),∆.

Proof. We only show the interesting cases.

(M = x) : Then x{N·γ/α}= x; as above the result follows, in either direction, by thinning and

weakening.

(M = λx.M′) : By induction.

(M = PQ) : Then PQ{N·γ/α}= P{N·γ/α} Q{N·γ/α}; assume C is strict, C = ∪rCj, with r ≥ 1.

(⇒) : Then, by Lemma 3.3, there exists τj ∈T (∀j∈ r) such that Γ ⊢∩∪

λµ P{N·γ/α} : ∪r(τj→Cj) |

γ:∪nBi,∆ and Γ ⊢∩∪

λµ Q{N·γ/α} : τj | γ:∪nBi,∆, for j∈ r. Then by induction, there are

σi (∀i∈ k) and σ′
i (∀i∈ l) with k + l = m such that:

* Γ ⊢∩∪

λµ P : ∪r(τj→Cj) | α:∪k(σi→Bi),∆ and, for all i∈ k, Γ ⊢∩∪

λµ N : σi | ∆, as well as

* Γ ⊢∩∪

λµ Q : τj | α:∪l(σ
′
i→Bi),∆ for all j∈ r, and, for all i∈ l, Γ ⊢∩∪

λµ N : σ′
i | ∆.

Then by weakening and (→E), we get Γ ⊢∩∪

λµ PQ : ∪rCj | α:∪k(σi→Bi) ∪ ∪l(σ
′
i→Bi),∆;

notice that Γ ⊢∩∪

λµ N : ρ | ∆ for all ρ∈{σi (∀i∈ k), σ′
i (∀i∈ l)}.

(⇐) : If Γ ⊢∩∪

λµ PQ : ∪rCj | α:∪n(σi→Bi),∆, then there are τj∈T (∀j∈ r) such that Γ ⊢∩∪

λµ P :

∪r(τj→Cj) | α:∪n(σi→Bi),∆ and Γ ⊢∩∪

λµ Q : τj | α:∪n(σi→Bi),∆, for j∈ r. Then, by induc-

tion, Γ ⊢∩∪

λµ P{N·γ/α} : ∪r(τj→Cj) | γ:∪nBi,∆ and Γ ⊢∩∪

λµ Q{N·γ/α} : τj | γ:∪nBi,∆ for all

j∈ r; the result follows by (→E).

(M = µβ.[α]M′) : (⇒) : Notice that µβ.[α]M′{N·γ/α}= µβ.[γ](M′{N·γ/α}N) by definition. By

Lemma 3.3, from Γ ⊢∩∪

λµ µβ.[γ](M′{N·γ/α}N) : C | γ:∪nBi,∆, there are r ≤ n and ρl , Dl

(∀l∈ r) such that, without loss of generality, ∪rDl ⊆ ∪nBi, and the derivation is shaped

like (notice that we can assume γ, β 6∈ fv(N)):

Γ ⊢ M′{N·γ/α} : ∪r(ρl→Dl) | γ:∪nBi, β:C,∆

Γ ⊢ N : ρl | ∆
(Wk)

Γ ⊢ N : ρl | γ:∪nBi, β:C,∆ (∀l∈ r)
(→E)

Γ ⊢ M′{N·γ/α}N : ∪r Dl | γ:∪nBi, β:C,∆
(∪E)

Γ ⊢ µβ.[γ](M′{N·γ/α}N) : C | γ:∪nBi,∆

ITRS’10, EPTCS volume 45, page 31-44, 2010 11

Then, by induction, there exist σi (∀i∈n) such that Γ ⊢∩∪

λµ M′ : ∪r(ρl→Dl) | α:∪n(σi→Bi),

β:C,∆ and, for all i∈n, Γ ⊢∩∪

λµ N : σi | ∆, and we can construct:

Γ ⊢ M′ : ∪r(ρl→Dl) | α:∪n−r(σi→Bi), β:C,∆
(Wk)

Γ ⊢ M′ : ∪r(ρl→Dl) | α:∪r(ρl→Dl) ∪ ∪n−r(σi→Bi), β:C,∆
(∪E)

Γ ⊢ µβ.[α]M′ : C | α:∪r(ρl→Dl) ∪ ∪n−r(σi→Bi),∆

Notice that also Γ ⊢∩∪

λµ N : τ | ∆
′ for every τ∈{ρ1, . . . ,ρr,σ1, . . . ,σn }.

