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Abstract

In this paper the intersection type discipline as defined in [2] is studied. We will present two
different and independent complete restrictions of the intersection type discipline.
The first restricted system, the strict type assignment system, is presented in section two. Its
major feature is the absence of the derivation rule (≤) and it is based on a set of strict types. We
will show that these together give rise to a strict filter lambda model that is essentially different
from the one presented in [2]. We will show that the strict type assignment system is the nucleus
of the full system, i.e. for every derivation in the intersection type discipline there is a derivation
in which (≤) is used only at the very end. Finally we will prove that strict type assignment is
complete for inference semantics.
The second restricted system is presented in section three. Its major feature is the absence of the
type ω. We will show that this system gives rise to a filter λI-model and that type assignment
without ω is complete for the λI-calculus. Finally we will prove that a lambda term is typeable
in this system if and only if it is strongly normalisable.

Introduction

The popularity of functional programming has increased over the last decade. A large and
still increasing number of people, computer scientists as well as manufacturers and logicians is
becoming interested in functional programming languages.

A large number of functional programming languages already exist, many of them based on
the lambda calculus. The calculus itself is type free, whereas it is common use to assign types
to algorithms. Since the lambda calculus is a fundamental basis for functional programming
languages, a type assignment system for the pure untyped lambda calculus, capable of deducing
meaningful types, has been a topic of research for many years.

One of the first and most primitive ones was introduced by H.B. Curry in [8]. (See also [9]). His
system expresses abstraction and application and has as its major advantage that it is decidable
to determine whether a lambda term is typeable by this system. Because of this decidability it
is used as a basis for type checkers used in functional programming languages. The functional
programming language ML [18] for example, is in fact an extended lambda calculus and it
contains a type checker based on Curry’s system. Miranda, a functional programming language
designed and implemented by D. Turner [25], contains a type checker based on the ML type
assignment system.

∗ See appendix
‡ Research performed at the Department of Computer Science, Turin, Italy, and supported by the Netherlands

Organisation for the advancement of pure research (N.W.O.).



Theoretical Computer Science, 102:135-163, 1992 2

Curry’s type assignment system has however drawbacks. It is not capable of assigning a type to
λx.xx, and although the lambda terms λcd.d and (λxyz.xz(yz))(λab.a) are β-equal, the principal
type schemes for these terms are different. Principal type schemes for Curry’s system are defined
by J.R. Hindley [13].

The intersection type discipline as presented in [2] does not contain these drawbacks. It is
based on the Curry type assignment system: in addition to the type constructor ‘→’ it contains a
type constructor ‘∩’ and a type constant ‘ω’. These extensions were introduced to obtain a system
that is closed under β-equality. The main problem of course is that of β-expansion: suppose we
have derived B � M[N/x] : σ1 and also want to derive B � (λx.M)N : σ. This problem is solved
by the introduction of the type constant ω and the intersection types. The type constant ω is the
universal type, i.e. each term can be typed by ω. It can be used in the expansion to type N if
N does not occur in M[N/x] and there is no other type ρ such that B � N : ρ. The intersection
types are used for the cases that N occurs more than once in M[N/x] and these occurrences were
typed in the derivation for B � M[N/x] : σ with different types. A first introduction of a type
assignment system with intersection types can be found in [3], a system with intersection types
and ω is introduced in [6] and in [24].

In [2] the system as presented in [6] was strengthened further by introducing a partial order
relation ‘≤’ on types as well as adding the type assignment rule (≤), and a more general form
of the rules concerning intersection. The rule (≤) is introduced mainly to prove completeness of
type assignment. This is achieved by showing that the set of types derivable for a lambda term
in this extended system is a filter, i.e. a set closed under intersection and right closed for ≤ (if
σ ≤ τ and σ ∈ d where d is a filter, then τ ∈ d.) The interpretation of a lambda term by the set of
types derivable for it gives a filter lambda model F . Using this model, completeness is proved.
Other interesting use of filter lambda models can be found in [4], [7], [11] and [12].

For the system as defined in [2], principal type schemes can be defined as in [23]. Instances of
types can be obtained by substitution, operations of rise (applying (≤)) or expansion (introducing
intersection types by replacing a sub-derivation by more than one sub-derivation with the same
structure, followed by an intersection introduction).

The intersection type discipline has a great expressive power: all solvable terms have types
other than ω and a term has a normal form if and only if it has a type without ω occurrences.
The system however is too powerful: it is closed under β-conversion. If a lambda term M is
typeable by σ and M =β N, then also N is typeable by σ. Because it is in general undecidable
whether two terms are β-convertible, it is not possible to decide whether a lambda term can be
typed by a type suitable for λx.x. Moreover there are several ways to deduce a desired result,
due to the presence of the derivation rules (∩I), (∩E) and (≤), which allow superfluous steps in
derivations. In the system as presented in [6], these rules are not present and there is a one-one
relationship between terms and derivations. In other words: the system is syntax directed.

The first restriction presented in this paper is the strict type assignment system, a type as-
signment system in which the ≤-relation and the derivation rule (≤) are no longer present.
The elimination of ≤ induces a set of strict types, a restriction of the set of types used in the
intersection type assignment system.

Strict types are the types that are strictly needed to assign a type to terms. The strict type
assignment system is constructed from the set of strict types and a minor extension of the deriva-
tion rules as defined in [6]. In this way we obtain a syntax directed system. It turns out to be the
nucleus of the intersection type assignment system. The strict system gives rise to a strict filter
lambda model FS that satisfies all major properties of the filter lambda model F as presented in
[2], but is an essentially different lambda model.

1 Unlike in [2], we will use the notation ‘M : σ’ for the statement ‘σ is a type for M’.
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In constructing a complete system, the semantics of types play a crucial role. As in [12],
[19] and essentially following [14], a distinction can be made between several notions of type
interpretations and semantic satisfiability. There are roughly three notions of type semantics
that differ in the meaning of an arrow type scheme: inference type interpretations, simple type
interpretations and F type interpretations. These different notions of type interpretations induce
of course different notions of semantic satisfiability.

The intersection type assignment as presented in [2], is sound and complete with respect to the
simple type semantics. In this paper we will show that soundness is lost if instead of simple type
semantics, the inference type semantics is used. With the use of the latter we are able to prove
soundness and completeness without having the necessity of introducing ≤. This will be done
using the strict filter lambda model FS.

The second restriction presented is a type assignment system without ω. It is not difficult to
see that, while building a derivation B � M : σ (where ω does not occur in σ and B) for a lambda
term M that has a normal form, the type ω is only needed to type sub-terms that will be erased
while reducing M to its normal form and that cannot be typed starting from B. This gives rise to
the idea that if we limit ourselves to the set of lambda terms where no sub-terms will be erased,
i.e. the λI-calculus, the type ω is not really needed for terms that have a normal form. The type
assignment system without ω yields a λI-model and turns out to be complete for the λI-calculus
with respect to the simple type semantics. The set of terms typeable by this system is just the set
of all strongly normalisable lambda terms.

Because of its undecidability properties the intersection type discipline is at the present time not
used in type checkers. In order to obtain a type checker based on this system, some restrictions
have to be made. In this paper two restrictions of the intersection type discipline are studied,
which both yield undecidable systems. So these attempts to restrict the system in preparation
for the construction of a type checker, fail.

1 The intersection type discipline

The intersection type assignment system is an extension of the Curry type assignment system.
It introduces intersection types and a type constant ω. Originally the system was called the
‘extended type assignment system’, but since a lot of different extensions of the Curry system
exist, we prefer to use the name that highlights its major feature: the intersection types. In this
section we give the definition of the intersection type discipline as presented in [2], together with
its major features.

Definition 1.1 i) T , the set of types is inductively defined by:
a) All type variables ϕ0, ϕ1, . . . ∈ T .
b) ω ∈ T .
c) If σ and τ ∈ T , then (σ→τ) and (σ∩τ) ∈ T .

ii) On T the type inclusion relation ≤ is inductively defined by:
a) σ ≤ σ.
b) σ ≤ ω.
c) ω ≤ ω→ω.
d) σ∩τ ≤ σ.
e) σ∩τ ≤ τ.
f ) (σ→τ)∩(σ→ρ) ≤ σ→(τ∩ρ).
g) σ ≤ τ ≤ ρ ⇒ σ ≤ ρ.
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h) σ ≤ τ & σ ≤ ρ ⇒ σ ≤ τ∩ρ.
i) ρ ≤ σ & τ ≤ µ ⇒ σ→τ ≤ ρ→µ.

iii) σ∼τ ⇐⇒ σ ≤ τ ≤ σ.
iv) A statement is an expression of the form M : σ where M ∈ Λ and σ ∈ T . M is the subject

and σ the predicate of M : σ.
v) A basis is a set of statements with only variables (not necessarily distinct) as subjects.

T may be considered modulo ∼. Then ≤ becomes a partial order.

Notice that in the original paper [2] the type inclusion relation is defined in a slightly different
way. Instead of rule 1.1 (ii.h) the rules

(h’) : σ ≤ τ & µ ≤ ρ ⇒ σ∩µ ≤ τ∩ρ.

(h”) : σ ≤ σ∩σ.

are given. It is not difficult to show that these definitions are equivalent.
Throughout this paper, the symbol ϕ will be a type variable and the symbols µ , ν, η, ρ, σ and

τ will range over types.

Definition 1.2 i) Intersection type assignment is defined by the following natural deduction sys-
tem.

(→I) :

[x:σ]
...

