
A User Friendly, Type-Safe, Graphical Shell
Final Project Report

Tristan Allwood, Daniel Burke, Marc Hull, Ekaterina Itskova, and Steve Zymler

January 4, 2005

Contents

1 Introduction 9
1.1 Achievements . 9
1.2 What is a command shell? . 11
1.3 Research . 11

1.3.1 Visual Shell Projects . 12
1.3.1.1 The PURSUIT project . 12
1.3.1.2 The VUFC project . 13
1.3.1.3 The Piper Project . 13
1.3.1.4 Research Conlusions . 14

1.3.2 Workflow Projects . 14
1.3.2.1 The VisiQuest Visual Programming Environment 14
1.3.2.2 The MEProf Profiling Framework . 15

1.4 The Group . 16
1.5 Relevant links . 16

2 Design Overview 17
2.1 Technologies And Tools . 17

2.1.1 Programming Language . 17
2.1.2 Project Code . 18
2.1.3 The Build System . 18
2.1.4 Unit Testing . 19
2.1.5 Maven . 19

2.2 Design Challenges . 20
2.3 System Design . 21

3 Program and Type Interfaces 23
3.1 Overview of programs . 23

3.1.1 User’s view of programs . 23
3.1.2 Developer’s view of programs . 23

3.2 Program meta-information . 23
3.2.1 Meta-information design . 23
3.2.2 An extract from an example XML meta-information file for a program 25

3.3 Program Representation Interfaces . 29
3.3.1 Initial API . 29
3.3.2 Secure API . 29
3.3.3 AbstractProgram . 29
3.3.4 Packaging . 30

3.4 Type Interfaces . 30
3.4.1 Mutable types . 30

3.5 The ’Show’ program . 30
3.6 Programs Written For Kevlar . 31
3.7 Types Written For Kevlar . 32

4 Framework 33
4.1 Overview of the Framework Design . 33
4.2 Program And Type Loading . 33

4.2.1 IDirectoryWatcher . 34
4.2.1.1 Design Notes . 34
4.2.1.2 Implementation Notes . 34

4.2.2 ITypeLoader . 35
4.2.2.1 Design Notes . 35
4.2.2.2 Implementation Notes . 35

4.2.3 IProgramLoader . 36
4.2.3.1 Design Notes . 36

2

CONTENTS

4.2.3.2 Implementation Notes . 36
4.3 Contexts . 36

4.3.1 Specification . 36
4.3.2 Pipeline Construction . 37

4.3.2.1 Implementation Notes . 37
4.3.3 Pipeline validation . 37

4.3.3.1 Design Notes . 37
4.3.3.2 Implementation Notes . 38

4.3.4 Pipeline Execution . 38
4.3.4.1 Design Notes . 38
4.3.4.2 Implementation Notes . 38

4.4 Type Checking . 38
4.4.1 Motivation . 38

4.4.1.1 Advantages of types . 38
4.4.1.2 Consequences of types . 39

4.4.2 Design Notes . 39
4.4.3 Implementation Notes . 39

4.4.3.1 The Type Tree . 39
4.4.3.2 Input and output types . 40
4.4.3.3 The TypeChecker . 42

4.5 Type checking algorithm . 42
4.5.1 Symbols and terms . 42
4.5.2 Type tree example . 42
4.5.3 Bound parameters . 42
4.5.4 type-safe . 43

4.5.4.1 Runtime condition test for type-safety . 43
4.5.4.2 Constraint test for type-safety . 43

4.5.5 Motivating examples . 43
4.5.5.1 A simple two program pipeline . 44
4.5.5.2 A pipeline that is not type-safe . 44
4.5.5.3 A pipeline that uses parameterized types 44
4.5.5.4 Solving the problem in example 3 . 45
4.5.5.5 Re-visiting example 3 . 45
4.5.5.6 A non-linear pipeline. 46
4.5.5.7 A pipeline that contains a loop . 47

4.5.6 Context’s algorithm for adding and removing pipes. 48
4.5.6.1 Context’s class invariant . 49

4.5.7 Adding a pipe . 49
4.5.7.1 Outline of propagation based algorithm 50
4.5.7.2 Algorithm termination . 50

4.5.8 Removing a pipe . 50
4.5.8.1 Removing pipes leads to type-safe pipelines 51

4.5.9 Summary . 51
4.6 Program Execution . 51

4.6.1 Overview . 51
4.6.2 Pipes . 51

4.6.2.1 Design Notes . 52
4.6.2.2 Implementation Notes . 52

4.6.3 IPipeManager . 53
4.6.3.1 Design Notes . 53
4.6.3.2 PipeManager Implementation Notes . 53
4.6.3.3 PipeManager2 Implementation Notes . 54

4.6.4 Execution and AbstractProgram . 56
4.6.4.1 Overview . 56
4.6.4.2 Design Notes . 56
4.6.4.3 Implementation Notes . 56

5 Human Interface Abstraction Layer 58
5.1 Overview . 58

3

CONTENTS

5.1.1 Introduction . 58
5.1.2 Motivations for building the HIAL . 58

5.2 Program discovery . 58
5.2.1 Overview . 58
5.2.2 Design . 58
5.2.3 Keyword search implementation . 59

5.3 Construction of pipelines . 60
5.3.1 Overview . 60
5.3.2 Execution . 60

5.4 Saving and loading . 60
5.4.1 Design and implementation . 60
5.4.2 Example save file extract . 61

5.5 Class design . 62

6 Graphical User Interface 64
6.1 Drawing Engine . 64

6.1.1 Specification . 64
6.1.2 Overview . 64

6.1.2.1 Design . 64
6.1.2.2 Implementation . 65

6.1.3 Component Hierarchy . 65
6.1.3.1 Design: Relative Coordinate System . 65
6.1.3.2 Implementation: Relative Coordinate System 65
6.1.3.3 Design: Component Visibility . 66
6.1.3.4 Implementation: Component Visibility . 66
6.1.3.5 Design: Component Layout . 66
6.1.3.6 Implementation: Component Layout . 66

6.1.4 Animations . 66
6.1.4.1 Design . 67
6.1.4.2 Implementation . 67

6.1.5 Optimisation . 68
6.1.5.1 Change Redraw . 68
6.1.5.2 Redraw Aggregation . 68
6.1.5.3 Component Image Buffering . 69

6.2 Widgets . 69
6.2.1 Specification . 70
6.2.2 Roll-Over and Selectable Buttons . 70
6.2.3 Scroll Bars . 70
6.2.4 Scrolling Windows . 71
6.2.5 SWT Widgets . 71

6.2.5.1 Relative Coordinate System . 71
6.2.5.2 Keyboard Focus . 72
6.2.5.3 Overlapping Components . 72

6.2.6 Swing Widgets . 72
6.3 Layout . 73

6.3.1 Specification . 73
6.3.2 Implementation . 73

6.4 Keyboard Events . 75
6.4.1 Specification . 75
6.4.2 Key Binding Model . 75

6.4.2.1 Design . 75
6.4.2.2 Implementation . 76
6.4.2.3 State-Based Key Handling . 76
6.4.2.4 Key Actions . 76

6.5 Mouse Events And Dragging . 76
6.5.1 Specification . 76
6.5.2 Overview . 77

6.5.2.1 Design . 77
6.5.2.2 Implementation . 77

4

CONTENTS

6.5.2.3 AMouseListenerObject class . 78
6.5.2.4 Drag and Drop . 78

6.6 Programs . 78
6.6.1 Specification . 78
6.6.2 Overview . 79

6.6.2.1 Design . 79
6.6.2.2 Implementation . 79
6.6.2.3 Interfaces . 80

6.7 Macros . 80
6.7.1 Specification . 80
6.7.2 Design . 81
6.7.3 Multi-Select Implementation . 81
6.7.4 Macro Representation Implementation . 81

6.8 Pipes . 82
6.8.1 Specification . 82
6.8.2 Overview . 82
6.8.3 User Interaction . 83
6.8.4 HIAL Interaction . 83
6.8.5 Valid and Invalid Pipes . 83
6.8.6 Implementation . 84

6.9 IONodes . 84
6.9.1 Specification . 84
6.9.2 Design . 85
6.9.3 Implementation . 85
6.9.4 Node Help . 86

6.10 Arguments . 86
6.10.1 Specification . 86
6.10.2 Overview . 86

6.10.2.1 Design . 86
6.10.2.2 Displaying and Editing . 87
6.10.2.3 Applying Argument Changes . 88
6.10.2.4 Argument Help . 88

6.11 Task Panes And The Toolbar . 88
6.11.1 Specification . 88
6.11.2 Overview . 88

6.11.2.1 Design . 88
6.11.2.2 Implementaion . 89

6.11.3 Components overview . 90
6.11.3.1 Program pane. 90
6.11.3.2 Search pane. 90
6.11.3.3 Directory pane. 90
6.11.3.4 History pane. 91

6.11.4 Saving and loading of pipelines. 91
6.11.4.1 Overview of some utility classes used in loading and saving 91

6.11.5 Toolbar . 92
6.12 Show Pane . 92

6.12.1 Purpose . 92
6.12.2 Structure . 92
6.12.3 Available showers . 93

6.13 Help . 93
6.13.1 Specification . 94
6.13.2 Overview . 94

6.13.2.1 Design . 94
6.13.2.2 Implementation . 94

7 Evaluation 97
7.1 Specifications . 97

7.1.1 Program and Types Specifications . 97
7.1.1.1 Minimum Specifications . 97

5

CONTENTS

7.1.1.2 Extended Specifications . 98
7.1.1.3 Optional Specifications . 98

7.1.2 Framework Specification . 98
7.1.2.1 Minimum Specifications . 98
7.1.2.2 Extended Specifications . 98
7.1.2.3 Optional Specifications . 98

7.1.3 The GUI Specification . 99
7.1.3.1 Minimum Specifications . 99
7.1.3.2 Extended Specifications . 99
7.1.3.3 Optional Specifications . 99

7.2 Usability study . 100
7.2.1 Motivation . 100
7.2.2 Choosing a usability study type . 100

7.2.2.1 Study type . 100
7.2.2.2 Evaluation process . 101

7.2.3 Designing the usability study . 101
7.2.3.1 Overall design . 101
7.2.3.2 Task list . 102
7.2.3.3 Survey design . 102
7.2.3.4 Questions . 102
7.2.3.5 Result collection . 103

7.2.4 Results . 103
7.2.4.1 Summary of task completion . 104

7.2.5 Our Response . 104
7.3 System Evaluation . 104

7.3.1 Testing . 104
7.3.1.1 Unit Testing . 104
7.3.1.2 Continuous Integration . 105

7.3.2 Keyboard Model Evaluation . 105
7.3.3 Areas of Improvement . 106

8 Conclusion 108
8.1 Our Achievements . 108
8.2 Group Conclusions . 108
8.3 Future Work . 109

8.3.1 Short Term . 109
8.3.2 Long Term . 110

9 User Guide 111
9.1 Your First PipeLine . 111

9.1.1 Getting started . 111
9.1.2 Constructing more complex pipelines. 112

9.2 Toolbar . 112
9.2.1 Toolbar buttons overview . 112

9.3 Task panes overview . 113
9.3.1 Programs pane . 114

9.4 Search Pane . 114
9.4.1 Using Search pane . 114

9.5 Directory Pane . 115
9.5.1 Motivation behind the Directory pane . 115
9.5.2 Using the Directory pane . 115

9.6 Save Pane . 116
9.7 Load Pane . 116
9.8 History Pane . 116

9.8.1 Using the History pane . 116
9.9 Keyboard Shortcuts . 117

9.9.1 General Shortcuts . 117
9.9.2 Pipeline Construction Shortcuts . 117
9.9.3 Navigating through a Pipeline . 119

6

CONTENTS

9.9.4 Multi-Select Shortcuts . 119
9.9.5 Task Pane Shortcuts . 119

10 Appendices 121
10.1 Type Systems Theory . 121

10.1.1 Type Systems . 121
10.1.2 Type tree . 121
10.1.3 Generics . 122

10.2 Usability study tasks . 122
10.2.1 Task 1. 122

10.2.1.1 Overall aim . 122
10.2.1.2 Steps . 122
10.2.1.3 Correct result . 123

10.2.2 Task 2. 123
10.2.2.1 Overall aim . 123
10.2.2.2 Steps . 123
10.2.2.3 Correct result . 123

10.2.3 Task 3. 123
10.2.3.1 Overall aim . 123
10.2.3.2 Steps . 123
10.2.3.3 Correct result . 124

10.2.4 Task 4. 124
10.2.4.1 Overall aim . 124
10.2.4.2 Steps . 124
10.2.4.3 Correct result . 124

10.2.5 Task 5. 125
10.2.5.1 Overall aim . 125
10.2.5.2 Steps . 125
10.2.5.3 Correct result . 125

10.2.6 Task 6. 125
10.2.6.1 Overall aim . 125
10.2.6.2 Steps . 125
10.2.6.3 Correct result . 126

10.3 Usability study results . 126
10.3.1 Bacground information . 126

10.3.1.1 I know what a unix command line console is. 126
10.3.1.2 I have used the command line console to copy files and delete files. . . . 126
10.3.1.3 I have used the command line console to build a ’pipeline’ 126
10.3.1.4 I have used the unix program ’tee’ in the command line console 126

10.3.2 Task 1. 127
10.3.2.1 I successfully got the correct result from this task. 127
10.3.2.2 What problems or annoyances were there while completing this task? . . 127

10.3.3 Task 2. 127
10.3.3.1 I successfully got the correct result from this task. 127
10.3.3.2 If the answer is no, explain which step gave difficulty 127
10.3.3.3 What problems or annoyances were there while completing this task? . . 127

10.3.4 Task 3. 128
10.3.4.1 I successfully got the correct result from this task. 128
10.3.4.2 If the answer is no, explain which step gave difficulty 128
10.3.4.3 What problems or annoyances were there while completing this task? . . 128

10.3.5 Task 4. 128
10.3.5.1 I successfully got the correct result from this task. 128
10.3.5.2 What problems or annoyances were there while completing this task? . . 128

10.3.6 Task 5. 128
10.3.6.1 I successfully got the correct result from this task. 128
10.3.6.2 What problems or annoyances were there while completing this task? . . 129

10.3.7 Task 6. 129
10.3.7.1 I successfully got the correct result from this task. 129
10.3.7.2 If the answer is no, explain which step gave difficulty 129

7

CONTENTS

10.3.7.3 What problems or annoyances were there while completing this task? . . 129
10.3.8 Section . 129

10.3.8.1 Which task did you find the hardest? . 129
10.3.8.2 Why did you find that task the hardest? 130
10.3.8.3 Which aspects, not mentioned in your answer to Q2, were the most dif-

ficult to use, or the most damaging to the user experience? 130
10.3.8.4 ”It is easy for a new user to get used to the system.” 130
10.3.8.5 ”The performance of the system was acceptable. (ie. It ran fast enough.)” 130
10.3.8.6 ”The user interface was easy to use. The controls (eg. text box, list box)

were easy to use.” . 131
10.3.8.7 ”I feel the Kevlar’s system is an improvement over the classic command

line. It is more intuitive.” . 131
10.3.8.8 ”I would consider using Kevlar instead of the normal command line.” . 131
10.3.8.9 If you were to redesign Kevlar, what would you like to add or change? . 131

10.4 Individual Working Hours . 132
10.5 Group Meetings . 134
10.6 The Group Calendar . 137
10.7 Classic CVS Commit Comments . 138

8

Chapter 1

Introduction

This is the third and final report in relation to our 3rd year project, “A User Friendly, Type-Safe, Graphical
Shell”, or “Kevlar”, which is the name given to system we have produced.

1.1 Achievements

We have produced a product that shows it is possible to present a functional way of interacting with the
underlying operating system to a novice user which is intuitive, consistent and safe.

Figure 1.1 A Screenshot of the Kevlar System. An example of the Kevlar system performing some
rather complex transformations to data. This is the solution to question 6 of our Usability Study (see
Section 7.2) which was to display all the images in the current directory, and to transform them (by
resizing to 100x100 pixels and rotating to the right 90 degrees), and also to print out their file names,
without their extension.

9

CHAPTER 1. INTRODUCTION 1.1. ACHIEVEMENTS

We identified 7 major usability issues with existing shells, that makes learning and using shells hard.
Our system, Kevlar, solves these problems.

USABILITY ISSUES SOLVED WITH EXISTING SHELLS

• Consistent help. When learning and using any system, having help available that is relevant is
often crucial. One of the issues with the existing shells is the lack of a consistent model of help that
the shell enforces. Currently there is an expectation that passing arguments such as -h , --help
or ? to a program on the command line may give some summary of help.

Kevlar does not suffer this problem as there is a well defined API for programs to export help
which is simple, and that the shell integrates into its GUI and makes easily accessible to the user.

• Program discovery. Traditional command shells provide the ability to run any program, however
it is up to the user to manage the programs on their system, and to know which is the best program
for any particular job. Migrating to a new shell system is therefore difficult as the user must learn
the equivalent commands for their new shell.

Kevlar categorises programs for the user, and also uses a sophisticated search algorithm to help the
user find appropriate tools for a task based upon keywords exported by programs in their help.

• Argument validation. Many programs run from the command shell have a very rigid structure
of valid arguments (e.g. switches or numeric inputs). Currently it is programs that validate their
arguments once they are run. In many cases, there is no reason why the validation could not be
done before execution.

Kevlar uses the GUI widgets to make the process of setting arguments much easier. If an argu-
ment can only take one value out of a set of values, this is explicit as the argument is set using a
drop down box. This makes setting arguments simpler, and less error-prone. Similarly, there is a
checkbox widget for setting boolean arguments.

• Flexible piping. One of the most useful paradigms of a command shell is the ability to pipe output
from one program into another. In the standard model there are 3 generally supported pipes
(in, out and error), although some shells1 allow redirection of other file descriptors, programs
generally do not make the assumption this is available to them from the shell.

In Kevlar however, programs are free to accept input from many different pipes, or to output to
different pipes. The program is free to determine the number of inputs and outputs, and their
arguments can be used to make some pipes conditionally available to the user.

• Typed Pipes. It is useful to have some notion of the ’type’ of information being passed across a
pipe. It is common for the shell to allow the user to print to the console (essentially piping to the
user) the contents of a binary file, which can in turn change some options on the terminal driving
the shell and make it unusable to an untrained user2.

Kevlar abandons using untyped binary data/text for output, and moves to a typed system. This
makes the shell ideal for working with non-text data. For example, image and sound editing.

• Spatial representation. Since the traditional command shell is presented on a text interface, pipelines
that are constructed have to be represented in one dimension. If a pipeline construct consists of
many redirects in and out (particularly if standard error and out are being sent to different places),
this can get very confusing.

Kevlar introduces a 2nd dimension and allow the user to freely lay out programs to create the most
natural view of a pipeline.

• Program consistency. Because the actual programs are generally targeted to the underlying oper-
ating system, even if the shell itself is portable, the programs run generally are not3.

Kevlar has been based upon JavaTM technology, which renders it portable across the major Op-
erating Systems (WindowsTM and *nix). Programs written for Kevlar in Java are therefore also
portable.

1For example the gnu bash shell <http://www.gnu.org/software/bash/ >.
2Particularly if the shell is running in a VTxxx terminal and the user echoes the ’Shift Out’ command (usually Ctrl-N).
3There are efforts to make command shells and their programs cross platform. One favoured by this group is the Cygwin

project.<http://www.cygwin.com/ >

10

CHAPTER 1. INTRODUCTION 1.2. WHAT IS A COMMAND SHELL?

We have also made our system usable to existing shell experts by providing a comprehensive and com-
plete keyboard model for rapid development of pipelines, as well as being friendly to new shell users
by providing a complete mouse model.

1.2 What is a command shell?

So far we have explained an overview of what we have achieved during this project. This section will
put those achievments into the context of command shells at large.

A command shell provides a way for a user to interact with the underlying operating system of a com-
puter. It is called a ’shell’ because it provides a level of abstraction away from the operating system,
hiding behind the shell’s interface. Traditional command shells are implemented in a command line
interface, where the user gives a command to execute, with appropriate arguments, and possible redi-
rection of input and output. For example:

ls *.html > html_files.txt

Here ls is a program to execute, *.html is an argument passed, > tells the shell to redirect the output of
the program to a file named html files.txt.

Further, most command shell’s support some way of passing the output of one program as input into
another. This allows a ’pipeline’ to be built up that uses simple programs to execute complicated tasks.
For example:

ls *.html | sed ’s/\(.*\.htm\)l/\1/’ | xargs -ri mv ’{}’l ’{}’

In this example, any .html files in the current working directory are being moved to .htm files. For
reference, the equivalent pipeline in Kevlar is shown in Figure 1.2.

Figure 1.2 A Pipeline in Kevlar.. This pipeline is the Kevlar equivalent of the shell pipeline ls *.html | sed
’s/\(.*\.htm\)l/\1/’ | xargs -ri mv ’{}’l ’{}’. This moves any .html files in the current working directory
to .htm files.

For more details about command shells, we refer the reader to [WIKI].

1.3 Research

The following sections are a collection of projects which were designed before the Kevlar project. They
are made by other development groups and universities. The reason we explain them is so that we can
show that Kevlar borrows ideas from them, tries to extend on some of their features and add new ideas

11

CHAPTER 1. INTRODUCTION 1.3. RESEARCH

to them. This research is a necessary step in the design process of Kevlar, because only by looking at
advances and problems of previous projects can we progress with our own project.

1.3.1 Visual Shell Projects

This section focusses on the description of projects which are familiar to Kevlar in that they are all shells
that try to mimic the classical UNIX command line visually.

1.3.1.1 The PURSUIT project

References See [PURSUIT]

Summary The pursuit project is based upon a thesis of Francesmary Modugno (Carnegie Mellon Uni-
versity). PURSUIT is similar to our project on the fact what they both try to resolve the same problem of
minimizing mental context switches using the classical Command Line interpreters.

Although PURSUIT also uses a workflow visualization it has a rather different way of representing
data. In fact in the PURSUIT system there are only four different types; file, set of files, folder and set
of folders, so the PURSUIT system does have typed input output but not in the same degree as Kevlar
which offers unlimited types through extensibility. The user can interact with the system in a form of
very simple language (pseudo code like). The system will show Pre and Post states to explain what
every execution node does. For example, to visualize the copy command that makes a copy of test.tex
with name copy-of-test.tex in a folder (directory) called paper, the system will show a node split in two,
with on one side a folder called paper which contains test.tex and on the other side (post), a folder called
paper which contains test.tex as well as copy-of-test.tex. The connections between node do not represent
typed pipes as our Shell will but represent control branches such as if exist copy-of-file.txt => delete.
The PURSUIT system is clever enough to automatically detect if the user wants to define a loop over
every file in a folder for example.

Conclusion of the thesis was also that the more intuitive way of representing command processes did
in fact boost the users handling of the shell. To get a better idea what the description above means it is
worthwhile to take a look at the paper with the link pasted above.

Figure 1.3 Snapshot of the PURSUIT System. The Pursuit script that copies each *.tex file in the papers
folder. If the copy operation fails because of the existence of a file with the output file name, the pro-
gram deletes that old output file, and re-executes the copy operation. Users can see the other possible
outcomes of the copy operation by clicking on the conditional marker.

12

CHAPTER 1. INTRODUCTION 1.3. RESEARCH

1.3.1.2 The VUFC project

References See [VUFC]

Summary The visual Unix-filter components (VUFC) project contains a lot of the functionality of the
Kevlar project, except for the feature of typed pipes and therefore lacks a lot of the context sensitive help
and type safety. It successfully managed to encapsulate Unix filter apps (like sort, wc, etc.) within COM
components and display them on canvas connected by real UNIX pipes via ActiveX (in VB and ATL).
The arguments needed by the encapsulated unix filter are described in their own language which is
compiled into VB source so that the GUI can give information about them at build time. The automatic
encapsulation of unix commands within their system is a benefit Kevlar does not have however - in
Kevlar programs need to be made compatible for the Kevlar system. However, previousely written Java
programs aren’t difficult to integrate into Kevlar.

Interestingly they explained that typed pipes might be an ideal addition to their project. Information
is given on the link cited, although no source or executables have been found showing the working
process.

Figure 1.4 Snapshot of the VUFC System. A GUI-based spelling checker built using VUFC.

1.3.1.3 The Piper Project

References See [PIPER]

Summary Piper is a network-distributed system of clients and servers for data processing. Client
types include programs that process data (perform analysis, translation and visualization). (These are
not part of the system but come as extensions, making Piper independent of data-type and thus general-
purpose.) Other clients include control structure (e.g., if and while) and user interface (UI) components.
In the Pied UI, clients can be represented as the nodes of a ”Work Flow Diagram” (WFD), joined by lines
that depict network connections. The Pied/Piper system therefore provides a workspace for connecting
and combining nodes, allowing Piper to function as a graphical scripting language. And, the network-
distributed nature of Piper permits the user to deal with large data sets in a unique way: UI components
will reside on a local workstation while compute-intensive, data-processing nodes execute remotely on
high-performance computers. Linking nodes across the Internet can also be used to form world-wide
collaboratives and provide access to an infinitely extensible set of tools for the user.

As we can see from the description above Piper tries to establish the same idea as Kevlar - A graphical
shell where nodes are process elements and we can link them to pipe them together so that we can
stream over I/O results betwean nodes. There are some features Piper has that Kevlar hasn’t; Piper
doesn’t require that the process elements are local, they can be anywhere on the web and Piper can
reuse native UNIX commands without rewriting. Piper’s description didn’t mention typed pipes, so
this is a great benifit Kevlar has over Piper. We also couldn’t find any executables online, the only link
we saw to a binary was not operational.

13

CHAPTER 1. INTRODUCTION 1.3. RESEARCH

Figure 1.5 Snapshot of the Piper System. A Piper network connecting Bioinformatics Databases and
running applications spread out over multiple sites.

1.3.1.4 Research Conlusions

In every one of the covered projects the conclusion was that a visual representation of a process flow did
resolve usability issues with the standard Command Line.

Although the covered projects in this document contain some of the functionality that overlaps with
the Kevlar project none of them contain the typed pipes feature that Kevlar has. And since the type
system within Kevlar offers the user a lot more contextual help we believe that the Kevlar system boosts
usability even more and thus fulfill the goal of minimizing mental context switches on user level even
better.

1.3.2 Workflow Projects

The following projects are all familiar to Kevlar in that they all work around the creation of a workflow.
These projects do not necesserally try to establish the same goals as Kevlar, but they all use a workflow
to describe their work process. Note that all of the above described projects also create workflows.

1.3.2.1 The VisiQuest Visual Programming Environment

References See [VISIQ]

Summary With VisiQuest, visual programs are created by placing glyphs (the rectangular icons in the
image below) in the VisiQuest workspace. Glyphs represent operators, which are simply stand-alone
programs written in C, C++, Java, or a scripting language. Each operator performs on an input image
or dataset, producing an output image or dataset. Connections that represent data flow between the
glyphs are created by clicking the mouse. Advanced programming language constructs such as loops,
procedures, and control structures (i.e., if/else constructs) complete the visual programming capabili-
ties. You may write visual programs that take advantage of the functionality offered by more than 300
operators included with VisiQuest, or you can use the VisiQuest software development environment to
develop new operators of your own. Once a visual program has been created with VisiQuest, it may be
compiled into a standalone program that can be executed without VisiQuest.

The workflow VisiQuest uses is quite similar to the one Kevlar uses. VisiQuest also offers the com-
pilation of a pipeline into an executable, in Kevlar pipelines need to be executed within the System.
VisiQuest’s goal is more of a programming environment than that of a general Shell replacement like
Kevlar is and is focused around image processing.

14

CHAPTER 1. INTRODUCTION 1.3. RESEARCH

Figure 1.6 Snapshot of the VisiQuest System. A visual program used to perform rendering of 3D geom-
etry data in VisiQuest.

1.3.2.2 The MEProf Profiling Framework

References See [HBK04]

Summary MEProf is a profiling framework plug-in for the Eclipse IDE which allows the user to specify
the type of profiling to be performed by building a visual workflow diagram. The plug-in contains a set
of dynamically loaded profiling modules which perform a specific part of the profiling pipeline, such
as capturing program events, gathering program information, processing information and visualising.
Each module declares a set of input and output connection points that declare the names and types of
the data they receive and produce. The user builds a profiling pipeline by adding modules from those
available and connecting them togther by clicking on their input and output nodes. The framework then
analyses the connections to make sure that the types of data passed between modules is compatible
before allowing the pipeline to be deployed. When executed, part of the pipeline is woven into the
program being profiled while the other half runs in a server, which receives profiling data and displays
visualisations.

Although MEProf and Kevlar use a similar method for representing pipelines and both contain type
checking, the two programs aim to achieve quite different things. Whereas MEProf simply uses pipeline
visualisation as an interface for the user to declare the kind of profiling they wish to perform, Kevlar
places much more emphasis on allowing the user to search for programs, executing programs safely
and constructing pipelines quickly using the keyboard. MEProf also doesn’t put any security restric-
tions upon its modules, since it trusts that modules are correctly written and will not crash the system.
However, Kevlar cannot afford to make this assumption, so makes sure that programs are executed as
separate processes so that the system can recover gracefully from crashes. Kevlar also allows users to
specify more complex pipelines containing cycles, which are not allowed by MEProf due to the restric-
tion on which modules can be connected to which other modules.

MEProf was written during Summer 2004 as a research project by Marc Hull, who is also one of the
Kevlar team members. This means that the group is well aware of the shortcomings of MEProf’s inter-

15

CHAPTER 1. INTRODUCTION 1.4. THE GROUP

face and has been able to address them when designing Kevlar.

Figure 1.7 Snapshot of the MEProf interface. A profiling pipeline created in the MEProf plug-in for
Eclipse.

1.4 The Group

The results of this project represent approximately 3 months work by five 3rd year MEng Computing
students.

• Tristan Allwood (Group Leader). <toa02@doc.ic.ac.uk >

• Daniel Burke. <deb02@doc.ic.ac.uk >

• Marc Hull (Group Secretary). <mfh02@doc.ic.ac.uk >

• Ekaterina Itskova. <ei02@doc.ic.ac.uk >

• Steve Zymler. <sz02@doc.ic.ac.uk >

This project has been supervised by Dr Paul Kelly (<phjk@doc.ic.ac.uk >). The group wish to ex-
press their thanks for his enthusiasm and interest in the project that has been evident from the start.

1.5 Relevant links

• <http://www.silicon-fusion.com/kevlar/ >. Group Discussion and Organisation web-
site, containing meeting notes, discussion forum and hours of working by group memebers.

• <http://www.doc.ic.ac.uk/project/2004/362/g04362341M/MavenSite/index.html >.
Group Implementation website, containing reports, documents, API’s and code metrics.

• <http://www.doc.ic.ac.uk/project/2004/362/g04362341M/study/ >. Group Usabil-
ity Study Website.

• <http://www.doc.ic.ac.uk/˜ih/teaching/group-projects/proposals/sue1.html >.
The Part One describes the orignal project proposal.

• <http://www.doc.ic.ac.uk/˜phjk >. Dr Paul Kelly’s home page.

• <http://www.doc.ic.ac.uk >. Department of Computing.

• <http://www.imperial.ac.uk >. Imperial College London.

16

Chapter 2

Design Overview

2.1 Technologies And Tools

This section will outline the primary technologies and tools we used during the development of this
project.

2.1.1 Programming Language

The primary language chosen for the development of this project is Java (J2SE 5.0)1. This is because it
was a language we knew and are confident with, however the choice to adopt J2SE 5.0 also meant we
had the opportunity to learn the new Java features (particularly generics and enumerations).

Additionally, Java has a large API which has many features that where useful for the project. An
overview of some of these is below, along with a few extensions to the API that have been used.

THE JAVA J2SE 5.0 API (AND EXTENSIONS) AND THEIR USAGE IN THE PROJECT

• Reflection. For dynamic loading of types, and to validate that programs extend a certain class.

• XML DOM. For XML parsing and validation. This is useful for parsing XML files that describe
programs and for the saving and loading of pipelines.

• Serialization. User-defined programs are executed in separate processes. Serialization is used to
allow first-class objects to be communicated to these processess across standard IO pipes.

• Processes, IO, Threads. For the actual location of loadable programs, the execution of programs
and communication with them, Java’s IO libraries have simplified many of the already compli-
cated procedures. Also Java’s ability to create daemonized threads, pool them and perform inter-
thread-communication via the new concurrent libraries has proved valuable.

• JUnit2. An extension tool for Java that allows flexible unit testing of code. This has been adopted
by the group as a way of checking that code, contracts and algorithms work correctly without
having to wait for other users to find bugs. The unit testing of the code will be covered in more
detail below.

• SWT3. The Eclipse Project’s Standard Widget Toolkit provides a way of creating graphical-user-
interfaces which exploits native platform optimisations. SWT has been adopted as the base for the
GUI, as its programming model is more flexible and powerful than the standard Java AWT/Swing.

A final reason for the choice of development using Java is that it is platform independent. Although the
choice of using SWT limits the project to only a Windows, Linux or Mac platform for deployment, the
GUI has been designed to be a modular component, so creating a separate GUI that uses the rest of the

1<http://www.java.sun.com/j2se/1.5.0/download.jsp >
2<http://junit.sourceforge.net >
3<http://www.eclipse.org/swt >

17

CHAPTER 2. DESIGN OVERVIEW 2.1. TECHNOLOGIES AND TOOLS

system should not be impossible if it is so desired. WindowsTM and Linux where the major targets for
the project as those are the operating systems the group members (and DoC) primarily support.

2.1.2 Project Code

For the actual development of the code, it was decided to use Eclipse4. Since this is a Java based system
(which is based upon SWT), it is available for both Linux and Windows, and the interface on both
systems is consistent. Eclipse also has support for the Java J2SE 5.0 features.

Because work is being done by group members both at home and in DoC, the source for the project
should be easily accessible and updatable via a content management system. The choice for CMS has
been CVS5 (over ssh, using the provided group project space as the repository). Eclipse also features
first class support for CVS which was a factor in the decision to use it.

Eclipse also has the feature that build and run targets can be shared by the group. The consequence
of this is that only one person needs to set-up the running of the main program / unit tests / building
of jars, and then on the next CVS update all other members of the group can see this target under an
accessible menu. This is elaborated upon further below.

2.1.3 The Build System

One of the requirements for this project is a plug-in-able archticture of Types and user-defined Pro-
grams. As will be described in the ’Programs and Types’ section (see Chapter 3.1, “Program and Type
Interfaces”), groups of Programs / Types need to be put together in jar files containing manifest infor-
mation, and descriptors (xml files).

Eclipse provides support for the compilation of all source code into class files, however to release an
actual ’product’ there needs to be a way of building a jar file for the main program, with satellite jars
for each of the Program and Type groups. Also, to actually run the main program (even for testing) the
Program and Type jars must be generated, as the loading mechanism requires them to be in the format
summarised above.