(⇐) : If Γ ⊢∩∪

λµ µβ.[α]M′ : C | α:∪n(σi→Bi),∆ and Γ ⊢∩∪

λµ N : σi |∆
′ for every i∈n, then, by Lemma

3.3, the first derivation is constructed as follows:

Γ ⊢ M′ : ∪r(σi→Bl) | α:∪n(σi→Bi), β:C,∆
(∪E)

Γ ⊢ µβ.[α]M′ : C | α:∪n(σi→Bi),∆

for some r ≤ n. Then, by induction, Γ ⊢∩∪

λµ M′{N·γ/α} : ∪r(σi→Bi) | γ:∪nBi, β:C,∆, and

we can construct:

Γ ⊢ M′{N·γ/α} : ∪r(σi→Bi) | γ:∪nBi, β:C,∆ Γ ⊢ N : σi | ∆ (∀i∈ r)
(→E)

Γ ⊢ (M′{N·γ/α})N : ∪rBi | γ:∪nBi, β:C,∆
(∪E)

Γ ⊢ µβ.[γ]M′{N·γ/α}N : C | γ:∪nBi,∆

Using these two lemmas, we can prove the two main results of this paper:

Theorem 4.3 (Subject expansion) If P →λµ Q, and Γ ⊢∩∪

λµ Q : A |∆ (A strict), then Γ ⊢∩∪

λµ P : A | ∆.

Proof. By induction on the definition of reduction, where we focus on the reduction rules.

((λx.M)N → M[N/x]) : If Γ ⊢∩∪

λµ M{N/x} : A | ∆, then by Lemma 4.1 there exists a σ∈T such

that Γ, x:σ ⊢λµ M : A | ∆ and Γ ⊢∩∪

λµ N : σ | ∆; then, by applying rule (→I) to the first result

we get Γ ⊢∩∪

λµ λx.M : σ→A | ∆ and then by (→E) we get Γ ⊢∩∪

λµ (λx.M)N : A | ∆.

((µα.[α]M)N → µγ.[γ]M{N·γ/α}N) : If Γ ⊢∩∪

λµ µγ.[γ]M{N·γ/α}N : A | ∆, then A = ∪n Ai, and

by Lemma 3.3, (wlog) there is m ≤ n such that Γ ⊢∩∪

λµ M{N·γ/α}N : ∪m Aj | γ:∪n Ai,∆, and

there are τj (∀j∈m) such that, Γ ⊢∩∪

λµ M{N·γ/α} : ∪m(τj→Aj) | γ:∪n Ai,∆ and for all j∈m,

Γ ⊢∩∪

λµ N : τj | ∆.

Γ ⊢ M{N·γ/α} : ∪m(τj→Aj) | γ:∪nAi,∆ Γ ⊢ N : τj | ∆ (j∈m)
(m ≤ n)

Γ ⊢ M{N·γ/α}N : ∪mAj | γ:∪n Ai,∆

Γ ⊢ µγ.[γ]M{N·γ/α}N : ∪n Ai | ∆

Then, by Lemma 4.2, there are σi (∀i∈n) such that for all i∈n, Γ ⊢∩∪

λµ N : σi | ∆, and Γ ⊢∩∪

λµ

M : ∪m(τj→Aj) | α:∪n(σi→Ai),∆; take B = ∪m(τj→Aj)∪∪n(σi→Ai), then by weakening,

we have Γ ⊢∩∪

λµ M : ∪m(τj→Aj) | α:B,∆. Then, by rule (∪E), Γ ⊢∩∪

λµ µα.[α]M : B | ∆, and

Γ ⊢∩∪

λµ (µα.[α]M)N : ∪n Ai | ∆ then follows by rule (→E).

Γ ⊢ M : ∪m(τj→Aj) | α:∪m(τj→Aj)∪∪n(σi→Ai),∆
(∪E)

Γ ⊢ µα.[α]M : ∪m(τj→Aj)∪∪n(σi→Ai) | ∆ Γ ⊢ N : τi | ∆ (j∈m)

Γ ⊢ N : σi | ∆ (i∈n)

.

.

.