M : τ
(a)

λx.M : σ→τ

(→E) :
M : σ→τ N : σ

MN : τ

(∩I) :
M : σ M : τ

M : σ∩τ
(∩E) :

M : σ∩τ

M : σ

M : σ∩τ

M : τ

(≤) :
M : σ

(σ≤τ)
M : τ

(ω) : M : ω

(a) If x:σ is the only statement about x on which M : τ depends.

ii) If M : σ is derivable from a basis B, we write B � M : σ.

In [2] several properties of this type assignment system are proved. Some of the more important
are:

• The set of types derivable for a lambda term is a filter, i.e. a set closed under intersection and
right closed for ≤.

• The interpretation of a lambda term by the set of types derivable for it, gives a filter lambda
model F . Using this model, completeness is proved.

• The set of normalisable terms can be characterised in the following way:

∃B, σ [B � M : σ & B,σ ω-free ]⇐⇒ M has a normal form.

• The set of terms having a head normal form can be characterised in the following way:

∃B, σ [B � M : σ & σ �= ω ]⇐⇒ M has a head normal form.

Definition 1.3 The following properties are used in this paper and are listed here to be able to
refer to them easily:
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i) [2].2.8(i): B � MN : τ ⇒ ∃σ ∈ T [B � M : σ→τ & B � N : σ ].
ii) [2].2.8(iii): B � λx.M : σ→τ ⇐⇒ B\x∪{x:σ} � M : τ. 2

iii) [2].4.13(i): ∃B,σ [B � M : σ & σ �= ω ]⇒ M has a head normal form.
iv) [2].4.13(ii): ∃B,σ [B � M : σ & B,σ ω-free ]⇐⇒ M has a normal form.
v) [2].2.7(ii): B � x : τ ⇒ ∃ x:τ1, . . . , x:τn ∈ B [τ1∩ · · · ∩τn ≤ τ ].

vi) [12].5.6: ρ ≤ (τ1∩ · · · ∩τn)→σ ⇒ ρ = (τ1
1→·· ·→τs

n→σ1)∩ · · · ∩(τs
1→·· ·→τs

n→σs)∩ρ′, for some
τ

j
1, . . . ,τ j

n,σj,ρ′ such that τ
j
i ≥ τi with i ≤ i ≤ n, 1 ≤ j ≤ s and σ1∩ · · · ∩σs ≤ σ.

2 The system without derivation rule (≤)

In this section we will give an extension (without the (≤)-rule) of the Curry type assignment
system, which in fact will be a combination of both the systems as presented in [3] and [6], and
is almost the same as the one presented in [5]. We will prove that this system also yields a filter
lambda model (subsection 2.1) and that type assignment in this system is complete (subsection
2.3). To achieve the completeness result we will have to use inference semantics as defined in [19]
as a notion of type interpretation, instead of the simple semantics as used in [2]. Furthermore
we will show that if in a derivation for M : σ the derivation rule (≤) is used, the same statement
can be derived using a derivation in which the derivation rule (≤) is at the most only used at the
very end of the derivation (subsection 2.2).

2.1 Strict derivations

In this subsection we present a restricted version of the intersection type assignment system, in
which the derivation rule (≤) is no longer present, together with a restricted set of types. These
together will yield a lambda model, with which we prove completeness of type assignment
without the derivation rule (≤).

Strict types and strict derivations are closely related. Strict derivations are syntax directed and
yield strict types. The type constant ω plays a limited role in the strict type assignment system.
It does not occur in an intersection subtype and occurs only on the left-hand side of an arrow
type scheme. Moreover, intersection type schemes occur in strict types only as subtypes at the
left hand side of an arrow type scheme.

Definition 2.1 i) Ts, the set of strict types, is inductively defined by:
a) All type variables ϕ0, ϕ1, . . . ∈ Ts.
b) If σ, σ1, . . . ,σn, τ ∈ Ts, then σ→τ, ω→τ, (σ1∩ · · · ∩σn)→τ ∈ Ts.

ii) TS is defined as the union of {ω} and the closure of Ts under intersection.
iii) On TS, the relation ≤s is defined by:

a) σ ≤s σ.
b) σ ≤s ω.
c) σ∩τ ≤s σ & σ∩τ ≤s τ.
d) σ ≤s τ ≤s ρ ⇒ σ ≤s ρ.
e) σ ≤s ρ & σ ≤s τ ⇒ σ ≤s ρ∩τ.

iv) σ ∼s τ ⇐⇒ σ ≤s τ ≤s σ.

2 B\x is the basis obtained from B by erasing the statements that have x as subject.
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v) A statement is an expression of the form M : σ where σ ∈ TS and M ∈ Λ. M is the subject
and σ the predicate of M : σ.

vi) A basis is a set of statements with only variables as subjects.

TS may be considered modulo ∼S . Then ≤s becomes a partial order.

It is an easy exercise to show that the definition of ≤s is equivalent to:

i) σ ≤s ω.
ii) If σ = σ1∩· · · ∩σn (n ≥ 1), τ = τ1∩ · · · ∩τm (m ≥ 1) and {σ1, . . . ,σn} ⊆ {τ1, . . . ,τm}, then τ ≤s σ.

It is also easy to show that if σ ≤s τ, then either τ = ω or τ = σ or σ is an intersection type scheme
in which τ occurs. Notice moreover that if σ ∼s τ, then either σ = τ or σ is an intersection type
scheme and τ can be obtained from σ by permuting its strict components. In fact the differences
affect none of our proofs and in the rest of the paper σ = τ means σ ∼s τ.

Definition 2.2 i) Strict type assignment and strict derivations are defined by the following nat-
ural deduction system (where all types displayed are strict, except σ in rule (→I)):

(→I) :

[x:σ] (σ ∈ TS)...
M : τ

(a)
λx.M : σ→τ

(∩E) :
M : σ∩τ

M : σ

(→E) :
M : (σ1∩· · · ∩σn)→τ N : σ1 . . . N : σn

MN : τ

M : ω→τ

MN : τ

(a) : If x:σ is the only statement about x on which M : τ depends.
(b) : Notice that rule (→E) consists of two parts.

If M : σ is derivable from B using a strict derivation, we write B �s M : σ.
ii) We define �S by: B �S M : σ if and only if: σ = ω or there are σ1, . . . ,σn (n ≥ 1) such that

σ = σ1∩ · · · ∩σn and for every i ∈ {1, . . . ,n} B �s M : σi.

Notice that in B �s M : σ the basis can contain types that are not strict, and that B �S M : σ is only
defined for σ ∈ TS.

Notice also that the derivation rule (∩E) is only performed on variables and that the derivation
rules (ω) and (∩I) are implicitly present in the derivation rule (→E). Moreover, we cannot
compose a derivation in the �S system with conclusion M : ω with any other derivation.

The introduction of two different notions of derivability seems somewhat superfluous. Notice
that we could limit ourselves to one, by stating:

We define �s by: B �s M : σ if and only if: σ = ω or there are σ1, . . . ,σn (n ≥ 1) such
that σ = σ1∩ · · · ∩σn and for every i ∈ {1, . . . ,n} M : σi is derivable from B using a strict
derivation.

This definition would cause a lot of words in the proofs and perhaps also a lot of confusion. We
therefore prefer two different notions of derivability.

Apart from the presence of ω, the type assignment defined by �S is in fact the same as the one
presented in [3]. Also, the one defined by �s is in fact the same as in [6]. The type assignment
defined by �S is in fact the same as the one presented in [5], it is only different in a standard way
of writing bases.

Lemma 2.3 For these notions of type assignment, the following properties hold:
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i) If σ �= ω, then B �S M : σ ⇐⇒ ∃σ1, . . . ,σn [B �s M : σi & σ = σ1∩· · · ∩σn ].
ii) B �s MN : σ ⇐⇒ ∃ τ [B �s M : τ→σ & B �S N : τ ].

iii) B �s M : σ ⇐⇒ B �S M : σ & σ ∈ Ts.
iv) B �s λx.M : σ ⇐⇒ ∃ ρ ∈ TS,µ ∈ Ts [σ = ρ→µ & B\x∪{x:ρ} �s M : µ ].
v) B �S M : σ ⇐⇒ {x:τ ∈ B | x ∈ fv (M)} �S M : σ.

vi) ∀σ,τ ∈ TS [ (B∪{x:σ} �S M : τ ⇒ B∪{x:σ} �S N : τ) & x not in B ]⇒
∀ ρ ∈ TS [B �S λx.M : ρ ⇒ B �S λx.N : ρ ].

Proof: Easy.

As in [2] we aim to construct a filter lambda model. By use of names we will distinguish
between the definition of filters in that paper and the ones given here.

Definition 2.4 i) A subset d of TS is called a strict filter if and only if:
a) ω ∈ d.
b) σ,τ ∈ d ⇒ σ∩τ ∈ d.
c) τ ∈ d & τ ≤s σ ⇒ σ ∈ d.

ii) If V is a subset of TS, then ↑SV is the smallest strict filter that contains V, and ↑Sσ = ↑S{σ}.
If no confusion is possible, we will omit the subscript on ↑.

iii) FS = {d ⊆ TS | d is a strict filter}. We define application on FS, · : FS × FS→FS by: d · e =
↑{τ | ∃σ ∈ e [σ→τ ∈ d ]}.

The application on filters as defined in [2] is not useful in our approach, since it would not be
well defined. We must force the application to yield filters, since in each arrow type scheme
σ→τ ∈ TS, τ is strict.
〈FS,⊆〉 is a cpo and henceforward we will consider it with the corresponding Scott topology.
Because of the remark made after 2.1, condition 2.4 (i.c) can be replaced by:

2.4.i.c’). σ∩τ ∈ d ⇒ σ ∈ d & τ ∈ d.