The group wanted to minimize the amount of time members spend doing jobs other than working
on their code, so it was decided to create a flexible, platform independent way of building the main
and satellite jars, and to perform any other useful tasks the group wanted (e.g. generation of group
documentation). To achieve this, the Ant6 build tool, and Eclipse’s configurable Run and Build targets
are used so that any group member can generate all the jar files with no more than two mouse clicks.

The way in which the satellite jar files are generated is outlined below:

1. Normal Source Code Compilation. The Ant build script checks that all the source files have been
compiled. As Eclipse is setup to continuously build the source for the project, very few files are
ever compiled in this step.

2. Locating Types and Programs. A custom written Java program that is held in the project source
tree is invoked by the main Ant build script. This program iterates through the predefined direc-
tories in the source tree where Programs and Types that should be dynamically loaded are stored.

Each sub-directory in these locations corresponds to a group of Programs or Types. Each class file
in these sub-directories is then loaded using reflection and analysed to see if is a valid Program or
Type. If it is, this information is noted.

The program finally outputs an XML description of the groups of Programs and Types it has found.

3. Dynamic Ant File Generation7. The main Ant build script then invokes an XSL transform upon
the XML descriptor using a custom written XSL document. This creates a new XML document

4<http://www.eclipse.org >
5<http://www.cvshome.org >
6<http://ant.apache.org >
7As explained in the Apache Ant document ’Ant in Anger’ (<http://www.ant.apache.org/ant_in_anger >) the use

of this technique places our group “on the bleeding edge of technology”.

18

CHAPTER 2. DESIGN OVERVIEW 2.1. TECHNOLOGIES AND TOOLS

that represents an Ant build script that has targets to create each of the satellite jar files, with the
correct dependencies and correct manifest information.

4. Satellite Jar Generation. Finally, the main Ant build script calls a target on the newly generated
build script to produce all the jar files and place them in the correct place for the defined run targets
to use them.

Figure 2.1 Program and Type satellite jar generation by the Build System

2.1.4 Unit Testing

As mentioned above, the JUnit framework has been employed in this project to allow for quick and easy
testing of code. JUnit has first class support in Eclipse, so its integration and use has been simple.

The principal motive for using JUnit has been to facilitate rapid development and checking of the un-
derlying components of the project (type-checking, dynamic loading and xml parsing to name a few),
before they are needed. This helps ensure that when integration does occur it is smooth as most code
will have been tested before being depended upon.

As the design is very modular and component-based, the use of unit testing is facilitated as each com-
ponent can (and in most cases has) been tested as it has been written. Also, since JUnit allows the unit
tests to be quickly re-run (and an Eclipse run target shared by all users has been set up to facilitate this),
the group is able to check that changed parts of the code do not have major consiquences on others.

2.1.5 Maven

As mentioned in the previous report, the group has a Group Implementation Website located at <http://
www.doc.ic.ac.uk/project/2004/362/g04362341M/MavenSite/index.html >. This website
is automatically generated for the group by the apache tool Maven8.

Although not an integral part of the project, this website has proved valuable for the group as it provides
summaries of unit test results, the CVS changelog, interesting statistics on file changes and source code
metrics, as-well as all of the group JavaDoc and a central place to keep all of the group reports.

8<http://maven.apache.org >

19

CHAPTER 2. DESIGN OVERVIEW 2.2. DESIGN CHALLENGES

2.2 Design Challenges

During the planning phase for Kevlar, we identified some key challenges and risks that would need to
be solved or mitigated as part of the project. A summary of these is below:

KEY CHALLENGES AND RISKS FOUND DURING THE DESIGN OF KEVLAR

• Type Checking. One of the features our project aimed to present was a way of type-checking the
input and output pipes of programs, and disallow type-unsafe pipelines from being constructed.
We additionally wanted to allow templated types, and discussed the possibility of allowing mul-
tiple inheritance in the type tree.

The mitigation of this risk was early on in the project, when much work was spent on planning
and testing the solution algorithm to this problem. It was decided that multiple inheritance would
be beyond the scope of this project, and is not necessary for most user needs.

The implementation of the type checking algorithm can be found in Section 4.4.

• Execution. To have a complete shell, we needed to be able to execute programs from within it.
Originally we planned to execute programs in Kevlar’s JVM, but research into this area (see Sec-
tion 3.3) showed that this could not be done with any security, so an alternative way of forking
processes and managing them was needed.

It was known that this problem was solvable (and there was at least one group member with expe-
rience of dealing with creating Java processes from within Java and performing IPC with streams).
The actual mitigation of this risk came mid-way into the project, (partly because the underlying
frameworks that it required were not present until that time) with a prototypical implementation
to allow the rest of the project to carry on, before a more thought out solution.

The implementation of the core of the execution system can be found in Section 4.6.

• GUI Widget Set. Our project was aimed around providing a user-experience that was tailored
to building pipelines. As part of this, we realised it would be necessary to use our own custom
widget set, as standard ones are not designed for this type of application.

We realised the need for custom widgets early on in our design, and planned to create widgets
for representing programs, pipes, nodes and arguments. Although we originally intended to use
existing SWT widgets for standard components such as text boxes and scrollbars, this meant that
certain optimisations could not be applied to our drawing system. In the end, we decided that
the extra performance provided by the optimisations was more important, and wrote our own
set of standard widgets too. The design and implementation of these widgets can be found in
Section 6.2.

• Fast Keyboard Model. In the specifications for this project, we wanted to allow users of existing
shells the ability to transfer to ours. The primary method of using existing shells is the keyboard,
and to ease this transition (and to allow power users speed when working on our shell) we wanted
to provide a complete and fast keyboard model for all actions possible in the shell.

The ability to construct pipelines using the keyboard was stated as a requirement of our project,
but early on we realised the need to make common actions fast. We designed the auto-complete
section to mirror the tab-completion feature of most standard consoles and implemented a number
of methods for quickly navigating between programs and selecting nodes. We tested a number of
key combinations and compared them to the number of keypresses required to create semantically
equivalent pipelines in the Linux console. The design and implementation of the keyboard model
is described in Section 6.4.

• Layout Algorithm. It became clear during our use case analysis, that complicated pipelines could
become very hard to visualise, and that support at some level had to be given to routing pipes and
automatically laying out programs. This became even more of an issue as users should be able to
interact using only the keyboard if they wish.

Since automatic layouts was not mentioned in our initial requirements document, we considered
the interfaces required for it early on but did not plan implementation until quite late on in the
project. Since the interfaces we well defined, we were able to work on this section completely
separately from the rest of the graphical interface, and simply replace the default test layout with

20

CHAPTER 2. DESIGN OVERVIEW 2.3. SYSTEM DESIGN

the new layout algorithm to integrate it into the rest of the system. The layout algorithm used is
explained in Section 6.3.

• Macro pipelines. During the design and development of use-cases for our project, it was recog-
nised that a way of grouping common pipe-lines into ’macros’ to be reused would be a useful
feature. It was also recognised that this would require architecture frameworks in place to sup-
port it, and there were also discussions as to whether this abstraction should something that is
throughout the entire project, or just in the GUI.

Initially we spent a long time disucssing what we wanted macros to achieve and whether we could
link them together temporally to create Bash-style scripts. This highlighted a number of difficult
problems, which forced us to move the majority of the macro requirements into the optional spec-
ifications. Since the only compulsory requirement for the project was to implement basic macros
that could not be temporally linked and did not allow the user to choose propagated arguments,
we decided to implement them solely in the GUI and translate any operations upon them into
operations upon their component programs before contacting the HIAL. However, the possibility
of expanding macros to support temporal linking was considered in the design of the framework
in case we wanted to add it at a later stage. The implementation of the compulsory macro require-
ment is covered in Section 6.7.

2.3 System Design

The overall design for the Kevlar system was strongly based upon our requirements.

We needed a plug-in based architecture for Programs and Types, and ways of loading these plug-ins in.
We also needed ways to construct pipelines and type check then. These are very ”low level” require-
ments, completely abstracted away from users or graphics.

Additionally, we had to visualise and capture interactions with pipelines, but this was not concerned
with how programs are loaded, or how type-checking is performed. These are very ”high level” require-
ments.

We decided to have two separate components, one for each extreme. The ”high level” became the “GUI”
component, and the ”low level” became the “Framework”.

However there was still a ’gulf’ of functionality missing between these two components. To bridge
this, we created a mediation layer, known as the “Human Interaction Abstraction Layer” (HIAL). Its
role was to remove common functionality that any GUI could require, and to provide primitives for
manipulating pipelines made in the framework.

The following chapters will cover the different components, and the main parts of their design and
implementation.

21

CHAPTER 2. DESIGN OVERVIEW 2.3. SYSTEM DESIGN

Figure 2.2 Architecture Overview. An overview of the architecture of the Kevlar System, showing the
roles and communication between the three core layers and the plug-in-able types and programs.

22

Chapter 3

Program and Type Interfaces

As part of the requirements for this project, we needed to create an API that external developers could
use to write programs and types for Kevlar. This chapter discusses the different parts of the design and
implementation of these interfaces, and how they reflect back upon the end user of Kevlar.

3.1 Overview of programs

3.1.1 User’s view of programs

From the user’s point of view, a program is a functional unit that can be put into a pipeline and executed.

Programs take arguments, and have a set of input and output nodes. Arguments are name-value pairs
that allow the program to be configured. Input and output nodes are connection points for pipes for
linking programs together in a pipeline.

A type is assigned to each input and output node of each program. To the user, these are the possible
types of information that can flow between programs over pipes.

3.1.2 Developer’s view of programs

When a program is run and it can take input from its input nodes, process the incoming data and then
output new data on its output nodes. The arguments will be used to control what input and output
nodes are available and how the program processes the input it receives.

In addition to these features, programs also provide a map converting program exit codes into messages
for the user, and a set of basic information about the program such as its name and version. Figure 3.1
details the features of programs that a developer uses.

3.2 Program meta-information

3.2.1 Meta-information design

To meet the goal of creating a user friendly shell, a rich set of meta information needs to be available for
each program. Early on was identified particular meta information which would be necessary or would
be useful to the shell.

• Basic identification information. The program should have two names. One is the package iden-
tifier which can be assumed to be unique due to the official derivation rules for package names.
The other name would be a friendly name that meets the specification for having names that are
meaningful to the user.

23

CHAPTER 3. PROGRAM AND TYPE . . . 3.2. PROGRAM META-INFORMATION

Figure 3.1 Overview of the structure of a program

To allow different versions of programs to be distinguished from one another, version information
should be available for all programs. This would standardize the method for getting the version
information from a program.

The user should be able to discover where a program came from. Therefore the program needs to
export a form of contact information; A website URL, for example.

• Arguments. Traditional shells allow programs to have arbitrary argument models and, as a result,
there are many different ways to specify arguments for UNIX programs.

In order to have a more usable approach, a standard model for presenting arguments needs to be
provided. Originally a dynamic model was planned in which only arguments and input/output
nodes that were relevant to the current program configuration would be shown. Several design
possibilities were considered.

– Arbitrary argument specification. The original design was to allow programs to specify cur-
rently available arguments and input/output nodes which could change arbitrairly with the
input pipes connected and the current arguments set by the user.

This design was rejected since there would be no consistent model for the user; small changes
could cause unexpected effects to the pipeline which would not be user friendly.

– Argument tree model. The preferred design would restrict the ways in which program argu-
ments and the set of available input/output nodes could be specified by the programs.

The number of argument types was restricted to four types. These types are; singleline text,
multiline text, boolean and a discrete selection set type. These could be represented in the
GUI as textlines, textboxes, checkboxes and combination boxes respectively. Having fixed

24

CHAPTER 3. PROGRAM AND TYPE . . . 3.2. PROGRAM META-INFORMATION

types ensures a consistent method for setting arguments between programs.

Programs must specify an argument tree. There is a set of root arguments which is always
available for the user to set. When a boolean or set argument has its value altered, the pro-
gram may specify which arguments will become available as a result. This provides a pre-
dictable model for arguments, since the availability of any non-root argument is completely
dependant on the discrete value set for exactly one other argument.

As an example, in a program for manipulating an image, the ’Operation’ argument would
always be available for the user to set. The ’Operation’ argument would be of the ’set’ type,
which means it might be represented in the GUI as a dropdown menu. If the user chooses
’Resize’ for the operation, the ’Width’ and ’Height’ arguments become available for the user
to set. Figure 3.2 shows this example.

Figure 3.2 Example of argument trees. When the ’Operation’ argument is set to ’Resize’, the ’Width’ and
’Height’ arguments are availalble. When ’Rotate’ is set, the ’Angle’ argument is available.

• Program input and output. Traditional shells mostly provide one fixed input and two fixed out-
puts for a program. (Standard in, out and error.) Since Kevlar is breaking away from this model,
the program meta data needs to reflect this by specifying the input and output possibilities.

In order to give the best user model, the available input/output nodes of a program and their cor-
responding types needs to be determined exclusively by the discrete valued arguments of a pro-
gram. Programs will, therefore, be able to export mappings from argument values to input/output
node sets. Figure 3.3 shows an example of this.

• Validation. Arguments should be able to be validated before the program is run, the program
should be able to specify validation rules for arguments so that the user can be alerted of mis-
takes immediately, instead of when they run the pipeline. Figure 3.4 shows this validation meta-
information in use.

• Context sensitive help. To meet the specification of having context sensitive help, the programs
need to be able to export help for each of their individual components, which includes their argu-
ments, and each input and output node. Figure 3.5 shows the help meta-infromation in use.

• Return value to message mappings. Existing programs return a numeric exit code. In this system,
these can be mapped to a predefined set of return value messages.

These messages could then be presented to the user as feedback on the completed execution of a
program. Unfortunatly, due to time constraints, this feedback on the result of a program’s execu-
tion is not represented in the GUI. However, this feature would be useful to tackle the complaint
regarding lack of feedback from programs in the command line console.

3.2.2 An extract from an example XML meta-information file for a program

<!-- XML meta data file for a String searching program like grep -->
<program>

25

CHAPTER 3. PROGRAM AND TYPE . . . 3.2. PROGRAM META-INFORMATION

Figure 3.3 Example of argument trees. The ’Move-Files’ program has an ’Use-Input-Lists’ argument.
When this is off, a ’From-File’ argument and ’To-File’ argument are available. When this is set on, the
arguments dissappear and a ’From-Files’ input node and ’To-Files’ input node becomes availalble. This
mapping is set in the meta-information for the program.

Figure 3.4 How validation meta-information is used. When an argument value set by the user does
not match the pattern in the meta-information, the argument turns red. The user can right click to get
this message: ”Must be an integer number of milliseconds.”. This message is taken from the meta-
information.

<!-- specify the both the arguments available and
how they map onto input and output nodes -->

<argument-model>

<!-- First specify the arguments -->
<arguments>

<!-- specify a compulsory argument called
Pattern which is initially empty -->

<argument>
<name>Pattern</name>
<help>

<overview>Specify a regular expression
to search for</overview>

</help>
<is-compulsary />
<singleline-argument>

<initial></initial>
</singleline-argument>

</argument>

26

CHAPTER 3. PROGRAM AND TYPE . . . 3.2. PROGRAM META-INFORMATION

Figure 3.5 How the help meta-information is used. With the Move-Files example from Figure 3.3, a user
will not know what the ’Use-Input-Lists’ argument does without being told. The argument and input
node help meta-information is essential for helping the user understand arguments.

<!-- specify a non-compulsory boolean argument -->
<argument>

<name>Case-insensitive-search</name>
<help>

<overview>Turn on or off case sensitivity
in the pattern matching</overview>

</help>
<boolean-argument />

</argument>

<!-- .. etc - more arguments below -->
</arguments>

<!-- specifies which argument values lead to which
input output nodes. When arguments are updated,
each mapping is tried in turn to see if it’s
conditions matches until a match is found -->

<mappings>
<mapping>

<!-- each mapping has conditions, if all the
conditions are true, the specified inputs

and outputs are available. Otherwise the
next mapping is tried. -->

<conditions>

<!-- This condition requires that the
Verify-match-only argument is set to false.

<condition>
<target>Verify-match-only</target>
<boolean-false-condition />

</condition>
</conditions>

<!-- Specify one input node, make it generic so the program can
be used for a filename grep too for example -->

<input-pipes>
<pipe>

<name>Text-lines</name>
<type>uk.ac.ic.doc.kevlar.core.types.ITextType</type>

<pipe-help>Lines to be matched against the pattern</pipe-help>
<param-name>T</param-name>

27

CHAPTER 3. PROGRAM AND TYPE . . . 3.2. PROGRAM META-INFORMATION

</pipe>
</input-pipes>

<!-- Specify two output nodes, one for positive matching lines
one for negative matching lines -->

<output-pipes>
<pipe>

<name>Matching-lines</name>
<type>uk.ac.ic.doc.kevlar.core.types.ITextType</type>

<pipe-help>Lines from the input that
matched the pattern</pipe-help>

<param-name>T</param-name>
</pipe>
<pipe>

<name>Negative-matches</name>
<type>uk.ac.ic.doc.kevlar.core.types.ITextType</type>

<pipe-help>Lines from the input that did
not match the pattern</pipe-help>

<param-name>T</param-name>
</pipe>

</output-pipes>
</mapping>

<!-- ... etc ... more mappings would go here -->

</mappings>

</argument-model>

<!-- Specify program meta information -->
<description-model>

<name>MatchLines</name>
<version>

<major>0</major>
<minor>1</minor>
</version>

<description>Extract lines of text that
match a regular expression pattern</description>

<author>Daniel Burke</author>
<website>http://www.doc.ic.ac.uk/project/2004/362/g04362341M/MavenSite/</website>
<copyright>

<name>Daniel Burke</name>
<year>2004</year>

</copyright>
<keywords>

<keyword>grep</keyword>
<keyword>match</keyword>
<keyword>text</keyword>
<keyword>find</keyword>
<keyword>pattern</keyword>

</keywords>
<program-help>TODO: Write MatchLines help</program-help>

</description-model>

<!-- Specify how program exit codes map onto messages -->
<return-model>

<return-mappings>

28

CHAPTER 3. PROGRAM AND TYPE . . . 3.3. PROGRAM REPRESENTATION . . .

<return-mapping>
<value>0</value>
<message>No errors</message>

</return-mapping>
<return-mapping>

<value>1</value>
<message>Unexpected error</message>
<is-good />

</return-mapping>
</return-mappings>

</return-model>
</program>

3.3 Program Representation Interfaces

Having described and motivated the meta-information we required from programs, this section dis-
cusses the API that programs to be loaded must adhere to, and what it gives them.

3.3.1 Initial API

The initial implementation required each program to come with a class that implements a Java interface
for extracting the program meta-information. This simple approach allowed the programs to specify
what their meta-information is through well-defined methods of the interface.

However, this requires that all programs loaded into the shell obey a provided contract, and essentially
become trusted. Although Java has been built to implement a strong security model, this is at the level of
securing a single JVM via policies. While there are ways to secure parts of individual pieces of running
code, there is nothing to stop a loaded program from synchronizing on a system class and not releasing
the lock, from accessing any other (non-system) thread, or from creating its own threads. Although there
is potentially a future API coming out to solve this [JISO], it is not available yet. For a further discussion
of these problems, I refer the reader to [HS01].

As a shell is a fundamental usage tool of a computer, it did not seem correct to trust a program before
the user actually decides to execute it. Security for the user should be guaranteed and not assumed.

3.3.2 Secure API

The simplest way to protect the user from untrusted code is not to execute any. For this reason program
argument validation and help exportation is statically defined by an XML meta-information file.

Programs still need to be executed, however it was decided that instead of executing them inside the
shell’s JVM, a new JVM should be created for each one. To allow programs access to the high-level
discriptions of their arguments, and their (possibly many) named input and output pipes, there is a
requirement that they extend a class named AbstractProgram , which will invoke the program at an
entry point with arguments corresponding to each of the above. This is comparable with the require-
ment that Java Applets extend java.applet.Applet to be loaded into a browser.

The AbstractProgram class handles the communication with the shell across the standard in and out
pipes, and Java’s serialization mechanisms are used to communicate the high-level objects that travel
across the pipes to the child processes and back, this is described further in Section 4.6

3.3.3 AbstractProgram

This is the class that programs must extend to be executed in Kevlar. Implementations must provide a
zero-argument constructor (since the class is to be loaded by reflection). AbstractProgram provides

29

CHAPTER 3. PROGRAM AND TYPE . . . 3.4. TYPE INTERFACES

an entry point method with the signature:

public abstract void run(IArgumentInstance args,
Map<String, IInputPipe> inputs,
Map<String, IOutputPipe> outputs);

Here the argument instance is the programmatic representation of the argument values given to the
program, as specified in its argument model. The maps of Strings to Pipes relate the named input and
output pipes again as specified its argument model.

3.3.4 Packaging

To be successfully loaded into Kevlar, programs must be jar’d up, and the class file must have a mirror
.xml file specifying its meta information in the same directory as the class file. Also the meta-information
to the jar file must contain a name-value pair with the name “Programs”, and a comma-separated list of
fully-qualified class names which are the class (and xml) names of the files to load.

3.4 Type Interfaces

Types in Kevlar are much simpler than programs from the end-developer point of view. There are
simply a few contractual points to be adhered to.

• All types must descend from IType . This is to ensure that types remain in a tree.

• All types must only descend from one other type if they do not descend directly from IType .
This is to ensure that the resultant type-tree has only single inheritance.

• All types must be interfaces. This is so there is a clear distinction drawn between a type, and an
implementation of a type.

• All type implementations must be completely in the jar file that they implement. This is so that
the Kevlar shell can find the definitions as well as all children.

• All type implementations must be Serializable. This is so that the instances of types can be passed
across streams.

• Types must be placed in jars, with manifest annotations. The jar files containing types must have
a manifest attribute ’Types’, with a comma-separated list of the fully-qualified class names of types
in the jar.

3.4.1 Mutable types

Our contracts, however, do not specify that the implementation of types must be immutable. This allows
for generic types to be operated upon by programs. A program can declare that it accepts inputs as any
sub-type of a type, and outputs the same sub-type it recieves, but will change the value of the instances
of the type passing through it by using the appropriate setter or state-changing methods. For example
ITextType exports a method setText(String newText) throws IllegalArgumentException .
This allows for the text-replace program to be able to apply a regular expression to any type with text-
type rooted in its heirarch (e.g IFilenameType) and still return the sub-type.

3.5 The ’Show’ program

The show program is a special program in the shell used for visualizing the output of a pipeline. Unlike
other programs, Show interacts with the Shell and the GUI of the shell.

30

CHAPTER 3. PROGRAM AND TYPE . . . 3.6. PROGRAMS WRITTEN FOR KEVLAR

Since a 2-dimensional pipeline can have many outputs, the user will place a show program wherever
they wish to visualize the output of a program.

Show is used like a normal program. The data input node is connected to the output of another program
and its arguments are set.

The Show program does not contain any code to display the data. Instead, it passes the data it recieves
to the GUI, which selects an appropriate method to display the data. The method used by the GUI to
display the data is explained in Section 6.12.

Figure 3.6 . The show program and its available arguments. The data input node takes an output of the
pipeline and visualizes it.

SHOW’S ARGUMENTS

• Name. The GUI can use this name as the title of the visualizer window it uses to display the output.

• Show-Using. This argument instructs the GUI which specific visualizer to use for the data. This
issue is covered in detail in Section 6.12.

• Open-Lazily. This argument instructs the GUI to not open a visualizer window until the first item
of data comes through into Show. This is useful for Show programs attached to Error outputs.

When a pipeline is run, our Shell has some rules that relieve the user from adding many ’Show’ pro-
grams.

• If that pipeline is a single program with one output, a Show program is automatically connected to
that output. This makes it very easy to make small pipelines, such as one to list directory contents.
This should improve the speed at which the shell can be used.

• Also, since a user should not be concerned with specifying that they want to visualize errors of
programs, if a program has an unconnected output called ”Error”, a Show program will automat-
ically be connected with the ’Open-Lazily’ argument set on.

3.6 Programs Written For Kevlar

In order to demonstrate the Kevlar system, we have written programs so that all features of the system
can be demonstrated.

• CurrentWorkingDirectory. This program outputs a representation of the current working direc-
tory.

• Junction. This program allows the multiplexing of up to 3 input pipes into (up to) 3 output pipes.

• Split. This program converts a single input-pipe into two output pipes.

• Merge. This program merges two input pipes into a single output pipe.

• SysExec. This program allows the execution of a system-native program, allowing passing in of
standard in, and extracting of standard out.

• TimeOutRepeater. This program repeats any of its input upon its output, and exits after a certain
quantity of time has passed with no input.

• GetFileContents. This program reads in file names on its input stream, and returns the textual
contents of its inputs.

31

CHAPTER 3. PROGRAM AND TYPE . . . 3.7. TYPES WRITTEN FOR KEVLAR

• ListFiles. This programs outputs the name of each file in directories specified by its inputs.

• MakeDirectory. This program takes names of directories on its inputs and creates them, out-
putting the names of the directories it successfully created.

• MoveFiles. This program takes source and destination names for files and moves the source file
to the destination file.

• ImageLoader. This program takes the names of image files to load and outputs the images, along
with their file names and any files that failed to load.

• ImageEdit. This program takes images as input and applies a transform to them to produce altered
images on its output.

• Show (Built-in). This program provides either a textual or graphical representation of its inputs.

• TextReplace. This program allows the user to apply a regular expression replace to some text-
based input to alter its value.

• TextSearch. This program filters input text, only outputting those inputs that match a given regular
expression.

• TextSplit. This program takes text inputs, and splits them into multiple text-outputs

3.7 Types Written For Kevlar

In order to demonstrate the Kevlar system, we have written types so that all features of the system can
be demonstrated.

• IType. This is the root type that all other types must descend from.

• ITextType. This is a basic type representing an arbitrary length string of text.

• IFilenameType. This is an extension of ITextType where the text-string represents a file path/name.

• IImageType. This represents image data.

32

Chapter 4

Framework

4.1 Overview of the Framework Design

The framework is the core of the Kevlar project; it manages the compilation and manipulation of the
pipelines. It contains the components to validate the pipelines for type safety and to execute them.
Furthermore the framework uses dynamic loaders to pick up user defined types and programs in real
time.

The following description gives a brief overview of the components the framework is composed of.

• Dynamic type and program loaders. The dynamic types and program loaders load the user de-
fined types and programs into the framework. They are able to pick up the types and programs
the user has added to the system in real time, even when the Kevlar system is already running.

• Program Repository. The loaded programs are stored and managed within the Program Repos-
itory module of the framework. It is the access point for programs in the Kevlar system and is
used by the HIAL to propagate the programs up to the GUI. The Program Repository also attaches
unique identifiers to each program.

• Type Checker. The type checker component contains a library of functionality used to anaylse
pipelines for type safety. It uses the loaded types to construct a type tree and exposes a set of
functions for performing operations on types such as testing for type compatiability, and finding
the least upper bound of a set of types.

• Contexts. The framework manages a collection of contexts. Contexts are containers for pipelines.
They hold the data structure that represents the pipeline. A context has functions for adding new
programs to the pipeline and for connecting them with pipes. It contains the part of the type
checking algorithm that is tightly coupled with the pipeline data structure. It uses the methods
of the TypeChecker to check user manipulations of the pipeline for type safety. Furthermore, it
invokes the real time execution of the pipeline.

4.2 Program And Type Loading

One of the requirements for this project was a way of dynamically loading new programs and types into
the system. Also, an optional extension to the project was the dynamic loading of visualisation plug-ins
to the Kevlar shell.

Seeing that there would be a need to periodically scan the file system for updates, and that this was func-
tionality common to all the potential loaders, it was decided to abstract it away into its own component,
and make the loaders for types and programs subscribe to it.

The following sections describe the IDirectoryWatcher , ITypeLoader and IProgramLoader classes,
which perform the dynamic loading of programs and types.

33

CHAPTER 4. FRAMEWORK 4.2. PROGRAM AND TYPE LOADING

Figure 4.1 Block diagram showing the framework components interaction. The main components of the
framework

4.2.1 IDirectoryWatcher

4.2.1.1 Design Notes

As mentioned already, the IDirectoryWatcher s role is to abstract away the interactions with the file
system so that the other loader components can stay focused on managing programs / types.

To do this in a useful way, it was decided to make the IDirectoryWatcher interface support a call-
back event model. In this model, users of the IDirectoryWatcher request that a particular directory
be watched and provide an INotifierFilter that is used to determine which jar files in the directory
the notifier part of the INotifierFilter should be informed of.

4.2.1.2 Implementation Notes

The implementation of the IDirectoryWatcher was made as simple as possible. The core of the
implementation revolves around its run() method, which re-evaluates the directories being watched
for changes. Originally the IDirectoryWatcher had its own thread that called this method in a loop
with 1 second sleeps in between. It was later decided to move the control of this thread into the Loader
class which aggregates together all the loaders and the IDirectoryWatcher , so the thread could be
shared by all.

While the program and type loaders where being written, it was noted that both decided whether a jar
file was interesting to them depended only upon the manifest information found in the jar files. The
code required to extract the manifest information (represented by a Java API class named Attributes)
was refactored into the IDirectoryWatcher , and it is this information that ht INotifierFilter
uses to decide if there is an interest in a given jar file.

34

CHAPTER 4. FRAMEWORK 4.2. PROGRAM AND TYPE LOADING

Figure 4.2 The Exported Loader API

4.2.2 ITypeLoader

4.2.2.1 Design Notes

The ITypeLoader design was biased by its core functionality, which was to provide a way for the
framework layers above it to get hold of the current tree of valid types loaded into the system. This was
to be provided by the method getTypeTree .

A secondary function of the ITypeLoader was to provide a mapping from class-names of types to their
IInterfaceClass representation for use by the argument model provider when reading in program
descriptor files.

Finally the ITypeLoader had to provide a way to get all currently loaded jar files in a classpath repre-
sentation, suitable for the forked children of Kevlar to use.

4.2.2.2 Implementation Notes

The implementation of the ITypeLoader , like that for the IDirectoryWatcher , is centered on its
run() method. Here the method deals with any jar events (added, removed, updated) that have oc-
curred concerning types. Originally this method was designed to be run in a thread that waits on its
event queue, but it was felt that this was wasteful of a thread (and its associated resources), and was
refactored to instead just deal with any events that may be in the queue, and then return.

As outlined in Section 3.4 types are exported in jar files which contain manifest information with a tag
“Types” and values being the canonical class1 name of the type. Upon jar added events, the type loader
loads in the jar and extracts the types it contains from its manifest information. It then adds the URL
of this jar to a customised URLClassLoader . 2 This URLClassLoader is reused in the execution
system (see Section 4.6.3) to load in the class definitions of the implementations of types (that by the
type specifications must also be in the type-jar files.

Once the type classes are loaded in, it is checked that they are Java interface classes, and that they do
extend from IType . With their validity established, they are added to the integral set of available types.

1The canonical class name is the fully-qualified package and class name of a Java class, e.g. java.lang.Math as opposed to
just Math .

2It has been customised to force the usage of this class loader and not its parent to ensure that classes that should be loaded
from plugged-in jars do so. This is because the unit tests, and eclipse place the entire source tree on the class-path by default which
includes the sources for all types, although the built version of Kevlar has the types (and program) in separate jars from the main
Kevlar jar.

35

CHAPTER 4. FRAMEWORK 4.3. CONTEXTS

After all the events have been processed, if the state of the ITypeLoader has changed, it rebuilds its
type tree. This is a representation of the type hierarchy of all loaded types augmented by the built-in
types IType (the root type), and IImageType . The type tree is checked during construction for possible
multiple inheritance (which, for simplicity we have deliberately disallowed).

During the testing of the ITypeLoader , it was discovered that under the WindowsTM operating system,
the use of an URLClassLoader ”locks” any jars that it refers to, meaning only the Kevlar JVM can alter
(update/delete) the file. Researching this problem revealed that separate class-loaders for each jar and
careful control of all references to the classes they contain, coupled with a mechanism for the user to
specify the types to unload from within Kevlar would provide a solution.3 This was felt, however, to
be too much work for a feature that is unlikely to be used and is not central to the project. The default
alternative (requiring the user to restart Kevlar when wishing to remove type jars), although not perfect,
is acceptable for our application given the time restrictions this project has been under.

4.2.3 IProgramLoader

4.2.3.1 Design Notes

The IProgramLoader s sole functionality is to provide the ProgramRepository with the set of IProgram
objects, representing programs that can be used by the Kevlar shell. To this end, the IProgramLoader s
principal exported method is Set <IProgram >> getPrograms() .

4.2.3.2 Implementation Notes

Again, the IProgramLoader s run() method deals with jar events. For each new jar, its manifest
is parsed and program class names are discovered. As described in [TODO xref descriptors] the cor-
responding Program Descriptor files are loaded and parsed to establish argument, description and
return-value models for the program. These are then used to build the IProgram representation of
this program, and it is added to the internal set of available programs.

Additionally, upon the calling of getPrograms() , any built-in programs are added to the set before it
is returned.

4.3 Contexts

4.3.1 Specification

The framework has a complete set of functionality for constructing, type checking and executing pipelines.

• Pipeline construction. The Context provides functions to the user to manipulate pipelines. This
includes adding and removing of programs to a pipeline, as well as adding and removing pipe
connections between programs.

• Pipeline validation. The Context will perform type checking each time a pipe is added or re-
moved, and each time a program’s IO nodes change due to arguments changing. The type check-
ing algorithm is covered in detail in Section 4.5. This Context will use the functionality of the
TypeChecker and consequentially the loaded Type Tree to validate the type safety of the pipeline.

• Pipeline execution. The Context interacts with the framework’s execution engine to execute type
safe pipelines the user has constructed.

A Context encapsulates a large amount of functionality needed by the HIAL. Its interface contains every
action that might be done to a pipeline, and has methods for retrieving any useful sets of information
on the pipeline. It also has a listener model for notifying the HIAL whenever a change occurs to the
pipeline. For example, if a program is removed from the pipeline due to that program being unloaded
by the user, the context will remove the program and send a programFailed notification event.

3We would like to that Robert Chatley <http://www.doc.ic.ac.uk/˜rbc > for these suggestions.

36

CHAPTER 4. FRAMEWORK 4.3. CONTEXTS

4.3.2 Pipeline Construction

4.3.2.1 Implementation Notes

Getting a handle to a context. The first step to start constructing a pipeline is to obtain a handle on
a new IContext . This is done by calling IFramework ’s createNewContext(...) function which
will add a new Context to the framework manager and return a reference to an IContext .

Adding a program to the pipeline. Before adding a new program to the pipeline, the list of loaded
programs must first be accessed. As previousely explained, the Program Repository offers the HIAL
access to the set of loaded programs and attaches unique identifiers to each program in the form of
IProgramID s. To get access to the Program Repositry, the HIAL calls IFramework ’s getProgramRepository()
which will return a handle to the IProgramRepository . By calling getProgramDescriptions()
we get a list to the loaded programs and their associated IProgramID s. Once the IProgamID of the
program we want to add has been obtained, we can call IContext ’s addProgram(...) method to
add the program to the pipeline contained within the Context in the form of an IPipelineProgram .