(→E)
Γ ⊢ (µα.[α]M)N : ∪nAi | ∆

ITRS’10, EPTCS volume 45, page 31-44, 2010 12

((µα.[β]M)N → µγ.[β]M{N·γ/α}) : If Γ ⊢∩∪

λµ (µα.[β]M)N : A | ∆, then A = ∪n Ai, and by (→E)

there are σi (∀i∈n) such that Γ ⊢∩∪

λµ µα.[β]M : ∪n(σi→Ai) |∆, and Γ ⊢∩∪

λµ N : σi |∆ for all i∈n;

then by Lemma 4.2, Γ ⊢∩∪

λµ µγ.[β]M{N·γ/α} : A | ∆.

(µα.[β]µγ.[δ]M → µα.[δ](M[β/γ])) : If Γ ⊢∩∪

λµ µα.[δ](M[β/γ]) : A |∆, then by rule (∪E), there ex-

ist δ:∪nDi∈∆ and m ≤ n such that Γ ⊢∩∪

λµ M[β/γ] : ∪mDj | α:A,∆. Let ∆ = δ:∪nDi, β:∪kBi,∆
′.

Since M can contain β as well, this means that there are Cj (∀j∈ k), Ei (∀i∈ l) with ∪mCj ∪

∪kEi = ∪kBi, and we can construct:

Γ ⊢ M : Dk | γ:∪mCj,δ:∪nDi, β:∪kEi,α:A,∆′

(∪E)
Γ ⊢ µγ.[δ]M : ∪mCj | δ:∪nDi, β:∪kEi,α:A,∆′

(∪E)
Γ ⊢ µα.[β]µγ.[δ]M : A | ∆

Theorem 4.4 (Subject reduction) If P →λµ Q, and Γ ⊢λµ P : A | ∆, whereA is not an intersection,

then Γ ⊢λµ Q : A | ∆

Proof. ((λx.M)N → M[N/x]) : Let Γ ⊢λµ (λx.M)N : A | ∆. Then by Lemma 3.3 there exists

σ∈T such that Γ ⊢λµ λx.M : σ→A | ∆ and Γ ⊢λµ N : σ | ∆, and also Γ, x:σ ⊢λµ M : A | ∆.

Then, by Lemma 4.1, we have Γ ⊢λµ M{N/x} : A | ∆.

((µα.[α]M)N → µγ.[γ]M{N·γ/α}N) : If Γ ⊢∩∪

λµ (µα.[α]M)N : A | ∆, then by Lemma 3.3 there

exist Ai (∀i∈n) and σi (∀i∈n) such that A = ∪n Ai, and Γ ⊢∩∪

λµ µα.[α]M : ∪n(σi→Ai) | ∆

and, for all i∈n, Γ ⊢∩∪

λµ N : σi | ∆; then (wlog) also Γ ⊢∩∪

λµ M : ∪m(σj→Aj) | α:∪n(σi→Ai),∆,

with m ≤ n.

Γ ⊢ M : ∪m(σj→Aj) | α:∪n(σi→Ai),∆
(∪E)

Γ ⊢ µα.[α]M : ∪n(σi→Ai) | ∆ Γ ⊢ N : σi | ∆ (i∈n)
(→E)

Γ ⊢ (µα.[α]M)N : ∪n Ai | ∆

Then, by Lemma 4.2, Γ ⊢∩∪

λµ M{N·γ/α} : ∪m(σj→Aj) | γ:∪n Ai,∆, and, by (→E), Γ ⊢∩∪

λµ

M{N·γ/α}N : ∪m(Ai) | γ:∪n Ai,∆, so, by rule (∪E), Γ ⊢∩∪

λµ µγ.[γ]M{N·γ/α} : ∪n Ai | ∆.