Notice that a strict filter generated by a finite number of types is finite. Let for example σ be a
strict type, then ↑Sσ = {σ,ω} (where by ∼S we identify σ and σ∩σ). If σ is an intersection of strict
types, σ = σ1∩ · · · ∩σn, then ↑Sσ contains 2n elements, namely {σ1, . . . ,σn,σ1∩σ2,σ1∩σ3, . . . ,σn−1∩σn,σ1∩σ2∩σ3, . . . ,σ1∩
Of course FS contains also infinite elements.

Lemma 2.5 For strict filters the following properties hold:
i) σ �= ω & σ ∈ ↑V & V ⊆ Ts ⇐⇒ ∃σ1, . . . ,σn [σ = σ1∩ · · · ∩σn & ∀ i ∈ {1, . . . ,n} [σi ∈ V ]].

ii) σ ∈ Ts & σ ∈ ↑V & V ⊆ Ts ⇒ σ ∈ V.
iii) σ ∈ ↑τ ⇐⇒ τ ≤s σ.
iv) σ ∈ ↑{τ | B �s M : τ} ⇐⇒ σ ∈ {τ | B �S M : τ}.
v) {x:σ} �s x : τ ⇐⇒ σ ≤s τ.

Proof: Easy.

Theorem 2.6 i) If B �S M : σ and σ ≤s τ, then B �S M : τ.
ii) {σ ∈ TS | B �S M : σ} ∈ FS.

Proof: i) By induction on ≤ s.
ii) By 2.5(iv).
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Definition 2.7 We define F : FS→[FS→FS] and G : [FS→FS]→FS by:
i) F d e = d · e.

ii) G f = ↑{σ→τ ∈ TS | τ ∈ f (↑σ)}.

It is easy to check that F and G are continuous.

Theorem 2.8 〈FS, · 〉 with F and G as defined in 2.7 is a lambda model.

Proof: By [1].5.4.1 it is sufficient to prove that F◦G = id[F−≤→F−≤].
F◦G f d =

↑{µ | ∃ ρ ∈ d [ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)} ]} = (2.5(ii))
↑{µ | ∃ ρ ∈ d [µ ∈ f (↑ρ) ]} =

f (d).

Remark that FS and the filter lambda model F defined in [2] are not isomorphic as complete
lattices, since for example in F the filter ↑(σ∩τ)→σ is contained in ↑σ→σ but in FS the strict
filter ↑S(σ∩τ)→σ is not contained in ↑Sσ→σ. Moreover they are not isomorphic as lambda
models since in F the meaning of λxy.xy is contained in the meaning of λx.x, while this does
not hold in FS (see the examples after 2.11). Another difference is that while the analogue of G
in F chooses the minimal representative of functions, this is not the case in FS.

Definition 2.9 Let ξ be a valuation of term variables in FS.
i) ��M��ξ , the interpretation of terms in FS via ξ is inductively defined by:

a) ��x��ξ = ξ(x).
b) ��MN��ξ = F ��M��ξ ��N��ξ .
c) ��λx.M��ξ = G (λλ v ∈ FS.��M��ξ(v/x)).

ii) Bξ = {x:σ | σ ∈ ξ(x)}.

Theorem 2.10 For all M, ξ: ��M��ξ = {σ ∈ TS | Bξ �S M : σ}.

Proof: By induction on the structure of lambda terms.
i) ��x��ξ = ξ(x). Since {y:ρ | ρ ∈ ξ(y)} �S x : σ ⇐⇒ σ ∈ ξ(x).

ii) ��MN��ξ =

↑{τ | ∃σ [Bξ �S N : σ & Bξ �S M : σ→τ ]} = (2.3(ii) & (iii))
↑{τ | Bξ �S MN : τ} = (2.6(ii))
{τ | Bξ �S MN : τ}

iii) ��λx.M��ξ =

↑{σ→τ | Bξ(↑σ/x) �S M : τ} = (2.3(iii))
↑{σ→τ | Bξ(↑σ/x) �s M : τ} = (B′

ξ = Bξ\x)
↑{σ→τ | B′

ξ ∪{x:µ | µ ∈ ↑σ} �s M : τ} =
↑{σ→τ | B′

ξ ∪{x:σ} �s M : τ} = (2.3(iv))
↑{σ→τ | B′

ξ �s λx.M : σ→τ} = (2.3(v))
↑{σ→τ | Bξ �s λx.M : σ→τ} = (2.3(iv) & 2.5(iv))
{ρ | Bξ �S λx.M : ρ}.
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Corollary 2.11 If M =β N and B �S M : σ, then B �S N : σ, so the following rule is a derived rule in �S:

(=β) :
M : σ

(M =β N)
N : σ

Proof: Since FS is a lambda model, we know that if M =β N, then ��M��ξ = ��N��ξ ; so {σ ∈ TS |
Bξ �S M : σ} = {σ ∈ TS | Bξ �S N : σ}.

Notice that because of the way in which �S is defined, corollary 2.11 also holds if �S is replaced
by �s.

Example 2.12 By using 2.3 and 2.5 we can show the following:
i) If M is a closed term, then for all ξ, ��M��ξ = {σ ∈ TS | �S M : σ}. So for closed terms we can

omit the subscript ξ.
ii) ��λxy.xy��ξ = ↑{ρ→σ→τ | ∃σ′ [ρ ≤s σ′→τ & σ ≤s σ′ ]}.

iii) ��λx.x��ξ = ↑{σ→τ | σ ≤s τ}.
iv) ��λx.xy��ξ = ξ(y).

If we take for example µ = (σ→τ)→(σ∩ρ)→τ, then it is easy to check that µ ∈ ��λxy.xy��ξ and
µ �∈ ��λx.x��ξ , so ��λxy.xy��ξ is not contained in ��λx.x��ξ .

Notice that if M is a closed term, ��M��ξ is infinite. If M is not closed, it can be that ��M��ξ is
finite since ξ can select also finite filters. However, we can limit FS by selecting only infinite strict
filters. Notice that this would still give us a lambda model that is different from F .

Theorem 2.13 If M is in normal form, then there are B and σ such that B �s M : σ, and in this derivation
ω does not occur.

Proof: By induction on the structure of lambda terms in normal form.
i) M ≡ x. Take σ strict, such that ω does not occur in σ. Then {x:σ} �s x : σ.

ii) M ≡ λx.M’, with M’ in normal form. By induction there are B and τ such that B �s M′ : τ
and ω does not occur in this derivation. In order to perform the (→I)-step, B must contain
(whether or not x is free in M’) a statement with subject x and predicate, say, σ. But then of
course B\x �s λx.M′ : σ→τ and ω does not occur in this derivation.

iii) M ≡ xM1 . . . Mn, with M1, . . . , Mn in normal form. By induction there are B1, . . . , Bn and
σ1, . . . ,σn such that for every i ∈ {1, . . . ,n}, Bi �s Mi : σi and ω does not occur in these deriva-
tions.

Take τ strict, such that ω does not occur in τ, and B = ∩i∈{1,...,n}Bi∩{x:σ1→·· ·→σn→τ}.
Then B �s xM1 . . . Mn : τ and in this derivation ω does not occur.

Theorem 2.14 If M is in head normal form, then there are B and σ such that B �s M : σ.

Proof: By induction on the structure of lambda terms in head normal form.
i) M ≡ x. Take σ strict, then x:σ �s x : σ.

ii) M ≡ λx.M’, with M’ in head normal form. By induction there are B and τ such that B �s
M′ : τ. As in the previous theorem, B must contain a statement with subject x and predicate,
say, σ. But then of course B\x �s λx.M′ : σ→τ.

iii) M ≡ xM1 . . . Mn, with M1, . . . , Mn lambda terms. Take τ strict, then also
ω→ω→·· ·→ω→τ is strict, and {x:ω→ω→·· ·→ω→τ} �s xM1 . . . Mn : τ.

Theorem 2.15 ∃B,σ [B �s M : σ & B,σ ω-free ]⇐⇒ M has a normal form.
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Proof: (⇒) : If B �s M : σ and B, σ ω-free, then B �s M : σ and B, σ ω-free. Then by 1.3(iv) M has a
normal form.

(⇐) : By 2.13 and 2.11.

Notice that in part (ii) of the proof, because of corollary 2.11 we can only state that if M =β N
and B �s M : σ, then B �s N : σ. From 2.13 we can conclude that B and σ do not contain ω, but the
property that ω does not occur at all in the derivation is, in general, lost.

Theorem 2.16 ∃B,σ [B �s M : σ ]⇐⇒ M has a head normal form.

Proof: (⇒) : If B �s M : σ, then B � M : σ and σ �= ω. Then by 1.3(iii) M has a head normal form.

(⇐) : By 2.14 and 2.11.

Corollary 2.17 i) ∃B,σ [B �S M : σ & B,σ ω − f ree ] ⇐⇒ M has a normal form.
ii) ∃B,σ [B �S M : σ & σ �= ω ]⇐⇒ M has a head normal form.

2.2 The relation between �−≤ and �
The intersection type assignment is not conservative over the strict type assignment. So the
following does not hold:

Suppose all types occurring in B and σ are elements of TS. Then B �S M : σ ⇐⇒ B � M : σ.

As a counter example for ⇐, take {x:σ→σ} � x : (σ∩τ)→σ. It is not possible to derive x : (σ∩τ)→σ
form the basis {x:σ→σ} in �S.