Adding a pipe to the pipeline. Every IPipelineProgram that has the ability to connect input and/or
output pipes exposes a collection of INode s used for the connection of input pipes and a collection of
INode s used for the connection of output pipes. An INode can be seen as a connection point and also
has an associated INodeID . Having obtained the two INodeID s of the programs we want to connect,
a call to IContext ’s addPipe(...) can be made to create a pipe betwean them. This action will be
type checked internally by the context with the help of the TypeChecker and will inform the user if
this connection is type safe and how it affects the other connected pipes in the pipeline. This will be
detailed further in the next sections.

Figure 4.3 Framework public interface dependencies

4.3.3 Pipeline validation

4.3.3.1 Design Notes

After every user manipulation of the pipeline contained by the context, the context starts off a type
checking routine to verify the validity of the last action. This happens whenever a user connects pro-
grams with a pipe, when a pipe is removed, when a program’s arguments change causing that pro-

37

CHAPTER 4. FRAMEWORK 4.4. TYPE CHECKING

gram’s IO nodes to have changed types, when a program is removed and consequentially the connected
pipes to it are removed, or when the type tree has been modified.

4.3.3.2 Implementation Notes

The main entry point to the type checking of the pipeline is the private method floodTypeCheck(...)
which is implemented by Context . The type checking algorithm, will try to consolidate with the
user’s change by perturbating the change through all the connected programs which are affected by
the change. By consolidation we mean that types associated with IParameteredTypeClass es will be
upcasted appropriately to make the new pipeline valid. Furthermore the algorithm will verify that two
IBasicTypeClass es which are connected are valid when the input type is a subtype of the output type
according to the loaded TypeTree . When the algorithm finds that the pipeline is not valid, it will tell
the user which pipes are no longer valid after the change, else it will have updated the pipeline with the
consolidated types and tell the user that the action was valid. This explanation might seem vague, but is
explained in more detail in the Type Checker chapter which goes indepth about IBasicTypeClass es
and IParameteredTypeClass es.

4.3.4 Pipeline Execution

4.3.4.1 Design Notes

The Context interacts with the framework’s execution engine to execute type safe pipelines the user has
constructed.

When a Pipeline has been validated as type safe by the type checking algorithm, the user may choose to
execute it. The IContext contains the execute() method which will pass all the pipeline information
to the execution engine, which in turn will run the pipeline.

4.3.4.2 Implementation Notes

Without going into too much details about the implementation, every IPipelineProgram contains the
run(...) method. This method will start the execution of the program. Once all programs are running,
the pipeline is in effect executing and I/O results are passed over the pipes betwean the programs. This
will be further detailed in the Program Execution section.

4.4 Type Checking

This section assumes an understanding of lattice and type theory. The appendix contains a chapter on these topics,
we therefore recommend the reader to refer to these sections if parts of the design and implementation of the Type
Checker are unclear.

4.4.1 Motivation

4.4.1.1 Advantages of types

In a traditional command line console, the data that flows across pipes is raw binary data without any
sense of type. The output is always binary data represented as ASCII text on the console. Although it
is possible to make an image editing program that works on the binary data that it gets on its standard
input, it is difficult as the binary data needs to be parsed, validated as being correct, and typically, only
one image can be sent on the input this way. In our shell, images are represented as image objects. They
do not need to be parsed by the program that consumes them, and the programs can take a list of images
on its input. The image’s invariants are guaranteed to hold.

38

CHAPTER 4. FRAMEWORK 4.4. TYPE CHECKING

Although, much data can be represented as text, a lot of information can be lost by converting the data
to this loosely structured form. For example, an email and its headers can be represented as text. If you
wanted to pipe the email into a spam filter, it would have to parse the email itself. If instead, we invented
a standard email type with member fields, programs could be made which take the email object directly
and use its member fields to get the email sender, the send time, and maybe attach information to the
object such as a spam score. A special email client could be made that outputs AdvancedEmail objects, a
sub-type of email. AdvancedEmail types can store a list of related emails (replies etc), and spell checking
information, yet remain completly compatiable with programs that only take Email objects.

Finally, in traditional shells, output of an email pipeline would be shown as text. Our shell could have
an associated visualizer for the Email and AdvancedEmail types. This visualizer could show the email
text, but allow you to expand and contract the email headers, depending on if you wish to see them.

For these reasons, we realised that types would be a useful addition to our shell.

4.4.1.2 Consequences of types

However, when you add types, programs will expect those types, and will crash if they receive an object
that is not compatiable with the type they are expecting. Therefore, type safety must be enforced over
the pipeline.

The addition of type safety in the Kevlar system offers many benefits. First of all the user will be certain
that its constructed pipeline is logically correct with regards to the types of information flowing over
pipes, and can therefore assume that execution of the pipeline should not have unexpected behaviour
relating to type mixups. This is comparable with a programming language that checks that the types of
the arguments provided via a function call match the function signature. If they do not, it is certain the
user has made a mistake.

In traditional shells, a common complaint is that it is hard to know which program to use to solve a
problem. While our shell attempts to address this problem with program search, and program categori-
sation, another possiblitity can be to have a hint system which will list all the available programs in the
repository which could be connected safely to the currently selected program. For example, the user
places down a program that loads images, then selects its image output. Then the GUI could offer a set
of programs that can take the image type as input.

4.4.2 Design Notes

After every manipluation of the pipeline by the user the TypeChecker will be invoked to perform type
checking operations. The TypeChecker is hidden to the HIAL and will be invoked by the Context .

The hierarchical derivation structure of types is encapsulated by the TypeTree . The TypeTree is
available to the TypeChecker so that it can use it to validate the pipeline.

In order to describe what the Input and Output types are that the program accepts the framework
provides IBasicTypeClass which is used for basic tyoes, non parametered (ie. templated), and
IParameterdTypeClass which is used for parametered (templated) types which contain a name as
well as an upper bound. The types the IBasicTypeClass es and IParameteredTypeClass es refer
to must be present in the loaded TypeTree .

The algorithm that validates the pipeline is called the type flow algorithm. This algorithm is imple-
mented by Context ’s floodTypeCheck(...) as described in the Context chapter. To implement this
method Context calls methods on TypeChecker which in turn uses TypeTree .

4.4.3 Implementation Notes

4.4.3.1 The Type Tree

One of the components used by the TypeChecker is the ITypeTree . At start up and whenever a user
adds a new type to the system, a new TypeTree will be constructed using the dynamic type loader. The

39

CHAPTER 4. FRAMEWORK 4.4. TYPE CHECKING

Figure 4.4 Design of the TypeChecker component

TypeTree is a hierarchical tree that shows inheritances of the types. At the root of every TypeTree is
the IType type. The tree will not support multiple inheritance, so every type will contain one and only
one superclass.

The most interesting methods implemented by TypeTree are IInterfaceClass getLeastUpperBound(Set
children) and boolean isDerivedFrom(IInterfaceClass typeClassA, IInterfaceClass
typeClassB) . getLeastUppeBound calculates the Least Upper Bound of a set of types in the tree
and isDerivedFrom returns true if and only if the first type is derived from the second type, ie. lower-
bound or equal to the second type in the TypeTree . These methods form the basic calculations to
support the type flow algorithm, which performs the validation of the pipeline. The TypeChecker
uses TypeTree to implement its validation methods.

4.4.3.2 Input and output types

User defined programs in Kevlar will have zero or more INode s to which input pipes can be con-
nected to and zero or more INode s to which output pipes can be connected from. Every Node is asso-
ciated with an IBasicTypeClass or an IParameteredTypeClass . Both IBasicTypeClass es and
IParameteredTypeClass es will contain references to a type in the TypeTree . However IBasicTypeClass es
are used when the type of the input or output is known at the design time of the program whereas
IParameteredTypeClasse s are used when only the upper bound type of the input and output in the
tree is known and when the type needs to be inferred by the TypeChecker . The following sections will
go into more detail about IBasicTypeClass and IParameteredTypeClass .

40

CHAPTER 4. FRAMEWORK 4.4. TYPE CHECKING

IBasicTypeClass If the type of the input and output data is known by the designer of the program
and does not need to be inferred dynamically by the Kevlar framework, the designer should asso-
ciate IBasicTypeClass es to the classname. An IBasicTypeClass contains an IInterfaceClass
which refers to a type in the TypeTree .

To illustrate this with an example, imagine the user wants to have a program that accepts an input
pipe with IText as its type and will then append the letter ’Z’ to it. It would then simply output the
edited IText via the output pipe. So the designer of the program knows that the input will be of type
IText and also knows that the output should be of type IText . If in the type system, IFilename is
extended from IText , one could also pass IFilename to this program, although the output would still be
upcasted to IText as the designer of the program expected. If this behavior of upcasting and associated
information loss is not wanted, the user should associate IParameteredTypes to the INodes .

Figure 4.5 IBasicClassType upcasting. Diagram of a Command which upcasts IFilename to IText .

IParameteredTypeClass If the designer of a new program does not want to restrict its output to a
predefined type as in the example above, an IParameteredTypeClass should be asscoiated with the
INode .

An IParameteredTypeClass contains the name of the parameter and an IInterfaceClass which
refers to a type in the TypeTree to give an upper bound to the types that can be handled or outputted
by the command.

By way of example, if a group of third party developers wants to make a program that is generic for all
IText types and subclassed types of IText , eg. IFilename , it should associate an IParameteredTypeClass
with the upper bound IText to the INode s. An instance of this is to make a program like sed that takes
in any subtype of IText and returns an edited version of it but with the same type.

Figure 4.6 IParameteredTypeClass example. Diagram of a program which uses INode s associated with
IParameteredTypeClass es. Notice that if the user had inputted data with type IImage Kevlar would
reject this since it has not an upper bound of IText as specified by the IParameteredType.

41

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

4.4.3.3 The TypeChecker

The TypeChecker contains the validation functions which support the validation of the pipeline. The
most important methods it exposes to the Context are isPipeable , getLeastUpperBound and
inferTypeOfNode . Method isPipeable returns if two programs in the pipeline are connectable
with a pipe, getLeastUpperBound simply calls the same method on the typetree it contains, and
inferTypeOfNode returns the type of the Node after templates types have been updated with their
new upper bounds.

4.5 Type checking algorithm

4.5.1 Symbols and terms

• T < S. T is a proper subtype of S.

• T <= S. T is a subtype of S. (T may be the same as S)

• Least upper bound (LUB). As explained in Section 10.1, the least upper bound of a set of types is
their common ancestor. Since this term is long, it will be shortened to LUB.

• A node is of type Text. This notation will be used to say that a node has a type Text. (Which would
actually be ITextType in the Kevlar system). Therefore the node has a IBasicTypeClass object
to represent its type.

• A node is of type A : Text. This notation will be used to say that a node has a parameter name ”A”,
and the upper bound of that node is the type Text. Therefore the node has a IParameteredTypeClass
object to represent its type.

4.5.2 Type tree example

In order to allow explanations of the type checking algorithm, we will use an example type tree. This
type tree is shown in Figure 4.7

Figure 4.7 An example type tree. IFilenameType < ITextType < IType. IImageType < IType. We will
use the short names, Filename, Text, IType, and Image to refer to these types.

4.5.3 Bound parameters

At any time in the lifetime of a context, each program in the pipeline will have a set of parameter-type
bindings. These bind each parameter name to a type.

For example, if a program has two input nodes of type A : TypeT and a single input node of type B :
TypeT, then the program in the context would have to store the current calculated type binding of A
and B, and these types would be a subclass of TypeT. Note that this is just a cached value, as it can be

42

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

recalculated at any time. However, one of the class invariants of the Context class is that the parameter-
type bindings of a program are always up to date.

4.5.4 type-safe

First, some more explanations of terms.

• If an output node is of type T, we say it outputs type T.

• If an input node is of type T, we say it requires type T.

• If an output node is of type A : T, and A is bound to S for that program, we say it outputs type S.

• If an input node is of type A : T, and A is bound to S for that program, we say it requires type S.

4.5.4.1 Runtime condition test for type-safety

We can informally take type-safe to be the state of a pipeline, such that when it is run, a condition is
guaranteed. This condition is that: If all programs that are defined to output a type T on a certain
output node, only outputs objects of types S >= T on that node, then all programs that are defined to
require an object of type U on their input node will only receives objects of type V >= U.

The above definition is an intuitive definition. It clearly guarantees stable execution of the system. Note
that for the above condition, it must be assumed that all programs may output objects, or may not, and
that if a program has input nodes and output nodes of type A : TypeT, and none of those input nodes
are connected, it is impossible for that program to output any objects on those output nodes. This can be
guaranteed since if the program does not receive any objects on its inputs of type A : TypeT, it will have
no way of taking those objects and manipulating them to output them as discussed in Section 3.4.1.

4.5.4.2 Constraint test for type-safety

We can also express type-safe as being the state of a pipeline when it adheres to a set of constraints.

CONSTRAINTS

• 1. When an output node that outputs TypeT from one program is connected to an input node that
requires TypeS, it is required that TypeT <= TypeS.

• 2. When a program has several inputs, all of type A : TypeT, the parameter-type binding of A for
that program must be the LUB of all the output types from outputs that are connected to those
inputs. A must be bound to a type TypeS, such that TypeS <= TypeT

There is an issue however. Given the second constraint, what if there are no connected inputs? What
is the LUB of an empty set of types? For now, we will modify the constraint, so that if the connected
inputs is an empty set, the parameter A (A : TypeT), is bound to TypeT.

Given the above modification, it is actually the case that the constraint method of testing for type safety
has a set of type-safe pipelines that is a subset of the set for the runtime condition method. The reason
for this is covered below, and the constraints will be modified later to cope with this issue.

We need to use the constraint method for testing for type-safety as this is the only one that can be tested
for in the implementation of the type checking algorithm.

4.5.5 Motivating examples

A set of examples is needed to demonstrate type-safe pipelines vs non-type-safe pipelines. In the follow-
ing examples, pipelines are shown with numbers next to each pipe. These numbers represent the order
in which pipes are added. We will discuss whether the pipeline is type-safe after each pipe addition
until all pipes are added.

43

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

4.5.5.1 A simple two program pipeline

Figure 4.8 shows the simplest pipeline that can exist with more than one program.

• pipe 1. added.

– Constraint 1. Holds trivially since Filename <= Filename.

– Constraint 2. Is vacuously true. (Since there are no inputs of type A : TypeT.)

Figure 4.8 Example 1.. This pipeline would output the contents of all files in the current directory.

4.5.5.2 A pipeline that is not type-safe

Figure 4.9 shows a pipeline that fails constraint 1.

• pipe 1. added.

– Constraint 1. Fails since it is not true that Filename <= Image.

– Constraint 2. Is vacuously true. (Since there are no inputs of type A : TypeT.)

Figure 4.9 Example 2.. This pipeline is illogical, the user has clearly made a mistake. The user may have
meant to use the Image-Loader program to first load images from filenames.

4.5.5.3 A pipeline that uses parameterized types

Figure 4.10 shows a pipeline that is not type-safe after the first pipe is added, but then becomes type-safe
again after the second pipe is added.

• pipe 1. added.

– Parameter-bindings. The Context would attempt to calculate the binding of T : Text so that
it satisfies constraint 2. Since at this stage, only pipe 1. is connected, there are no connected
inputs for Text-Search. Therefore, T is bound to Text, which is the upperbound.

– Constraint 1. Fails since it is not true that Text <= Filename.

– Constraint 2. Is satisfied because the context choose Text-Search’s T to be bound to Text as
the constraint requires.

• pipe 2. added.

– Parameter-bindings. The Context would attempt to calculate the binding of T : Text so that
it satisfies constraint 2. Since at this stage pipe 2. is also connected, there is one connected
input for Text-Search. Therefore, T is bound to Filename, which is the least upper bound of {
Filename }. (Filename is the output type of List-Files’s ’Filenames’ node.)

– Constraint 1. Is satisfied since for pipe 1. Filename <= Filename, and for pipe 2. Filename
<= Filename

44

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

– Constraint 2. Is satisfied because the context choose Text-Search’s T to be bound to Filename
as the constraint requires.

Figure 4.10 Example 3. This pipeline outputs the contents of all text files in the current directory.

Clearly, it is desirable that if a pipeline is type-safe, and any set of pipes are removed, the pipeline is
still type-safe. If this is not the case, the user will have to worry about adding pipes in the correct order
as is the case above. If in the example in Figure 4.10, pipe 2. is added before pipe 1. the pipeline
is always type-safe. In fact, later it is shown that if a pipe is removed from a type-safe pipeline, the
resulting pipeline is still type-safe by the runtime condition measure. Therefore, by transitivity, type-
safe pipelines are still type-safe when any amount of pipes are removed.

4.5.5.4 Solving the problem in example 3

The root of the problem is that the constraints test for type-safety guarantees execution stability, but
does not class all pipelines as being type-safe, which are type-safe under the runtime condition test.

The reason for this is that the runtime condition test assumes that a program with input nodes and
output nodes of type A : TypeT, is guaranteed not to output any objects on those output nodes if the
input nodes are all unconnected. Therefore it does not matter if the pipe satisfies constraint 1.

As we developed the Kevlar type system, we realised this was the case, and modified the constraints
test. We alter the rules for parameter-type binding. A program’s list of parameter name to type bindings
may now additionally bind a parameter to ”*” (Star). This essentially means that the parameter name is
unbounded. The constraints have to be modified to cope.

NEW CONSTRAINTS

• 1. When an output node that outputs TypeT from one program is connected to an input node that
requires TypeS, it is required that TypeT <= TypeS or that TypeT is * (unbound).

• 2. When a program has several inputs, all of type A : TypeT, the parameter-type binding of A for
that program must be the LUB of all the non-* output types from outputs that are connected to
those inputs. If this set of output types is an empty set, A must be bound to *. A must be bound to
a type TypeS, such that TypeS <= TypeT, or TypeS is *.

4.5.5.5 Re-visiting example 3

Referring back to Figure 4.10, we will now look at how the new constraints hold as pipes are added.

• pipe 1. added.

– Parameter-bindings. The Context would attempt to calculate the binding of T : Text so that
it satisfies constraint 2. Since at this stage, only pipe 1. is connected, there are no connected
inputs for Text-Search. Therefore, T is bound to *.

– Constraint 1. Is satisfied since the output node of Text-Search is outputting *.

– Constraint 2. Is satisfied because the context choose Text-Search’s T to be bound to * as the
constraint requires.

• pipe 2. added.

– Parameter-bindings. As before, the Context would attempt to calculate the binding of T :
Text so that it satisfies constraint 2. Since at this stage pipe 2. is also connected, there is one
connected input for Text-Search. Therefore, T is bound to Filename, which is the least upper
bound of { Filename }. (Filename is the output type of List-Files’s ’Filenames’ node.)

45

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

– Constraint 1. Is satisfied since for pipe 1. Filename <= Filename, and for pipe 2. Filename
<= Filename

– Constraint 2. Is satisfied because the context choose Text-Search’s T to be bound to Filename
as the constraint requires.

4.5.5.6 A non-linear pipeline.

Figure 4.11 shows a pipeline that fails when the final pipe is added.

• pipe 1. added.

– Parameter-bindings. The Context would attempt to calculate the binding of Junction’s T :
IType and Text-Search’s T : Text so that it satisfies constraint 2.

∗ Junction. Since at this stage, only pipe 1. is connected, there are no connected inputs for
Junction. Therefore, T is bound to *.

∗ Text-Search. Note that since parameter names have program scope, Junction’s T and
Text-Search’s T are different type-parameters. Since the output of Junction into Text-
Search is currently *, there are no non-* types being inputted into Text-Search. Therefore
Text-Search’s T is also bound to *.

– Constraint 1. Is satisfied for pipe 1. since the output nodes of Junction are outputting *.

– Constraint 2. Is satisfied because neither Junction, nor Text-Search have any non-* types being
inputted into them, so binding T to * for both is the required binding.

• pipe 2. added.

– Parameter-bindings.

∗ Junction. Now that List-Files is connected to Junction, Junction’s T is bound to Filename.
Therefore ’Out-A’ and ’Out-B’ of Junction output Filename.

∗ Text-Search. Text-Search is receiving Filename on its ’In’ input, so Text-Search’s T is
bound to Filename also.

– Constraint 1. Is satisfied.

∗ Pipe 1. Is correct, since the output of Junction’s ’Out-A’ is Filename, and Text-Search’s
’In’ requires input of type Filename (As Text-Search’s T is bound to Filename). (Filename
<= Filename)

∗ Pipe 2. Is correct, since the output of List-Files is Filename and Junction’s ’In-A’ requires
input of type Filename (Since Junction’s T is bound to Filename). (Filename <= Filename)

– Constraint 2. Is satisfied.

∗ Junction. The LUB of { Filename } is Filename, so T is correctly bound to Filename

∗ Text-Search. Again, the LUB of { Filename } is Filename, so T is correctly bound to File-
name

• pipe 3. added.

– Parameter-bindings. These are unchanged, Junction and Text-Search’s T are both bound to
Filename.

– Constraint 1. Is satisfied for pipe 1. and pipe 2. as before.

∗ Pipe 3. Is correct, since the output of Junction’s ’Out-A’ is Filename, and Get-File-Content’s
required input type on ’Files-In’ is also Filename. (Filename <= Filename)

– Constraint 2. Is satisfied as before.

• pipe 4. added.

– Parameter-bindings.

46

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

∗ Junction. List-Files and Get-File-Contents are connected to Junction, Junction’s T is bound
to Text which is the LUB of {Filename, Text}. Therefore ’Out-A’ and ’Out-B’ of Junction
output Text.

∗ Text-Search. Text-Search is receiving Text on its ’In’ input, so Text-Search’s T is bound to
Text also.

– Constraint 1. This time, this constraint Fails on pipe 3.

∗ Pipe 1. Is correct, since the output of Junction’s ’Out-A’ is Text, and Text-Search’s ’In’
requires input of type Text. (Text <= Text)

∗ Pipe 2. Is correct, since the output of List-Files is Filename and Junction’s ’In-A’ requires
input of type Text. (Filename <= Text)

∗ Pipe 3. Is incorrect. The output of Junction’s ’Out-B’ is Text, but the second Get-File-
Contents requires type Filename on its ’Files-In’ input node. (Note that it is not true that
Text <= Filename)

∗ Pipe 4. Is correct, since the output of the first Get-File-Contents is Text and Junction’s
’In-A’ requires input of type Text. (Text <= Text)

– Constraint 2. Is satisfied.

∗ Junction. The LUB of { Filename, Text } is Text, so T is correctly bound to Text

∗ Text-Search. The LUB of { Text } is Text, so T is correctly bound to Text

Figure 4.11 Example 4. This pipeline is an example pipeline to show how parameterized types are used
with Junction. If objects of type Filename and Text are fed into Junction, the output type from Junction’s
output nodes is Text. (The LUB.) This causes a failure of constraint 1 on pipe 3.

Of particular interest with this example, is that adding the pipe from List-Files to Junction, not only
changes the type that Junction’s T is bound to, but also changes the type that Text-Search’s T is bound
to. The change has propagated through the pipeline.

4.5.5.7 A pipeline that contains a loop

Figure 4.12 shows a pipeline that has a loop, and requires care when the Context sets the parameter-
type bindings.

• pipe 1. added.

– Parameter-bindings. The Context can actually choose any type to bind Junction’s T to (in-
cluding *). If it chooses to bind T to Text, Filename, Image, or *, then constraint 2. will hold
for all of them. This is because the loop back causes ’positive feedback’ with the type system.
However, the best choice is *.

47

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

Consider the case where T is bound to Text. This satisfies constraint 2. Now, if the user wants
to pipe Junction’s ’Out-B’ into Get-File-Contents’ ’Files-In’ node, it will not work as T must be
bound to Filename. For this reason, T should always be bound to the most specialised type
that satisfies constraint 2 to make the pipeline the most flexible for future pipe additions. The
most specialised type that satisfies the constraint can be complex to determine if there is a
pipeline that contains many loops. If it is possible to bind T to *, this should be done, as this
makes the pipeline the most flexible possible.

In this case, if T is bound to *, any program can be connected to ’Out-B’ of Junction. Therefore,
T is bound to *.

– Constraint 1. Holds since ’Out-A’ outputs *.

– Constraint 2. Is satisfied because Junction receives no non-* inputs, so * is a correct binding
for T.

• pipe 2. added.

– Parameter-bindings. Now, T is bound to Filename, which is the LUB of { Filename }.

– Constraint 1. Is satisfied.

∗ Pipe 1. Is correct, since ’Out-A’ outputs type Filename, and ’In-A’ requires type Filename.
(Filename <= Filename)

∗ Pipe 2. Is correct, since output of List-Files is Filename and Junction’s ’In-A’ requires
input of type Filename. (Filename <= Filename)

– Constraint 2. Is satisfied because T is bound to the LUB of { Filename }.

Figure 4.12 Example 5.. This pipeline sends the filenames from the current directory into an endless
spin-cycle.

If pipe 2. is removed from the above example after it is added, it is notable that the binding for T should
return to *, and may not stay at Filenames.

4.5.6 Context’s algorithm for adding and removing pipes.

Given the above examples, the task of the Context can now be expressed as, finding the most-specific
new type bindings for each type parameter-name that satisfy constraint 2. whenever the bindings might
change.

There are 3 times when the bindings might need to change

• A pipe has been added.

• A pipe has been removed

• The arguments have changed on a program causing the type of its IO nodes to change.

To simplify implementation, whenever an argument changes, all connected pipes are saved and discon-
nected first, then the IO node type changes are refreshed, then the saved pipes are reconnected. This
means that only the pipe added and pipe removed cases need to be checked.

48

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

4.5.6.1 Context’s class invariant

The job of the context can now be thought of as preserving its class invariant. This invariant is to
preserve the two constraints as discussed above. Adding a pipe should either be successful if possible,
and the two constraints are preserved, or unsuccessful, in which case the pipe add fails and the offending
new pipe is removed. Removing a pipe is always successful since the two constraints will always be
preserved.

The Context contains a method validateEntireContext() which tests that the invarient holds.
This method is run just before execution to help us catch bugs in the implementation.

4.5.7 Adding a pipe

When a pipe is added, if the pipe connects to an input node that has a parameterized type, there will be
a need to update the binding stored for the parameter-name of that node. If this binding changes, this
may in turn change an output type, and the change will be propagated throughout the pipeline, even
possibly going around in several loops before terminating.

The main challenge therefore in the type algorithm is to keep the bindings up to date. One way of
looking at this algorithm is as a data flow analysis problem. (Such as the data flow problems encountered
in the control flow graphs of compilers).

The bindings for programs can be calculated using the algorithm shown in Figure 4.13

Figure 4.13 Data flow algorithm for keeping bindings up to date. This algorithm takes the same shape
as most data flow algorithms.

In the algorithm:

predNodes(T, p) will get all the output nodes that are connected to input nodes of program p that
have parameter name T.

outputType(q) will return type T, if q is of type T, and it’ll return the current binding for A, if q is
of type A : T.

getLUB(types) will return the least upper bound of the types set ignoring * types. If that set is
empty (or contains only the * type), then getLUB(types) returns *.

Note that this algorithm guarantees the most specific binding, as the type constraint that a parameter-
name is bound to, is never lowered more than is needed to satisfy constraint 2. A binding is always set to
the LUB of the connected output nodes as is required by this constraint. The bindings of programs will
all gradually lower until constraint 2. is satisfied for all programs. Then the algorithm will terminate.
At this point, constraint 1. needs to be checked for all pipes, and the detail that all bound types must be
bound to a type more specialised than their upper bound of constraint 2. must be checked.

This algorithm has order of complexity that is based on the number of programs. However, since when
a pipe is added, most of the time, only a small part of the pipeline will change, it is possible to write
an algorithm for adding a pipe that propagates the changes recursively and therefore has an order of
complexity directly proportional to the part of the pipeline that has changed. This would be useful if

49

CHAPTER 4. FRAMEWORK 4.5. TYPE CHECKING ALGORITHM

Kevlar was ever expanded to have big pipelines (Such as scripts with many commands in one pipeline).
We have chosen to have this propagation method for the type algorithm rather than the first method for
this reason.

Another reason for using the algorithm we have chosen is that when the type checking algorithm finds
a pipeline to be unsafe, it can return exactly which pipes will fail when you add a pipe. (Considering
example 4, adding pipe 4 causes pipe 3 to fail.)

4.5.7.1 Outline of propagation based algorithm

• 1. When a request comes in to add a pipe, that pipe is added. The recursive function floodTypeCheck(newPipe)
is called. This method is explained from step 2 to 4. If the result is a failure, the pipe is removed
completely and an error event is passed up.

• 2. The pipe will connect an output node to an input node. It is checked that the types of these
nodes satisfy constraint 1. If not a failed result is returned with this pipe specified as the problem
pipe.

• 3. If the input node of the program connected to the pipe is of type T, this is a base case, the
algorithm terminates successfully.

If the input node is of type A : T, we need to update the binding of A, to be the LUB of the union
of the types of output nodes connected to input nodes of type A : T. This binding can only become
more general since the set of types that are used to form the LUB will be the same as before,
but will have one new type in the set caused by the new pipe. Therefore, the LUB can only be
more generalised than before. We can take a shortcut when calculating the LUB. The LUB of the
connected output nodes will be equal to the LUB of { CurrentBinding(A), newOutputNodeType
} where the newOutputNodeType is the type of the new output node that the pipe is connected
from. If the binding of A is less than T, we return an unsuccessful type check result.

• 4. Now the new binding for parameter-name A has been calculated, we have to see if it has
changed since the old binding. If it has not, this is a base case, the algorithm returns successfully.

Otherwise, the algorithm gets all output nodes that have parameter-name A, and the algorithm
recurses on any pipes connected to those nodes which takes us back to step 2. Each of these
recursive calls will return either a successful type check result, or an unsuccessful type check result.
If they are all successful, a successful type check result is returned. If any one result is unsuccessful,
an unsuccessful result is returned with the union of problem pipes of all unsuccessful recursions
used to generate the problem pipe set.

Since the algorithm may fail, we need a way to undo all the bindings caused by the propagation algo-
rithm. To solve this problem, all binding changes are done to a temporary map, and these changes are
only applied once the type check algorithm has verified that adding the pipe is safe.

4.5.7.2 Algorithm termination

Although the algorithm may propagate around in a loop on a pipeline for several loops, the algorithm is
guaranteed to terminate. This is because, each time the binding of a program is updated, it is guaranteed
the binding will become more generalised. Since the type tree will be of finite height, the maximum
amount of times the algorithm can update a binding is the height of the type tree.

4.5.8 Removing a pipe

Removing a pipe can also be implemented by running the data flow algorithm to calculate the opti-
mal type bindings for parameter names. However, for the same reasons as before, we chose to use a
propagation based algorithm.

The algorithm is very similar to adding a pipe, except this time, there is no need to check for constraint
1. as the constraint is guaranteed to hold. This is because if you remove a pipe from a type-safe pipeline,
the resulting pipeline is also type-safe. Note that for removing programs, to solve the problems that

50

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

loop backs will preserve their generalised types due to positive feedback, all bound parameters that are
reachable from the removed pipes have to first be set back to *. The least upper bounds can then be
flood updated as per the add pipe routine.

4.5.8.1 Removing pipes leads to type-safe pipelines

We know that before the pipe is removed, constraint 1. and constraint 2. hold. Once the pipe is removed,
there is no longer a need to satisfy constraint 1. for that pipe. The input the pipe is connected to may have
its type binding for its parameter-name changed, but this binding can only become more specialised or
become the * type. This is because the set of types used to calculate the least upper bound has decreased
by one element.

Therefore, output nodes of the same program will only have more specialised output types than before.
We can guarantee that constraint 1. will not be effected on those pipes since the source type will be
more specialised than before. In turn, the output types will propagate to the next program. If the
next program’s input is a parameterized type, the binding of that parameter can only become more
specialised as the type of one of the inputs has become more specialised. This reasoning now applies
inductively. The inductive variant is the fact that bindings always increase towards the top of the tree
and cannot go past the stage where all parameter-name bindings are *.

4.5.9 Summary

The type checking part of Kevlar is essential to ensuring the stability of execution, yet most of the time,
unless the user makes a mistake, they will never even know it is there. Yet every time they use Junction,
or one of the other 7 of 18 programs in Kevlar that use the parameterized type system, they are relying
on the type checking algorithm to correctly handle the type issues so that the programs behave as a user
imagines them to behave like.

4.6 Program Execution

One of the core features of any shell is the ability to actually execute the pipelines (or single programs)
that have been specified by the user.

4.6.1 Overview

As described in Section 3.3, it was decided that the execution of programs would happen in JVM’s
that are apart from the one in which Kevlar runs. Part of the execution of programs therefore required
communication between the child processes and the Kevlar shell in order to pass the piped data between
children.

There are three main sub-components that allow for Program Execution; the pipes that allow data flow
inside a JVM, the IPipeManager that manages the routing of data between pipes and processes, and
Abstract Program and the IExecutionEngine that actually execute the child processes.

4.6.2 Pipes

The Pipe API is what end developers would use to interact with their named input or output pipes as
declared in their Program Descriptors. Although the programmer believes their data is being sent ’out’
to another program when writing to a pipe, it was decided to make Pipe’s a simple set of classes that
work inside a JVM. The actual proxying of pipes and sending data to other processes is handled by the
IPipeManager (see Section 4.6.3).

51

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

4.6.2.1 Design Notes

The programmatic interface provided by pipes in Kevlar has been designed to be simple and powerful.
As part of this, it was decided to make the pipe model support listeners on the pipes, so that the listeners
are invoked when the pipe moves into a state of having data available to read, or to being closed.

In line with most other Java pipe API’s it was recognised that the read should be synchronous, blocking
if necessary to wait for input, and (to allow recovery from a long-time-blocking read method), that the
read method should be able to be interrupted.

Figure 4.14 The Pipe Interfaces

4.6.2.2 Implementation Notes

The pipes where written so that they always come in pairs, every IInputPipe would have an associ-
ated IOutputPipe , whereby writing to the output pipe would make data available to the input pipe to
read.

The implementation of the Pipe API was therefore based on a producer-consumer idiom, and instead
of making the IInputPipe and IOutputPipe pipes completely separate entities, they were instead
different views of the internal data queue that was shared by both the input and output sides.

This meant that internally the Kevlar system never creates an IInputPipe or an IOutputPipe , but
instead instantiates a ClientSidePipe class, which has access methods to get at the input or output
views of its internal queue. These views are modelled by Java’s inner class paradigm.

During the initial implementation of this ClientSidePipe , when events occurred that the listeners
where to be notified about, a new Thread was spawned for each listener. This was to help avoid
potential deadlock scenarios and other unpredictable concurrency issues if there was substantial code
in the called-back listeners method. However, as described in Section 4.6.3, it was necessary to change
these callbacks to occur in the same thread as the one that caused the event, for efficiency. The solution
to the potential deadlock scenarios is now contractual - the listeners are not to make calls that add or
remove items from pipes as annotated in their javadoc. A breaking of this rule, however, would not
endanger the Kevlar system, as no external developer’s code ever gets run within Kevlar itself, however

52

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

it could deadlock a child process, but that would be similar to writing a process that crashes, which the
Kevlar system can handle.