Γ ⊢ M{N·γ/α} : ∪m(σj→Aj) | γ:∪n Ai,∆

Γ ⊢ N : σj | ∆ (j∈m)
(Wk)

Γ ⊢ N : σj | γ:∪n Ai,∆ (j∈m)
(→E)

Γ ⊢ M{N·γ/α}N : ∪m(Ai) | γ:∪n Ai,∆
(∪E)

Γ ⊢ µγ.[γ]M{N·γ/α}N : ∪n Ai | ∆

(µα.[β]µγ.[δ]M → µα.[δ](M[β/γ])) : If Γ ⊢∩∪

λµ µα.[β]µγ.[δ]M : A | ∆, the derivation is shaped

like:

Γ ⊢ M : Dp | γ:Bl ,δ:∪nDi, β:∪kBi,α:A,∆′

(∪E)
Γ ⊢ µγ.[δ]M : Bl | β:∪kBi,α:A,∆′

(∪E)
Γ ⊢ µα.[β]µγ.[δ]M : A | β:∪kBi,∆

′

with ∆ = β:∪mBj,∆
′, for some Bi (∀i∈m), with l∈ k, and p∈n. It is straightforward to

show that then Γ ⊢∩∪

λµ M[β/γ] : Dp | β:∪kBi,α:A,∆′ , and applying rule (∪E) to this deriva-

tion gives Γ ⊢∩∪

λµ µα.[δ](M[β/γ]) : A | ∆.

ITRS’10, EPTCS volume 45, page 31-44, 2010 13

Notice that we cannot show subject reduction for the erasing rule. Assume the derivation

for µα.[α]M with M not a control structure is shaped like

Γ ⊢ M : Aj | α:∪n Ai,∆
(∪E)

Γ ⊢ [α]M : ⊥ | α:∪n Ai,∆
(µ)

Γ ⊢ µα.[α]M : ∪n Ai | ∆

Since α does not appear in M, by thinning we can derive Γ ⊢∩∪

λµ M : Aj | ∆, but have no rule to

allow us to derive Γ ⊢∩∪

λµ M : ∪n Ai | ∆ from that.

Conclusion

We have seen that the calculus λµ is sufficiently limited to allow for the definition of a sound

and complete notion of type assignment. This will need to be investigated further, towards

the definition of semantics, and characterisation of the termination properties. Also, we need

to look at the ignored reduction rules, and see if it is possible to generalise the system such

that also these will be preserved, without sacrificing the main results. The approach we use

here seems to be promising also for the setting of (restrictions of) X and λµµ̃; we will leave

this for future work.

References

[1] Z.M. Ariola & H. Herbelin (2003): Minimal Classical Logic and Control Operators. In: Proceedings of
Automata, Languages and Programming, 30th International Colloquium, ICALP’03, 2003, Lecture Notes
in Computer Science 2719, Springer, pp. 871–885.

[2] S. van Bakel (1992): Complete restrictions of the Intersection Type Discipline. Theoretical Computer
Science 102(1), pp. 135–163.

[3] S. van Bakel (2010): Completeness and Partial Soundness Results for Intersection & Union Typing for
λµµ̃. Annals of Pure and Applied Logic 161, pp. 1400–1430.

[4] S. van Bakel (2010): Completeness and Soundness results for X with Intersection and Union Types. To
appear in: Fundamenta Informaticae.

[5] S. van Bakel & U. de’Liguoro (2008): Logical equivalence for subtyping object and recursive types.
Theory of Computing Systems 42(3), pp. 306–348.

[6] S. van Bakel & M. Fernández (1997): Normalization Results for Typeable Rewrite Systems. Information
and Computation 2(133), pp. 73–116.

[7] S. van Bakel, S. Lengrand & P. Lescanne (2005): The language X : Circuits, Computations and Classical
Logic. In: Proceedings of Ninth Italian Conference on Theoretical Computer Science (ICTCS’05), Lecture
Notes in Computer Science 3701, Springer Verlag, pp. 81–96.

[8] S. van Bakel & P. Lescanne (2008): Computation with Classical Sequents. Mathematical Structures in
Computer Science 18, pp. 555–609.

[9] F. Barbanera, M. Dezani-Ciancaglini & U. de’Liguoro (1995): Intersection and Union Types: Syntax
and Semantics. Information and Computation 119(2), pp. 202–230.