Of course the implication in the other direction holds: B �S M : σ implies B � M : σ. The relation
between the two systems is however stronger. Theorem 2.23 states that every statement obtain-
able in the intersection type assignment system can be obtained by a derivation in which the rule
(≤) is, if necessary, only performed as the last step. The proof is based on the fact that for every
σ ∈ T there is a σ′ ∈ TS such that σ∼σ′ (Lemma 2.19; the same result has been stated in [14], $4),
and the approximation theorem as given in [23].

Definition 2.18 i) The set N of λ⊥-normal forms or approximate normal forms is inductively
defined by:
a) All term variables are in N , ⊥ is in N .
b) If A is in N , A �= ⊥, then λx.A is in N .
c) If A1, . . . , An are in N , then xA1 · · · An is in N .

ii) A ∈N is a direct approximant of M ∈ λ if A matches M except for occurrences of ⊥.
iii) A ∈N is an approximant of M ∈ λ (notation: A ≤ M) if there is an M′ =β M such that A is

a direct approximant of M’.
iv) A(M) = {A ∈ N | A ≤ M}.
v) The type assignment rules of definition 1.2(i) and 2.2(i) are generalised to elements of N by

allowing the terms to be elements of λ⊥.

Lemma 2.19 (cf. [14]) For every σ ∈ T there is a σ′ ∈ TS such that σ∼σ′.

Proof: By induction on the structure of types in T .
i) σ = ω, or σ is a type variable: trivial.

ii) σ = ρ→τ. By induction there are ρ′ and τ′ ∈ TS such that ρ∼ρ′ and τ∼τ′.
a) τ′ = ω. Take σ′ = ω.



Theoretical Computer Science, 102:135-163, 1992 11

b) τ′ = τ1∩ · · · ∩τm, each τi ∈ Ts. Take σ′ = (ρ′→τ1)∩ · · · ∩(ρ′→τ1).
c) τ′ is strict, then take σ′ = ρ′→τ′

iii) σ = ρ∩τ. By induction there are ρ′ and τ′ ∈ TS such that ρ∼ρ′ and τ∼τ′.
a) ρ′ = ω. Take σ′ = τ′.
b) τ′ = ω. Take σ′ = ρ′.
c) ρ′ �= ω & τ′ �= ω. Take σ′ = ρ′∩τ′.

Notice that lemma 2.19 is not a proof for the statement that TS modulo ∼S is isomorphic to T
modulo ∼. For example, take σ1 = (ρ∩τ)→ρ and σ2 = (τ∩ρ)→ρ. Then obviously σ1∼σ2, σ′

1 = σ1,
σ′

2 = σ2, but not σ′
1 ∼S σ′

2. By proving lemma 2.19 we only prove that we can find a σ′ for each σ,
not that this σ′ is unique. In fact, by replacing 2.19 (iii.c) by

c. ρ′ �= ω & τ′ �= ω. Take σ′ = ρ′∩τ′ or σ′ = τ′∩ρ′.

we would be able to find both σ′
1 and σ′

2 as types in TS that fit our purpose. See also the remark
after 2.28.

We will now prove the main theorem of this subsection, by showing that the �S system is in
fact the nucleus of the intersection type discipline. We will do this by proving first for terms in
N that the derivation rule (≤) can be transferred to the very end of a derivation and afterwards
generalising this result to arbitrary lambda terms.

Definition 2.20 We write B≥B’, if the following is true. If x occurs in B, then x occurs in B’, and
if σ1, . . . ,σn are all predicates of statements that have x as subject in B then there are τ1, . . . ,τm,
predicates of statements that have x as subject in B′, such that σ1∩· · · ∩σn ≥ τ1∩ · · · ∩τm.

Theorem 2.21 If A is in λ⊥-normal form and B � A : σ then there are B’, σ′ ∈ TS such that B′ �S A : σ′,
σ′ ≤ σ and B′ ≥B.

Proof: The proof is given by induction on the structure of terms in λ⊥-normal form. All cases
where σ∼ω are trivial, because then we can take B′ = ∅ and σ′ = ω. Therefore in the rest of the
proof, we will assume σ �= ω.

i) B � x : σ. By 1.3(v) there are x:σ1, . . . , x:σn in B such that σ1∩· · · ∩σn ≤ σ. By lemma 2.19 there
is an σ′ ∈ TS such that σ1∩ · · · ∩σn ∼σ′. Then {x:σ′ } ≥ B and σ′ ≤ σ.

ii) B � λx.A′ : σ, with A′ �= ⊥. Then there are ρ1, . . . , ρn, µ1, . . . , µn such that σ = (ρ1→µ1)∩
· · · ∩(ρn→µn). So, by (∩E) and 1.3(ii) for every i ∈ {1, . . . ,n} we have B∪{x:ρi} � A′ : µi. We
can assume, without loss of generality, that each µi is an element of Ts. By induction there
are Bi and ρ′i, µ′

i ∈ TS such that Bi∪{x:ρ′i} �S A′ : µi
′, µ′

i ≤ µi and Bi∪{x:ρ′i} ≥ B∪{x:ρi}.
We can assume, without loss of generality, that each µ′

i is an element of Ts. Then for all
i ∈ {1, . . . ,n} Bi �s λx.A′ : ρi

′→µ′
i, ρ′i→µ′

i ≤ ρi→µi and Bi ≥ B. So

∪i∈{1,...,n}Bi �S λx.A′ : (ρ′1→µ′
1)∩ · · · ∩(ρ′n→µ′

n),

(ρ′1→µ′
1)∩ · · · ∩(ρ′n→µ′

n) ≤ σ and ∪i∈{1,...,n}Bi ≥ B.
iii) B � xA1 . . . An : σ. By 1.3(i) there are τ1, . . . ,τn ∈ T such that B � x : τ1→·· ·→τn→σ, B � A1 : τ1,

. . . , and B � An : τn. By induction Bi �S Ai : τ′
i , τ′

i ≤ τi and Bi ≥ B. Take B′ = ∪i∈{1,...,n}Bi, then
B′ ≥ B. By lemma 2.19 there is a σ′ ∈ TS such that σ∼σ′. Let σ′ = σ1∩ · · · ∩σk where each
σi ∈ Ts and k ≥ 1. Because of

τ1→·· ·→τn→σ ≤ (τ′
1→·· ·→τ′

n→σ1)∩ · · · ∩(τ′
1→·· ·→τ′

n→σk)
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and 1.3(v), we have

B′∩{x:(τ′
1→·· ·→τ′

n→σ1)∩ · · · ∩(τ′
1→·· ·→τ′

n→σk)} ≥ B.

Also for every f ∈ {1, . . . ,k} B′∩{x:τ′
1→·· ·→τ′

n→σf } �s xA1 · · · An : σf .
So B′∩{x:(τ′

1→·· ·→τ′
n→σ1)∩ · · · ∩(τ′

1→·· ·→τ′
n→σk)} �S xA1 . . . An : σ′.

Theorem 2.22 i) B � M : σ ⇐⇒ ∃ A ∈ A(M) [B � A : σ ].
ii) B �S M : σ ⇐⇒ ∃ A ∈ A(M) [B �S A : σ ].

Proof: i) [23].2.13.
ii) The structure of the proof of [23].2.13 is the same as the structure of the proof for this

part.

Theorem 2.23 If B � M : σ then there are B’, σ′ ∈ TS such that B′ �S M : σ′, σ′ ≤ σ and B′ ≥ B.

Proof: If B � M : σ then, by 2.22(i) there is an A ∈ A(M) such that B � A : σ. Then by definition 2.18
there is an M’ such that M′ =β M and A is a direct approximant of M′. By theorem 2.21 there
are B’, σ′ ∈ TS such that B′ �S A : σ′, σ′ ≤ σ and B′ ≥ B. Then by theorem 2.22(ii) B′ �S M : σ′.

2.3 Soundness and completeness of strict type assignment

In this subsection we will prove completeness for the �S system. This is done in a way very
similar to the one used in [2], using the strict filter lambda model as defined in subsection 2.1.
At one very crucial point the completeness proof in this subsection differs from the one in [2]. In
that paper the simple type semantic is inductively defined whereas our approach will be to give
a map from TS to ℘(FS) and prove that it is a type interpretation. It will be a different kind of
type interpretation than the one used in [2], because the latter would not suffice in our case.

Following essentially [19], we distinguish between several kinds of type interpretations.

Definition 2.24 i) Let M = 〈D, · , ε〉 be a continuous lambda model. A mapping υ : T → ℘(D)
is a type interpretation if and only if:
a) {ε · d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ ν(τ) ]} ⊆ υ(σ→τ).
b) υ(σ→τ) ⊆ {d | ∀ e [ e ∈ υ(σ)⇒ d · e ∈ υ(τ) ]}.
c) υ(σ∩τ) = υ(σ)∩υ(τ).

ii) Following [15] we say that a type interpretation is simple if and only if:
υ(σ→τ) = {d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ υ(τ) ]}.

iii) On the other hand, a type interpretation is called an F type interpretation if it satisfies:
υ(σ→τ) = {ε · d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ υ(τ) ]}.

Notice that in part (ii) the containment relation ⊆ of part (i.b) is replaced by =, and that in part
(iii) the same is done with regard to part (i.a).

These notions of type interpretation lead naturally to the following definitions for semantic
satisfiability (called respectively inference, simple and F-semantics).