4.6.3 IPipeManager

As described above, the Pipe API allows for in-JVM piping of data. Although the end developer for our
system would work only with the Pipe API, some additional work has to be done to take data written
to pipes and send it across streams to other JVM’s to be read from the respective pipes there.

4.6.3.1 Design Notes

The IPipeManager was designed to provide principally a single piece of functionality, which is best
illustrated by its initial method signature:

void managePipes(
InputStream in,
OutputStream out,
Map<String,IInputPipe> ins,
Map<String,IOutputPipe> outs)

The aim was to take any available data from any of the named IInputPipe s, and pass it down the
provided InputStream , and also to read any available data from the OutputStream , and transfer
that across to the appropriate named IOutputPipe . The underlying assumption is that at the other
end of the streams is another instance of the IPipeManager , so that some guarantees about protocol
can be made.

During the design of the IPipeManager , it became evident that the data written to the pipes was not
the only thing that would have to be sent across the streams. Other control data, such as the receipt of
the data, and pipe-closure events must also be sent.

It was deliberately decided to make the IPipeManager refer to Java’s simplest InputStream and
OutputStream classes, as this means that the class could, if wanted, be used to manage pipes not over
the standard in and out streams provided by programs, but any streams desired (e.g. across a network).

4.6.3.2 PipeManager Implementation Notes

The implementation of the IPipeManager interface was as a server service, with a singleton access
method. This design style was chosen because the PipeManager would potentially be creating a large
number of threads, and it would be hard to reason about a server service if there could be several of
them in existence.

The large number of threads that are created by the PipeManager was due mainly to Java’s InputStream s
being non-selectable4, this forced a new Thread to be created for every InputStream in the system. In
order to optimise the thread creation and startup-times, a Java Executor (a new 1.5 API addition that
provides a thread-pool) instance was used.

For the handling of the IInputPipe , as single thread was used to deal with all of them, as it was
believed that the writing out of the data read from them to their respective OutputStream s would be
non-blocking.

Although the Pipe API had an event model, it was decided not to use it in the PipeManager implemen-
tation as the potentially huge number of threads that could be fired off would be extremely inefficient.
Instead, the fact that the ready method for the IInputPipe s was non-blocking meant that we could
check for pipes that had input waiting without ever having to block the thread for a non-deterministic

4For a description of select see [MANSEL], Java does feature selectable streams in its newer packages, but these are available
primarily for network sockets, and we were unable to find a way to convert the legacy InputStream s that are returned from
Java’s Process class into selectable streams.

53

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

amount of time. If the thread where to become blocked waiting for a particular input, then all other
inputs would not be dealt with creating starvation of the system.

To keep data organised, an IPipeGroup was created. This held an InputStream and OutputStream
and the IInputPipe s and IOutputPipe s being multiplexed across them. It also contained utility data
and methods to keep track of pipes known to be closed, and track of outstanding receipts for data that
has been sent being but not known to be received across the streams.

When managePipes is called, its argument are turned into a IPipeGroup , and the group is added to
the PipeManager s internal set of groups to manage. A thread is then started to listen to the InputStream
and the method returns.

The PipeManager ’s internal thread then deals with the IPipeGroup s that are currently registered
according to the principals of pseudo code given in Figure 4.15. This pseudo code does hide some of
the details of implementation for example the dealing of receipts, the propagating of information about
pipes that have been closed, and also exactly how the data is read from or written to the streams.

The actual communication across the streams was implemented the streams in Java’s ObjectInputStream
/ ObjectOutputStream , and then creating a custom serialized set of classes (all implementing an
interface called IPacket) that could be sent across the streams, and would contain either control infor-
mation (pipe closed, receipt of data), or piped data and the name of the pipe to output it to at the other
end.

One issue with the ObjectInputStream s was the issue of class-loading the classes that contained the
definition of the types. To achieve this, a ClassLoader from the ITypeLoader implementation had
to be used during the resolveClass method of the ObjectInputStream .

Figure 4.15 PipeManager main thread pseudo code.

while (true) {
while (no groups to deal with) {

sleep_until_there_are_groups();
}

foreach registered group g {

foreach IInputPipe p in g that is known not to be closed {

if(p.closed()){
register p as closed in g

} else if (p.ready()){
read one item from p and write it to g.OutputStream

}

if(all pipes in g are closed) {
remove g from groups;

}

if(any errors occurred on g.OutputStream) {
close all unclosed pipes in g;
remove g from groups;

}
}

}
}

4.6.3.3 PipeManager2 Implementation Notes

PipeManager was based upon a polling while(true) loop. Even though it was running in a

54

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

reduced priority thread, and yield() had been called to improve responsiveness, it was recognised
that this code was leading to unacceptable performance when larger pipelines where being run, as this
code is run in all child process JVM’s as well as Kevlar itself.

To solve this problem, an event model for the IInputPipe s that did not create new threads was needed
so as not to be inefficient for different reasons. The Pipe API was re-written so that event notifiers
occurred in-thread (see Section 4.6.2.2 above). With this change, the PipeManager was re-written as
PipeManager2 . This time there is an internal queue of PipeEvent s where each pipe that becomes
ready or closes registers an event on this queue. Also any “events” such as the writing of receipts are
placed in this queue. The PipeManager2 main thread then takes events off this queue (using Java’s
synchronization / wait() / notify() mechanisms) and processes them each in turn.

As in PipeManager , there is still a thread for each InputStream , but now these threads do no local
processing, and for every data item read, produce an appropriate event and place it on the PipeManager2
queue. Although this makes the queue a bottleneck, the performance is much improved over the polling
version of the code, and it is much simpler and easier to reason about the concurrency this way.

It was realised, however, that writing to the OutputStream s could actually block. In PipeManager2
this means that the event processing thread would halt running and all pipe communication would
cease. To resolve this problem, a new thread had to be created to manage each OutputStream . Each
thread has an internal queue of IPacket s waiting to be written, and uses synchronization primitives to
take them in turn and write them down the stream, waiting if necessary for data to write.5

Figure 4.16 An overview of the process interactions in PipeManager2

5These threads are created and managed by a class affectionately named ToiletManager . This is because it is the flush
method of OutputStream that was discovered to block.

55

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

4.6.4 Execution and AbstractProgram

4.6.4.1 Overview

As detailed in Section 4.3.4.2, execution is initiated by the calling of run(...) in IPipelineProgram .
As part of the arguments to this run method, the named pipes are passed, as well as an instance of its
argument model.

The IPipelineProgram delegates this call to its backing IProgram instance. In Section 4.2.1 we
detailed that all programs in Kevlar, loaded and built-in, have an IProgram representation. Built-in
programs define this method and spawn a new thread to execute in, directly reading / writing their
pipes.

All loaded programs are given a default run(...) method that delegates to the IExecutionEngine
to actually fork a new process and run the loaded program.

4.6.4.2 Design Notes

The design considerations to be solved when executing programs where:

• Executing the child in the correct environment, particularly the correct current working directory.

• Executing the child with a CLASSPATH that would allow it to find all necessary definitions for
types that it relies upon, and the standard definitions for pipes, the argument model and AbstractProgram .

• Passing the child process the instantiation of its argument model, and its pipe mappings, so the
AbstractProgram run(...) method can be invoked with the correct arguments.

• Providing a notification mechanism so that the layers above the framework can be informed when
a single process terminates.

• Providing mechanisms to get the return values of the program (to be later looked up for its textual
description in its description model).

• Providing a way to kill programs should the user so desire.

4.6.4.3 Implementation Notes

When writing the IExecutionEngine , the first problem was finding a way of managing the current
working directory (hereafter abbreviated to CWD). Java does not feature an API call to programmatically
change the CWD, so the IExecutionEngine instead maintains a File variable holding its value.

As the only way to change the CWD would be from within Kevlar itself (by making a call on the
IExecutionEngine), this required a built-in program ChangeDirectory to be written to allow a user
to change this CWD.6 However, when the Visual Directory Tree was written, this variable is set to mirror
the directory currently visible, and so the Change-Directory built-in became redundant.

In order to create the child processes, a Java ProcessBuilder is used. This has utility methods to
set the desired CWD for the child process, and to set its environmental variables. To ensure the correct
CLASSPATH exists for the child, the Kevlar CLASSPATH is appended with a path dynamically gener-
ated by the ITypeLoader (representing the path to all known valid type jars), and the path to the jar
containing the program to be executed.

The end developer for our system implements the AbstractProgram class, and from their point of
view, the run(...) method is their entry point. However the IExecutionEngine does not directly
pass the end developers class to java to be invoked, instead AbstractProgram defines a main method
and this is called with the target program to load as an argument to AbstractProgram .

AbstractProgram s main(String[] args) method is defined to set up communication with its
Kevlar parent. It does this by first wrapping its standard in and out streams into Object streams, and
then reading in an ISetupInformation instance from standard in, which the IExecutionEngine

6This is similar to existing shells, where environment altering programs such as cd or chdir are shell built-ins.

56

CHAPTER 4. FRAMEWORK 4.6. PROGRAM EXECUTION

passes down to it. This setup information contains the arguments model instance, and details the names
of the IInputPipe s and IOutputPipe s. AbstractProgram uses this information to manage them
across standard out and standard in.

AbstractProgram finally uses Java’s reflection API to create an instance of the desired class and in-
vokes its run(...) method with the argument instance and pipe details that it expects.

Once a child process has been created by the ProcessBuilder object, the Java API gives back a
Process object. This has methods to interrogate the process for its return value (if it has exited), to
get hold of its standard input and output streams, and to kill the process. It also has a method to make
the current thread wait until the process has exited.

Unfortunately it does not support a call-back or listener approach to process exiting events. The initial
solution to this problem was to create a new thread and make that wait for the process to finish run-
ning, then when it has finished, call the listeners back. However instead of creating a new thread, an
optimisation was chosen whereby the InputProcessorThread created in PipeManager2 to handle
the process’s InputStream would wait for the process to exit after the InputStream was closed.

This exit notification mechanism, and other utility methods provided by the Process object (e.g.
kill and getReturnValue) are wrapped into an IProgramInstance class, which is returned by
the IProgram .run(...) method.

57

Chapter 5

Human Interface Abstraction Layer

5.1 Overview

5.1.1 Introduction

The Human Interface Abstraction Layer (HIAL) mediates between the GUI component and the Frame-
work component and provides a number of services for the GUI to utilize. This chapter explains the
motivation, design and implementation of the HIAL.

5.1.2 Motivations for building the HIAL

• Keep the framework simple. The HIAL provides the advanced features of pipeline construction
and execution that the GUI component needs, using the primitive functionality that the framework
component provides. This keeps the framework simple by factoring out functionality that can be
derived. In this way, the HIAL is a mediator between the GUI and the framework.

• Provide functionality not related to pipeline construction and execution. The GUI makes use of
many features not directly related to pipeline construction or execution. For example, searching
for programs, saving and loading pipelines and more. The HIAL contains library functions to
perform tasks that are unrelated to the framework. Having these features inside the HIAL ensures
that the HIAL and framework completely contain the code that is reusable if another GUI were to
be made.

5.2 Program discovery

5.2.1 Overview

In a traditional shell, there is often no simple way to find out what program to use to perform a particular
task. To address this common complaint and to meet the specification, we decided that the system needs
to provide a means to search for programs and look-up programs by category. The HIAL provides three
features for obtaining programs.

5.2.2 Design

METHODS TO DISCOVER PROGRAMS

• Keyword based search. An advanced keyword based search is provided. The input is a set of
keywords, and the output is a list of programs in order of match liklihood.

58

CHAPTER 5. HUMAN INTERFACE . . . 5.2. PROGRAM DISCOVERY

• Category based lookup. The HIAL provides a tree structure which contains the programs sorted
into categories. The programs specify their own initial categorisation. The design was to allow
users to then customize the categorization in the GUI so that the HIAL can save the changes to
persistant storage. However due to time constraints, this feature wasn’t implemented. An example
of a category would be /Images/Format-Converting.

• Unstructured lookup. An unstructured list of all programs for name based lookup

5.2.3 Keyword search implementation

Programs export a set of keywords that a user might search for as part of their meta-data. If a program
exports the keyword “image”, and a user searches for “Images”, clearly it is useful if the system will
still match the keyword. One way to solve this is to normalize words so that the last “s” is removed.
But this will not solve the problem in the general case. For example, if the user types “directories” but a
program exports the keyword “Directory”. Similairly, we would like to catch spelling mistakes such as
”Directrees”.

To solve this problem in the general case, a sequence alignment algorithm is needed. This allows words
to be compared for similarity, so that highly similar results can be treated as matches. For this task, the
Needleman-Wunsch algorithm is suitable.

The Needleman-Wunsch algorithm works by taking a scoring scheme that scores an alignment of two
strings. The algorithm can then find the optimal alignment and the corrosponding optimal score. This
score can then be used as a measure of how similar the words are to each other. A match would be when
a search keyword aligns with a program keyword and has a score above a threshold.

Figure 5.1 shows the search component in use.

Figure 5.1 An example keyword based search. The user accidently types in splitt instead of split. The
search algorithm locates two matches. Junction is a program for splitting pipes so has split as a keyword.
The user can now click each program to get a complete set of information about the program.

IMPLEMENTATION ISSUES

• Setting the score weights. Since the algorithm relies on a scoring matrix that could have any scores
set to it, these need to be configured. To achieve this, we setup an experiment with a predefined
set of search keywords and program keywords. The weights and thresholds were then adjusted
in a loop in order to find the best set of numbers.

• High complexity. The Needleman-Wunsch algorithm is itself O(n * m) on the length of the key-
words n and m. Since n and m are consistantly small (max ˜10), this execution time of one align-

59

CHAPTER 5. HUMAN INTERFACE . . . 5.3. CONSTRUCTION OF PIPELINES

ment is small. However, since a user will search for k keywords, and there can be p programs, with
an average of l keywords each, the overall complexity is high. k is likely to be small, l might be
typically be less than 15, but p can grow without bound.

To assess the impact of the high complexity, an experiment was run to find out how long the
Needleman-Wunsch algorithm would take to execute for 1,000,000 iterations with long keywords
on a modern machine. We found the time to be acceptable (˜3 seconds) so have not taken any
measures to reduce the complexity. This would allow 10,000 programs with an average of 15
keywords each to be compared against 6 search keywords. One possible course of action would
be to guarantee a maximum of 1,000,000 iterations of the algorithm by taking the first l’ keywords
from programs. The rest of the keywords could be compared using normal string comparision.
This would require programs to list keywords in priority order.

5.3 Construction of pipelines

5.3.1 Overview

The HIAL implements many pipeline construction features as direct calls to the framework. Other
features in the HIAL are built from the framework primitives.

Examples of derived features include presenting the different views of program arguments and IO nodes
that the GUI needs to use and implementing a remove all programs feature in terms of removing each
program individually.

Similairly, the HIAL adds intellegence to the calls to the framework, by performing state checks to verify
the GUI is in the correct state for the method it called.

5.3.2 Execution

The GUI requires two things to happen implicitly for executing pipelines

• In a pipeline with only one program, which has a single output node, it should be as though
a “show” program (output visualization program) is implicitly connected to that output. The
intention is that this will speed up the creation of the many small one program pipelines that are
needed regularly in a shell, such as to list the contents of the current directory.

• For every program that has an output node called “Error”, it should be as though a “show” pro-
gram is implicitly connected to that output. The intention is that this will ensure users get error
messages from programs.

The HIAL provides these features by automatically creating the needed show programs and connecting
their input pipes at the start of an execution. All messages about these programs are then filtered out so
they are not received by the GUI. To the GUI, they are invisible.

5.4 Saving and loading

5.4.1 Design and implementation

It is not possible to completly factor saving and loading functionality out of the GUI as only the GUI
knows details such as the canvas co-ordinates of programs that need to be saved. However, clearly,
saving and loading a pipeline in general, is functionality of the pipeline model and the GUI should not
be responsible for impleementing it. To solve this issue, the strategy pattern is used. The GUI provides
a callback object that generates data that needs to be saved with each program and pipe. The HIAL then
integrates this data into the save file.

Given this design, we decided that XML would make an excellent format for the saved information.
This means that the GUI can specify the XML it wishes to save and it can be cleanly nested inside a set

60

CHAPTER 5. HUMAN INTERFACE . . . 5.4. SAVING AND LOADING

of GUI specific data tags within the saved file. Also, because of the way XML validation works, it is
possible to validate the HIAL generated part of the XML without knowing exactly what XML the GUI
will provide. This is because XML XSD schemas comes with an <any> data type that allows any XML
data to be included in specific tags.

XML DOM is used for the implementation of the XML parser. XML DOM is ideal because it allows an
XSD schema to be specified to use to validate the XML, and also because it makes the job of requesting
the service of the GUI to load its part of the XML file simple - an XMLDOMElement object representing
the GUI information is simply passed to the GUI. There is a DTD and auto-generated XSD schema for
the XML save format. An example save file snippet is presented below.

5.4.2 Example save file extract

<context>
<!-- This save file represents a pipeline to rename all files in ./web from *.htm to *.html -->
<gui-context>

<!-- The thumbnail image for the pipeline is cached here -->
<thumb>FFD8FFE...<!-- cut for berevity -->...735368408FFD9<thumb>

<macros>
<!-- The GUI saves macros here -->

</macros>
</gui-context>

<!-- The program listing -->
<programs>

<!-- The program to list files like UNIX ’ls’ -->
<program>

<!-- The full package name of the program -->
<name>uk.ac.ic.doc.kevlar.core.programs.fileUtils.ListFiles</name>

<!-- Id used for pairing up with pipes -->
<id>2</id>

<!-- Specifies the current list of arguments for the program -->
<arg-instance>

<pair>
<name>Paths</name>
<value>./web</value>

</pair>
<pair>

<name>Pattern</name>
<value>*.htm</value>

</pair>
</arg-instance>

<gui-program>
<layout>

<xposition>40</xposition>
<yposition>40</yposition>
<width>150</width>
<height>71</height>

</layout>
</gui-program>

61

CHAPTER 5. HUMAN INTERFACE . . . 5.5. CLASS DESIGN

</program>

<!-- Rest of the programs omitted for brevity -->
</programs>

<!-- The pipe listing -->
<pipes>

<!-- A pipe from program 2 (ListFiles) to program 3 (Junction)
<pipe>

<!-- From program to node -->
<from>

<program>2</program>
<node>Filenames</node>

</from>

<!-- To program and to node
<to>

<program>3</program>
<node>A-in</node>

</to>

<gui-pipe>
<!-- GUI determined pipe specific information -->

</gui-pipe>
</pipe>

<!-- Rest of pipes omitted for brevity -->

</pipes>
</context>

5.5 Class design

Figure 5.2 shows the class design of the HIAL.

FEATURES VIEWABLE IN THE CLASS DIAGRAM

• Exploring program category structure. Calling getProgramTreeRoot() returns the root of the
program category tree. This can then be navigated with calls to getChildren() to find more
categories, and programs within those categories. If the GUI modifies the category tree, it can
update changes with a call to setProgramTreeRoot(...) .

• Searching for programs based on keywords. List <IProgramSearchResult > search(Collection <String >
keywords) is used to perform a keyword based search. The returned list contains the search re-
sults in order of match quality.

• Construction and execution of pipelines. Pipelines can be constructed by first making a context
with createNewContext(...) and then populating the context with calls to addProgram(...)
and addPipe(...) . All constuction changes are reported back to an observer that implements
IHialContextListener . Execution is then performed with a call to executeContext(...) .

• Saving and loading of pipelines. Saving and loading is done via calls to saveContext(...)
and loadContext(...) respectivly. Both these methods take callback objects that allow the GUI
to supply and receive co-ordinate data for each program and pipe. saveContext(...) takes a
callback object that implements IGUIContextSaver . This is like the strategy design pattern.

62

CHAPTER 5. HUMAN INTERFACE . . . 5.5. CLASS DESIGN

Figure 5.2 Selected parts of the HIAL design

63

Chapter 6

Graphical User Interface

6.1 Drawing Engine

One of the first challenges we faced when designing Kevlar was to come up with a drawing engine that
would allow us to display pipelines to the user.

6.1.1 Specification

The drawing system addresses the requirement that the system should provide a graphical representa-
tion of pipelines that is easy to understand. It is also a fundamental part of the user interface, guiding
the user through the actions required to construct pipelines that perform the required tasks.

6.1.2 Overview

6.1.2.1 Design

We realised early on in the project that existing widget toolkits such as Swing and SWT would not be
sufficient on their own, since they do not contain components designed for building pipelines. Instead
we decided to take the existing SWT toolkit and extend it by writing our own components and systems
for handling keyboard and mouse input (see Sections x and y).

The existing SWT drawing system has a set of predefined widget classes that map directly to operating-
system-dependent widgets such as buttons and text boxes. Due to its use of operating system resources,
SWT interfaces tend to provide very fast response times, however the existing widgets cannot be ex-
tended to provide additional functionality. Instead, the SWT Canvas class is intended to be subclassed
and provides methods of accessing all the keyboard and mouse events required for creating a custom
widget.

The SWT API documentation [SWTDOC] recommended subclassing the Canvas class for producing
each non-standard widget, such as our representations of programs, arguments, input and output nodes
and pipes. However, we noticed a number of problems with this in the design stage of our project.
To begin with, we wanted the freedom to use transparency in our components, so that we could use
irregularly-shaped widgets, such as pipes, without having a bounding-box around them. However,
with each component in a separate Canvas , this would have to be simulated by first copying the back-
ground across before drawing the widget itself. Another problem is that instances of Canvas use sys-
tem resources, which are not freed until that instance is explicitly disposed. This would require us to
ensure that all GUI objects were explicitly disposed when no longer needed, which is different to Java’s
garbage-collected memory system and could result in memory leaks.

To avoid these problems, we decided to build a custom drawing system, using SWT’s Canvas as a
base. We wanted a hierarchical organisation of components, such that each object maintains references
to a number of children and all except the root have a reference to their parent. The root component

64

CHAPTER 6. GRAPHICAL USER INTERFACE 6.1. DRAWING ENGINE

maintains a reference to the SWT Canvas , and receives paint events from it. It then propagates these
events to its children, who draw onto a buffer, which is then copied across to the Canvas as the last
stage of the paint process. By having this system of children drawing on top of their parent’s buffer,
transparency effects can easily be achieved, and using only one SWT Canvas instance makes resource
management much more simple.

6.1.2.2 Implementation

The component hierarchy was implemented by creating an ADrawableObject class which maintains a
parent reference to an ADrawableObject (which is null if it’s the root), and a children list of ADraw-
ableObjects for its sub-components. ADrawableObject also contains the final method paint(GC
gc, Rectangle redrawArea) , which is called when a paint event occurs for this component. This
method calls the abstract methods drawBefore(..) and drawAfter(..) , which are overridden by
subclasses to actually draw the component, and then calls the paint(..) method in all its children.

The root was implemented by a CanvasManager class, which subclasses ADrawableObject , and cre-
ates the Canvas instance on startup and disposes of it on shutdown. It registers as a PaintListener ,
of this Canvas , and is such notified of any paint events. When it receives these events, it simply calls its
own paint(..) method to propagate the events to its children.

Figure 6.1 . A brief overview of the component hierarchy in the drawing system.

6.1.3 Component Hierarchy

Our design included a number of important features of the component hierarchy that would allow us
to implement a set of efficient and reusable widgets.

6.1.3.1 Design: Relative Coordinate System

To begin with, we wanted components to be able to draw objects and position children relative to their
own coordinate space, not to their absolute positions on the screen. This allows components to be
grouped, by making them children of a single super component, and then moved together, since moving
the super component would also move its children.

6.1.3.2 Implementation: Relative Coordinate System

To achieve this, each ADrawableObject maintains an area rectangle which specifies its position rel-
ative to its parent as well as its width and height. When a component is drawn, it is drawn onto an
image that is the size of this rectangle, and this is then copied onto the parent’s image. In this way, a
component can perform drawing operations local to its own coordinate space, and the results then get
transformed to their parent’s coordinate space when the image is copied across.

65

CHAPTER 6. GRAPHICAL USER INTERFACE 6.1. DRAWING ENGINE

6.1.3.3 Design: Component Visibility

We also decided to restrict components so that they could only be visible within their parent’s boundary,
so that widgets do not have free roam to draw anywhere to the screen. This makes it easier to write
windowed components such as scrolling boxes, since a component can be set to the size of the window
and act as a clipping region for its children.

6.1.3.4 Implementation: Component Visibility

When a ADrawableObject instance’s paint(GC gc, Rectangle redrawArea) method is called,
it is passed a GCinstance (Graphics Context) by its parent which represents the image on which it can
draw itself. When this GCis constructed by the parent, its size is limited to be the size of the intersection
of the parent’s are and the child’s area, so any of the child that lies outside of the parent’s area will be
drawn outside of the GCand therefore be ignored.

Figure 6.2 . Some of the features of our component hierarchy.

6.1.3.5 Design: Component Layout

Another important feature of a graphical interface is a component layout that caters for resizing. To cope
with this, we opted to allow components to align and size themselves based upon their parent’s dimen-
sions. In addition to positioning components relative to the top-left corner of their parent, components
can also be aligned to the right or bottom edges of their parent, and move as the parent is resized.

6.1.3.6 Implementation: Component Layout

A set of boolean flags in ADrawableObject represent each component’s alignment and can be set
by the method setAlignment(boolean alignRight, boolean AlignBottom) . A component’s
resizing behaviour is also represented by flags that can be set using setSizeFillHorizontal(..) ,
setSizeFilLVertical(..) and setSizeFillBoth(..) . Setting the component’s position or size
then sets the contents of an alignedArea variable, and an updateDimensions() is then called which
translates this into coordinates relative to the parent’s top-left corner, storing the results in the area
variable, which is used for drawing. Since components can change their position and size when their
parent’s dimensions change, there is also a notify system, where a parent notifies its children of a change,
so that the children can call their updateDimensions() method which recalculates their position and
size relative to the parent’s top-left corner.

6.1.4 Animations

Although often viewed as a gimmick, we saw animations as an important tool to help users understand
how the interface works. Often a smooth transition, such as when scrolling to a particular area of the
pipeline, rather than a sudden jump prevents confusion and disorientation in the user’s mind. We
decided to use animations where possible in order to avoid this effects.

66

CHAPTER 6. GRAPHICAL USER INTERFACE 6.1. DRAWING ENGINE

6.1.4.1 Design

We wanted to include an animation system that would run separate from the rest of the GUI and could
be called to schedule animations of components. We also wanted a system that would allow different
types of animations, such as a slide animation for moving a component between two points in a smooth
movement and a flash animation, which periodically hides and shows a component. Therefore, the
animation system was designed to maintain a list of animations, which themselves contain a reference
to the component they are animating. At regular intervals, the animation system must call a method
in each of the currently executing animations, which actually performs the animations and updates the
animated component.

Figure 6.3 . UML diagram for animation system.

6.1.4.2 Implementation

An AAnimation abstract class was created, which takes an ADrawableObject in the constructor
representing the component to be animated. The class also contains an abstract method boolean
animate() which is implemented by subclasses to specify particular animation behaviour. The re-
turn value of this method signifies whether a call to this animation should be scheduled again, so must
be true if the animation is to continue and false if it has been completed.

Several different animation classes were written to be used by components in the GUI. SlideAnimation
takes a Point position in its constructor and smoothly moves the animated component from it’s cur-
rent position to this new position. ScrollAnimation extends this class to provide a similar movement
for scrolling windows, so that the contents of the window can be scrolled smoothly to a particular posi-
tion. FlashAnimation takes a int interval in its constructor and makes the animated component
flash for this amount of time in milliseconds. This was used to provide the animation of the flashing
caret for text boxes.

Controlling these animations is a singleton AnimationManager class which maintains a set of sched-
uled animations. It also maintains a single Timer instance, which fires an event every ten milliseconds,
causing the AnimationManager to iterate through the executing animations and call their animate()
method. These animations run asynchronously to the rest of the GUI, however they all run in sequence
in a single animation thread which syncronises with the main GUI thread on redraws and component
disposal.

With this implementation, it was very easy to add animations to components previously written with-
out them. For instance, to get a component to move smoothly rather than jump when it’s position
is set, the component.setPosition(Point position) call must simply be replaced with a call

67

CHAPTER 6. GRAPHICAL USER INTERFACE 6.1. DRAWING ENGINE

to AnimationManager.getSingleton().addAnimation(new SlideAnimation(component,
position)) .

6.1.5 Optimisation

One of the main hurdles we had to overcome with the GUI was to try to ensure that it would be fast
and responsive even for large window sizes. To do this, we investigated a number of commonly used
strategies for improving GUI efficiency.

6.1.5.1 Change Redraw

A simple optimisation of the drawing engine is to maintain as much of the drawn screen from one
redraw to the next and only redraw the parts of the screen that have changed. To implement this, we
first had to work out which parts of the screen change and need to be redrawn. This was done at the
component level by providing a redraw() in the ADrawableObject class which schedules a redraw
based on that component’s area only. So, when a component changes its representation and needs to
be redrawn, a simple call to redraw() will schedule a redraw for only the part of the screen that it
currently occupies.

The next stage of implementation was ensuring that only the components that lie within the redraw
area are drawn. This is performed when the paint(GC gc, Rectangle redrawArea) method of
a component is called, with the Rectangle redrawArea parameter indicating the region to be re-
drawn relative to the parent’s coordinates. The first thing a component does is to calculate the inter-
section between it’s area and the redrawArea . If this intersection is empty then the component’s
drawBefore(..) and drawAfter(..) methods are not called, and the paint event is not propagated
to its children (since children cannot draw outside of their parent’s area, so their visible area must lie
outside the redraw region also). If the intersection is not empty, then a new GCinstance is constructed
to be the size of the intersection and is passed to the drawBefore(..) and drawAfter(..) methods
so that any drawing they perform outside of the redrawArea is ignored. Finally, the redrawArea is
translated to be relative to the component’s coordinates and passed, with the new GCinstance, to it’s
children.

6.1.5.2 Redraw Aggregation

One of the most effective and commonly used GUI optimisations is the aggregation of consecutive re-
draw requests. In a graphical interface such as ours which can contain hundreds of components at a
time, each with the ability to request a redraw, there is often a large degree of overdraw. This effect
occurs when two overlapping components request a redraw one after the other, so that the overlapping
area is drawn twice in quick succession. Since redraws always occur due to some event in the system,
whether it be a mouse press or a timer tick, a form of aggregation can be used where all the redraws
generated by a single event are only applied at the end of the event.

Redraw aggregation is implemented in our drawing system in the CanvasManager class. When a com-
ponent calls its own redraw() method, a redraw doesn’t actually occur, but instead it is scheduled in
the CanvasManager and the area to be redrawn is logged. If another redraw() is called, the logged
redraw area is simply extended to include the new area to be redrawn, such that a bounding box con-
taining all the regions that need to be redrawn is built. Finally, when all handlers for an event have been
called, the CanvasManager calls a applyRedraw() method which initiates the first paint method,
passing it the bounding box as the area to be redrawn.

More complex methods exist to calculate the redraw aggregate, such as using a polygon rather than a
rectangle to represent the redraw area, so that complex shapes can be redrawn without the overhead
of redrawing the unchanged areas of their bounding box. An example of this is the commonly-known
backwards-L effect that occurs when a window is resized. Instead of the redraw area being a small
rectangle, it consists of two rectangles, one covering the bottom edge and one covering the right edge
of the window. The resulting bounding box would cause the whole window to be redrawn, whereas a
polygon could accurately represent the backwards-L shape saving a lot of unnecessary overhead. We

68

CHAPTER 6. GRAPHICAL USER INTERFACE 6.2. WIDGETS

decided not to implement this technique in Kevlar’s drawing engine, since we realised that the majority
of redraws are the result of a single event and tend to occur with close proximity of one another (a
mouse click, for instance, often only generates redraws around the clicked position). When the window
is resized, the majority of our components would also need to be resized, since they are often aligned or
sized based on the window’s dimensions, so for Kevlar this technique would not eliminate the need for
a full redraw.

Figure 6.4 . Illustrating the backwards-L redraw area generated by resizing the window.

6.1.5.3 Component Image Buffering

One of the problems of a hierarchical component system is that when components near the top of the
hierarchy need to be redrawn they must also redraw the whole component sub-tree that is beneath them.
To avoid this, components can paint to a buffer which they hold on to between redraws. When the next
redraw occurs, if the component and its children have not changed, it can simply copy their image from
the buffer and do not have to redraw themselves or propagate the redraw event to their children. With
this system, if a component near the top of the hierarchy requests a redraw, only its immediate children
need to be redrawn, since their images will be buffered.

Figure 6.5 . Depth of redraw for non-component-buffered and component-buffered drawing engines.

We implemented this technique during Kevlar’s development but chose to remove it from the release
version, having identified a problem with the approach. One of our reasons for using only a single SWT
Canvas for the whole drawing engine was to avoid the need to dispose of GUI components explic-
itly, however this problem is also encountered with SWT’s Image class. Since each component would
have to maintain it’s own image buffer, these buffers would have to be disposed of when the image
is no longer needed, otherwise the system’s memory usage would continually increase. Also, having
implemented the technique, we found that it did not offer a significant performance increase, which
we attribute to the shallow component trees in the Kevlar GUI. Overall, we decided that the hassle and
potential problems caused by using this technique outweighed the gains, so we removed it.

6.2 Widgets

Having designed our drawing engine, we needed to construct a set of widgets which we could use
throughout our graphical interface to provide a consistent visual style.

69

CHAPTER 6. GRAPHICAL USER INTERFACE 6.2. WIDGETS

6.2.1 Specification

This section doesn’t cover any specific requirement set out in our specifications document, however it is
important for ensuring the overall usability requirement of the system.

6.2.2 Roll-Over and Selectable Buttons

Since our interface contains a large number of non-standard widgets (programs, arguments, nodes and
pipes, for instance), users may not immediately recognise how to interact with these widgets as they
would with a standard GUI. Therefore, we decided to create widgets that would provide visual prompts
for which widgets can be interacted with using the mouse, and how they behave.

The RollOverButton class can be used for representing more than just traditional GUI buttons. In-
stead it is a general class for representing widgets that should appear highlighted when the mouse
moves over them, and performs some action when they are clicked. It simply takes three image pa-
rameters in its constructor; normal , rollover and down, and changes the button’s visual appearance
to match one of these. By overriding AMouseListenerObject ’s mouseEnter() and mouseExit()
methods, it gets notified when the mouse moves over the button and can change it’s appearance to the
rollover image. The mousePress(..) and mouseRelease(..) methods are also overridden so
that while the mouse is pressed on the widget it’s appearance changes to the down image to signify
interaction.

We also wrote a SelectableButton class which extends RollOverButton . This is used to represent
buttons that maintain some sort of state, such as a button that stays depressed after it’s been clicked.
This simply takes four parameters in its constructor; two normal and rollover images for each state,
which it switches between when pressed. The current state of the button can be queried using the
boolean isSelected() method.