[10] H. Barendregt (1984): The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam.
[11] H. Barendregt, M. Coppo & M. Dezani-Ciancaglini (1983): A filter lambda model and the completeness

of type assignment. Journal of Symbolic Logic 48(4), pp. 931–940.
[12] A. Church (1936): A Note on the Entscheidungsproblem. Journal of Symbolic Logic 1(1), pp. 40–41.
[13] M. Coppo & M. Dezani-Ciancaglini (1978): A New Type Assignment for Lambda-Terms. Archive für

Mathematischer Logic und Grundlagenforschung 19, pp. 139–156.
[14] P.-L. Curien & H. Herbelin (2000): The Duality of Computation. In: Proceedings of the 5th ACM

SIGPLAN International Conference on Functional Programming (ICFP’00), ACM Sigplan Notices 35.9,
pp. 233–243.

[15] H.B. Curry & R. Feys (1958): Combinatory Logic, 1. North-Holland, Amsterdam.

ITRS’10, EPTCS volume 45, page 31-44, 2010 14

[16] R. Davies & F. Pfenning (2001): A judgmental reconstruction of modal logic. Mathematical Structures
in Computer Science 11(4), pp. 511–540.

[17] D. Dougherty, S. Ghilezan & P. Lescanne (2004): Intersection and Union Types in the λµµ̃-calculus.
In: Electronic Proceedings of 2nd International Workshop Intersection Types and Related Systems
(ITRS’04), Electronic Notes in Theoretical Computer Science 136, pp. 228–246.

[18] D. Dougherty, S. Ghilezan & P. Lescanne (2008): Characterizing strong normalization in the Curien-
Herbelin symmetric lambda calculus: extending the Coppo-Dezani heritage. Theoretical Computer Science
398.

[19] J. Dunfield & F. Pfenning (2003): Type Assignment for Intersections and Unions in Call-by-Value Lan-
guages. In: Proceedings of 6th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS’03), pp. 250–266.

[20] G. Gentzen (1935): Investigations into logical deduction. In: The Collected Papers of Gerhard Gentzen,
Ed M. E. Szabo, North Holland, 68ff (1969).

[21] Ph. de Groote (1994): On the relation between the λµ-calculus and the syntactic theory of sequential
control. In: Proceedings of 5th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’94), Lecture Notes in Computer Science 822, Springer Verlag, pp. 31–43.

[22] B. Harper & M. Lillibridge (1991): ML with callcc is unsound. Post to TYPES mailing list, July 8.
[23] H. Herbelin (2005): C’est maintenant qu’on calcule: au cœur de la dualité. Mémoire de habilitation,

Université Paris 11.
[24] J.R. Hindley (1997): Basic Simple Type Theory. Cambridge University Press.
[25] S. Lengrand (2003): Call-by-value, call-by-name, and strong normalization for the classical sequent cal-

culus. In: 3rd Workshop on Reduction Strategies in Rewriting and Programming (WRS 2003), Electronic
Notes in Theoretical Computer Science 86, Elsevier.

[26] S. Maffeis (2005): Sequence Types for the pi-calculus. Electronic Notes in Theoretical Computer Science
136, pp. 117–132.

[27] R. Milner, M. Tofte, R. Harper & D. MacQueen (1990): The Definition of Standard ML. MIT Press.
Revised edition.

[28] C.-H. L. Ong & C.A. Stewart (1997): A Curry-Howard foundation for functional computation with
control. In: Proceedings of the 24th Annual ACM Symposium on Principles Of Programming Languages,
pp. 215–227.

[29] M. Parigot (1992): An algorithmic interpretation of classical natural deduction. In: Proceedings of 3rd
International Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR’92),
Lecture Notes in Computer Science 624, Springer Verlag, pp. 190–201.

[30] M. Parigot (1993): Classical Proofs as Programs. In: Kurt Gödel Colloquium, pp. 263–276. Presented
at TYPES Workshop, 1992.

[31] M. Parigot (1993): Strong Normalization for Second Order Classical Natural Deduction. In: Proceedings
of Eighth Annual IEEE Symposium on Logic in Computer Science, 19-23 June 1993, pp. 39–46.

[32] B.C. Pierce (1991): Programming with Intersection Types and Bounded Polymorphism. Ph.D. thesis,
Carnegie Mellon University, School of Computer Science, Pitssburgh. CMU-CS-91-205.

[33] A.K. Wright (1995): Simple imperative polymorphism. Lisp and Symbolic Computation 8(4), pp. 343–
355.

	The calculus `l`m
	The Strict Intersection Type Assignment System for the `l-calculus
	Intersection and union type assignment for `l`m
	Subject reduction and expansion