Definition 2.25 We define |= by: (where M is a lambda model, ξ a valuation and υ a type
interpretation)

i) M,ξ,υ |= M : σ ⇐⇒ ��M��Mξ ∈ υ(σ).
ii) M,ξ,υ |= B ⇐⇒M,ξ,υ |= x:σ for every x:σ ∈ B.

iii) a) B |= M : σ ⇐⇒ ∀M,ξ,υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ ].
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b) B |=s M : σ ⇐⇒
∀M,ξ, simple type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ ].

c) B |=F M : σ ⇐⇒ ∀M,ξ,F type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ ].

If no confusion is possible, we will omit the superscript on [[ · · · ]].

Theorem 2.26 Soundness: B �S M : σ ⇒ B |= M : σ.

Proof: By induction on the structure of derivations.

The notion of derivability � as defined in 1.2 is not sound for |=. Take for example the statement
λx.x : (σ→σ)→(σ∩τ)→σ. This statement is derivable in the system �, but it is not valid in the
strict filter lambda model.

Definition 2.27 i) We define a map ν0 : TS → ℘(FS) by ν0(σ) = {d ∈ FS | σ ∈ d}.
ii) ξB(x) = {σ ∈ TS | B �S x : σ}.

Theorem 2.28 The map ν0 is a type interpretation.

Proof: We check the conditions of 2.24(i).
i) ∀ e [ e ∈ ν0(σ)⇒ d · e ∈ ν0(τ) ]⇒
∀ e [ e ∈ ν0(σ)⇒ ε · d · e ∈ ν0(τ) ] ⇒ (take e = ↑σ)

τ ∈ ε · d · ↑σ ⇒ (2.5(ii))
∃ ρ ∈ ↑σ,ν ∈ d,η [ν ≤ sη→τ & ρ ≤s η ] ⇒ (2.5(iii))
∃ ν ∈ d,η [ν ≤s η→τ & σ ≤s η ]⇒
σ→τ ∈ ↑{ρ→µ | ∃ ν ∈ d,η [ν ≤s η→µ & ρ ≤s η ]} ⇒
σ→τ ∈ ↑{η | ∃ ν ∈ d [ν→η ∈ e ]} ⇒
e · d ∈ ν0(σ→τ).

ii) Easy.
iii) Trivial.

Notice that although ν0(σ∩τ) = ν0(τ∩σ), the sets ν0((σ∩τ)→σ) and ν0((τ∩σ)→σ) are incom-
patible. We can only show that both contain

{ε · d | ∀ e [ e ∈ ν0(σ)∩ν0(τ)⇒ d · e ∈ ν0(σ) ]}

and are both contained in

{d | ∀ e [ e ∈ ν0(σ)∩ν0(τ)⇒ d · e ∈ ν0(σ) ]}.

However, it is not difficult to prove that ε · ↑(σ∩τ)→σ = ε · ↑(τ∩σ)→σ, so the filters ↑(σ∩τ)→σ
and ↑(τ∩σ)→σ represent the same function.

Lemma 2.29 i) B �S M : σ if and only if BξB �S M : σ.
ii) FS,ξB,ν0 |= B.

Proof: i) Because for every x, ξB(x) is a strict filter.
ii) x:σ ∈ B ⇒ (i) σ ∈ {τ | BξB �S x : τ} ⇒ σ ∈ ��x��ξB . So ��x��ξB ∈ {d ∈ FS | σ ∈ d} = ν0(σ).

The system of [2] has been proved complete with respect to the simple type semantics. The
system �S however is not complete in this semantics. This is due to the fact that if we take υ to



Theoretical Computer Science, 102:135-163, 1992 14

be a type interpretation from TS to ℘(FS), the set

{d | ∀ e [ e ∈ υ(σ) ⇒ d · e ∈ υ(τ) ]}

is not contained in υ(σ→τ), since we don’t allow ω or an intersection type scheme at the right
hand side of an arrow type scheme. If instead we use the notion of type interpretation as defined
in 2.24(i), because of theorem 2.28 completeness can be proved.

Theorem 2.30 Completeness: Let σ ∈ TS, then B |= M : σ ⇒ B �S M : σ.

Proof: B |= M : σ ⇒ (2.25(iii.a), 2.29(i) & 2.28)
FS,ξB,ν0 |= M : σ ⇒ (2.25(i) & 2.28)
��M��ξB ∈ ν0(σ)⇒ (2.27(i))
σ ∈ ��M��ξB ⇒ (2.10)
BξB �S M : σ ⇒ (2.29(i))
B �S M : σ.

3 The system without ω

In this section we present a type assignment system that is a restriction of the intersection type
assignment system. The restriction is the elimination of the type constant ω. We will show
that the intersection type assignment system without ω yields a filter model for the λI-calculus
(subsection 3.1), show that for the λI-calculus the intersection type assignment is conservative
over the one without ω (subsection 3.2) and prove that this type assignment is complete for the
λI-calculus with respect to the simple type semantics (subsection 3.3). Furthermore we will prove
that each term typeable by the system without ω is strongly normalisable (subsection 3.4).

While obtaining these results we could of course use the result of the previous section and look
at the system without ≤ and without ω, but since this is a more restricted system we prefer the
approach we use in this section. Also the proofs of various lemmas in subsection 3.4 are greatly
facilitated by the presence of derivation rule (≤). In fact, the strong normalisation property for
the system without ≤ and ω follows immediately from the results of 3.4. Moreover we could
prove a completeness result for this system with respect to the inference semantics.

3.1 ω-free derivations

In this subsection we present a restriction of the intersection type assignment system in which
the type ω is removed. This system yields a filter λI-model.

Definition 3.1 i) T−ω−, the set of ω-free types is inductively defined by:
a) All type variables ϕ0, ϕ1, . . . ∈ T−ω−.
b) If σ, τ ∈ T−ω−, then σ∩τ, σ→τ ∈ T−ω−.

ii) On T−ω− the type inclusion relation ≤ is as defined in 1.1(ii), but without rules 1.1 (ii.b) and
1.1 (ii.c).

iii) If M : σ is derivable from a basis B, using only ω-free types and the derivation rules (∩I),
(∩E), (→I), (→E) or (≤) of the system in 1.2(i), we write B �−ω− M : σ.

Lemma 3.2 i) B �−ω− MN : σ ⇐⇒ ∃ τ [B �−ω− M : τ→σ & B �−ω− N : τ ].
ii) B �−ω− λx.M : σ→τ ⇐⇒ B\x∪{x:σ} �−ω− M : τ.

iii) If B �−ω− λx.M : ρ, then there are σ1, . . . ,σn, τ1, . . . ,τn such that ρ = (σ1→τ1)∩ · · · ∩(σn→τn).
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iv) If B\z∪{z:σ} �−ω− Mz : τ and z �∈ fv(M), then B �−ω− M : σ→τ.

Proof: By induction on the structure of derivations, using 1.3(ii) to prove (ii). The proof given for
this part in [2] does not depend on ω.

Definition 3.3 i) A subset d of T−ω− is called an I-filter if
a) σ, τ ∈ d ⇒ σ∩τ ∈ d.
b) σ ≥ τ ∈ d ⇒ σ ∈ d.

ii) F−ω = {d ⊆ T−ω− | d is an I-filter}. We define application on F−ω, · : F−ω ×F−ω →F−ω by:
d · e = {τ | ∃σ ∈ e [σ→τ ∈ d ]}.

iii) If V is a subset of T−ω−, then ↑ωV is the smallest I-filter that contains V. Also ↑ωσ = ↑ω{σ}.
If no confusion is possible, we will omit the subscript on ↑.

Notice that the empty set, ∅ is the bottom element of F−ω.

Lemma 3.4 Suppose f is a continuous function from F−ω to F−ω. Then for every ρ, µ ∈ T−ω−:
if ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)}, then µ ∈ f (↑ρ).

Proof: By definition of filters and the fact that f is continuous.

Let 〈D,≤〉 be a cpo with least element ⊥. The set of strict functions is defined as usual, i.e. as
the set of continuous functions that at least map ⊥ onto ⊥. We denote by [D→⊥D] the set of
strict functions from D to D.

Definition 3.5 We define F : F−ω → [F−ω →⊥ F−ω] and G : [F−ω →⊥ F−ω]→F−ω by:
i) F d e = d · e.

ii) G f = ↑{σ→τ ∈ T−ω− | τ ∈ f (↑σ)}.

It is again easy to check that F and G are continuous.

Definition 3.6 ([16]) Let D be a set and · a binary relation on D. The structure 〈D, · , ε〉 is called
a λI-model if and only if in D there are five elements i, b, c, s and ε that satisfy the following
conditions:

i) i · d = d.
ii) ((b · d) · e) · f = d · (e · f ).

iii) ((c · d) · e) · f = (d · f ) · e.
iv) ((s · d) · e) · f = (d · f ) · (e · f ).
v) (ε · d) · e = d · e & ∀ d ∈ D [ e · d = f · d ⇒ ε · e = ε · f ] & ε · ε = ε.

Moreover, in [10] the following is stated:

Proposition 3.7 ([10]) If 〈D,≤〉 is a cpo and there are continuous maps F : D → [D →⊥ D] and G :
[D →⊥ D]→D such that:

i) F◦G = id[D→⊥D]

ii) G◦F ∈ [D→⊥D]

Then D is a λI-model.

Theorem 3.8 F and G as defined in 3.5 yield a λI-model.
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Proof: It is sufficient to check that the conditions of 3.7 are fulfilled.
i) (F◦G( f ))(d) =
{µ | ∃ ρ ∈ d[ρ→µ ∈ ↑{σ→τ | τ ∈ f (↑σ)}]} = (3.4)
{µ | ∃ ρ ∈ d[µ ∈ f (↑ρ)]} =

f (d).

ii) G◦F (∅) = ↑{ρ→µ | µ ∈ {σ | ∃ τ ∈ ↑ρ[τ→σ ∈ ∅ ]}} = ∅.