6.2.3 Scroll Bars

Figure 6.6 . UML diagram of scroll bar implementation.

We originally intended to use the existing SWT widget set in our interface where possible, however we
found that SWT does not allow its existing ScrollBar widget to be used separate from its scrollable
widgets. Instead, the SWT documentation [SWTDOC] recommended using the Slider widget, but
this looked very basic and did not provide the functionality that we desired. To correct this, we wrote
our own abstract class AScrollBar which contains three RollOverButton instances; two for buttons
that allow for fine movement and one for the scroll bar’s slider, which can be dragged. This class is
then extended by HorizontalScrollBar and VerticalScrollBar which display the scrollbar at
the desired orientation.

70

CHAPTER 6. GRAPHICAL USER INTERFACE 6.2. WIDGETS

6.2.4 Scrolling Windows

One of the most important widget in our interface is the scrolling window, since it is not only used
for the main region on which users construct pipelines, but is also used for task panes and even list
boxes. Given our design for the drawing engine, constructing a scrolling window widget was very
simple. The ScrollingWindow class itself is simply a subclass of ADrawableObject which is sized
to the desired dimensions of the window and acts as a clipping region. It constructs an instance of
a StretchyBox widget, which is simply an ADrawableObject that resizes to accomodate its chil-
dren. The addChild(..) method of the ScrollingWindow is overridden to add children to the
StretchyBox instead, so that only the StretchyBox need be moved to scroll the contents of the
window. Finally, instances of the HorizontalScrollBar and VerticalScrollBar classes are con-
structed if required, and the ScrollingWindow listens to events from these scroll bars and moves the
StretchyBox as appropriate.

Figure 6.7 . UML diagram of scrolling window implementation.

One important feature of the ScrollingWindow class is its ability to automatically scroll to the cur-
rently selected object. This is implemented by a scrollTo(ADrawableObject child) method,
which scrolls the window to make the specified child object visible if it is currenly outside the visi-
ble region. The ScrollingWindow first uses the child’s getAreaRelativeTo(ADrawableObject
parent) method to translate the child’s local area to be relative to its coordinate system. It can then
compare the child’s area to it’s own area to work out whether the child lies outside the visible region.
If this is not the case, the ScrollingWindow calculates the difference in the X and Y values needed to
shift the child into the visible region, and then subtracts this from the StretchyBox ’s current position
to calculate its new position such that the child is visible. It then schedules a ScrollAnimation to
scroll the window smoothly to this new position. This effect can be seen when using the keyboard to
tab between programs in the current pipeline.

6.2.5 SWT Widgets

Despite our original intention to use existing SWT widgets where possible, and only add custom wid-
gets for representing non-standard controls such as programs, arguments and pipes, we encountered a
number of problems integrating SWT widgets into our drawing engine.

6.2.5.1 Relative Coordinate System

The first problem is that SWT widgets must be associated as children of other SWT widgets in order to be
positioned relatively. Since an optimisation of our drawing engine was to eliminate the need for a sep-
arate SWT Canvas for each widget, only one actual SWT widget exists in our system; the root Canvas .
This meant that SWT widgets had to be added as children of this canvas and positioned absolutely. To
work around this problem, an SWTWidget class was created to wrap SWT widgets. This class extends
ADrawableObject , so can be included in the component hierarchy, and simply calculates the abso-
lute position of the SWT control based on its current relative position (by using ADrawableObject ’s
getAbsoluteArea() method). Unfortunately, this method would only update the SWT widget’s po-
sition when the component itself was moved, but one of the advantages of the component hierarchy is
that moving a parent component causes all of its children to move with it. To produce this behaviour, we
had to make the SWTWidget wrapper register itself as a listener to the movements of all of its parents.

71

CHAPTER 6. GRAPHICAL USER INTERFACE 6.2. WIDGETS

This way, whenever one of its parents it moved, it can update the absolute position of the SWT widget
accordingly.

6.2.5.2 Keyboard Focus

Since SWT widgets operate using a keyboard model separate to our own, we needed a way of redirect-
ing all keyboard events to our KeyboardManager class. Unfortunately, SWT widgets tend to aquire
keyboard focus for themselves at various points in the program (such as at creation time, and whenever
the user clicks on them), diverting all keyboard input to themselves. We were unable to find a way of
preventing this from happening while still maintaining the functionality of the wigets, so instead we
had to make sure that they KeyboardManager was registered as a KeyListener for all SWT objects
in the system to avoid it missing key events.

6.2.5.3 Overlapping Components

Although SWT widgets are represented by the SWTWidget instance which is part of the drawing en-
gine’s component hierarchy; this is merely a proxy object which contains a reference to the true SWT
widget, which is a child of the root Canvas . Because of this, SWT widgets are always drawn on top of
the Canvas , after all other components have been drawn. Therefore, there’s no way of enforcing the
rule that they must not be able to draw outside of their parent’s area.

A solution to this problem was to include a method in the SWTWidget proxy which would detect if
its area is visible or not and, if not, hide the SWT widget. Unfortunately, this did not cater for the
case where objects in the component hierarchy partially overlap SWT widgets, in which case the SWT
widgets would either have to be made completely invisible or appear on top of the overlapping object.

Although we were able to find ways of working around the majority of problems associated with using
SWT widgets in our drawing engine, there were some which we were unable to avoid. We first devel-
oped Kevlar using these widgets, but at the end of development realised that there was enough time
to fix these problems by developing our own set of widgets using similar interfaces. Once we’d writ-
ten our own TextBox , MultilineTextBox and SelectionBox widgets to be completely compatible
with the drawing engine, we were able to easily replace the SWT widgets we had used.

6.2.6 Swing Widgets

Above we outlined some of the problems that where found with using SWT Widgets in the Kevlar
toolkit. Before the writing of our own text-based widgets, we first explored the possibility of wrapping
existing swing controls and using them.

Most widgets in Java’s swing toolkit (predominantly those that extend from JComponent are “lightweight”.
This means their rendering and state management code is all performed using Java classes and not na-
tive method calls. We believed we could make a subclass of ADrawableObject in the Kevlar toolkit,
and proxy the events and rendering events to an aggregated swing widget. For example the swing wid-
get would render on graphics for an image, and this would be then be drawn in ADrawableObject s
paint method.

There were some challenges to overcome with this, firstly converting Kevlar’s mouse and keyboard
events to ones suitable for the AWT MouseEvent and KeyEvent classes. The second was the conversion
of images to and from swing to swt. The former was overcome by careful studying of the API’s, the latter
by re-use of an existing helper library (see [IBMEX]).

For simple swing components (e.g. JButton), this conversion process worked fine, however it was
discovered that the swing text-box-based components appeared to use a low-level way of interacting
with text that we could not understand. As text-based controls were our motivation for wrapping swing
components, it was decided to abandon this route of solving the problem when it became uncertain
whether we could solve the problem, or how long it would take if we could.

72

CHAPTER 6. GRAPHICAL USER INTERFACE 6.3. LAYOUT

6.3 Layout

The layout component focusses on the layout of programs on the canvas and on the routing of pipes
betwean programs. The following sections give an overview of the design and implementation of the
layout algorithms.

6.3.1 Specification

The construction of the pipeline on the canvas will be the user’s main point of visual representation. It
is therefore imporant that the programs and pipes are visually appealing and logical to understand. We
found that there are three main points that the layout of the pipeline needs to fullfil in order to satify the
user.

• No two programs in the pipeline should overlap The layout system should make sure that one of
the overlapping program gets repositioned logically so that the overlap is avoided.

• No pipe should overlap or intersect with a program The layout system should efficiently reroute
the pipes so that they do not cross programs.

• The layout system should try to minimize overlapping pipes This is enforced so that ambiguity of
pipe routings are kept to a minimum, although steps must be taken to ensure that the performance
of the overall system is not affected too much.

6.3.2 Implementation

The layout component is implemented by LayoutImp which is an implementation of ILayout . The
most important methods of ILayout are addProgram(...) and alterPipe(...) . Whenever a pro-
gram is added or moved on the canvas, the PipeLineManager obtains a reference to the current layout
implementing the ILayout interface from the LayoutManager and invokes the addProgram(..) or
the suggestProgramPosition(..) method. Additionally, if any pipes are connected to the pro-
gram, the alterPipe(..) is called for every pipe that needs to be updated, and a reference to the pipe
concerned is passed.

Figure 6.8 Layout Components. Overview of the Layout Components in UML.

The layout’s implementation of addProgram(...) makes sure that the program passed as the parame-
ter does not overlap with any of the other programs already positioned on the canvas. In order to do this,
another component called LayoutGrid has been designed. LayoutGrid is a datastructure that holds

73

CHAPTER 6. GRAPHICAL USER INTERFACE 6.3. LAYOUT

all the layout information of programs and pipes on the canvas. The LayoutImp will infact simply del-
egate most of its methods to LayoutGrid . When a program is added for the first time, LayoutGrid
will store its layout information, and whenever a program’s layout is changed the LayoutGrid will
also be informed. When a program is moved, LayoutGrid makes sure that it will not be placed in a
location that overlaps other programs it is holding. When the user places the program so that it overlaps
with other programs LayoutGrid will start to move the program to the nearest space large enough so
that it does not overlap with other programs. The algorithm that takes care of this is initiated with the
checkMove() method which is recursively called. If the program is overlapping when checkMove()
is called it is repositioned to avoid the program it is overlapping, and checkMove() is then called
recursively in case this movement has caused another overlap, until no overlaps occur.

The alterPipe(...) method will make sure that the pipe added betwean two programs is not over-
lapping or crossing any programs held by LayoutGrid . The pipe on the canvas will be represented by
ILayoutPipe which has the method addPoint(...) which simply adds a new connection point to
the pipe. In order to route the pipe without overlapping, LayoutGrid delegates the call to a private
method of LayoutGrid called alterPipeAux(...) . alterPipeAux(...) is the entry point of the
pipe routing algorithm which is also recursive. The following description contains a brief overview of
the routing algorithm:

• Base case. When the start of a pipe is to the left of the end point, ie. from left to right, and when the
pipe does not overlap a program on it path, then the algorith will apply the ”Z pattern”. By this
we mean that the pipe will go right till the horizontal middle of the two programs it connects, then
it will go down or up till it is on the same y-coordinate as its end point and finally continue right
till it reaches the end point. A picture of this situation, Figure 6.9, is shown below for clarification.

Figure 6.9 Base Case. This shows the base case of the algorithm forming a ”Z pattern”. The base case is
highlighted.

• Recursive Case 1. When the pipe tries to form the ”Z pattern” but on its path it overlaps a program
on the canvas, the layout algorithm will end the path just before it overlaps that program. The
algorithm will then move the path so that it has an open way to the end without having to hit the
program it just overlapped again. The algorithm then recursively calls the alterPipeAux(...)
again so that it forms a path betwean the current point and final point. A picture of this situation,
Figure 6.10, is shown below for clarification.

Figure 6.10 Recursive Case 1. This shows the first recursive case of the algorithm.

• Recursive Case 2. When a pipe’s starting point is to the right of its end point, the algorithm
will first move the starting and end points away so that they can be connected with a ”nor-
mal” pipe. When we say normal, we mean that the path can again go from left to right instead
of right to left. To form the path, now from end to start point, the algorithm simply calls the
alterPipeAux(...) method again. A picture of this situation, Figure 6.11, is shown below for
clarification.

• Minimizing Pipe overlaps. Finally we wanted to minimize pipe overlaps without reducing the
performance too much. We decided that it would not be efficient to check for pipe overlaps. In-
stead we found out that pipe overlaps usually occured because the same algorithm was applied
and thus same routes were taken by pipes. We then decided that the best way to reduce overlaps
with minimum overhead was to add a random spacing to the pipes, so that different pipes would

74

CHAPTER 6. GRAPHICAL USER INTERFACE 6.4. KEYBOARD EVENTS

Figure 6.11 Recursive Case 2. This shows the second recursive case of the algorithm. The base case is
highlighted.

take slightly different routes. Note that this solution does not totally reduce overlap, instead it
minimizes it.

6.4 Keyboard Events

Although the main aim of Kevlar is to provide a shell that is easy to understand and use, we realised
that it would also have to be fast to use in order to attract users of existing shells. To achieve this, we
needed a comprehensive set of keyboard shortcuts that would allow an experienced user to access all of
Kevlar’s features as quickly as possible.

6.4.1 Specification

Keyboard events address the requirement that users should be able to construct pipelines using the
keyboard. Our main goal for this section was to provide all the functionality that is accessible using the
mouse through keyboard shortcuts. Additionally, we aimed to keep the number of key presses required
to construct pipelines to a minimum.

6.4.2 Key Binding Model

6.4.2.1 Design

We wanted to create a flexible key binding model that would allow us to easily alter which keys perform
which actions so that we could test various configurations and evaluate them to find which work the
best. To achieve this, rather than make each component of the system responsible for handling its own
key presses, we opted for a single, centralised class that would contain a map of all the keys and actions
supported by the system. To change the key bindings, we would simply have to change map, and this
system would allow us to easily make key bindings user-customisable in the future.

We realised early on that Kevlar required far too many key bindings to simply map every key to a dif-
ferent action. Instead, it was more intuitive to provide a state-based system, such that keys do different
actions in different states. Since states add an extra level of complexity to the keyboard model, we had
to make sure that users have visual aids to remind them which state they are in. For example, if a pro-
gram is highlighted then pressing certain keys will perform actions upon that one program, whereas if
a multi-select box is visible then the actions are performed upon all programs in the selection.

Finally, the key binding model was designed to include default actions, which would be executed when
no specific key binding could be found. This allows us to specify certain key bindings that will execute
in any state, as long as a more specific binding doesn’t already exist for that state. An example of this
is the CTRL+ENTER binding for executing a pipeline, which can be performed during any state of the
system.

75

CHAPTER 6. GRAPHICAL USER INTERFACE 6.5. MOUSE EVENTS AND DRAGGING

6.4.2.2 Implementation

A KeyBindings class was written, which maintains a four-level map representing the events, states,
modifiers and keys that map to the actions in Kevlar. It has static methods void addBinding(Item
events, Item states, Item modifiers, Item keys, IAction action) and IAction getBinding(Item
event, Item stateID, Item modifier, Item key) for setting and getting the actions respec-
tively. The Item class contains a single keycode or state integer and has a subclass, Group , which can be
used to specify a set of keycodes or states. This allows us to associate an action with a range of different
state, modifier and key combinations in a single line.

The keyboard events themselves are received by the KeyboardManager singleton class, which extracts
the event type (key pressed or released), the current modifiers and the key code. This information is
passed along with the identifier of the current state to the getBinding(..) method, which traverses
the three-level map and retrieves the action associated with the supplied combination (if any). It does
this by first seeing if a direct mapping exists between the supplied key combination and an action and,
if not, then it starts looking for default handlers. This process begins at the key level, where it tries
to match the current keycode to any default alphabetic, numeric or symbolic handlers that may exist.
If that fails, it then tries to match any default modifier handlers (handlers that do not specify which
modifier keys need to be held down). Finally, it attempt to match any default state handlers, after which
it fails and returns null (in which case no action is performed).

6.4.2.3 State-Based Key Handling

States are used in order to specify key bindings that are only active at certain times, such as when a
text box has focus or the user is selecting options from a drop-down list. Each state has a class which
extends the abstract State class, and must implement the abstract method Item getStateItem()
which returns an Item instance containing a unique identifier for this state. States themselves are not
directly called when any specific keyboard event occurs, however they can override onEnter() and
onExit() methods to update various sections of the GUI when the system enters and exits that state.
The main role of state classes is to contain any state-specific information that may be required for actions
to be performed. For example, the TextBoxState contains a reference to the active text box and also a
reference to the last active state, so that the last state can be restored when the user leaves the text box.

The singleton KeyboardManager class maintains a reference to the active state which can be accessed
using its State getState() method. Any class in Kevlar can also set the current state by using it’s
void setState(State s) method.

6.4.2.4 Key Actions

Every action to be performed on a key press is implemented in its own class which must implement the
IAction interface and provide implementation for the perform(Item event, State s, KeyEvent
e) method. When actions are executed, they are provided with a reference to the current state, from
which they can extract object references and invoke methods. It is also usual for actions to change the
active state by calling the KeyboardManager ’s setState(State s) method.

6.5 Mouse Events And Dragging

Mouse events and dragging play an important role in the usability of our project, since all of the features
of the project are accesible through using the mouse.

6.5.1 Specification

Allowing the user to construct pipelines using the mouse was a minimum specification requirement of
our project. The mouse event and dragging engine allows the user to construct pipelines by dragging
programs onto the canvas and then clicking on input and output nodes to connect them together.

76

CHAPTER 6. GRAPHICAL USER INTERFACE 6.5. MOUSE EVENTS AND DRAGGING

6.5.2 Overview

6.5.2.1 Design

The design of the mouse events and dragging was partly dictated by the design of the drawing engine.
All our components are custom and are organised in a tree hierarchy with children and parents. Since
the SWT widget we used to draw the components on is the Canvas , it is the only SWT widget we could
rely on to listen to various mouse events. Therefore, we had to organise the components that are capable
of receiving and dealing with mouse events into a hierarchy similar to that of a drawing engine.

The general idea is that the canvas receives the mouse events then calls methods responsible for distri-
bution of mouse events to determine which component should deal with the event that has occurred.

We have also customized mouse focus events in our GUI. Instead of an object acquiring focus for normal
response to mouse events it only needs to get it if it wants access to mouse events that occur outside of its
own area. So, widgets can call getMouseFocus() and they’ll then get mouse events from anywhere on
the GUI. They can then call releaseMouseFocus() when they want to revert to only receiving mouse
events inside their area. This is used in things like the scrollbar slider so that when the user is dragging
the slider, the mouse doesn’t have to actually be over the slider widget for it to move.

6.5.2.2 Implementation

The overall structure of the mouse events listeners is as follows:

Figure 6.12 . An overview of the mouse event listening engine.

Each component that receives and deals with mouse events subclasses either AMouseListenerObject or
ADraggableObject, depending on whether the component is draggable or not.

We have used CanvasManager class as a base in propagating the mouse event to the correct com-
ponent, since CanvasManager contains the Canvas SWT widget. CanvasManager implements the
MouseListener interface, in order to listen to events generated by mouse buttons being pressed or
released, and the MouseMoveListener interface to listen to events generated by the movement of
the mouse. In addition, the CanvasManager class extends the DragDropManager class, which is a
subclass of AMouseListenerObject .

When a mouse event occurs, the CanvasManager calls the corresponding concrete methods imple-
mented in AMouseListenerObject to allow the event to be passed onto a component that will respond
to it. In order to be able to distribute mouse events to the right component AMouseListenerObject

77

CHAPTER 6. GRAPHICAL USER INTERFACE 6.6. PROGRAMS

uses the list maintained by ADrawableObject which contains all objects that are drawn on the canvas,
i.e. its children. AMouseListenerObject then goes through that list checking whether the position of
the mouse is within the boundaries of any of its children. If it is, AMouseListenerObject passes the
event to the child by calling methods corresponding to the occurred mouse event in the child.

6.5.2.3 AMouseListenerObject class

AMouseListener class contains methods used to distribute the mouse events to the right component,
such as concreteMouseUp(..) , concreteMouseMove(..) . Methods that actually deal with the
occurred events are declared as abstract, so are implemented in classes corresponding to the component
that the event has been distributed to.

One other feature of the design and implementation of mouse events in our GUI is the existence of
mouseEnter(..) and mouseExit(..) methods. These methods are called to notify the component
that the mouse pointer has crossed the boundaries of the component. They are used for rollover buttons
and components that change their appearance when a mouse pointer is being over them.

6.5.2.4 Drag and Drop

Drag and Drop couldn’t be implemented using SWT library available for drag and drop. This is because
most of our components are customary and could not implement SWT standard interfaces.

We implemented dragging by registering a ’drag-and-drop’ component with the DragDropManager
class. DragDropManager follows a singleton design pattern, since there can only be one object being
dragged at any time. This class coordinates all dragging activity and makes dragging visible by repo-
sitioning the object and calling the CanvasManager to redraw the dragged component every time a
mouse is moved.

Dropping is implemented by allowing the ’drag-and-drop’ targets to be dropped onto the components
that implement IDropTarget interface. To drop a target a dropDragObject(...) method is called on the
component that the target is to be dropped onto, which is implemented differently depending on the
component that is receiving the drop target.

Although we have a centralised object coordinating dragging, the responsibility of dealing with dropped
targets is delegated to the individual components that implement IDropTarget . This structure gives
us more flexibility over dragging and dropping and allows us to make components that were previ-
ously unable to receive drop object drop targets just by implementing IDropTarget methods for those
components.

6.6 Programs

This section talks about a GUI representation of the pipeline programs that exist in the framework. GUI
programs contain GUI representations of arguments and IO nodes. They allow the user to visualise the
pipeline and its components and make it possible for the user to manipulate those components.

6.6.1 Specification

This section refers to the part of our original specification which states that one of the minimum GUI
requirements of the project is to provide a graphical representation of pipelines that is easy to under-
stand. It must be easy for users to identify programs, arguments and IO nodes used to connect pipes in
the pipeline.

78

CHAPTER 6. GRAPHICAL USER INTERFACE 6.6. PROGRAMS

6.6.2 Overview

6.6.2.1 Design

The functionality of the program in the GUI is very broad, therefore the design of this part of the system
had to take this factor into account. In particular, the design of GUI programs had to deal with the
following:

• Programs must be easily manipulated by the user. The user must have the ability to drag and
drop program onto the canvas and move it within the canvas after it has been dropped. The user
also must have the ability to access all the programs and their entries via the keyboard.

• Programs must be resizable. Programs contain and display arguments and IO nodes, therefore
they must be able to change their size if extra arguments or nodes are added.

• Programs must be easily identifiable. The user must easily identify programs, therefore programs
must have their user-friendly names displayed.

• Programs must have the ability to notify the framework of any changes made to them. The
programs must be able to notify the framework when they are added or removed by the user
to/from the pipeline. Also, the notification of change is required if the user added extra arguments
to the program or connected a pipe to the program’s IO nodes.

• Programs must be able to communicate with the Help system. They must call relevant functions
on the help system to display help when it is requested by the user.

• Programs must have the ability to expand and contract. Expandeds program show all their argu-
ment and IO node entries wheras the contracted programs only shows their names.

• Programs must have layout information associated with them. Programs can be saved to disk
and reloaded at the later stage. In order to draw the programs at the positions they were on the
canvas when the pipeline was saved, each program must make its layout information available
to the loading and saving engine. They must also allow the layout information to be assigned to
them.

• Programs must be able to be selected as part of the group. This is required in order to allow the
user to create simple macros.

6.6.2.2 Implementation

In order to fulfil the design requirements we came up with the following implementation architecture:

Figure 6.13 . An overview of the architecture used to implement the functionality of GUI Programs.

79

CHAPTER 6. GRAPHICAL USER INTERFACE 6.7. MACROS

In order to allow users to drag and drop programs onto the canvas, the Program has to subclass
ADraggableObject . Such architecture also deals with the distribution of the mouse events to the
Program and allows the user to manipulate programs using the mouse.

To capture the functionality of expanding and contracting the program, resizing the program and call-
ing help, we have introduced the ProgramHeader class which has the responsibility of dealing with
the above features of GUI programs. When a program is selected, the program header shows buttons
which, when pressed, will perform contracting, expanding, deletion and resizing. ProgramHeader
also addresses the issue of easily identifying programs by displaying the program name as obtained
from the HIAL, or a user-defined alias for it.

AProgramEntry is a superclass for classes used to display program entries, such as arguments, input
and output nodes, which will be covered in detail in the appropriate sections.

PipeLineManager is the class used to put the pipeline together. It holds all relevant information about
the pipeline, i.e. the programs used in the pipeline and the pipes connecting these programs. When
a program is added to the canvas it is automatically added to the PipeLineManager , which then
contacts the HIAL to notify it that the program should be added to the framework. If the correctness of
the program has been verified, the HIAL calls the PipeLineManager back at which point the program
and its arguments and IO nodes get displayed on the canvas.

6.6.2.3 Interfaces

We have introduced interfaces that Program implements in order to achieve the functionality described
in the design requirements, such as notifying the framework when the program has been added to the
canvas, assigning the layout information to the program and using it to auto-layout programs and to
load programs at the same positions they were at before the pipeline was saved.Defining interfaces
also allowed different group members to work on inter-dependant parts of the project with minimal
conflicts.

• ILayoutProgram interface. This interface addresses issues of assigning and retrieving layout in-
formation of programs. This information can be used by the layout engine to place programs on
the canvas and by the saving and loading engine to load the programs to the positions specified at
the time of saving.

• IRefObject interface. This interface is used for the communication between the HIAL and the
GUI. To encourage modularity and transparency, the HIAL should know as little as possible about
GUI abstractions and representations of concepts used in other parts of the project. IRefObject
is implemented by Program and Pipe and used by the HIAL to distinguish between GUI objects
and to refer to them when needed. Thus, when the program is added to the canvas and the GUI
informs the HIAL that such event has occurred it passes an IRefObject to the HIAL as one of the
arguments to the addProgram(..) method. When HIAL needs to communicate back to the GUI
that the program is verified and can now be drawn on the canvas, it passes back the IRefObject
received from the GUI so that the correct program can be displayed on the canvas.

6.7 Macros

One of the most powerful features of existing shells is the ability to package up many commands into
one single command. Kevlar provides this functionality through macros.

6.7.1 Specification

This section covers the requirement that the user should be able to construct basic macros. The user
should be able to select a section of an existing pipeline and group it to form a single macro program. The
user should then be able to save this program and load it for use in other pipelines. Any unconnected
nodes of programs inside the macro should be connectable from the macro program.

80

CHAPTER 6. GRAPHICAL USER INTERFACE 6.7. MACROS

6.7.2 Design

Macros do not provide any additional functionality to Kevlar, however they do make it easier for the
user to manipulate groups of programs. Because of this, macros are handled entirely by the GUI, and
any operations upon them are translated to their component programs before being sent to the HIAL.
Therefore, the framework has no knowledge of macros.

To create a macro, the user must have a way of selecting multiple programs using both the mouse and
the keyboard. For the mouse, we decided that a form of drag-multi-select was appropriate, where the
user drags a box around the programs to be selected. For the keyboard, we chose to have a shortcut that
would toggle whether the currently selected program is included in the selection. Once selected, a single
button press should remove all the selected programs and pipes from the graphical representation and
replace them with a single macro program.

6.7.3 Multi-Select Implementation

To allow for multiple programs to be selected, a new ’highlighted’ state was added to each program to
represent when it’s part of a selection. The PipeLineManager maintains a list of programs currently
selected, and constructs a SelectionBox widget which displays a bounding box around them, along
with a number of buttons for performing actions on all the selected programs.

To implement drag-multi-select, the PipeLineManager records the position of the mouse received in
its mousePress(..) method, and uses this to calculate the dimensions of the drag box whenever its
mouseMoved(..) method is called. When the drag box is resized, it calls an internal updateHighlightedPrograms()
method which calculates which programs lie inside the box, calling their highlight() method and
adding them to the multiSelect list if they do, and calling their unhighlight() method and re-
moving them from the multiSelect list if they do not. When the mouseRelease(..) method
is called, the PipeLineManager invokes an adjustSelectedArea() method which constructs a
SelectionBox instance and dimensions it to be the smallest bounding box surrounding all the se-
lected programs. This box contains buttons for performing delete, expand/contract and create macro
operations upon the selection. When the ’create macro’ button is pressed, the PipeLineManager ’s
createMacro() method is called.

To implement multi-selection using the keyboard, a new Action class, ToggleMultiSelectAction ,
was created and associated with the ’spacebar’ key press in the ’program selected’ state. When invoked,
this action calls the PipeLineManager ’s addToMultiSelect(Program p) method passing it the
currently selected (singly selected) program, and switching the current state to a new ProgramMultiSelectState .
In this state, certain keyboard operations such as expand/contract, program movement and deletion are
applied to all the programs in the multi-select. An additional CreateMacroAction action was created
and associated with the ’ctrl+M’ key press in the ProgramMultiSelectState state, which invokes
the PipeLineManager ’s createMacro() method when executed.

6.7.4 Macro Representation Implementation

Since the visual representation of a macro is very similar to that of a program, we decided to reuse
the program implementation by making the Macro class extend the Program class. The Macro class
additionally maintains a set of references to the Program instances that it contains, which it uses for
translating operations upon the macro to operations upon its component programs that can be under-
stood by the HIAL.

In order to propagate unconnected and externally connected nodes to the macro level, the Macro class
contains an Update method which obtains a list of nodes from the programs contained within the
macro and iterates over them. For each node, it creates a new AIONodeEntry for the macro iff the
node is either not connected to a pipe, or is connected to a pipe which leads to a program that is not
contained within the macro. If a node is added that already has a pipe, the Macro must also disconnect
that pipe from its current node and reconnect it to the new node entry created by the macro, so that the
pipe appears to be connected to the macro in the graphical representation.

81

CHAPTER 6. GRAPHICAL USER INTERFACE 6.8. PIPES

Figure 6.14 . UML diagram showing the relationships between classes related to macros.

In programs, AIONodeEntry instances contained a reference to the HIAL’s representation of the node
on which any operations would be performed. Unfortunately, such a representation does not exist for
macros, since they do not exist inside the HIAL. However, whenever an operation is performed upon
a macro node, we want the operation in the HIAL to be performed upon the corresponding node of
the program contained within the macro. To achieve this, when iterating through the nodes of the
programs contained within the macro in order to decide which nodes are propagated to the macro level,
any entries created are given the same HIAL reference as the node they are propagating.

Once a macro has been created, it can be saved as a pipeline and then loaded multiple times using the
normal saving and loading procedures to create many instances that can be used in different situations.

6.8 Pipes

GUI pipes are graphical representations of pipes in the framework, which show to the user how data
will flow between programs when the pipeline is executed.

6.8.1 Specification

Graphical pipes, along with other pipeline components, fulfil the requirement that Kevlar must provide
a graphical representation of pipelines that is easy to understand. They also alert the user if connected
to incompatible nodes, fulfilling the requirement that the user must be given feedback on construction
errors.

6.8.2 Overview

The pipe is a fundamental component of a Kevlar pipeline, and its graphical representation is therefore
used very often. For simplicity and performance reasons we decided to represent pipes as simple lines,
although to avoid the interface looking too cluttered we opted against diagonal lines, so we restricted
each segment of the line to be either horizonal or vertical.

Figure 6.15 . Screenshot showing pipes in the release version of Kevlar.

82

CHAPTER 6. GRAPHICAL USER INTERFACE 6.8. PIPES

Pipes are connected between input and output nodes of programs, and must therefore be updated when-
ever either their source or destination programs are moved or resized. Since nodes in Kevlar have type
information associated with them, pipes can be in either a valid or invalid state, depending on whether
their source and destination nodes are of compatible types.

6.8.3 User Interaction

The user adds a pipe to the pipeline by selecting any input node and output node. The PipeLineManager
is notified by program nodes when they are clicked, and ensures that only one node may be in the se-
lected at any one time. If a node is already selected when another is clicked, the PipeLineManager
first checks to see if they are both inputs or both outputs, in which case the previously selected node is
simply deselected and the new node selected. If they differ, then an input-output pair has been chosen,
so a pipe is created and the selection is cleared so that no node is selected. If a pipe is already connected
to either of the nodes chosen, that pipe is first removed before the new pipe is added. To remove a pipe,
the user must right-click on either of the pipe’s nodes, which notifies the PipeLineManager to remove
it.

6.8.4 HIAL Interaction

In order to successfully add pipes to a pipeline in Kevlar, the graphical interface must alert the frame-
work to add the pipe to its internal representation, so that the framework can transfer data between the
connected programs when the pipeline is executed. The GUI does this by contacting the framework
indirectly through the HIAL mediator. The GUI’s PipeLineManager first constructs an instance of
the Pipe class which will be used to represent the pipe on the screen. However, to avoid the graphical
representation and the framework’s representation from getting out of sync, this pipe is not directly
added to the GUI pipeline. Instead, it is passed in a call to the HIAL context’s addPipe(..) method,
along with the identifiers of the nodes that the pipe is to connect. The HIAL then contacts the frame-
work and requests the pipe to be added, causing the framework to check whether the nodes have com-
patible types. The HIAL then calls-back the GUI’s IHIALContextListener instance (which is the
PipeLineManager), using either the pipeAdded(..) or pipeAddFailed(..) method. The origi-
nal Pipe object constructed by the PipeLineManager is passed as a paramter to these methods so that
it can be added to the graphical pipeline if necessary.

Figure 6.16 . Sequence diagram illustrating the invocations when adding a pipe in the GUI.

6.8.5 Valid and Invalid Pipes

Pipes that are valid appear as black pipes in the graphical interface and also exist in the framework. The
GUI is responsible for ensuring that the framework’s representation and the graphical representation

83

CHAPTER 6. GRAPHICAL USER INTERFACE 6.9. IONODES

displayed to the user is semantically equivalent, so it must ensure that when the user wishes to remove
a valid pipe, it is also removed from the framework’s representation.

Figure 6.17 . Screenshot showing an invalid pipe, since text cannot be passed as a list of filenames.

Invalid pipes, however, are merely a graphical aid to tell the user that the requested pipeline is not type-
safe. Although they appear in the GUI as red lines, they do not exist in the framework’s representation
of the pipeline. Because of this, the GUI must not request for the framework to remove invalid pipes,
since doing so would cause an exception.

6.8.6 Implementation

Pipes in the GUI are represented by the Pipe class, which simply extends the LineSequence wid-
get. The LineSequence class maintains a set of Line instances representing each horizontal or ver-
tical segment of the line. The actual path of the line is decided by the current layout (provided by the
LayoutManager singleton), which is notified of the start and end points and calls the addPoint(Point
p) method in LineSequence which creates a Line instance between each point in sequence.

Figure 6.18 . UML diagram showing the relationships between classes related to drawing pipes.

6.9 IONodes

Input and output nodes provide a reminder to the user of the data taken and produced by each program
and represent connection points to which pipes can be connected.

6.9.1 Specification

Along with pipes and programs, IO nodes fulfil the requirement that the graphical interface must pro-
vide a graphical representation of pipelines that is easy to understand.

84

CHAPTER 6. GRAPHICAL USER INTERFACE 6.9. IONODES

6.9.2 Design

In our design, we highlighted a number of features that IO nodes must contain:

• They must be easily identifiable by the user. The user should be able to distinguish between input
and output nodes easily, and they should be named to indicate the data received or produced.

• They should encourage a left-to-right flow direction. In order to make the direction of data
flow easier for the user to understand, we decided to encourage a left-to-right flow direction in
pipelines. IO nodes should make it easier to connect up pipes in this way.

• The user should be able to select IO nodes to connect up pipes. IO nodes should be selectable
using both the mouse and using keyboard shortcuts. Selecting an input and an output IO node
should cause a pipe to be connected between them.

• The user should be able to access help for each node, if available. If a program has specified help
for a node, the user should be able to access it by right-clicking on the node’s entry.

• The user should be able to hide them. Since programs may contain a large number of IO nodes,
there should be functionality that allows them to be hidden by the user when not needed, so that
they do not take up unnecessary screen space.

We realised from these requirements that IO nodes and arguments share similar properties, in that both
are contained within programs, must be displayed by name and can be hidden if the user chooses. To
reflect this, we decided to create an AProgramEntry abstract class which would perform these shared
actions, which is then extended by the abstract AIONodeEntry class, which provides implementation
specific to IO nodes. Finally, this is subclassed by InputNodeEntry and OutputNodeEntry to pro-
vide specific implementation for inputs and outputs.

Figure 6.19 . UML diagram showing the relationships between classes related to IO nodes.

6.9.3 Implementation

The AProgramEntry class provides functionality for representing a single entry in an argument and IO
node list. It’s constructor takes an int positionIndex which represents its logical position in the list,
which is then used to calculate its actual position as a child of the Program instance it belongs to. It also
provides contract() and expand() methods which trigger an animation for hiding and showing the
entry respectively.

IO nodes are represented in the HIAL by classes that implement the INode interface, which are retreived
by the GUI by calling methods of the program’s HIAL representation. A new AIONodeEntry is created
for each HIAL INode of a program, and the String getName() method is used to obtain a user-
friendly identifier for each node. The AIONodeEntry class also constructs an instance of the Node
class, which represents the actual connection point on which the user can click to select the node.

85

CHAPTER 6. GRAPHICAL USER INTERFACE 6.10. ARGUMENTS

Figure 6.20 . Screenshot showing input and output nodes. The input is connected to a pipe, whilst one
of the outputs is selected.

The drawing methods for IO nodes are stored in the InputNodeEntry and OutputNodeEntry classes.
Each draws a different, colour-coded background to help the user to distinguish between input and
output nodes. These classes are also responsible for positioning the Node widget on the left for inputs
and on the right for outputs, in order to encourage the left-to-right flow direction.

The Node class for representing the clickable connection point is a subclass for SelectableButton ,
which provides the implementation for changing its appearance when it is selected and when the mouse
hovers over it. When the user clicks the node, its mousePress(..) method checks whether the node
is currently selected or not and calls the selectNode(..) and deselectNode(..) methods in the
PipeLineManager respectively. The PipeLineManager is responsible for detecting which nodes are
selected and connecting pipes between input-output node pairs.

6.9.4 Node Help

In order to display node help, the AIONodeEntry class overrides the mousePress(..) method to cap-
ture when the user right-clicks on the argument entry. When this event occurs, it calls the getArgumentHelp()
method of its HIAL object to obtain any available help on this node. This information is then passed to
the HelpManager class, which constructs an HTML page of help and displays it on an SWT Browser
widget (see Section 6.13).

6.10 Arguments

6.10.1 Specification

This section refers to such specification requirements as allowing users to easily identity components
of the pipeline and use them to construct pipelines efficiently. GUI arguments also address the issue of
restricting users ability to enter incorrect values for arguments.

6.10.2 Overview

6.10.2.1 Design

We highlighted a number of features of argument design that we thought were important for the final
product:

• They must be easily identifiable by the user. Arguments should be displayed by name so that
the user can easily identify how each argument is likely to affect a program.

• They must be edited using a widget suitable for their type. In order to restrict the user’s ability
to enter incorrect argument values, appropriate widgets should be used when editing them. For
instance, a drop-down box should be used for set values, since it restricts the user to choosing one
option from a set of valid options.

• Text arguments must be validated. If the program specifies a regular expression for validating
a text argument then it must be applied every time the argument is edited. If the new value is
invalid, the user should be notified.

86

CHAPTER 6. GRAPHICAL USER INTERFACE 6.10. ARGUMENTS

• Boolean or set arguments must be able to change the program’s IO nodes. The available IO nodes
of a program can depend on the current values of any boolean or set arguments, so editing these
arguments may cause new IO nodes to appear and existing ones to disappear. Therefore, when-
ever arguments of these types are edited, the program must update its IO node representations to
match the nodes in the framework’s representation.

• The user should be able to access help for each argument, if available. If a program has specified
help for an argument, the user should be able to access it by right-clicking on the argument’s entry.

• The user should be able to hide them. Since programs may contain a large number of arguments,
there should be functionality that allows them to be hidden by the user when not needed, so that
they do not take up unnecessary screen space.

Having already highlighted in our design of IO nodes (see Section 6.9) many feature that they share in
common with arguments, we designed the Argument class to subclass AProgramEntry which would
provide the contract() and expand() methods for hiding them. The Argument class itself would
provide the implementation for accessing argument help when the user right-clicks on the entry, by
overridding the mousePress(..) method. From the HIAL’s design, we discovered that there are four
different argument types; single-line text, multi-line text, set and boolean. Since each of these would
need to be displayed and edited separately, we decided to produce a different subclass of Argument for
each. These subclasses would implement the drawBefore(..) method for displaying the argument
values, and would also provide implementation for a showEditor() method that would construct the
widgets needed for editing the argument’s value.

Figure 6.21 . UML diagram showing the relationships between classes relating to arguments.

6.10.2.2 Displaying and Editing

For single-line text arguments, the SingleLineTextArgument class displays as much of the text value
that will fit in the argument’s entry. When the user wishes to edit the argument, the showEditor()
method constructs a TextBox instance and sets its contents to be the current value. It then passes the
text box to the PopUpManager which displays it as a pop-up over the current argument. This allows
the text box to be larger than the argument entry, so the user can see more of the argument value while
editing it. The SingleLineTextArgument class registers itself as a listener on this pop-up, and is
notified when it is hidden (which is triggered either by it losing keyboard focus or the user clicking
elsewhere in the window). When it receives this notification, it sets the value of the argument to the
current contents of the text box and notifies the HIAL of this change.

For multi-line text arguments, the MultiLineTextArgument class acts very similarly to the SingleLineTextArgument
class. Since the argument’s value can contain newlines, only the first line of the value is displayed in the
argument entry. To edit the value, a MultiLineTextBox instance is constructed to show and allow the
user to edit all the lines. As before, this is passed to the PopUpManager so that it can appear larger than
the argument’s entry.

For set arguments, the SetArgument class displays the currently selected option from the valid set. To
edit this, a DropDownBox instance is created and populated with the possible options. As before, this is
displayed as a pop-up, and any changes are applied when the pop-up is hidden.

87

CHAPTER 6. GRAPHICAL USER INTERFACE 6.11. TASK PANES AND THE TOOLBAR

For boolean arguments, the BoolArgument class displays either a tick or a cross in the argument’s entry
to represent whether the value is true or false. To edit the value, no editor is required, instead simply
selecting the argument inverts its value.

6.10.2.3 Applying Argument Changes

When any arguments of a program are edited, the applyArgumentChanges() method of the Program
class is called, which constructs a list of all the arguments and their new values. This list is then passed
to the HIAL through the updateArgumentValues(..) method of the program’s HIAL object, which
validates the text values against any supplied validation regular expressions and updates the frame-
work’s internal representation of the program. The Program instance then finds out which arguments
failed validation by calling the getInvalidArguments() method of it’s HIAL object, which returns a
list of arguments that are invalid. It can then iterate through this list, locate the graphical entry for each
invalid argument, and call its setInvalid(boolean invalid) method which turns its visual repre-
sentation red to alert the user. Finally, if any of the changes made to the arguments cause the IO nodes of
the program to change, the HIAL calls the programStateChanged(IRefObject program) method
in the GUI’s IHIALContextListener which updates the program’s IO node entries to match those
supplied by the HIAL.

6.10.2.4 Argument Help

In order to display argument help, the Argument class overrides the mousePress(..) method to cap-
ture when the user right-clicks on the argument entry. When this event occurs, it calls the getArgumentHelp()
method of its HIAL object to obtain any available help on this argument. This information is then passed
to the HelpManager class, which constructs an HTML page of help and displays it on an SWT Browser
widget (see Section 6.13).

6.11 Task Panes And The Toolbar

Task panes contribute a large part of the functionality of our project. They serve two purposes; to achieve
required functionality described by the specification, and are used to simplify operations users have to
perform to achieve a task.

6.11.1 Specification

This section refers to a few sections of our original specification. It covers requirements such as giving
the users ability to save and load pipelines and to allow the user to search for programs that can be used
to achieve a task by entering keywords associated with the task. This section also introduces design
decisions that we believe encourage high usability, such as having a history of constructed and executed
pipelines that can be reused in the current session without saving them to disk.

6.11.2 Overview

6.11.2.1 Design

Task panes are shown on the right side of the canvas. However, they are not visible all the time. The user
can expand a task pane to its full size, alternatively the user can hide the task pane to have more space
on the canvas to construct pipelines. This feature makes task panes non-intrusive, i.e. the task panes are
only visible when user needs them and they don’t interfere with user’s task of pipeline construction.

We have decided assign a task pane functionality aspect that it is supposed to serve. Therefore, we have
a few task panes each serving a specific purpose. Only one task pane is visible at a time and the user
can switch between task panes.

88

CHAPTER 6. GRAPHICAL USER INTERFACE 6.11. TASK PANES AND THE TOOLBAR

Since each task pane only deals with one functionality aspect, this allowed us to develop individual
task panes separately of the rest. It also reduced coupling between different components and if the
functionality of the system expands requiring additional features, some of them can be implemented by
adding another task pane which would deal with a particular functionality aspect.

However, all task panes share some common functionality, e.g. expanding and contracting. Also, all
task panes use a customary vertical scroll bar widget, which is used in case a task pane contains entries
that have to be scrolled to by the user. Mouse events have to be distributed to all task panes in a same
manner, so that functionality is also common for all task panes. Thus, a common superclass was needed
to provide common functionality to all task panes and also to provide methods that deal with events
response to which is the same across all task panes.

Therefore, we have decided on the following architecture:

Figure 6.22 . Architecture used to implement Task panes.

6.11.2.2 Implementaion

All task panes subclass ATaskPane , which is the class that outlines common functionality and by
extending AMouseListenerObject guarantees distribution of the mouse events to the task panes.
AScrollingTaskPane is responsible for the behaviour of our customary vertical scroll bar and there-
fore by extending this class all task panes get this customary widget.

TaskPaneManager contains references to all task panes and it controls switching between panes. It
is also responsible for sliding of panes in and out on user demands. In addition, this class deals with
providing reference to a given task pane to other parts of the system when such reference is required.

ADirectoryBrowsePane was introduced, since DirectoryPane , LoadPane and SavePane all share
similar functionality which only differs slightly. All these task panes display a tree of directories avail-
able on user’s computer. DirectoryPane also shows the file entries whereas LoadPane and SavePane
only show thumbnails of saved pipelines if those are contained in the directory rather than showing all
users’ files.

Thus ADirectoryBrowsePane deals with displaying the parent and child folders for a given directory,
DirectoryPane is responsible for displaying file entries for the directory pane and ALoadSavePane
is responsible for displaying the thumbnails of saved pipelines.

89

CHAPTER 6. GRAPHICAL USER INTERFACE 6.11. TASK PANES AND THE TOOLBAR

Figure 6.23 . Screenshots of director, save and load panes to illustrate similarity in displaying the direc-
tory tree.

6.11.3 Components overview

6.11.3.1 Program pane.

Program pane is used to display a tree of programs available in our shell. The programs are organised in
the directories according to the functions that they perform. The user can navigate through a program
pane by clicking on the directory of interest. The entries are colour coded to make it easier for the user
to distinguish between them.

Program pane allows the user to quickly access programs and view help for those programs. If the user
wants to use the programs displayed on the program pane, he/she can simply drag the program entry
off the pane onto the canvas.

6.11.3.2 Search pane.

Search pane is used to fulfil our extended specification requirement which states that the system should
allow the user to search for programs to achieve a task. The search pane contains a textbox where the
user can enter the keywords he/she wants to search for. The keywords are then passed to the search
pane, which filters any punctuation, space or new line characters that the user might have used to
separate the keywords and submits a list of keywords to the HIAL, which actually performs the search.

The HIAL returns a list of program entries that match the keywords it has been given by the search pane.
If nothing matches the user’s criteria a relevant message is displayed on the search pane, otherwise the
program entries returned by the HIAL are displayed. If the user wished to use any of the program
entries found by the search, he/she can just drag that program entry onto the canvas, similar to the
program pane.

6.11.3.3 Directory pane.

Motivation behind the directory pane is that commands like ”change directory” and ”list the contents of
the directory” are used very often in a shell. To save the user time and effort of constructing a pipeline
for such an easy task, a directory pane was created.

The directory pane displays the directory tree, which exists on the user’s machine. To encourage the
same look and feel across all the panes, so that it’s easier for the user to adapt to our shell, we have used

90

CHAPTER 6. GRAPHICAL USER INTERFACE 6.11. TASK PANES AND THE TOOLBAR

the same navigation principles for the directory pane as the ones used in program pane, i.e. entries are
colour coded and the user can navigate by clicking on the directory he/she wants to go into. When a
particular directory is selected, the directory pane displays the contents of the directory including parent
directories, child directories and file entries.

Every time a user changes a directory, a directory pane informs the framework of this change and passes
a current working directory to it. Therefore, often used combination ”change directory, list files” is
supported. If the user wants to construct pipelines which involve knowledge or use of the current
working directory, the directory that the user has visited last in the directory pane is used for that
purpose.

6.11.3.4 History pane.

History pane is used to keep a history of pipelines that have been constructed and executed in the
current session. Once a user executes a pipeline it is added to the history pane in a form of a thumbnail
showing the pipeline that the user constructed. The user can access the pipeline shown in the history by
clicking on the thumbnail.

The context of the pipeline is saved, so that it can be loaded from the history pane later if the user so
wishes. The mechanism of saving of loading to the hisotry pane the pipeline is the same as the one used
in the saving and loading engine (discussed in the next section), except that the pipeline is not stored to
disk.

To obtain a thumbnail of the pipeline, a method in the PipeLineManager was created called createSnapshot()
which creates a new graphic context (GC) and makes a call to the ADrawableObject passing a newly
created GC to draw the contents of the canvas on it. The image data that is created as a result of this call
is then rescaled to the size of the thumbnail.

6.11.4 Saving and loading of pipelines.

Save pane and Load pane address a minimum specification requirement that once a pipeline has been
constructed it should be possible to save it to disk and reload at the later date. Saved pipelines are
represented as thumbnails and are displayed on both save and load panes.

Most of saving and loading is performed by the HIAL and the GUI only saves information which is
relevant to drawing programs, arguments, IO nodes and pipes on the canvas. It is also responsible
for saving and loading thumbnails data and for saving and loading of macros, since macros are a GUI
abstraction only and other parts of the system don’t know about them.

When the user decides to save a pipeline, save pane contacts the HIAL supplying the absolute path name
of the file the pipeline should be saved in and the reference to a GUI object which the HIAL should call
to save GUI related pipeline information.

Similarly, when the pipeline is loaded, the load pane calls HIAL and provides the name of the file to
be loaded and the GUI object that should be called to load GUI specific information. The HIAL loads
all the information relevant to it from the file and then calls GUI supplying the information needed to
load the graphical content of the pipeline. The loading mechanism works as if the user has added the
program to the canvas manually.

6.11.4.1 Overview of some utility classes used in loading and saving

GUISaverCallback. This class was used to save GUI sensitive data about the pipeline. For example,
it was responsible for saving the layout information of the program, i.e. its size and position on the
canvas. Since the format of the save file is xml, all the information written by GUISaverCallback had to
be enclosed in consistent xml tags.

91

CHAPTER 6. GRAPHICAL USER INTERFACE 6.12. SHOW PANE

GUILoaderCallback. This class is responsible for loading of the GUI representations of programs,
arguments and pipes. It takes the DOM object supplied to it by the HIAL and retrieves the GUI infor-
mation about objects to be loaded. This information is used to place the objects correctly on the canvas,
i.e. to the positions they were at when the pipeline was saved. Alternatively, if the canvas already con-
tains components at those positions, the layout algorithm uses the retrieved information to draw the
loaded pipeline around the components on the canvas.

Converter. Image data of the thumbnails showing the constructed pipeline that we use for represent-
ing saved files is stored as a hex string in the xml file used to save pipeline information. This class is
used to convert between image data and a string of hex digits formats of the thumbnail representation.

To perform a conversion it makes use of the ImageLoader provided in the SWT library which saves
the image data to the input stream. The Converter takes a byte array that represents the stream and
converts that byte array into a string of hex digits.

6.11.5 Toolbar

Toolbar is used most of all as means of accessing task panes or a show pane quickly. It contains buttons,
which when pressed slide out or switch to the relevant pane. It also contains buttons related to the
execution of a pipeline; execute button and stop execution button. These serve as means of executing
pipelines when the user uses mouse manipulation of pipeline components.

One other helpful function of the tool bar is that it contains a ”clear canvas” button, which when pressed
removes all programs from the canvas instead of making the user to manually remove all programs
before a new pipeline can be started

6.12 Show Pane

6.12.1 Purpose

In traditional command line consoles, output is always text (with some limited formatting abilities). In
our shell, because we know the type of the data to be outputted, we can select a display method that is
most helpful for the data type.

Images can be shown as an image slideshow, files can be shown in a list view control, which displays
each detail of the file under a column that can be sorted.

This section explains the design of the output visualization component of the GUI. Figure 6.24 shows
the show program that allows the user to specify what parts of a pipeline they want to have visualized.

Figure 6.24 . The user will use the show program to tell the shell which parts of the pipeline’s output,
they want to have visualized. The show program design was covered in Section 3.5

6.12.2 Structure

Figure 6.25 is a diagram which shows how the Show programs and the GUI’s Show execution manager
communicate in order to visualize output. When a pipeline is run, every show program executes the
following routine:

92

CHAPTER 6. GRAPHICAL USER INTERFACE 6.13. HELP

• Show get’s the current IShowPaneExecutionManager from the ShowPaneExecutionManagerProvider .
This is the rendevous point with the GUI. When the GUI first initalizes, it sets this manager to its
own version of the manager. Having this intermediate step ensures the GUI and Show implemen-
tation are independant.

• Show retrieves the ’Name’, ’Show-Using’ and ’Open-Lazily’ arguments. It then examines the pipe
connected to its input to discover the type of the data coming in. It will need this to instruct the
GUI on what kind of output visualizer it requires.

• Show now requests an IShower from the Show execution manager. An IShower is an output
visualizer provided by the GUI for showing objects. It displays the data it receives from calls
to .addObject(o) . An example of an IShower would be, ImageShower , which is a GUI
window for displaying images. ImageShower will take the object ’o’ from .addObject(o)
and add it to its image slideshow.

The request for an IShower contains, a name which the GUI can use for the title of the visual-
ization window, a request to use a specific Shower if the user specified one with the ’Show-using’
argument, and the type of the data coming into Show.

If ’Open-Lazily’ is set, this step only happens when Show receives the first data object. This way,
if no data objects are received, an output visualizing window will never appear.

• The GUI’s ShowPaneExecutionManager now has to answer the Show program’s request for a
shower of a certain spec. First it has to find an IShowerProvider to make the Shower. The GUI
keeps a pool of IShowerProvider s, such as IImageShowerProvider , and ITextShowerProvider .

If a ’Show-Using’ preference is not specified, the GUI will ask each shower provider what type of
data its showers take. If it finds a match, it uses that ShowerProvider, otherwise it uses the closest
type match.

But sometimes, a user will not be happy with using the ShowerProvider that the GUI picks. In this
case, the user can set the ’Show-Using’ argument of the Show program to specify which shower
to use. For example, they could specify to use a Text shower for the output of ’List-Files’ even if a
File shower is available.

Now that a shower provider is picked, the GUI has two options. It can make a new shower.
However, in the traditional console, output from programs can be mixed. It is the same in our
shell. If there is already a shower open which has the same ShowerProvider as the one currently
chosen, and the ’Name’ passed from the Show program is the same, it is assumed that the user
wants to mix the output of the two different Show programs, so the existing IShower is reused.

• The IShower is passed from the GUI to the Show program, and the show program starts adding
data objects to the shower. To improve effeciency, the Show program will take objects in batches
while there are still objects waiting to be shown, then it will add them all with a call to .addAllObjects(objects) .

6.12.3 Available showers

Two showers are implemented in the GUI. These are ImageShower and AnyShower . AnyShower is
capable of showing any IType object by making a call to the .toString() method that all objects have.
This also means that AnyShower makes a suitable substitute for a text shower. Figure 6.26 shows the
AnyShower in use and Figure 6.27 shows the ImageShower in use.

The showers are nested inside a tab control. The title of the shower is placed in the tab title, and the user
can freely switch between showers.

6.13 Help

One of the goals of our project was to create a shell that is user friendly and easy to use even for inex-
perienced user. From this perspective, having context-sensitive help available to users is an important
feature of our project and is tightly coupled with the usability of our system.

93

CHAPTER 6. GRAPHICAL USER INTERFACE 6.13. HELP

6.13.1 Specification

Provision of context-sensitive help to the user when the user needs it was one of the extended specifi-
cations for our project. Help should become available for the program, argument or IO node when it
becomes selected by the user. This help should include information on the selected item and on how to
use it.

6.13.2 Overview

6.13.2.1 Design

When we started designing help system for our project we decided on a few features of the help systems
that should be taken into account when implementing it:

• It must be easily and conveniently accessed. Help should be only a ’click’ or a ’keyboard shortcut’
away to allow the most efficient use of help facility. It also encourages more frequent use of Help
and therefore the user doesn?t need to remember all the commands available in our shell.

• It must not interfere with the user’s current task. Help should disappear as soon as the user clicks
off the selected item.

• It must be clear in description and easy to read. Help should be displayed in the format most
familiar to the user, so that it can be used efficiently.

• It must be navigatable. The user must be able to scroll it if necessary.

• Only relevant information should be displayed. Only information on the selected item should be
displayed at any one time. This prevents overwhelming the user with information which might
not be needed to him/her at the moment and therefore makes it easier for the user to receive most
relevant help.

6.13.2.2 Implementation

We have implemented help system in our project by making use of the HelpManager class. Since we
have decided that only relevant information should be displayed at any one time, only one help window
should be visible at any one time. Thus, it made sense for the HelpManager to follow a singleton design
pattern.

Help is available for all relevant components of the pipeline by clicking on the component of interest or
by selecting it and pressing Ctrl+H keyboard shortcut. When such action is performed on the compo-
nent it will call HelpManger.displayHelp(..) method to configure the help pop-up window to display
the desired context-sensitive information.

In order to make Help easy to read and have an interface familiar to users we have used SWT Browser
widget to display help. The Browser widget renders HTML, which allows HTML formatting to be used,
including style sheets and images on the context of help. HelpManager receives help information from
the pipeline component for which help is to be displayed, wraps it in HTML code and uses Browser to
display it.

This approach makes the layout and appearance of help more user-friendly. The Browser widget also in-
herits from SWT Scrollable class, which makes it navigatable and allows users to scroll the help window
if scrolling is needed.

94

CHAPTER 6. GRAPHICAL USER INTERFACE 6.13. HELP

Figure 6.25 . The communication structure between show programs and the GUI.

95

CHAPTER 6. GRAPHICAL USER INTERFACE 6.13. HELP

Figure 6.26 . The AnyShower is capable of showing text output. When the output gets to large, above
a threshold of 32K characters, the top lines are flushed to ensure the shell does not use a never ending
amount of memory.

Figure 6.27 . The image shower allows the user to view the images as a slide show. They can go back
and view the recent images. They can also set the zoom at which the image is viewed. If the most recent
image is currently being viewed and a new image comes in, the newset image will be shown. This
ensures the user can easily view older images without interruption.

96

Chapter 7

Evaluation

7.1 Specifications

In this part of the evaluation, we are going to take the original specifications, as outlined in Report1, and
comment upon the level of achievement for each point.

7.1.1 Program and Types Specifications

7.1.1.1 Minimum Specifications

• Programs can define input and output nodes that are named and typed. A program can connect
to other programs (via the Kevlar main shell) in order to exchange data if necessary. This is done
by programs declaring input nodes, from which they can accept data from other programs, and
output nodes, from which they can send data to other programs. These nodes can be given de-
scriptive names to help the user, and also are typed so that only nodes with compatible types can
be connected together.

• Programs have arguments, some of which may change its IO function. A program has the ability
to be customisable through arguments that the user may define. These arguments may also add,
remove, rename or change the types of the program’s input and output nodes.

• Programs can validate their arguments before runtime. A program is able to check whether the
given arguments are valid before the pipeline is executed as it exports a description of these argu-
ments, and the Kevlar system validates the inputted arguments against these.

• A core set of programs should be provided to demonstrate the system. There is a small, but
feature-complete set of programs that demonstrate all the different ways programs may interact
with the Kevlar shell.

• Third parties should be able to write programs for the framework. Programs can easily be writ-
ten and added to the framework. There is also a simple program that will wrap existing programs
and pipe their input/output into the system.

• Programs should have human-useable names. Programs that have been written have been given
intuitive names where applicable. They also export help and keywords to aid usage.

• Types should be in a type hierarchy. Programs are able to accept a range of different types by
declaring acceptance of a supertype, and therefore all sub-types will then be accepted.

• Users should be able to define their own types. Types are easily added to the system using a
plug-in based architecture.

• A basic set of types should be provided for demonstration. A basic set of types that allow the
core features of Kevlar to be demonstrated is provided.

97

CHAPTER 7. EVALUATION 7.1. SPECIFICATIONS

7.1.1.2 Extended Specifications

• Programs should export help information. A program can provide its own help on its function,
arguments and the input and output nodes it contains.

• Programs can accept and produce templated types. Programs are able to define how the output
types relate to the input types without having to specify the exact types used, only bounds upon
those types.

7.1.1.3 Optional Specifications

• Programs should notify the system when they are waiting for input. Due to time constraints,
this was not implemented.

7.1.2 Framework Specification

7.1.2.1 Minimum Specifications

• Can connect programs together using pipes between their input and output nodes. The Frame-
work is able to make programs be connected together using pipes, and they can pass data between
them.

• Pipes should have a flow direction. Pipes can only be connected from output nodes to input
nodes, signifying that data flows out of the output and into the input. Any other combination is
not be allowed.

• Pipes should be type checked. The Framework checks that connected pipes are type-safe by
analysing the type outputted from the output node and the types accepted by the input node.

• Should run valid pipelines. The Framework will only execute valid pipelines after they have been
checked for type-safety.

• Should handle program crashes. The whole system does not crash if an individual program
crashes during its execution.

• Should pick up newly registered types and programs from a central repository. New programs
and types are easily added to the Framework. This is done by simply allowing users to drop JAR
files into certain directories which are periodically checked and the files dynamically loaded.

7.1.2.2 Extended Specifications

• Pipes should have the functionality of being Templated. The Framework accepts pipes that are
templated. This means that the type of the pipes is inferred dynamically by the Framework.

7.1.2.3 Optional Specifications

• Should support temporal and conditional temporal options (cf. && and ; in Unix based operat-
ing systems). Due to time constraints, this was not implemented.

• Should support for and while loops. Due to time constraints, this was not implemented.

• Security managers should control what programs do at runtime. Due to time constraints, this
was not implemented.

98

CHAPTER 7. EVALUATION 7.1. SPECIFICATIONS

7.1.3 The GUI Specification

7.1.3.1 Minimum Specifications

• Should provide a graphical representation of pipelines that is easy to understand. New users
of the system can easily identify programs and pipes connecting them, as well as arguments and
connection nodes.

• Should allow the user to construct pipelines using the mouse. The user is able to drag-and-drop
programs then click on connection points to connect them together to form a complete pipeline.

• Should allow the user to construct pipelines using the keyboard. To allow experienced users of
the Linux shell to easily move to Kevlar, the keyboard is also supported so that complete pipelines
can be constructed without using the mouse.

• Should gives the user feedback on construction errors. Users are unable to construct incorrect
pipelines (i.e connecting inputs to inputs or outputs to outputs).

• Should restrict the user’s ability to enter incorrect argument values. The input method for ar-
guments is suitable for the format of argument being entered (i.e checkboxes for boolean values,
drop-down lists for discrete selections) in order to limit the scope for error.

• Should give the user feedback on invalid arguments. Argument values are be validated and the
user alerted if they do not match the specifications given by the program.

• Should visualise certain pipeline output and errors. The interface should provides tools for vi-
sualising simple program output such as text, and images, and report program errors back to the
user in a suitable way.

• Should allow the user to save and load pipelines. Once a pipeline has been constructed, it can be
saved to disk and reloaded at a later date.

• Should follow a design process that encourages high usability. The group internally where con-
stantly trying and providing feedback on the user-experience within Kevlar, which then influenced
future GUI design. Towards the end of the project we also undertook a usability study.

7.1.3.2 Extended Specifications

• Should allow the user to search for programs to achieve a task. In order to allow new users to
learn which programs can be used to achieve which tasks, the human interface provides a way that
the user can enter keywords related to the task to be performed and search for programs relating
to those words.

• Should provide context-sensitive help based upon the current program, argument or node.
Upon selection of a program, argument or node, the user can be shown context-sensitive help
on how to use the selected item. This appears in a pop-up that is easily hidden and does not
interfere with the user’s current task.

• Should allow for construction of basic macros. The user is able to select a section of an existing
pipeline and group it to form a macro, which is then represented graphically as a single program.
This macro can then be saved and used in other programs. The macro inherits any unconnected
input and output nodes from the pipeline it contains and renames those with conflicting names.
The macro does not inherit any arguments; those set inside the macro are fixed.

7.1.3.3 Optional Specifications

• Should allow the user to choose which arguments and nodes should be visible in macros. Due
to time constraints, this was not implemented.

• Should give help and suggest corrections for invalid pipelines. Due to time constraints this was
not implemented.

99

CHAPTER 7. EVALUATION 7.2. USABILITY STUDY

• Should give help about invalid argument values. Due to time constraints, this was not imple-
mented.

• Should allow macros to be expanded and edited. Due to time constraints, this was not imple-
mented.

• Should allow macro changes to affect multiple instances. Due to time constraints, this was not
implemented.

• Should allow the user to construct temporal scripts. Due to time constraints, this was not imple-
mented.

• Should provide a plug-in-able architecture for visualising different types of output. Due to time
constraints, this was not implemented.

7.2 Usability study

7.2.1 Motivation

The aim of the Kevlar project is to design and implement a new kind of shell which would have ad-
vantages over the traditional command line shell. In particular, we aimed to solve usability problems
in existing shells. Therefore, to evaluate our product, we need to analyze the usability of Kevlar. This
section discusses how we decided on a usability study that would be useful to the project, and how the
results were used to improve and evaluate Kevlar.

7.2.2 Choosing a usability study type

7.2.2.1 Study type

The information on usability study types is taken from Jim Cunningham’s second year notes on usability
studies 1. There are two types of usability evaluation studies that are potentially useful.

Summative report on conformance

• does not explain reason for performance

• pass/fail report against agreed measure

This is appropriate for simple decision making. A summative report just includes comparison between
actual and desired performance, in terms of times, errors, etc. to justify the conclusion.

Formative or diagnostic report

• explains causes for users performance

• a diagnosis for feedback into design

This is necessary to support design decisions during the development process; performance inadequa-
cies should be related to user behaviour, and data provided for re-design.

Since the Kevlar project is designed to address the usability issues in the current command line, it would
be useful to perform a comparative, summative study that tests to see if Kevlar offers benefits in task
completion over the traditional command line console. This way, we could analyze whether Kevlar is
an improvement over the command line with regards to usability. However, in practice, this form of
study would be difficult to do.

CHALLENGES WITH DOING A COMPARATIVE, SUMMATIVE STUDY

• For this type of study, statistical analysis is needed to decide the results.

1For copyright reasons, these notes are not on general release, so could not be cited.

100

CHAPTER 7. EVALUATION 7.2. USABILITY STUDY

• Since the Kevlar project does not have the resources to fund a study involving many people, it
would be very difficult to get enough people to allow for statistically meaningful results.

• Since most of the people who are likely to volunteer for such a usability study would be the tech-
nologically literate peers of the Kevlar team who also have experience with using a traditional
console, there would be a strong bias in the results.

However, a formative report that analyses user performance at would also be of use as this information
could be used to shape the design of Kevlar, and identify usability issues. For this kind of study, it is not
as crucial to have a large sample population. We decided to initiate a formative report on the usability
of Kevlar to determine improvements for the Kevlar system and to help evaluate our product.

7.2.2.2 Evaluation process

Given that we have chosen to perform a formative study of usability, we need to decide what evaluation
process we would use for this analysis. There are four main methods to evaluate usability [?].

1. User Reporting. This method involves interviewing users after using a system, or undertaking a
survey of those system users.

2. Specialist reporting. A human computer interfaces specialist walks through the system as though
they were a user and analyses usability.

3. Observational methods. An analyst observes users as they use the system. The observations are
then classified, analyzed and evaluated.

4. Analytic methods. This method does not involve any use of the actual system. Instead, established
principles are used to reason about the system.

We ruled out specialist reporting due to the impracticalities of finding a HCI expert given the project
budget, and decided that it would be difficult to find enough users willing to participate in an observa-
tional study.

Analytic methods are possible, and we recognized the usefulness of being able to evaluate the system
without needing actual users. We found it useful to do keystroke modelling of using the Kevlar system
compared with using the Console. (See Section 7.3.2). However, in general, for the majority of the
usability issues we are interested in, we could not find a suitable analytical methods.

User reporting is easy to implement, and does not require any budget. This makes it a feasible evaluation
method for the study. We decided to use user reporting as our evaluation method. This means that we
will receive design feedback from surveys and interviews with users that have used Kevlar.

7.2.3 Designing the usability study

7.2.3.1 Overall design

Since we had decided on performing a formative usability study with a user-reporting based evaluation
process, we need to decide on the design for collecting user reports.

AIMS OF THE STUDY

• Direct design decisions. As the main use of this kind of study is to help direct design decisions,
this will be the focus of the survey design.

• Find design issues that can be improved. We wish to locate individual usability issues with Kevlar
that can be improved.

• Evaluation. However, since we also wish to evaluate the Kevlar system, this will also be a consider-
ation. For this reason, there will be a small amount of questions that are possibly more appropriate
in a summative report. However, we will have to be careful not to draw any conclusions based
solely on numerical analysis of results due to the problems covered in Section 7.2.2.1

101

CHAPTER 7. EVALUATION 7.2. USABILITY STUDY

To simplify the task of collecting results, we decided on using survey-based report collection over con-
ducting interviews. This avoids problems associated with interviews such as interviewer-introduced
bias, and requiring increased labour over the survey method.

Since there are no existing users of the Kevlar system, we felt we had to start by developing tasks for
users to undertake, so that they were able to answer questions on usage of the system. These tasks were
designed to cover the full range of tasks that can be done in the Kevlar shell.

7.2.3.2 Task list

We required users to perform 6 tasks before filling out the Kevlar survey. Each task has an overall aim,
and a set of steps on how to perform the task. Below, the aims are presented, but the full tasks including
the steps for those tasks can be found in Section 10.2

TASK AIMS

• 1. Get a list of files in your current working directory. Learn how to navigate in Kevlar and learn
the different ways of getting at programs.