That the type discipline without ω gives rise to a model for the λ I-calculus, is also proved in
[16]. The technique used there is to build, using Scott’s inverse limit construction, a model M2
satisfying the equation D � Pω × [D→⊥D], with D0 = Pω (where Pω is the powerset of natural
numbers) and i :D0→Pω × [D0 →⊥D0] is defined by i(d) = 〈d,λx.⊥〉 (see also [1], exercise 18.4.26
and [20].)

It is straightforward to verify that F−ω is a solution of the same domain equation.

Definition 3.9 Let ξ be a valuation of term variables in F−ω.
i) ��M��ξ , the interpretation of λI-terms in F−ω via ξ is inductively defined by:

a) ��x��ξ = ξ(x).
b) ��MN��ξ = F ��M��ξ ��N��ξ .
c) ��λx.M��ξ = G (λλ v ∈ F−ω.��M��ξ(v/x)).

ii) Bξ = {x:σ | σ ∈ ξ(x)}.

Notice that λλ is well defined in λI-models, since (λλ v ∈ F−ω.��M��ξ(v/x))∅ = ∅.

Theorem 3.10 For all M ∈ λI, ξ : ��M��ξ = {σ | Bξ �−ω− M : σ}.

Proof: By induction on the structure of lambda terms.
i) ��x��ξ = ξ(x). Since {y:ρ | ρ ∈ ξ(y)} �−ω− x : σ ⇐⇒ σ ∈ ξ(x).

ii) ��MN��ξ =

{τ | ∃σ [Bξ �−ω− N : σ & Bξ �−ω− M : σ→τ ]} = (3.2(i))
{τ | Bξ �−ω− MN : τ}.

.

iii) ��λx.M��ξ =

↑{σ→τ | τ ∈ {ρ | Bξ(↑σ/x) �−ω− M : ρ}} =
↑{σ→τ | Bξ(↑σ/x) �−ω− M : τ} = (B′

ξ = Bξ\x)
↑{σ→τ | B′

ξ ∪{x:ρ | ρ ∈ ↑σ} �−ω− M : τ} =
↑{σ→τ | ∃µ ∈ ↑σ[B′

ξ ∪{x:µ} �−ω− M : τ]} = (3.2(ii))
↑{σ→τ | ∃µ ∈ ↑σ[B′

ξ �−ω− λx.M : µ→τ]} = (≤)

↑{σ→τ | B′
ξ �−ω− λx.M : σ→τ}= (3.2(iii))

{ρ | B′
ξ �−ω− λx.M : ρ}.

Remark that F and G do not yield a lambda model. For example: take 0 = λxy.y, D = λx.xx
and I = λx.x. Then clearly 0(DD) =β I and �−ω− I : σ→σ but we cannot give a derivation without
ω for 0(DD) : σ→σ.
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3.2 The relation between �−ω and �
Type assignment in the intersection type assignment system is not fully conservative over the
type assignment without ω. If for example we have B � M : σ such that B and σ are ω-free, but
M contains a sub-term that has no normal form, ω is needed in the derivation. (See the final
remark of the previous subsection.)

However, we can prove that for every lambda-term M such that B � M : σ with B and σ ω-free,
there is an M’ such that M reduces to M’ and B �−ω− M′ : σ. We will show this by proving for
terms in normal form that each ω-free predicate, starting from a ω-free basis, can be derived in
�−ω−, and afterwards use 1.3(iii). We will use the same technique to prove a conservativity result.

Lemma 3.11 If M is in normal form and B � M : σ such that B and σ are ω-free, then B �−ω− M : σ.

Proof: The proof is given by induction on the structure of terms in normal form.
i) B � x : σ. Then by 1.3(v) there are x:σ1, . . . , x:σn in B such that σ1∩ · · · ∩σn ≤ σ.

Then obviously B �−ω− x : σ.
ii) B � λx.M′ : σ. Then σ ≡ (ρ1→µ1)∩· · · ∩(ρn→µn) for some n ≥ 1, and by 1.3(ii) for every

i ∈ {1, . . . ,n}: B∪{x:ρi} � M′ : µi. By induction for every i ∈ {1, . . . ,n}: B∪{x:ρi} �−ω− M′ : µi.
So B �−ω− λx.M′ : σ.

iii) B � xM1 . . . Mn : σ. By 1.3(i) there are τ1, . . . ,τn such that B � x : τ1→·· ·→τn→σ, B � M1 : τ1,
. . . , and B � Mn : τn.

By 1.3(v) there are x:ρ1, . . . , x:ρn in B such that ρ1∩ · · · ∩ρn ≤ τ1→·· ·→τn→σ.
By 1.3(vi) this implies ρ1∩ · · · ∩ρn = (τ1

1→·· ·→τ1
n→σ1)∩· · · ∩(τs

1→·· ·→τs
n→σs)∩ρ′, for τ

j
1,

. . . , τ
j
n, σj such that τ

j
i ≥ τi with i ≤ i ≤ n, 1 ≤ j ≤ s and σ1∩ · · · ∩σs ≤ σ.

Then by (≤) and (∩I) for every i ∈ {1, . . . ,n} we have B � Mi : τ1
i ∩ · · · ∩τs

i .
Since each τ

j
i occurs in a statement in the basis, the induction hypothesis is applicable and

for every i ∈ {1, . . . ,n} we have B �−ω− Mi : τ1
i ∩ · · · ∩τs

i . Also

(τ1
1→·· ·→τ1

n→σ1)∩ · · · ∩ (τs
1→·· ·→τs

n→σs) ≤
(τ1

1 ∩ · · · ∩τs
1)→·· ·→(τ1

n∩ · · · ∩τs
n)→(σ1∩ · · · ∩σs),

so B � x : (τ1
1 ∩ · · · ∩τs

1)→·· ·→(τ1
n∩ · · · ∩τs

n)→(σ1∩· · · ∩σs) and by part (i)

B �−ω− x : (τ1
1 ∩· · · ∩τs

1)→·· ·→(τ1
n∩ · · · ∩τs

n)→(σ1∩ · · · ∩σs).

But then by (→E) B �−ω− xM1 . . . Mn : σ1∩ · · · ∩σn and by (≤) B �−ω− xM1 . . . Mn : σ.

Theorem 3.12 If B � M : σ where ω does not occur in B and σ, then there is an M’ such that M reduces
to M’ and B �−ω− M′ : σ.

Proof: If B � M : σ where ω does not occur in B and σ, then by 1.3(iii), M has a normal form M’.
Then also B � M′ : σ. By the previous lemma we have that B �−ω− M′ : σ.

As remarked in the introduction, if we are interested in deriving types without ω occurrences,
the type constant ω is only needed in the intersection type discipline to type sub-terms N of M
that will be erased while reducing M. In fact, if there is a type ρ such that B �−ω− N : ρ, then even
for this N we would not need to use ω. Unfortunately there are lambda terms M that contain a
sub-term N that must be typed with ω in B � M : σ, even if ω does not occur in B and σ. We can
even find strongly normalisable lambda terms that contain such a sub-term (see also the remark
made after 3.20). So to prove theorem 3.12 we have to go down all the way to the set of lambda
terms in normal form, since only these do not contain sub-terms that will be erased.
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Theorem 3.13 Conservativity: If M is a λI-term and B � M : σ where ω does not occur in B and σ,
then B �−ω− M : σ.

Proof: If B � M : σ and B, σ are ω-free, then by 1.3(iii), M has a normal form M’. Then also
B � M′ : σ. By lemma 3.11 we have B �−ω− M′ : σ. Because M and M’ are λI-terms, by corollary 3.25
we obtain B �−ω− M : σ.

3.3 The type assignment without ω is complete for the λI-calculus

In this subsection completeness of type assignment without ω for the λI-calculus is proved using
the method of [2]. The notions of type interpretation as defined in 2.24 lead also in the case of
the λI-calculus in a natural way to the following definitions for semantic satisfiability.

Definition 3.14 As in 2.25 we define |= by: (where M is a λI-model, ξ a valuation and υ a type
interpretation)

i) M,ξ,υ |= M : σ ⇐⇒ ��M��Mξ ∈ υ(σ).
ii) M,ξ,υ |= B ⇐⇒M,ξ,υ |= x:σ for every x:σ ∈ B.

iii) a) B |= M : σ ⇐⇒ ∀M,ξ,υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ ].
b) B |=s M : σ ⇐⇒

∀M,ξ, simple type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ ].
c) B |=F M : σ ⇐⇒ ∀M,ξ,F type interpretations υ [M,ξ,υ |= B ⇒M,ξ,υ |= M : σ ].

We consider only the simple type semantics, since �−ω− is not sound for all type interpretations.
For example {y:((ϕ1∩ϕ2)→ϕ3)→ϕ4, x:ϕ1→ϕ3} �−ω− yx : ϕ4 but this is not semantically valid for
all type interpretations.

Theorem 3.15 Soundness: If B �−ω− M : σ then B |=s M : σ.

Proof: By induction on the structure of derivations.

Definition 3.16 i) We define a map ν0 : T−ω− → ℘(F−ω) by ν0(σ) = {d ∈ F−ω | σ ∈ d}.
ii) ξB(x) = {σ ∈ T−ω− | B �−ω− x : σ}

Theorem 3.17 i) The map ν0 is a simple type interpretation.
ii) B �−ω− M : σ if and only if BξB �−ω− M : σ.

iii) F−ω,ξB,ν0 |=s B.