• 2. To save the pipeline made in task 1.

• 3. To load the pipeline saved in task 2.

• 4. To search for programs and use program arguments. We want to list all files that have the letter
’a’ in their name.

• 5. To use arguments to change nodes of programs. To build a pipeline to list the contents of just
the first sub-directories of the current directory.

• 6. To build an advanced pipeline that takes images in a directory, resizes and rotates them, and
shows the before and after images.

7.2.3.3 Survey design

Good question design for usability surveys has many potential pitfalls and issues. Here is a list of good
design practices and pitfalls, [QUE]

• A questionnaire tells you only the user’s reaction as the user perceives the situation. Thus some
kinds of questions, for instance, to do with time measurement or frequency of event occurrence,
are not usually reliably answered in questionnaires. Therefore, although useful, it may not be a
good idea to ask a user to report how long they spent on each task.

• Open ended questionnaires are good if you are in an exploratory phase of your research or you are
looking for some very specific comments or answers that can’t be summarised in a numeric code.

• Only use clear, well formulated questions

7.2.3.4 Questions

With this in mind, and considering the design aims, we decided on the following set of questions.

We wanted to find out what the users experience with the command line console was. We asked these
questions at the start of the survey.

• I know what a UNIX command line console is. (Yes or No)

• I have used the command line console to copy files and delete files. (Yes or No)

• I have used the command line console to build a ’pipeline’. (Yes or No)

• I have used the UNIX program ’tee’ in the command line console. (Yes or No)

For each task we asked:

• I successfully got the correct result from this task. (Yes or No)

102

CHAPTER 7. EVALUATION 7.2. USABILITY STUDY

• If the answer is no, explain which step gave difficulty. (Open ended)

• What problems or annoyances were there while completing this task? (Open ended)

These questions aim to give maximum insight into design issues that can be improved and information
for design decisions. They are also a useful evaluation tool since we can see how many of the tasks the
user was able to complete and therefore whether our system is usable for getting tasks done.

We also asked a set of questions once the user had completed all the tasks.

• Which task did you find the hardest? (1, 2, 3, 4, 5, 6 or Unsure)

• Why did you find that task the hardest? (Open ended)

• Which aspects, not mentioned in your answer to the above question, were the most difficult to use,
or the most damaging to the user experience? (Open ended)

• If you were to redesign Kevlar, what would you like to add or change? (Open ended)

These questions focus on discovering design issues that can be improved.

Finally, we asked users to give their opinion on a set of statements by choosing one of, ’Strongly agree’,
’Agree’, ’Neutral’, ’Disagree’, ’Strongly disagree’.

• “It is easy for a new user to get used to the system.”

• “The performance of the system was acceptable. (ie. It ran fast enough.)”

• “The user interface was easy to use. The controls (eg. text box, list box) were easy to use.”

• “I feel the Kevlar’s system is an improvement over the classic command line. It is more intuitive.”

• “I would consider using Kevlar instead of the normal command line.”

For the last two statements, we also gave the user an option of choosing ’I have not used the command
line before or do not know what it is’ instead of stating their agreement.

For the semantic differential type questions (with options between Strongly agree and Strongly dis-
agree), there is a known problem relating to when a user is biased towards clicking the options that line
up in a column. To combat this problem, the options were placed vertically instead of horizontally on
the HTML form. There is now no problem with options lining up.

7.2.3.5 Result collection

A website was prepared that contained instructions on how to install Kevlar, the list of tasks to perform,
and the set of survey questions. The results of the survey question are then saved to an XML file which
we can analyse as results come in.

Group Usability Study Website. <http://www.doc.ic.ac.uk/project/2004/362/g04362341M/
study/ >

7.2.4 Results

We received feedback from 7 participants who had all used the console and pipelines before according
to their answers to the first 4 questions. Since this number is small and strongly biased towards a
particular user-group, the non-open ended questions could not be analysed. However, we have still
found the information from the open ended questions invaluable in finding usability issues that can
be improved, in helping shape the design of Kevlar, and in assessment of how effective Kevlar is as a
tool. Additionally, we unexpectedly found the study to be useful for getting ideas for future extension
of Kevlar and finding bugs.

The full set of results can be found in Section 10.3

We were able to address nearly all the usability issues introduced by these comments, and when a
response was unclear, we asked the user to clarify.

In total, 54 design issues, bugs or suggestions were raised by the respondents.

103

CHAPTER 7. EVALUATION 7.3. SYSTEM EVALUATION

7.2.4.1 Summary of task completion

In total, 7 participants attempted 6 tasks. 32 of 42 tasks were completed. Only 1 of the 7 respondents
successfully completed task 6. This was because there was a bug in the installer version of a program
needed for the task which we only discovered towards the end of the usability study. However, all
respondents who failed task 6. were able to build a pipeline for the task, but were unable to get the
expected results due to the buggy program. If we ignore this task, 32 out of 35 tasks were completed
successfully.

7.2.5 Our Response

We were able to use the constructive criticism given by users in response to the usability study to im-
prove issues with the Kevlar interface. An outline of these is below:

• “No feedback that the pipeline was saved”. In the beta release provided for the usability study,
the save pane was not refreshed when the user saved a pipeline, so the directory that it was saved
to was updated to show the newly saved file.

This was solved initially by refreshing the pane, but because the save file was sometimes ’scrolled’
off the bottom of the pane, it was instead decided to additionally close the pane in response to a
successful save.

• “If you RIGHT-click on the program, help should appear”. In the beta release, program help was
initiated by clicking on a help button in the header of each program. This was inconsistent with
the right-click method of accessing help for arguments, IO nodes and programs in the task pane.

This was solved by removing the button, and migrating the help-popup behaviour to whenever
the user right-clicked on the program header.

• “do NOT make us click on the circle to select it, clicking anywhere on the name should suffice”.
In the beta release, pipes were added between programs by clicking on the circular node widget
which was part of each programs node entry list. This was a very small target to click on and some
users found this frustrating.

This was solved by extending the clickable region to include the complete node entry.

7.3 System Evaluation

In this section we are going to evaluate Kevlar with respect to the design and implementation.

7.3.1 Testing

As part of the code development for this project, we wanted to ensure that components developed
individually by each group member fulfilled their contracts, and would therefore work together when
integrated into the whole system. We wanted a way of quantifying our evaluation of the system, and
testing provided a way of achieving this. We divided our testing strategy into two sections as described
below.

7.3.1.1 Unit Testing

Unit tests provide a definite pass or fail result for each unit of functionality tested. Early on in the
project, we wanted some way to evaluate definite progress, and the pass-fail ratio provided a quick way
of obtaining this after every change. It was the responsibility of each member to write tests for their
code during the first stages of implementation so that we had some level of quality control.

Our design consisted of three layers which were developed at different rates, which meant testing the
system as a whole was unachievable early on. However, rather than leave testing until each layer had

104

CHAPTER 7. EVALUATION 7.3. SYSTEM EVALUATION

progressed enough to be integrated with its neighbours, we used unit testing to ensure that each com-
ponent met its requirements, and so would provide the necessary functionality.

Unit testing also allowed us to make changes to the source tree and check that contracts of other compo-
nents had not been broken. Further to this, we wrote unit tests to quickly reproduce bugs that had been
found and used these tests to ensure that the bugs were fixed and remained so throughout development.

7.3.1.2 Continuous Integration

As already stated in the build system (see Section 2.1) we used CVS and Ant build scripts which allowed
the whole product to be continually integrated. Since the results of most GUI methods were changes
to the visual output of the program, these methods were difficult to unit test. Instead we relied upon
developer-oriented integration testing to ensure that the GUI functioned correctly. As the GUI was
able to use more and more features from the lower layers, we were able to test that all the components
required for particular tasks worked together to fulfil their joint contract.

If during the testing of a task a bug was found, we were able to use Eclipse’s debugging capabilities and
Java’s stack traces to identify the point of failure and discuss the best course of action with the group
member responsible. When the bug was resolved, it could be instantly shared with all group members
so that they could verify that the problem had been resolved. This peer checking for resolution of bugs
provided another level of quality control, and since a checklist of bugs was available to every group
member, we had another way of evaluating project progress.

7.3.2 Keyboard Model Evaluation

Although our specifications document only stated that we had to provide a keyboard model, we recog-
nised the need for rapid access to commonly used features in order to attract experienced users of ex-
isting shells. In order to evaluate how successfully this was achieved, we decided that keystroke-level
analysis was a fair way of comparing Kevlar to existing shells. We took several use cases and generated
semantically identical pipelines to fulfil them using both Kevlar and the existing Linux console. We
then compared the number of keystrokes required for each, assuming that an experienced user was us-
ing both systems, and would therefore know the names of the programs required (elminating the need
for searching or using help).

Since in both the Linux console and in Kevlar, the number of keys required to locate a particular program
depends on the number of programs in the system (due to tab-completion and auto-complete), we de-
cided to fix the number of programs such that on average three keypresses was required to identify any
particular program. We also counted keystrokes for the Linux command to include the typically-added
space between program names. By way of example, two such comparisons between the two systems
are supplied below.

• Rename any .html file in the current directory to .htm.

Linux pipeline: ls *.html | sed ’s/\(.*\.htm\)l/\1/’ | xargs -ri mv ’{}’l ’{}’

Number of keystrokes: 61

Kevlar pipeline:

105

CHAPTER 7. EVALUATION 7.3. SYSTEM EVALUATION

Number of keystrokes: 65

• Find all log files written in 2001 or 2002.

Linux pipeline: ls | grep -E ”ˆweb-200[12].log$”

Number of keystrokes: 32

Kevlar pipeline:

Number of keystrokes: 40

Overall, we found Kevlar pipelines to take within 50% more keystrokes compared to the equivalent
Linux commands. Although Kevlar generally took more keypresses to complete each task, the cause of
this was often the longer, user-friendly names we had used for programs which would always require
four keystokes (three letters and a tab) to locate, compared to short names such as ’ls’ and ’rm’ which we
took as only requiring two. Kevlar’s feature of allowing programs to have multiple input and output
nodes also caused further keypresses, since the user had to locate the node on each program by name in
order to pipe data to other programs, where this could be done using the single pipe shell directive in
Linux.

7.3.3 Areas of Improvement

Generally we are happy with the design and implementation of Kevlar, however during development
we realised that there were potentially better ways of implementing some features which we did not
have time to explore. A few of these are summarised below.

• Optimised Drawing Engine. In order to improve performance, we noticed a number of optimi-
sations that could be made to the existing drawing engine. We performed a spike on a separate
branch of the CVS in order to investigate these optimisations, and managed to achieve a significant
performance improvement, but at the cost of introducing a number of unexplained visual glitches.
Unfortunately, being near the project deadline, we decided not to attempt to resolve these issues,
since there was no indication of what was causing them and therefore how long they would take
to fix.

• Execution. A major inefficiency with execution is the time required for the Java Virtual Machine
to start up for every program in the pipeline. We discovered that the latest Java Virtual Machines

106

CHAPTER 7. EVALUATION 7.3. SYSTEM EVALUATION

support an option to create an image of the startup memory footprint which can be saved and then
reused by other JVMs to decrease the start up time. However, because the execution system was
not started until mid-way through the project and suffered from unforseen complications, this was
an optional feature that became low priority.

• Argument Visibility Issues. During the original design of the graphical interface, we wanted to
hide any unused arguments in order to conserve screen space, however in the released system this
means that arguments must be explicitly added before they can be used. A better system would
have been to hide unused arguments only until a program was selected, when it would expand to
show all its entries. This would allow us to optimise the keyboard system further by removing the
entry selection auto-complete shortening the the number of keypresses required to select entries
for certain operations.

107

Chapter 8

Conclusion

8.1 Our Achievements

At the start of this project, we identified a common frustation within popular command shells which
we attributed to the fact that they are mainly based upon historical products which do not use modern
capabilities such as a graphical user interface. We then set about quantifying the precise problems that
we had with these shells and produced a list of seven usability issues that we wanted to be remedied
(see Section 1.1).

Taking these requirements, we looked for existing projects that attempt to find solutions to these prob-
lems. We discovered that, although there had been attempts to solve some of these issues by different
projects, none had successfully achieved them all (see Section 1.3). We then set about designing and
implementing “A User-Friendly, Type-Safe, Graphical Shell”, which we called “Kevlar”.

Three months later, after the research, requirements gathering, design and implementation phases were
complete, we set about evaluating whether our project had fulfilled the principle aims set out at the
start. Our internal testing showed we had a product that was functional, stable and met internal quality
requirements (see Section 7.3.1).

With a stable beta release now possible, we constructed a usability test and advertised this to external
users in order to gain feedback about our project from its use in the real world. The responses elicited
from this study demonstrated that our system is usable, but also raised novel issues that we had not
considered. We were then able to respond to some of these issues to further improve Kevlar, with any
unresolved problems mentioned in this report (see Section 7.2).

Our evaluation showed we have a functional and usable system that fulfilled the seven aims set out at
the start of the project. Due to our rapid design process, the Kevlar memory footprint and processor
requirements for a consistently responsive system were too great for it to gain widespread acceptance.
However, positive results from our usability study suggested that the existing system did have a niche
user base.

Kevlar has shown that the user-orientated, graphical, workflow based shell concept can work, and pro-
vides the starting point for the production of a universally accepted product.

8.2 Group Conclusions

Working on a project for three months as a group has allowed us to gain an insight into working with
other people on a large and complicated software product for a sustained length of time. In this section
we will reflect upon what we have taken away from this experience as lessons learnt.

The single most important factor to the success of this project has been good group communication.
Communication was no only through our regular formal weekly group meetings, but also through daily
contact, discussing what had been done, what was to be done, what was found challenging and other
pertinent matters. When people were not around (for example over the holidays) the use of a group

108

CHAPTER 8. CONCLUSION 8.3. FUTURE WORK

forum, internet-based instant messaging and the telephone were still used to maintain the cohesion
of the group. On its own communication did not solve or create any problems, but the fact that it was
constant made it much easier to design interfaces that people would be working to, pass on bug-reports,
and keep other people appraised of when which features were likely to be needed. In a more formal
way, our group milestones helped communicate to everyone the overall view for were the project should
be at particular dates.

Communication of progress was also made through the use of definite unit tests that passed or failed, to
highlight areas of code that needed work, and areas of code that we tested to show the meeting of their
specifications. When integration testing occured, bug-lists were kept on the group forum, and the fixing
of these communicated to the group further progress.

A third way progress was communicated was through the use of CVS, and regular committal of work
by the group. This allowed us to see and test the integration of Kevlar, and its development towards the
final product. Any small bug fixes or new features were instantly available to all other group members
for review and appraisal.

8.3 Future Work

8.3.1 Short Term

We recognise that with more time there are many additional features we would like to have imple-
mented that were not critical to the success of the project but are the natural extensions to what we have
done.

• Plug-in-able Visualisers. Currently Kevlar has two built-in visualisers for displaying text and
images from the pipeline. However, because types are dynamically loaded, an obvious extension
would be the dynamic loading of visualisers for these types into the Kevlar system. This would
enhance the user experience by increasing Kevlar’s usability to adapt to fulfil tasks not intended
in the original design, e.g. the ability to play sound and video files.

• Scripts and Control Structures. One powerful feature of existing shells is the ability to script
multiple pipelines and conditionally link them based upon their success or failure. Although we
identified this as an optional requirement at the start of the project, we recognised that it was
outside of the scope of what we had time to do. With the core of single-pipeline construction and
execution done, the next logical step is to add the ability to link pipelines and therefore create
scripts.

• Complete the Macro Model. Although early on we planned to implement a more complete macro
system for Kevlar, we noticed a number of problems in their design that would have taken too
long to resolve for our purposes. Currently, the macro implementation does not propagate any ar-
guments from the internal programs up to the macro level. This is because arguments are allowed
to change the IO function of a program, and so altering a macro argument could break its internal
pipeline. We therefore needed some method of either restricting the argument changes so that
the internal pipeline could not be broken or notifying the user of these problems and providing
functionality to allow them to be fixed by re-expanding the macro.

Furthermore, since macros often represent commonly used sub-pipelines that are duplicated within
larger pipeline structures, if a macro is expanded and interally edited there is the additional ques-
tion of whether these changes should be propagated to any other instances of this macro. How-
ever, despite this functionality being quite useful, we would have to distinguish an expanded
macro from the rest of the pipeline in order to determine whether that macro was being edited or
a completely new macro was being constructed.

• More Help. Currently, Kevlar provides consistent help for programs, arguments and IO nodes,
which is exported by the programs themselves. However, it does not contain any help on how to
use the Kevlar system itself more efficiently. This could be provided through tool-tips to suggest
keyboard shortcuts for equivalent mouse-based actions and also tutorials that could explain the
fundamentals of the system to a novice user and also how to use the keyboard model effectively
to a more advanced mouse user.

109

CHAPTER 8. CONCLUSION 8.3. FUTURE WORK

Kevlar also provides a sophisticated search facility for program discovery based upon keywords
that are exported in program meta-information. However, a further form of program discovery
could be provided by allowing the user to search for programs that have a particular IO function.
For instance, if the user has a program that currently outputs filenames, and wants to convert these
to images, this could be used to search for a list of programs that contain this IO function in order
to locate the require Image-Loader program.

8.3.2 Long Term

As outlined in our research section, Kevlar is one of several existing work flow tools. What sets Kevlar
apart from most of these products is its design centered around usability and its flexibility to be com-
pletely extensible to contain any kind of type and program that the user wants. If execution was op-
timised, Kevlar or a successor could become the generalisation of all workflow tools. If a secure way
of allowing programs to customise their visual representation within the Kevlar shell could be found,
we begin paving the way to integrating complete graphical applications into our system, rendering any
other form of desktop or command-line obsolete. Eventually this could become a usability-centered
workflow-based operating system.

Another exciting possibility for the Kevlar system would be to allow discovery of program descriptors
from remote machines and remote execution of programs. Couple this with the operating system end-
point of the project mentioned above and you have a fully distributed and intuitive operating system.

110

Chapter 9

User Guide

This manual provides an overview of how to use the Kevlar system.

9.1 Your First PipeLine

This section will take you step by step through construction of a simple pipeline, which lists the files in
your current directory.

9.1.1 Getting started

First you need to get programs that will perform the desired task for you. In Kevlar, there are three ways
in which you can access programs (see sections corresponding to each method for more details):

• Using Programs pane. You can use Programs pane to locate programs and to drag them from the
pane onto the canvas.

• Using keyboard You can use keyboard to type the name of the program you want to use and it
will appear on the canvas.

• Using Search pane You can use Search pane to search for programs and then use the results re-
turned.

Let’s use Programs pane to get your first program. Open Programs pane by either clicking on the arrow
at the right side of the canvas or by pressing Ctrl+P. Next step is to click on ”FileUtils” and to locate
”List-Files” program. Now click and drag ”List-Files” onto the canvas - you have your first program
successfully added to the pipeline!

What you need to do now is to connect ”List-Files” program to the program that will show you the
outputed result. Kevlar has a build-in program called ”Show” that does exactly what we want - displays
the results of executing the pipeline.

If you click in the middle of the canvas and type ’s’. This will bring up a list of all programs available
in Kevlar that start with letter s. At this point you can either navigate down until you find ”show” and
press enter or you can type ’h’, which will result in only ”Show” being left in the list now, so you can
press enter to select it. The ”Show” program has now been added to the canvas.

Next step is to connect ”List-Files” to ”Show”. To do that, simply click ”Filenames” node in ”List-Files”
and then click on the ”Data” node of the ”Show”. The pipeline will appear between the two programs.
At this point your pipeline should look like this:

111

CHAPTER 9. USER GUIDE 9.2. TOOLBAR

To execute a pipeline, click on the execute button on the toolbar or press Ctrl+Enter. When the arrow
at the bottom of the canvas turns orange, indicating that pipeline has finished running, click on it to
expand an output pane which will display pipeline’s output.

9.1.2 Constructing more complex pipelines.

When constructing more complex pipelines, you can greatly benefit from using Help system available
in Kevlar. To activate Help, simply right-click on any program, argument or IO node that you want to
learn more about and the Help window will popup next to it explaining how and what it is used for.

Another feature of Kevlar that you will find very useful is that you can recognize that your pipeline
has errors during the construction stage. All invalid entries in your pipeline are highlighted by being
displayed in red. If such entries exist in your pipeline, you will not be able to execute your pipeline,
which is also indicated to you by showing that the execute button is disabled.

9.2 Toolbar

This section describes what the toolbar is used for, how to use it and what the toolbar buttons are for.

9.2.1 Toolbar buttons overview

The toolbar is used mostly as means of quickly accessing Kevlar’s task panes and to execute constructed
pipelines when using the mouse.

To activate any of the toolbar buttons simply point your mouse pointer to the icon, corresponding to the
action you with to perform and left-click on it.

Figure 9.1 . Kevlar’s toolbar

The toolbar contains the following buttons (left to right on the diagram above):

• Clear the canvas. If this button is pressed all the programs and pipes that are currently on the can-
vas will be removed without being saved. This option can be used if you want to start construction
of a new pipeline and do not wish to use the programs you have placed on the canvas during the
construction of the previous pipeline.

• Load. If this button is pressed the Load Pipelines task pane becomes visible on the right hand side
of the canvas. If you had a different pane open before pressing this button it will switch to Load
Pipelines view. (See Load pane section for more information).

• Save. If this button is pressed the task pane will switch to or open a Save Pipelines view. Like with
the load button, if you had a different task pane view open it will be switched to Save Pipelines
view.(See Save pane section for more information).

• Execute. Pressing this button will cause the pipeline you’ve constructed to execute. When execu-
tion is finished it will be indicated by the orange arrow at the bottom of the canvas. Pressing that

112

CHAPTER 9. USER GUIDE 9.3. TASK PANES OVERVIEW

arrow will expand the show pane, which will contain the result outputed by your pipeline. How-
ever, if your pipeline contain error, pressing execute button will not run your pipeline (execute
button will be disabled).

• Stop execution. If this button is pressed during an execution ot the pipeline, the execution wiil
stop.

• Show pane. Pressing this button with slide the show pane in or out.

• History. This button switches the task pane view to the History view, which contains history of
the pipelines executed in the current session. (See History pane section for more information).

• Programs. This button will switch the task pane view to the Program view. The Program view
allows you to see the programs available in Kevlar organised in the directories according to their
functionality. (See Programs pane section for more information).

• Search. Pressing this button will switch the task pane view to the Search view. This view can be
used for the keyword search for programs available in Kevlar. (See Search pane section for more
information).

• Directory. This button will swith the task pane view into a Directory view, which can be used to
browse the directories available on your computer and also to view the content of directories. (See
Directory pane section for more information).

9.3 Task panes overview

This section introduces task panes that Kevlar uses. Task panes are used to assist you in performing op-
erations such as saving or loading the pipelines you have constructed or searching for the right program
to use.

When you start Kevlar, none of the task panes are visible so you can have as much of the canvas space
for pipeline construction as possible. However, if you want to use features task panes have to offer, you
can open them. An opened task pane is displayed at the right side of the canvas. There are three ways
in which you can open and close task panes:

• Using expand button. Task pane view can be opend by clicking on an arrow expand button at the
right side of the canvas. The task pane slides out showing the Programs pane.

• Using keyboard shorcuts. Each task pane view has a keyboard shortcut that can be used to access
it. Using those shortcuts will open the task pane in the view the shortcut is assocciated with. (See
Keyboard Shortcuts section for more information.)

• Using toolbar. The toolbar can also be used to access task panes by clicking on the icon corre-
sponding to the task pane view you want to open. More on this in Toolbar overview section.

If you want to hide the task pane, just click the expand button or press the same keyboard shortcut
again.

Once you have task pane view open, you might want to switch between panes. This can be done just
be using toolbar buttons or keyboard shorcuts. However, you can also switch between task panes by
clicking on the arrow button at the top right corner of the your current task pane. This will bring up a
drop down list of all the task panes available in Kevlar.

113

CHAPTER 9. USER GUIDE 9.4. SEARCH PANE

To switch to a different task pane, just select it from the list and click on it. The task pane will switch to
the view you have selected.

9.3.1 Programs pane

Programs pane can be used to access Kevlar’s programs, which are organized into directories depending
on the program’s functionality. The Programs pane shows a directory tree of Kevlar’s programs.

To access a program, go into a directory containing the program you are interested in by clicking on it,
select the program you wanted to get, click on it and drag it onto the canvas. The program will appear
on the canvas, showing its arguments and IO nodes ready for you to use.

9.4 Search Pane

Search pane is a very useful tool in finding which program to use in your pipeline if you don’t know its
name but know what functionality you want the program to achieve.

9.4.1 Using Search pane

Once you opened a Search pane you can start using it. All you have to do is to type in the keywords you
want to search for and press search button (or return). If the search words you’ve entered don’t match
any of the programs’ keywords the search results will be empty. For example, if you try searching for
”hello”, the search will return nothing and your Search pane will look like this:

Figure 9.2 . Search pane when nothing have matched the keywords entered.

However, if the search has found some matching program entries for the keywords you have entered,
the list of results wiil be displayed on the Search pane. For instance, if you search for ”test”, the search
will return a list of programs that match your keyword and the Search pane will look something like:

If the search has been successful and a list of programs is returned, you can use those programs by
simply dragging them onto the canvas. However, if you are still not sure which program to use you
might want to use Kevlar’s help system. Just right click on the program you wish to find out more
about and the help will appear describing the program selected.

114

CHAPTER 9. USER GUIDE 9.5. DIRECTORY PANE

Figure 9.3 . Search pane when a list of entries matching entered keyword has been returned.

9.5 Directory Pane

This section describes why Kevlar has Directory pane and how to use it.

9.5.1 Motivation behind the Directory pane

Directory pane can be used to navigate and browse the directories available on your computer. It is also
a quick way to perform operations of changing the directory and listing its contents, which are very
often performed in a shell.

9.5.2 Using the Directory pane

First of all, open the Directory pane view if you don’t have it already open. Your Kevlar should look
something like that:

Figure 9.4 . A screen shot of a directory pane.

115

CHAPTER 9. USER GUIDE 9.6. SAVE PANE

All entries in the Directory pane are colour coded to make it easier for you to navigate through your
directory tree. Orange entires represent parent direcotries, blue entries represent sub-directories and
green entries - files within the directory you are currently in.

To navigate through directories, simly click on the directory you want to go to. The Directory pane
will refresh showing you the contents of the direcotory you clicked on and also all the parents of that
directory.

A word of warning: navigating through directories using Directory pane changes your current working
directory, which may affect execution of your pipelines and therefore the results returned!

9.6 Save Pane

Save pane is used to save constructed pipelines onto disk.

To save a pipeline to disk you need to perform the following operations. First of all open task pane in
save pipelines view. Next enter the name of the file you want to save your pipeline in into the textbox.
Now, select a directory you want your file to be save into from a directory tree and click ”Save”.

If saving of your pipeline was successful, the saving pane will close. However, if a problem was en-
coutered with your save operation, the save pane will stay open and the reason for saving failure will
be displayed at the top of the panel.

9.7 Load Pane

Load pane is used to load previously saved pipelines onto the canvas.

To load a pipeline from disk you have to open a task pane in load pipeline view, navigate to the directory
that contains the file you want to load. Those files are represented as thumbnails of pipelines that are
saved within them. In order to load a pipeline, all you have to do is to click on the thumbnail showing
the pipeline you want to load.

The loaded pipeline will appear on the canvas. Loaded pipeline can be manipulated in the same way as
any other pipeline.

9.8 History Pane

History pane is used to keep a list of pipelines executed in the current session. Every time you press
execute button or a key shortcut to execute a pipeline, it is added to the History pane. The motivation
behind History pane is that you can store and load pipelines that you have constructed in this session
to/from the pane without saving them to disk.

9.8.1 Using the History pane

If you have just started Kevlar and haven’t executed any pipelines yet and opened History pane it will
be empty and you will see something like this:

If we now execute a pipeline, lets say List-Files, the History pane will contain a thumbnail of the pipeline
just executed:

The more pipelines you execute, the more thumbnails the history pane will show. To use previously
executed pipelines, just click on the thumbnail of the pipeline you want to use and it will appear on the
canvas ready for you to use again.

116

CHAPTER 9. USER GUIDE 9.9. KEYBOARD SHORTCUTS

Figure 9.5 . History pane when no pipelines have been executed yet

9.9 Keyboard Shortcuts

All of Kevlar’s functionality can be accessed through the use of keyboard shortcuts. This section aims to
explain how shortcuts can be used to construct and execute pipelines as well as access features provided
by the task pane and show pane.

9.9.1 General Shortcuts

The following shortcut keys can be used at all points in the program.

9.9.2 Pipeline Construction Shortcuts

Note: To construct a pipeline using the keyboard, you must first make sure that no task panes currently
have keyboard focus by pressing the Escape key.

• Add a program to the pipeline. If you don’t know the name of the program you want to add, you
may wish to search for it using the search pane (see Section 9.9.5). Otherwise, bring up the pro-
gram auto-complete box by typing the first few letters of the program’s name. A list of available
programs beginning with those letters should appear. You can narrow down the list by typing
more letters, expand the list by deleting some letters (pressing Backspace), or highlight the pro-
gram you want by using the Up or Down cursor keys. When the correct program is highlighted,
you can add it by pressing Enter. The pipeline view should scroll to where the program is placed,
and the program should be selected. If you want to add multiple programs in one go, you can use
Spacebar to select a program, which will add it without selecting it (so that you can start adding
another program straight away).

117

CHAPTER 9. USER GUIDE 9.9. KEYBOARD SHORTCUTS

Figure 9.6 . History pane after executing one pipeline

• Edit an argument of a program. When a program is selected, you can edit its arguments by typing
the first few letters of the name of the argument you want to alter. This should bring up the
program entry auto-complete box, which will contain a list of the program’s arguments and nodes
that begin with those letters. Use the Up and Down cursor keys to select the argument you want
to edit, and press either Enter or Spacebar.

If you’re editing a boolean value, then selecting the argument will automatically invert the value
and return you to the selected program.

If you’re editing a set value, then a drop-down box will appear allowing you to change the value.
Use the Up and Down cursor keys to choose the value you want, then press Enter or Escape to
apply the changes and go back to the selected program.

If you’re editing a single-line text value, then a text box will appear allowing you to edit the value.
You can use all the standard editing keys to edit the text in the text box, then press either Enter or
Escape to apply the changes and go back to the selected program.

If you’re editing a multi-line text value, then a multi-line text box will appear, allowing you to
edit the value. You can use all the standard editing keys to edit the text in the text box, however
pressing Enter will insert a newline into the text rather than applying the changes. To apply the
changes and go back to the selected program, press the Escape key.

• Select a node of a program. With the program selected, start typing the first few letters of the
name of the node you wish to select. The program entry autocomplete box should appear listing
all of the program’s arguments and nodes that begin with those letters. Choose the node that you
want to select and press Space to select the node and return to the selected program. Alternatively,
pressing Enter will select the node and deselect the current program. If an input-output node pair
is selected, a pipe will be connected between them and both nodes will be deselected.

• Remove a pipe. To remove a pipe, follow the steps for selecting a node of a program to select one
of the pipe’s end nodes. When the node is selected, press Delete or Backspace to remove the pipe.

• Other program commands. There are a number of other keyboard shortcuts that can only be used
when a program is selected:

118

CHAPTER 9. USER GUIDE 9.9. KEYBOARD SHORTCUTS

9.9.3 Navigating through a Pipeline

While constructing a pipeline, you may want to select existing programs quickly. Kevlar provides two
ways of doing this using the keyboard.

• Tab Traversal. Pressing the Tab key while a program is selected will deselect it and select the next
program right of it on the same row. If the currently selected program is the right-most on that
row, the next selected will be the left-most program on the row below. Once all programs have
been traversed, the top-left most program will be selected.

• Find-As-You-Type. Pressing Ctrl+F will bring up the find-as-you-type box, which is used to nar-
row down the programs that you tab between using tab traversal. Start by typing the first letters
of the program you want to select. As you type, all programs that do not start with those letters
will become disabled. If you now press the Tab key, you will only select between enabled programs,
allowing you to select the program you want more quickly. When you’ve selected the program
you want, press Escape to close the find-as-you-type box and re-enable all the programs.

9.9.4 Multi-Select Shortcuts

This section explains how to use keyboard shortcuts to select and manipulate groups of programs within
a pipeline.

• Select multiple programs. To create a multi-selection of programs, start by selecting the first pro-
gram you wish to add to the multi-select (see Section 9.9.3), then press the Spacebar key to create
a multi-select around that program. Now use the same pipeline navigation methods to select the
next program to be added, and press Spacebar to add it to the multi-select. Keep repeating this
process until you’ve added all the programs you want to the multi-select.

• Multi-Select commands. When a program multi-select exists, certain commands that previously
only applied to the currently selected program now apply to all programs in the multi-select:

9.9.5 Task Pane Shortcuts

Keyboard shortcuts also exist for opening and using the functionality of each of the task panes.

• Opening/Closing a Task Pane. There are shortcut keys to quickly open any task pane. If you press
the shortcut key for a task pane that is already open and has focus, the task pane will contract to
the side of the screen.

119

CHAPTER 9. USER GUIDE 9.9. KEYBOARD SHORTCUTS

• Navigating directory/category structures. On the Program, Load, Save and Directory panes, you
can navigate through the directory or category structure by pressing the Up and Down cursor
keys to select a directory or category, and then pressing Enter or Space to go into that directory or
category.

• Selecting Programs and Pipelines. On the Program, Load, Save, Search and History panes, once
a program or pipeline has been highlighted using the Up and Down cursor keys, it can be added
or loaded by pressing Space or Enter. If you’re adding a program, pressing Space will add it but
will not select it, whereas pressing Enter will add it, select it and contract the task pane.

• Selecting Task Pane Sections. On the Save and Search panes, which contain sections for both
typing and navigating, you can switch between the two sections by pressing the Tab key.

120

Chapter 10

Appendices

10.1 Type Systems Theory

This section is to be seen as an extention to the explanation of the Type Checker in the Framework
chapter. It will clarify some of the vocabulary used in the report as well as give some fundamentals in
the field of type theory.

10.1.1 Type Systems

A Type System is a collection of rules that attach semantical constraints to variables of a certain type.
In a polymorphic system, one of the constraints are if a type is a subtype of another type in the system.
In java, B is a subtype of A if B extends A. B then enherits functions from A. In the Kevlar system, we
restrict the type system to checking if type B is of a lower bound to A, meaning that A is an extention to
B of some form. What we mean by this is that we check that B is a direct extention of A or an extention
of C which is of some form and extention of A. When B is of a lower bound to A we will write this as A
< B. These rules will be formulated in form of a so called type tree, which is the discussion point of the
next section.

10.1.2 Type tree

As described above we will focus on inheritance properties of types. An easy way to describe these
constraints is via a hierarchical structure called a type tree. In a type tree, every node represents a type,
and every child node of it represents an immediate subtype. A type tree is a random tree we are familiar
with from Computer Science. We call it random as each node contains a random amount of children.

Least Upper Bound. An interesting calculation to make on a type tree is that of the Least Upper Bound.
A least upper bound, or LUB, of a set of types contained within a type tree is the most specific ancestor
of all the types. By this we deduce two things, first of all the LUB is an ancestor of all the types, ie.
there is a path in the tree betwean the LUB and the type in the set. And secondly this ancestor is the
most specific one, meaning that its the lowest in the tree of all common ancestors. Notice that in a single
inheritance tree the root is the ancestor of all types. This means that for any set of types we calculate the
LUB of, the LUB will always exist because the root is always a common ancestor, albeit maybe not the
most specific one. The importance of the LUB is that it prevides a way of finding out which type is the
most specific and generic type of a set of types, so that we can generalise a set of types with loosing a
minimum amount of information (most specific one). This calculation is used a lot by the Kevlar type
checker.

121

CHAPTER 10. APPENDICES 10.2. USABILITY STUDY TASKS

10.1.3 Generics

In recent years a new paradigm has emerged in the polymorphic world. Generics are a separate ideol-
ogy, different from classic Object Orientation. They offer a way to the programmer to specialize a certain
class via parameters. The most straightforward example of generics is a List datastructure. In the past
when we used a List in java, internally datanodes would be stored as Object s. The reason for this is
straightforward, as Object is the most generic type, ie. the root of java’s type tree, it could be used to
represent all other objects in java. There was however an annoying implication to this method, when-
ever we wanted to retreive an object from the list we would first of all have to know what types were
actually stored in the list, and secondly we would have to cast back to the type of the object we added
(because in the list it is stored as Object). A solution to these problems are generics. Instead of storing
data as Object , we store it as a parametered type, say T. When we are about to use this parametered
List, we fill in what type we want this T to represent. For example we could write List <String > to
represent a List of String. Once the parameter T has been swapped with the actual type provided, we no
longer need to worry about casts since the List will actually hold data of type String and no longer of
type Object . Generics have been available in C++ standard for quite a while now, and Java 1.5 is Sun’s
newest version of the Java language which introduced generics. Kevlar is written entirely in Java 1.5.
Additionally Kevlar also provides the user with the choice of parametered (or generic) types as descibed
in the Type Checker chapter.

A special feature of the generics system that Kevlar offers to the users is that the user can specify an
upper bound on the parameter. This means that when the user decides to use the parametered class, he
can only use a limited amount of types as a parameter - meaning only types of a lower bound or equal
to the upper bound of the type parameter. This is a feature that greatly eases the work of the program
designer, he doesn’t have to worry about which types can be used as a parameter as he knows what
the upper bound will be of the parameter and can thus specialise the class for a limitted amount of type
parameters.

10.2 Usability study tasks

The usability study in Section 7.2 involved designing 6 tasks for new users of Kevlar to undertake to get
experience with using all parts of the system. This appendix contains the 6 tasks and the steps involved.

10.2.1 Task 1.

10.2.1.1 Overall aim

Get a list of files in your current working directory. Learn how to navigate in Kevlar and learn the
different ways of getting at programs.

10.2.1.2 Steps

First we want to create a pipeline with one program that lists the contents of the current directory.

• Locate the programs pane on the right and open it.

• Click on ’FileUtils’.

• Click and drag ’List-Files’ onto the canvas.

Now we want to connect this program up with another program to show the output of ’List-Files’.

• Click in the middle of the screen and type ’s’.

This brings up the ’find-programs-as-you-type’ window. ’Show’ if you now press ’h’, ’Show’ will be the
only program. Press enter to select it.

• Press enter to select ’Show’ which will add it to the screen.

122

CHAPTER 10. APPENDICES 10.2. USABILITY STUDY TASKS

• Click the ’Data’ node of ’Show’ and then click on the ’Filenames’ node of ’List-Files’.

A pipe linking the two programs should appear.

• Press the play / execute button on the toolbar

• Or press Ctrl+Enter together to run the pipeline.

10.2.1.3 Correct result

The show pane at the bottom should change to yellow. Click the arrow to expand the window and see
the contents of the current directory.

10.2.2 Task 2.

10.2.2.1 Overall aim

To save the pipeline made in task 1.

10.2.2.2 Steps

If you did not complete task 1. successfully, please still attempt this task as though you had.

First, we want to open the ’Save Pipelines’ panel.

• With the task pane on the right open, click the small arrowhead at the top right.

• Click ’Save Pipelines’.

• Or, click the save icon in the toolbar.

• Choose a directory to save the pipeline in and remember it.

• Type in a name and click save.

10.2.2.3 Correct result

The file will appear in the directory that was saved to.

10.2.3 Task 3.

10.2.3.1 Overall aim

To load the pipeline saved in task 2.

10.2.3.2 Steps

If you did not complete task 2. successfully you may skip this task

• Click the ’new’ button, the first button on the toolbar.

• Open the ’Load pipelines’ panel

• Navigate to where you saved the pipeline in task 2.

• Click on the thumbnail.

123

CHAPTER 10. APPENDICES 10.2. USABILITY STUDY TASKS

10.2.3.3 Correct result

The pipeline saved in task 2 will be loaded and the programs will appear on the canvas.

10.2.4 Task 4.

10.2.4.1 Overall aim

To search for programs and use program arguments. We want to list all files that have the letter ’a’ in
their name.

10.2.4.2 Steps

First we are going to search for a program that filters out text that does not match a given pattern. Under
linux, there is another program to do this called ”grep”.

• Open the ’Search’ panel.

• Type in ’grep’ and press ’Search’.

One program should appear called ’Text-Search’. If you click on that program, help about it should
appear.we want to connect this program up with another program to show the output of ’List-Files’.

• Drag and drop this program onto the canvas

• Add a ’List-Files’ program and a ’Show’ program to the canvas too.

We want to connect ’List-Files’ to ’Text-Search’, then ’Text-Search’ to ’Show’.

• Connect List-Files’s ’Filenames’ to Text-Search’s ’In’.

• Connect ’Text-Search”s ’Out’ to Show’s ’Data’.

If you run this pipeline, nothing should appear in the show pane. That is because we need to set a
pattern for Text-Search. Note that the pattern ’.*a.*’ means: Contains an ’a’. ’.*’ means: match anything.

• # Set the ’pattern’ argument of ’Text-Search’ to ’.*a.*’. Do this by clicking the argument and typing
in the box that appears.

• Run the pipeline.

The output panel at the bottom will now list files in the current directory that contain the letter ’a’. Note
you can change the current directory using the Directory panel. (Ctrl-D to bring up)

Notice that the output pane tab is called ”Text-Search”. This is because ’Show’ is connected to ’Text-
Search’. This could be set to something more useful. To change the name, we need to add an argument
to ’Show’.

• Click the black bar at the top of ’Show’ to bring up options.

• Click the ’+’ button on ’Show’.

• Select ’Name’ from the list of arguments.

• Change the ’Name’ from ”Default” to ”A Files”.

• Run the pipeline

10.2.4.3 Correct result

The output pane contains a tab called ”A Files” and lists files with the letter ’a’ in them.

124

CHAPTER 10. APPENDICES 10.2. USABILITY STUDY TASKS

10.2.5 Task 5.

10.2.5.1 Overall aim

To use arguments to change nodes of programs. To build a pipeline to list the contents of just the first
sub-directories of the current directory.

10.2.5.2 Steps

If you did not successfully complete Task 4. you may skip this task.

Continuing with the pipeline from Task 4...

• Change the ’Directories-Input’ argument of ’List-Files’ to a tick by clicking it.

Notice a new input node appears on ’List-Files’ called ’Directories’.

• Create a second List-Files program.

• Create a connection (A pipe) from the new List-Files program’s output into the ’Directories’ input
of the other List-Files program.

• Run the pipeline

This pipeline works by getting the directories in the current directory, and then using another List-Files
to get the files and directories in those directories.

It is even possible to connect List-Files to itself to find all sub-directories.

You can use the ’Directory’ pane to set the current directory. Press Ctrl-D to bring this up.

10.2.5.3 Correct result

The output pane contains a tab called ”A Files” and lists files with the letter ’a’ in them from immediate
sub-directories of the current directory.

10.2.6 Task 6.

10.2.6.1 Overall aim

To build an advanced pipeline that takes images in a directory, resizes and rotates them, and shows the
before and after images.

10.2.6.2 Steps

Start with a new canvas, by clicking the ’new’ button. (First button on the toolbar)

• Press Ctrl-D to bring up the Directory selector.

• Please select a directory on the computer with about 2 to 10 images.

Attempt to build a pipeline that:

• Lists all files in the current directories

• Uses the ’Junction’ program to feed the images into two different programs.

• Loads the filenames as images

• Shows the images as they are originally

• Resizes the images to 100 by 100, rotates them by 90 degrees and shows what they would look like.

You will need these programs:

125

CHAPTER 10. APPENDICES 10.3. USABILITY STUDY RESULTS

• List-Files. Get the filenames of images.

• Image-Loader. To convert the filenames into images. It will ignore non image filenames.

• Junction. To take the images and allow it to be fed into two other programs.

• An Image editing program. To Resize the image, then another one to rotate the image. Please
search for a program that can do these tasks.

• Show. To display the images as they were before editing, then another to display the images after
they have been resized and rotated.

• Run the pipeline.

Note that List-Files should feed into Junction, and Junction should feed into both Show and Image-Edit.

10.2.6.3 Correct result

The last image from the directory will show in both output panel tabs, first as the original image, and
resized and rotated in the other tab.

10.3 Usability study results

A Kevlar usability study was initiated, and the following results were collected for the answers to ques-
tions. The full set of questions can be found in Section 7.2

10.3.1 Bacground information

10.3.1.1 I know what a unix command line console is.

• Yes. 7

No. 0

10.3.1.2 I have used the command line console to copy files and delete files.

• Yes. 7

• No. 0

10.3.1.3 I have used the command line console to build a ’pipeline’

• Yes. 7

• No. 0

10.3.1.4 I have used the unix program ’tee’ in the command line console

• Yes. 1

• No. 6

126

CHAPTER 10. APPENDICES 10.3. USABILITY STUDY RESULTS

10.3.2 Task 1.

10.3.2.1 I successfully got the correct result from this task.

• Yes. 6

• No. 1

10.3.2.2 What problems or annoyances were there while completing this task?

• Help window didn’t work properly

• The yellow arrow is maybe too subtle. Running the pipeline takes a few seconds.

• I commonly use the ”Enter” key on the numeric keypad rather than the ”return” key (they almost
always have the same function). However, the ”Enter” key does not function in Kevlar, which was
momentarily confusing. It might also be better if one could click anywhere in the ”Node” elements
to join the nodes together, rather than just in the circle?

• The interface of the ”find programs as you type” window is not obvious. For example, you cannot
use the mouse in selecting an item (e.g. you\’d expect double click to add an item) and you cannot
easily tell which is selected when there are only two (although I can see efforts have been made to
resolve that by making unselected items smaller)

• only the installation... finally got up and running when [A Kevlar team member] zipped and sent
me his installation directory.

10.3.3 Task 2.

10.3.3.1 I successfully got the correct result from this task.

• Yes. 6

• No. 1

10.3.3.2 If the answer is no, explain which step gave difficulty

• The name I got did not match the filename I inputted. It was prefixed initally with ”null”, and
then on second attempt ”programs”

10.3.3.3 What problems or annoyances were there while completing this task?

• No response to clicking Save button to indicate successful save.

• There was no response when clicking on the \’Save\’ button to say that the pipeline had been
saved. The saved file was called ’nulltest.kvl’ although I named it ’test.kvl’.

• No feedback that the pipeline was saved. Again, quite slow.

• There appears to be a bug in the saving process - If I choose the ”Kevlar” directory in the save
folder selector (the orange thrid orange entry), then enter a filename and click ”Save”, nothing
happens. However, if I choose one of the blue folders (say ”programs”), it will save correctly. It
would also be useful if there was some feedback to indicate that the save operation succeeded.

• The edit box does not lose focus in the manner you would expect. Pressing the Save button does
not confirm anything (one might expect the pane to disappear, for example)

127

CHAPTER 10. APPENDICES 10.3. USABILITY STUDY RESULTS

10.3.4 Task 3.

10.3.4.1 I successfully got the correct result from this task.

• Yes. 6

• No. 1

10.3.4.2 If the answer is no, explain which step gave difficulty

• Nothing happened when pipeline thumbnail was clicked.

• Clicking on the thumbnail didn’t to anything.

10.3.4.3 What problems or annoyances were there while completing this task?

• The saved file initially did not appear; had to navigate out of the directory and then back in before
it appeared.

10.3.5 Task 4.

10.3.5.1 I successfully got the correct result from this task.

• Yes. 7

• No. 0

10.3.5.2 What problems or annoyances were there while completing this task?

• There were two text search programs (Text-Search and TextSearch). ”Show” program was dis-
played underneath right hand pane.

• None!

• I got TextSearch and Text-Search. Confusing. To drag Text-Search, i first had to click it because it
shows the help which makes dragging impossible. It doesn’t happen all the time. Maybe because
the program is at times unresponsive? With an empty pattern, it’s not clear where to click to enter
a new pattern.

• After re-running it, the ”A Files” tab did not become selected over ”Text-Search”, which you might
expect. Not a real problem, however.

• if you RIGHT-click on the program, help should appear. oh, do NOT make us click on the circle to
select it, clicking anywhere on the name should suffice.

10.3.6 Task 5.

10.3.6.1 I successfully got the correct result from this task.

• Yes. 7

• No. 0

128

CHAPTER 10. APPENDICES 10.3. USABILITY STUDY RESULTS

10.3.6.2 What problems or annoyances were there while completing this task?

• Didn’t get correct result first time I clicked run, but did get correct result the second time.

• The edge between List-Files & Text-Search wasn’t updated after ticking directories-input.

• The connecting lines get messy when there are about 4 items there. Otherwise, great. (This exam-
ple really showed the program off well)

•

10.3.7 Task 6.

10.3.7.1 I successfully got the correct result from this task.

• Yes. 1

• No. 6

10.3.7.2 If the answer is no, explain which step gave difficulty

• When I executed the pipeline, I got the original images to appear, but not the scaled and rotated
ones (even when the pipeline had finished executing).

• Resize function wouldn’t work; rotate worked on its own, but the image was moved slightly so
some parts were missing.

• I created a pipeline ”List-Files.Filenames” -> ”Image-Loader.Images-Out” -> ”Junction.In-1” with
”Junction.Out-1” -> ”Show.Data” and ”Junction.Out-2” -> ”ImageEdit.Images-In” -> ”Show->Data”.
The first Show, named ”Normal images” showed me my 4 images. The second show, ”Resized im-
ages”, claimed there were no images to show.

• The image editing program did not work. It did, however, work once in the directory of the
program on the icons. In all other cases, it failed.

10.3.7.3 What problems or annoyances were there while completing this task?

• The directory scrollbar doesn’t behave like a usual scrollbar (you can’t page up/down by clicking
above/under the slider). Dot files are not hidden.

• Can’t change drive in directories pane!

10.3.8 Section

Final Questions

10.3.8.1 Which task did you find the hardest?

• 1. 1

• 2. 0

• 3. 0

• 4. 0

• 5. 0

• 6. 6

• Unsure. 0

129

CHAPTER 10. APPENDICES 10.3. USABILITY STUDY RESULTS

10.3.8.2 Why did you find that task the hardest?

REFERRING TO TASK 6.

• Lots of programs, no nice ’guide through’ steps.

• Because the way to connect different parts isn’t so clear. Can you connect image output to a
junction for instance?

• The junction concept was not immediately obvious - I had expected some sort of ”single in, mul-
tiple out” system, whereas it seemed to act as a ”multiple in, multiple out” which seemed rather
pointless. Why would I used a junction to connect In-1 via Out-1 when I could just connect di-
rectly?

• Due to the problems encountered.

REFERRING TO TASK 1.

• It took me some time to figure out how the program works, but after the basic ”initiation” I found
it very intuitive.

10.3.8.3 Which aspects, not mentioned in your answer to Q2, were the most difficult to use, or the
most damaging to the user experience?

• Where programs were placed on screen (some were off screen and some were underneath panes).

• Its’s sometimes difficult to know which keypresses do what in certain situations.

• probably the most damaging is the lack of native OS UI idioms. Whilst the interface was attractive
in it’s way, the widgets were rather small, and did not totally confirm to the experience I\’m used
to. Use of native OS widgets would have made me feel more ”at home” with the application.

• Load and Save dialogs really need fixing.

• having to click on the small circles and click-drag not working for making pipes

• There is a slight lag on my machine, due to the lack of memory, probably due to the Java overheads.
However, my machine is below average by modern standards, so it should be much less of a
problem for users with powerful PCs.

10.3.8.4 ”It is easy for a new user to get used to the system.”

• Strongly Agree. 0

• Agree. 6

• Neutral. 1

• Disagree. 0

• Strongly Disagree. 0

10.3.8.5 ”The performance of the system was acceptable. (ie. It ran fast enough.)”

• Strongly Agree. 0

• Agree. 3

• Neutral. 2

• Disagree. 1

• Strongly Disagree. 1

130

CHAPTER 10. APPENDICES 10.3. USABILITY STUDY RESULTS

10.3.8.6 ”The user interface was easy to use. The controls (eg. text box, list box) were easy to use.”

• Strongly Agree. 1

• Agree. 3

• Neutral. 2

• Disagree. 1

• Strongly Disagree. 0

10.3.8.7 ”I feel the Kevlar’s system is an improvement over the classic command line. It is more
intuitive.”

• Strongly Agree. 2

• Agree. 1

• Neutral. 1

• Disagree. 3

• Strongly Disagree. 0

10.3.8.8 ”I would consider using Kevlar instead of the normal command line.”

• Strongly Agree. 1

• Agree. 3

• Neutral. 0

• Disagree. 1

• Strongly Disagree. 2

10.3.8.9 If you were to redesign Kevlar, what would you like to add or change?

• Make it much faster (on slower machines).

• Make it run fast =)

• As mentioned, a switch to native UI idioms would be appriciated (also, an MDI interface?). A
command syntax for creating pipelines would also be interesting, which would render Kevlar as
a ”Pipeline visualisation tool”, rather than a graphical builder which would be far more useful to
me.

• Justification of above responses: After working through this document, the program is very easy
to use. A user may not be able to use the program too easily without working through such a
document, however. The same is also true (but more so) for standard command lines, however.
The performance was unacceptable for small tasks, due to the initial loading time. However for
tasks which might take longer to execute the performance is not a big problem (since the execution
speed was acceptable, I felt) The user interface varied. The load and save dialogs were badly de-
signed; however other dialogs (the output pane, the search dialog, the file trees and the workspace,
for example) were very well designed. For complicated tasks, this is a great improvement over the
classic command line. I would use Kevlar for large tasks instead of a normal command line. This
would be especially true if there were a way of running KVL files without launching the environ-
ment. As for the actual question: I like it how it is. Maybe more help for the programs, instead of
just a summary. Also, more programs would be needed to make it useful. As mentioned above,
the ability to run files without launching the environment would be good.

131

CHAPTER 10. APPENDICES 10.4. INDIVIDUAL WORKING HOURS

• a ”duplicate” method so if something was on the canvas already, I wouldn\’t have to go back to
programs to find another one to drag out. bigger hit regions for amking pipes a better mechanism
for selecting things from dropdown list (I\’m still not sure what it is)... i.e. setting the angle to 90
after you select it, then what?

• One thing to consider would be a new, Kevlar brand of ”man”, which would instruct the user and
provide hints and help. It could be intelligently integrated with the GUI.

10.4 Individual Working Hours

This section lists the weekly-working hours for each member of the group, and a rough outline of what
that time was spent doing.

WEEK BEGINNING 10TH OCTOBER

• Tristan. 26 hours - Build system, project design and planning

• Daniel. 17 hours - Project design and planning, Report 1

• Marc. 20 hours - Project Log website, GUI design, Report 1

• Kate. 14 hours - GUI design, pipe rendering algorith research

• Steve. 21 hours - Layout algorithms, researching similar projects, Type System

WEEK BEGINNING 17TH OCTOBER

• Tristan. 34 hours - Build system, program and type loading

• Daniel. 34 hours - Report 1, argument model, HIAL, program descriptions

• Marc. 17 hours - GUI paint core, planning Drag-And-Drop

• Kate. 17 hours - GUI implementation

• Steve. 28 hours - Type Checker, Report 1, ProgramRepository

WEEK BEGINNING 24TH OCTOBER

• Tristan. 23 hours - Program and type loading, planning execution system

• Daniel. 31 hours - Type checking, HIAL, XML description and argument models

• Marc. 8 hours - Scrollbars and Scrolling. Enjoying Canada

• Kate. 14 hours - GUI coding, Drag-And-Drop

• Steve. 23 hours - Testing program loading, Type checking, Framework

WEEK BEGINNING 31ST OCTOBER

• Tristan. 15 hours - Bugfixing and execution system

• Daniel. 11 hours - DTD for programs, testing XML models, pipeline saving

• Marc. 23 hours - Graphical representation of programs and pipes. Using HIAL from GUI for
program details.

• Kate. 13 hours - Contextual help, bugfixing

• Steve. 4 hours - Pipe implementation

WEEK BEGINNING 7TH NOVEMBER

• Tristan. 20 hours - Report 2

• Daniel. 19 hours - Report 2, HIAL

• Marc. 23 hours - Report 2, refactoring out Layout

• Kate. 18 hours - Report 2

132

CHAPTER 10. APPENDICES 10.4. INDIVIDUAL WORKING HOURS

• Steve. 22 hours - Report 2, researching Layout

WEEK BEGINNING 14TH NOVEMBER

• Tristan. 7 hours - Execution engine

• Daniel. 14 hours - HIAL, Needleman Wunch library code, Show Pane

• Marc. 16 hours - Arguments, bugfixing, wrapping SWT controls

• Kate. 15 hours - Search pane, toolbar, pane switching

• Steve. 9 hours - Layout algorithms

WEEK BEGINNING 21ST NOVEMBER

• Tristan. 14 hours - Execution engine, programs, wrapping swing components

• Daniel. 21 hours - Show Pane, Needleman Wunch, Framework

• Marc. 21 hours - Keyboard input, bugfixing, argument editing

• Kate. 22 hours - Thumbnail research, history pane, search pane

• Steve. 2 hours - Group meetings

WEEK BEGINNING 28TH NOVEMBER

• Tristan. 0 hours - Exam revision

• Daniel. 0 hours - Exam revision

• Marc. 0 hours - Exam revision

• Kate. 0 hours - Exam revision

• Steve. 3 hours - Unit testing [thats dedication!]

WEEK BEGINNING 5TH DECEMBER

• Tristan. 0 hours - Exam revision

• Daniel. 0 hours - Exam revision

• Marc. 0 hours - Exam revision

• Kate. 0 hours - Exam revision

• Steve. 0 hours - Exam revision

WEEK BEGINNING 12TH DECEMBER

• Tristan. 2 hours - Group meetings

• Daniel. 2 hours - Group meetings

• Marc. 2 hours - Group meetings

• Kate. 2 hours - Group meetings

• Steve. 2 hours - Group meetings

WEEK BEGINNING 19TH DECEMBER

• Tristan. 22 hours - Swing wrapping, programs, rewriting execution

• Daniel. 23 hours - Show, Kill / Killall in HIAL, Bugfixing, Argument handling in Framework

• Marc. 36 hours - DirectoryPane, TextBox, DropDownBox, MultilineTextBox controls, Macros, Feel-
ing Chirstamssy.

• Kate. 31 hours - Saving and Loading panes

• Steve. 39 hours - Layout algorithms

WEEK BEGINNING 26TH DECEMBER

• Tristan. 48 hours - Final report, bugfixing, new programs

133

CHAPTER 10. APPENDICES 10.5. GROUP MEETINGS

• Daniel. 34 hours - Final report, usability website, Show

• Marc. 37 hours - Final report, keyboard, bugfixes, graphics

• Kate. 49 hours - Final report, saving and loading macros

• Steve. 36 hours - Final report, usability survey

WEEK BEGINNING 2ND JANUARY

• Tristan. 25 hours (specualtive) - Final touches to report, presentation rehearsal

• Daniel. 25 hours (specualtive) - Final touches to report, presentation rehearsal

• Marc. 25 hours (specualtive) - Final touches to report, presentation rehearsal

• Kate. 25 hours (specualtive) - Final touches to report, presentation rehearsal

• Steve. 25 hours (specualtive) - Final touches to report, presentation rehearsal

10.5 Group Meetings

We met regularly throughout the course of this project in order to allocate work, check project progress
and discuss our project with our supervisor. In this section, we outline the meetings that took place,
stating who attended them and a summary of the meeting’s minutes. Please note that this is not intended
to be a comprehensive list, since there were often informal meetings between the group members where
work was discussed, and sometimes sub-groups would meet to talk about their section of the project
(i.e the Framework, HIAL and GUI), which is not included below.

• Group Meeting: 12/10/04 (7:05pm - 8:05pm, Attended by all). The first group meeting, where we
all attended to go through the project outline and discuss what we hope the product should be
capable of. Several use-cases for the project were brainstormed and a name for our product was
discussed. Various names were proposed (including ’shelltime’ and ’pipesafe’), but eventually the
group agreed on ’Kevlar - the bullet-proof shell’ since it reflected the idea of a type safe shell that
would prevent the user from executing incorrect pipelines.

• Group Meeting: 13/10/04 (12:05pm - 1:03pm, Attended by all). The agenda for this meeting was
to formalise a specification for the first report, due in the following week, and to assign tasks to
each group member. We started by analysing the specification report produced by last year’s best
group, and came up with section headings for ours. We then split our project into three sections;
Human Interface, Programs and Types, and the Framework, and began to decide on requirements
for each. Group members then volunteered for the sections they wanted to work on; Tristan and
Steve were allocated to the Framework, Dan was allocated to Programs and Types, and Marc
and Kate were allocated to the Human Interface. We finished by agreeing to work to a set of six
milestones to be completed on a weekly-basis.

• Group Meeting: 13/10/04 (2:53pm - 4:45pm, Attended by all). Following from our earlier meeting,
we decided to sketch out on a whiteboard an overview of the project’s architecture. We realised
the need for to split the Human Interface section into two; the Human Interface Abstraction Layer
(HIAL) and the Graphical User Interface (GUI). We decided that this would allow the GUI sec-
tion to concentrate solely on displaying information to the user and capturing user events, while
the HIAL would pass information between it and the Framework and handle additional, non-
graphical tasks such as saving and loading.

• Supervisor Meeting: 14/10/04 (4:10pm - 5:00pm, Attended by all). This was the first meeting with
our supervisor, and the main agenda items were discussing the requirements we’d thought of in
previous group meetings with our supervisor and planning the specification report. We discussed
the need to make our shell ’usable’ and how we could quantify ’usability’. We decided that regular
integration for testing and a usability study would be appropriate. We planned to release a beta
version of the project mid-way to the final deadline and gather feedback that could be used to
improve usability.

134

CHAPTER 10. APPENDICES 10.5. GROUP MEETINGS

• Group Meeting: 15/10/04 (4:45pm - 5:12pm, Attended by all). The main agenda item for this
meeting was resolving problems that members had thought of with the project’s design. We dis-
cussed the need for scripts (which eventually became macros) and the need for temporally-linked
programs. We decided that these areas posed many problems that would take a very long time
to resolve, so moved them to the optional specifications section of the first report. We also de-
cided on the project’s directory structure and discussed how each member would contribute to
the specification report document.

• Group Meeting: 18/10/04 (6:00pm - 6:15pm, Attended by all). The main agenda item was to dis-
cuss work done over the weekend and set milestone tasks for Friday. We decided to finish writing
the mains sections of the first report on Wednesday to give us time to proof-read it and make alter-
ations before submission on Friday. We also outlined a set of milestones for friday, which included
the ability propagate the program list from the Framework to the GUI, in order to show all sections
communicating with one another.

• Supervisor Meeting: 20/10/04 (3:00pm - 3:41pm, Attended by all). The main agenda item was
going through the specification report with our supervisor, who commented on the viability of the
requirements we had suggested. We decided to alter some of our requirements in order to make
them more achievable and introduced the usability requirement at our supervisor’s request.

• Supervisor Meeting: 27/10/04 (3:00pm - 3:30pm, Attended by all except Marc). The main agenda
item was discussing project progress with our supervisor and fixing requirements for the second
milestone. We also discussed the security model we wanted to implement to ensure that programs
were only permitted to perform certain operations. The implementation of the type-checking al-
gorithm was also explained.

• Group Meeting: 02/11/04 (4:50pm - 5:35pm, Attended by all). This meeting was predominantly
concerned with decided the weekly milestones and discussing what Marc had missed while in
Canada. We allocated tasks for each people to complete by Friday; Marc was to complete simple
pipelines in the GUI, Kate was to work on the help system for programs, Tristan and Steve were
to work on pipeline execution and Dan was to work on saving and loading.

• Supervisor Meeting: 03/11/04 (3:10pm - 4:10pm, Attended by all). We demonstrated the project to
our supervisor for the first time, showing how the user could browse the available programs and
drag one into the pipeline. We discussed how this would be accomplished using the keyboard and
also how to prove the soundness of the type-checking algorithm by creating a model in Haskell.

• Group Meeting: 08/11/04 (12:00pm - 1:00pm, Attended by all). A meeting to discuss the imple-
mentation report due in at the end of the week. The report was split into sections based upon the
architecture of the project and the general content of each section was planned and allocated to a
group member. We also set the deadline that all sections must be written by Thursday so that it
could be proof read and altered if necessary before submission on Friday.

• Supervisor Meeting: 17/11/04 (2:10pm - 3:00pm, Attended by all). The main agenda items were
the testing of the current system and planning what needs to be implemented before we break for
exam revision. We discussed the need to come up with more use-cases that would highlight the
programs needed to be implemented for the project demonstration, and would allow us to test out
system. Also, since the majority of the Framework and HIAL had been completed, Dan and Steve
were assigned to work on GUI components such as the show pane and the layout algorithm.

• Group Meeting: 23/11/04 (12:00pm - 1:00pm, Attended by all). The main agenda item was fin-
ishing the minimum specifications for internal milestone five and demonstration of project to su-
pervisor on Friday. We highlighted the main aspects of the GUI left to be finished were keyboard
input and saving/loading, but also realised the need for programs to demonstrate our system once
finished. The need to reassess our break for revision was discussed.

• Supervisor Meeting: 26/11/04 (10:00am - 11:00am, Attended by all). We demonstrated the project
to our supervisor, although some of the minimum specifications had not been fully finished. Since
everyone was getting distracted by exams, we decided to suspend work on the project for three
weeks and work over Christmas. We also postponed our beta release for the usability study until
after the exam period.

• Supervisor Meeting: 17/12/04 (2:00pm - 3:00pm, Attended by all except Kate). Exams were over,
so we planned our work over Christmas. Our usability study had been postponed until the fol-

135

CHAPTER 10. APPENDICES 10.5. GROUP MEETINGS

lowing Monday, so we planned what needed to be done over the weekend to finish the minimum
requirements and produce a usable beta release. The main points to be done were keyboard input
and example programs, which were assigned to Tristan and Marc. Since some group members
were going home for Christmas, we planned to discuss the remaining requirements and plan the
report online over the holiday.

• Group Meeting: 03/01/05 (9:00am - 9:00pm, Attended by all). With all group members now back
from home, we met to proof read and edit the report, as well as write the presentation slides for
submission on Tuesday. All minimum and extended specifications had been completed, and the
usability study had gone online, albeit after being postponed to the 31st December. Responses to
the usability questionnaire were written up, discussed and changes were made to the project to
address some of the problems highlighted. Tuesday and Wednesday were allocated for further
group meetings in order to rehearse the presentation.

136

CHAPTER 10. APPENDICES 10.6. THE GROUP CALENDAR

10.6 The Group Calendar

137

CHAPTER 10. APPENDICES 10.7. CLASSIC CVS COMMIT COMMENTS

10.7 Classic CVS Commit Comments

During the course of this project, we used CVS as our version control system. As part of the system,
developers are encouraged to attach comments to each commit.

Collected below are a select few of these comments.

• Committing whilst drunk - too drunk to think of comment

• Hacky tests

• Macros - they’re alive...

And the one we love the most

• *** empty log message ***

Project Bibliography

Cited Resources

[HBK04] MEProf: Modular Extensible Profiling for Eclipse, Marc Hull, Olav Backmann,
and Paul Kelly, <http://www.doc.ic.ac.uk/˜phjk/Publications/
MEProf-ETXVancouver2004-PressQuality.pdf > , 2004.

[HS01] Problems Running Untrusted Services as Java Threads, Almut Herzog
and Nahid Shahmehri, <www.ida.liu.se/˜almhe/publications/
CSES-2004-Preproceedings.pdf > , 2004.

[IBMEX] SWT Standard Widget Toolkit - Development Resources, IBM Corporation,
<http://dev.eclipse.org/viewcvs/index.cgi/\%7Echeckout\%7E/
platform-swt-home/dev.html#snippets >.

[JISO] JSR 121: Application Isolation API Specification, , <http://jcp.org/en/jsr/
detail?id=121 >.

[MANSEL] Linux Programmer’s Manual, the select man-page, , 2001-02-09.

[PIPER] The PIPER Project, , <http://bioinformatics.org/piper/documentation/
scientific-apps.html > <http://bioinformatics.org/piper/
screenshots/index.html/ > .

[PURSUIT] The Pursuit Project, , <http://citeseer.ist.psu.edu/modugno94pursuit.
html > <http://citeseer.ist.psu.edu/cache/papers/cs/
3447/http:zSzzSzpecan.srv.cs.cmu.eduzSzafszSzcs.cmu.
eduzSzprojectzSzgarnetzSzwwwzSzpbd-groupzSzpaperszSzcmu-cs-94-109.
pdf/modugno94pursuit.pdf > .

[QUE] Questionnaires in Usability Engineering, , <http://www.ucc.ie/hfrg/resources/
qfaq1.html > .

[SWTDOC] Eclipse Platform API Specification: Class Canvas, IBM Corporation, <http://www.
eclipse.org/documentation/html/plugins/org.eclipse.platform.doc.
isv/doc/reference/api/org/eclipse/swt/package-summary.html >, 2001.

[VISIQ] VisiQuest Application, Accusoft Corporation, <http://www.accusoft.com/
imaging/visiquest/visiquest_vis_prg.asp > .

[VUFC] The VUFC Project, , <http://www.dmst.aueb.gr/dds/pubs/jrnl/
2001-SPANDE-VUFC/html/vufc.html > .

[WIKI] Wikipedia, , <http://en.wikipedia.org/wiki/Command_line > .

138

CHAPTER 10. APPENDICES 10.7. CLASSIC CVS COMMIT COMMENTS

Other Resources

[1] Effective JavaTM Programming Language Guide, Josua Block, 0-201-31005-8, Copyright c©
2001 Sun Microsystems, Inc, Addison-Wesley.

[2] JavaTM 2 Platform, Standard Edtion, v 1.5.0 API Specification, , <http://java.sun.com/
j2se/1.5.0/docs/api/ >, 2004.

139