Proof: i) Easy.
ii) Because for every x, ξB(x) is an I-filter.

iii) x:σ ∈ B ⇒ σ ∈ {τ | BξB �−ω− x : τ} ⇒ σ ∈ ��x��ξB . So ��x��ξB ∈ {d ∈ F−ω | σ ∈ d}.

Theorem 3.18 Completeness: Let M be a λI-term and suppose ω does not occur in B and σ. If
B |=s M : σ then B �−ω− M : σ.

Proof: B |=s M : σ ⇒ (3.14(iii), 3.17(i) & 3.17(iii))
F−ω,ξB,ν0 |=s M : σ ⇒ (3.14(i) & 3.17(i))
��M��ξB ∈ ν0(σ)⇒ (3.16(i))
σ ∈ ��M��ξB ⇒ (3.10)
BξB �−ω− M : σ ⇒ (3.17(ii))
B �−ω− M : σ.
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3.4 Strong normalisation result for the system without ω

In this subsection we show that the set of lambda terms typeable by means of the derivation rules
(∩I), (∩E), (→I) and (→E) is exactly the set of strongly normalisable terms.

The same result has been given in [6], [17] and [21]. However, the proof in [17] is too brief, the
proof in [21] gives few details and the proof in [6] is not complete. In this subsection we present
a complete and formal proof. In [22] a similar result is proved: B �−ω− M : σ ⇐⇒ M is strongly
normalisable.

To prove that each term typeable by the rules (∩I), (∩E), (→I) and (→E) is strongly normal-
isable, we will prove even more: we will show that if B �−ω− M : σ (i.e. using also rule (≤)), then
M is strongly normalisable. In [22] this result is given in corollary 6.3 and is obtained from the
theorem that the procedure PP’ (as defined in [22], section 6) finds a principal pair for all and
nothing but the strongly normalisable terms. In this subsection we present a proof for the same
result, different from the one given in [22]. The proof that all strongly normalisable terms are
typeable in the system without ω and (≤) is given in corollary 3.26.

Notice that an I-filter can be empty. A direct result of the main theorem of this subsection will
be that [[ · · · ]] as defined in 3.9 will map all unsolvable terms (‘unsolvable’ is in the λI-calculus
exactly the same as ‘not having a normal form’, as well as that ‘normalisable’ and ‘strongly
normalisable’ coincide) onto the empty filter.

Notice also that we no longer restrict ourselves to the λI-terms, but prove the statement for the
full λK-calculus.

Fact 3.19 In the sequel, we will accept the following without proof:
i) If xM1 . . . Mn and N are strongly normalisable, then so is xM1 . . . MnN.

ii) If Mz is strongly normalisable (where z does not occur free in M), then so is M.
iii) If M[N/x] and N are strongly normalisable, then so is (λx.M)N.

Lemma 3.20 If B �−ω− M[N/x]P : τ and B �−ω− N : ρ, then B �−ω− (λx.M)NP : τ.

Proof: We can assume that x does not occur in B.
i) N occurs n times in M[N/x], each time typed by, say, σi.

B �−ω− M[N/x]P1 · · ·Pm : τ ⇒
∃ τ1, . . . , tm [B �−ω− M[N/x] : τ1→·· ·→τm→τ & ∀ i ∈ m [B �−ω− Pi : τi ] ] ⇒
∃ τ1, . . . , tm,σ1, . . . ,σn [B∪{x:σ1∩ · · · ∩σn} �−ω− M : τ1→·· ·→τm→τ &

B �−ω− N : σ1∩ · · · ∩σn & ∀ i ∈ m [B �−ω− Pi : τi ] ]⇒
∃ τ1, . . . , tm,σ1, . . . ,σn [B �−ω− λx.M : (σ1∩ · · · ∩σn)→τ &

B �−ω− N : σ1∩ · · · ∩σn & ∀ i ∈ m [B �−ω− Pi : τi ] ]⇒
B �−ω− (λx.M)NP1 · · ·Pm : τ.

ii) N does not occur in M[N/x], so x �∈ fv (M).
B �−ω− MP1 · · ·Pn : τ & B �−ω− N : ρ ⇒ (x �∈ fv (M))

∃ τ1, . . . , tm [B �−ω− M : τ1→·· ·→τm→τ & B �−ω− N : ρ & ∀ i ∈ m [B �−ω− Pi : τi ] ] ⇒
∃ τ1, . . . , tm [B∪{x:ρ} �−ω− M : τ1→·· ·→τm→τ &

B �−ω− N : ρ & ∀ i ∈ m [B �−ω− Pi : τi ] ]⇒
∃ τ1, . . . , tm [B �−ω− λx.M : ρ→τ & B �−ω− N : ρ & ∀ i ∈ m [B �−ω− Pi : τi ] ] ⇒
B �−ω− (λx.M)NP1 · · ·Pm : τ.

Notice that the condition B �−ω− N : ρ in the formulation of the lemma is essential. As a counter
example take the two lambda terms λyz.(λb.z)(yz) and λyz.z. Notice that the first strongly
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reduces to the latter. We know that {z:σ,y:τ} �−ω− z : σ, but it is impossible to give a derivation for
(λb.z)(yz) : σ from the same basis without using ω. This is caused by the fact that we can only
type (λb.z)(yz) in the system without ω from a basis in which the predicate for y is an arrow type
scheme. We can for example derive {z:σ,y:σ→τ} �−ω− (λb.z)(yz) : σ. We can therefore only state
that we can derive �−ω− λyz.(λb.z)(yz) : (σ→τ)→σ→σ and also can derive �−ω− λyz.z : τ→σ→σ but
that we are not able to give a derivation without ω for the statement λyz.(λb.z)(yz) : τ→σ→σ. So
the type assignment without ω is not closed for β-equality, but of course that is also not needed.
We only want to be able to derive a type for each strongly normalisable term, no matter what
basis or type are used.

Notice that for the λI-calculus the condition B �−ω− N : ρ is not needed. So the following is an
immediate result:

Corollary 3.21 Let M and M’ be λI-terms, such that M reduces to M’ and there are B and σ such that
B �−ω− M′ : σ. Then B �−ω− M : σ.

We will now show that all strongly normalisable terms are typeable in our system. The proof
of the crucial lemma for this result as presented below (Lemma 3.23) goes by induction on the
left-most outer-most reduction path. The following lemma formulates a subject expansion result
for our system with respect to left-most outer-most reduction.

Definition 3.22 An occurrence of a redex R = (λx.P)Q in a term M is called the left-most outer-
most redex of M (lor(M)), if and only if:

i) there is no redex R′ in M such that R′ = C[R] (outer-most);
ii) there is no redex R′ in M such that M = C0 [C1 [R

′ ]C2 [R]] (left-most).
M→lor N is used to indicate that M reduces to N by contracting lor(M).

Lemma 3.23 Let M→lor N, lor(M) = (λx.P)Q, B1 �−ω− N : σ with σ not an intersection, and B2 �−ω− Q : τ,
then there exists B3, ρ such that B3 ≤ B1, σ ≤ ρ, and B3 �−ω− M : ρ.

Proof: By induction on the structure of terms.

(M = VP1 · · ·Pn) : Then there are µj (j ∈ n), such that B1 �−ω− V ′ : µ1→·· ·→µn→σ and B1 �−ω− Pi : µi,
for all i ∈ n, and either:
a) V is a redex (λy.P)Q, so lor(M) = V, and V ′ ≡ P[Q/y]. Let B3 = B1∩B2 and ρ = σ∩τ, then

by weakening and Lemma 3.20, B3 �−ω− (λy.P)Q : µ1→·· ·→µn→δ.
b) V ≡ z and there is an i ∈ n such that lor(M) = lor(Pj), N ≡ zP1 · · ·P′

i · · ·Pn, and Pi→lor P′
i .

Then, by induction, there are B′, µ′
j such that µj ≤ µ′

j, and B′ �−ω− Pj : µ′
j. Let V ′ = z, take

B3 = B1∩B′∩z:µ1→·· ·→µ′
j→·· ·→µn→φ, and ρ = σ∩ρ, then

B3 �−ω− z : µ1→·· ·→µ′
j→·· ·→µn→δ.

In both cases, B3 ≤ B1, ρ ≤ σ, and B3 �−ω− VP1 · · ·Pn : δ.

(M = λy.M′) : If M→lor N, then N = λy.N′ and M′→lor N′. Then there exists α and β such that
σ = α→β, and B1,y:α �−ω− N′ : β. By induction, there exists B′ ≤ B1, α′ ≤ α, and δ′ ≤ δ such
that B′,y:α′ �−ω− M′ : β′. Then, by rule (→I), B′ �−ω− λy.M′ : α′→β′. Notice that α→β ≤ α′→β′;
take B3 = B′ and ρ = α′→β′.

Notice that the condition B2 �−ω− N : τ in the formulation of the lemma is essential. As a counter
example take the two lambda terms λyz.(λb.z)(yz) and λyz.z. Notice that the first strongly
reduces to the latter. We know that {z:σ,y:τ} �−ω− z : σ, but it is impossible to give a derivation for
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(λb.z)(yz) : σ from the same basis without using ω. This is caused by the fact that we can only
type (λb.z)(yz) in the system without ω from a basis in which the predicate for y is an arrow type
scheme. We can for example derive {z:σ,y:σ→τ} �−ω− (λb.z)(yz) : σ. We can therefore only state
that we can derive �−ω− λyz.(λb.z)(yz) : (σ→τ)→σ→σ and also can derive �−ω− λyz.z : τ→σ→σ but
that we are not able to give a derivation without ω for the statement λyz.(λb.z)(yz) : τ→σ→σ. So
the type assignment without ω is not closed for β-equality, but of course that is also not needed.
We only want to be able to derive a type for each strongly normalisable term, no matter what
basis or type are used.

Theorem 3.24 If M is strongly normalisable, then there are σ and B such that B �−ω− M : σ and in the
derivation the derivation rule (≤) is not used.

Proof: By induction on the maximum of the lengths of reduction sequences for a strongly nor-
malisable term to its normal form (denoted by #(M)).

i) If #(M) = 0, then M is in normal form, and by Lemma 3.11, there exist B and σ such that
B �−ω− M : σ.

ii) If #(M) ≥ 1, so M contains a redex, then let M→lor N by contracting (λx.P)Q. Then #(N) <
#(M), and #(Q) < #(M) (since Q is a proper subterm of a redex in M), so by induction
B �−ω− N : σ and B′ �−ω− Q : τ, for some B, B′, σ, and τ. Then, by Lemma 3.23, there exist B1, ρ
such that B1 �−ω− M : ρ.

Notice that for the λI-calculus the condition B �−ω− N : ρ is not needed. So the following is an
immediate result:

Corollary 3.25 Let M and M’ be λI-terms, such that M reduces to M’ and there are B and σ such that
B �−ω− M′ : σ. Then B �−ω− M : σ.

Lemma 3.20 is also essentially the proof for the statement that each strongly normalisable term
can be typed in the system �−ω−.

Corollary 3.26 If M is strongly normalisable, then there are σ and B such that B �−ω− M : σ and in the
derivation the derivation rule (≤) is not used.

Proof: If M is strongly normalizable, then by using the inside-out reduction strategy (see [1],
definition 14.2.11) the normal form of M will be reached. This strategy has the special property
that a redex (λx.P)Q can only be contracted if Q is in normal form. The proof is completed by
induction on the inside out reduction path, using lemma 3.20 and theorem 2.13.

In order to prove that each term typeable in � is strongly normalisable we introduce a notion
of computability. From now on, we will abbreviate ‘M is strongly normalisable’ by SN(M).

Definition 3.27 (cf. [21]) Comp(B, M,ρ) is inductively defined by:
i) Comp(B, M, ϕ)⇐⇒ B �−ω− M : ϕ & SN (M).

ii) Comp(B, M,σ→τ)⇐⇒ (Comp(B′, N,σ) ⇒ Comp(B∩B′, MN,τ)).
iii) Comp(B, M,σ∩τ)⇐⇒ (Comp(B, M,σ) & Comp(B, M,τ)).

Lemma 3.28 Let σ and τ be such that σ ≤ τ. Then Comp(B, M,σ) implies Comp(B, M,τ).

Proof: By straightforward induction on the definition of ≤.
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Theorem 3.29 i) If B �−ω− xM1 . . . Mn : ρ and SN(xM1 . . . Mn), then Comp(B, xM1 . . . Mn,ρ).
ii) If Comp(B, M,ρ), then B �−ω− M : ρ and SN(M).

Proof: Simultaneously by induction on the structure of types. The only interesting case is when
ρ ≡ σ→τ, the other cases are dealt with by induction.

i) B �−ω− xM1 . . . Mn : σ→τ & SN(xM1 . . . Mn)⇒
(Comp(B′, N,σ) ⇒

B �−ω− xM1 . . . Mn : σ→τ & SN (xM1 . . . Mn) & B′ �−ω− N : σ & SN (N))⇒
(Comp(B′, N,σ) ⇒ B∩B′ �−ω− xM1 . . . MnN : τ & SN(xM1 . . . Mn))⇒
(Comp(B′, N,σ) ⇒ Comp(B∩B′, xM1 . . . MnN,τ))⇒ (3.27(ii))
Comp(B, xM1 . . . Mn,σ→τ).

ii) Comp(B, M,σ→τ) & z �∈ fv (M)⇒
Comp(B, M,σ→τ) & Comp({z:σ},z,σ) & z �∈ fv(M)⇒ (3.27(ii))
Comp(B∪{z:σ}, Mz,τ) & z �∈ fv (M)⇒
B∪{z:σ} �−ω− Mz : τ & SN (Mz) & z �∈ fv (M)⇒ (3.2(iv))
B �−ω− M : σ→τ & SN(M).

Lemma 3.30 Comp(B, M[N/x]P,σ) & Comp(B, N,ρ) ⇒ Comp(B, (λx.M)NP,σ).

Proof: By induction on the structure of types. We only consider the case that σ is a type variable:
Comp(B, M[N/x]P, ϕ) & Comp(B, N,ρ)⇒ (3.29(ii))
B �−ω− M[N/x]P : ϕ & SN (M[N/x]P) & B �−ω− N : ρ & SN (N)⇒ (3.20)
B �−ω− (λx.M)NP : ϕ & SN((λx.M)NP)⇒ (3.27(i))
Comp(B, (λx.M)NP, ϕ).

Theorem 3.31 If B = {x1:µ1, . . . , xn:µn} and Comp(B′, Ni,µi) and B �−ω− M : σ, then
Comp(B′, M[Ni/xi],σ).

Proof: By induction on the structure of derivations. We will only show the non-trivial parts, and
assume the substitutions to take place in parellel.

(→I) : Then M ≡ λy.M’, σ = ρ→τ, and B∩{y:ρ} �−ω− M′ : τ.
B = {x1:µ1, . . . , xn:µn} & Comp(B′, Ni,µi) & B∩{y:ρ} �−ω− M′ : τ ⇒
(Comp(B′, N,ρ) ⇒ Comp(B′, M′[Ni/xi, N/y],τ)) ⇒ (3.30)
(Comp(B′, N,ρ) ⇒ Comp(B′, (λy.M′[Ni/xi])N,τ)) ⇒ (3.27(ii))
Comp(B′, (λy.M′)[Ni/xi],ρ→τ).

(→E) : Then M ≡ M1M2, B �−ω− M1 : ρ→τ and B �−ω− M2 : ρ.
B = {x1:µ1, . . . , xn:µn} & Comp(B′, Ni,µi) & B �−ω− M1 : ρ→τ & B �−ω− M2 : ρ ⇒
Comp(B′, M1[Ni/xi],ρ→τ) & Comp(B′, M2[Ni/xi],ρ) ⇒ (3.27(ii))
Comp(B′, (M1M2)[Ni/xi],τ).

Theorem 3.32 If B �−ω− M : σ, then SN (M).

Proof: B �−ω− M : σ ⇒ (3.31)
Comp(B, M,σ)⇒ (3.29(ii))
SN(M).

We can now prove the main theorem of this subsection.
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Theorem 3.33 {M | M is typeable by means of the derivation rules (∩I), (∩E), (→I) and (→E)}= {M |
M is strongly normalisable}.

Proof: (⊆) : If M is typeable by means of the derivation rules (∩I), (∩E), (→I) and (→E), then
certainly B �−ω− M : σ. Then by theorem 3.32, M is strongly normalisable.

(⊇) : If M is strongly normalisable, then by corollary 3.26 there are σ and B such that B �−ω− M : σ
and in the derivation the derivation rule (≤) is not used.
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Appendix A On the correction

The error that is corrected here lies in the proof of subject expansion result in Lemma 3.20. This
lemma was used in two others: that i) all strongly normalisable terms are typeable (Corollary 3.22 in
original paper, Theorem 3.26 here), and that ii) the computability predicate is closed for subject expansion
(Lemma 3.26 vs Lemma 3.30 here).

The original lemma was formulated as

If B �−ω− C[M[x := N]] : σ and B �−ω− N : τ, then B �−ω− C[(λx.M)N] : σ.

However, its proof was incorrect, since the basis for the first term C[M[x := N]] changes in the
proof. Reformulating this as

If B1 �−ω− C[M[x := N]] : σ and B2 �−ω− N : τ, then B1∩B2 �−ω− C[(λx.M)N] : σ

(which seems to be used by various authors) gives no improvement; the problem is that a free
variable in N might be bound in the context, which implies that the derived type might change
(get bigger in the sense of ≤), and that the B1∩B2 is not a correct basis for C[(λx.M)N], since it
contains types for bound variables. This suggests the property

If B1 �−ω− C[M[x := N]] : σ and B2 �−ω− N : τ,
then there exists B3 ≤ B1,ρ ≥ σ such that B3 �−ω− C[(λx.M)N] : ρ

but this is also not achievable, since the use of ≤ in the derivation for P in MP (where MP → MQ)
forces a ≥ step on M which is not always achievable, which throws the proof for the case of
application out of kilter irreparably. Notice that this does not imply that the term C[(λx.M)N] is
not typeable at all; it might be possible that the following holds:
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If B1 �−ω− C[M[x := N]] : σ and B2 �−ω− N : τ,
then there exists B3, ρ such that B3 �−ω− C[(λx.M)N] : ρ

but it is not clear how to prove this, since it specifies no relation between bases and types.
It is, however, possible to show a subject expansion result for applicative contexts, where the re-

dex occurs at the left. Since those are exactly the contexts considered in the proof of Lemma 3.30,
here Lemma 3.20 is reformulated using those contexts only.

A more general subject expansion result is only really provable for left-most outermost (l.o.) re-
duction as first shown by Betti Venneri, as is added to this version of the paper (see Defini-
tion 3.22, and Lemma 3.23). The correct subject expansion result (with respect to l.o., Lemma 3.23)
is now the one used for Theorem 3.26, which now uses induction on the length of the l.o. reduc-
tion path.


