
CLASE: Cursor Library for A Structured Editor

Tristan O.R. Allwood
Imperial College London

tora@doc.ic.ac.uk

Susan Eisenbach
Imperial College London

s.eisenbach@imperial.ac.uk

Abstract
The zipper is a well known design pattern for providing a cursor-
like interface to a data structure. However, the classic treatise by
Huet (1) only scratches the surface of some of the potential appli-
cations of the zipper. In this work we have taken inspiration from
Huet, and built a library suitable as an underpinning for a structured
editor for programming languages. We consider a zipper structure
that is suitable for traversing heterogeneous data types, encoding
routes to other places in the tree (for bookmark or quick-jump func-
tionality), expressing lexically bound information using contexts,
and traversals for rendering a program indicating where the cursor
is currently focused in the whole.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; E.1 [Data]: Data
Structures

General Terms Design, Languages.

Introduction
Our library, CLASE (3) has been borne out of our own experi-
ences trying to write a structured editor for FC (2) – GHC’s inter-
mediate language. As manipulations are to be done in user-selected
focused areas of the tree, we decided to use a cursor presentation
indicating the current focus. Although we were drawn to a zipper-
style of implementation for our underlying representation, during
implementation we were finding that binding, traversal and render-
ing code were horribly intermingled. We developed this library to
help seperate these concerns.

Usage of CLASE splits into three main parts: Firstly there is the
code the user has to explicitly write, which includes the data type
representing the language they wish to have a cursor for, and any
language specific APIs for rendering or binding, as-well as imple-
menting a hook function explaining when to use the binding API.
The second part is the instance of the CLASE typeclass Language ,
which is generated automatically using Template Haskell (6) scripts
that come with CLASE. This typeclass uses Associated Data Types
(5) to represent Contexts (constructors in the original language
with a “hole” in them (7)) and primitive Movements. Because
the user’s language involve heterogeneous data types, we gener-
ate GADT instances of Context and Movement which witness
the types that they move between. Finally, CLASE provides a li-
brary of combinators and composite data structures (including the

Copyright is held by the author/owner(s).
Haskell’08, September 25, 2008, Victoria, BC, Canada.
ACM 978-1-60558-064-7/08/09.

Cursor data structure) which use the primitives defined in the gen-
erated code to provide generalized movement, bookmarking and
some traversals, which a structured editor would find useful.

data Lam = Lam Exp

data Exp
= Abs String Type Exp
| App Exp Exp
| Var Integer

data Type
= Unit
| Arr Type Type

Figure 1. The LAM Language

Example
We proceed by giving a small demonstration of using CLASE,
showing how to collect the names of in-scope variables in a cursor
location. In Figure 1 we present a small language, LAM, that we
wish to create a structured editor for. LAM is based on the simple
λ-calculus, using deBruijn indices (4) for variables to refer to the
depth of the enclosing abstraction that binds them.

When editing a LAM program, our editor needs to keep track of
the current focus, and a way of moving that focus between its Lam ,
Exp and Type datatypes.

Our CLASE library provides a generic Cursor data struc-
ture, and operations for moving the cursor (genericMoveUp,
genericMoveDown , genericMoveLeft and genericMoveRight)
for any data types that implement a Language interface. In order
to create an instance of Language for LAM, we use a Template
Haskell script provided with CLASE, specifying the module to
create our instance of Langauge in, our root data type (Lam), and
the types that our cursor should be able to navigate between (Lam ,
Exp and Type). The library user invokes the script using a splice,
$(...), and refers to the root and navigable types using TH
quasiquotes (''), as shown:

$ (languageGen ["Lam", "Language"]
� Lam
[� Lam, � Exp, � Type])

The data structure for a cursor given in CLASE is:

data Cursor l x a = (Reify l a) ⇒ Cursor{
it :: a,
ctx :: Path l (Context l) a l ,
log :: Route l a x
}

where the type parameter l is the language over which the cursor
navigates (here Lam), x is an arbitary point in the tree (used to

generate bookmarks), and a is the type of the current focus. it
therefore is the current focus, ctx is a path of Contexts, which are
language specific and express nodes in the tree with a hole in them.
This path starts at the current location (of type a) and terminates at
the root of the tree (l). The log represents the shortest route from
the current focus to some arbitary place in the tree.

Our languageGen script will have created an instance of
Language Lam , which includes the associated type Context Lam ,
and also the appropriate instances of Reify Lam a for a user to be
able to create a Cursor Lam x a .

For our editor we want to be able to show the user the entire
current program highlighting the current focus. We also wish to
show some derived information, for example the currently in-scope
varibles. Both require the capability to traverse the program tree.

For these traversals the LAM language will need to keep track
of variables as they become bound. Assuming the LAM language
already has a Monad that supports the following interface, suitable
for tracking the names of variables as they become bound:

class LamBinder c where
addBinding :: String → c a → c a
getBindingMap :: c (Map Integer String)

We can tell CLASE how to update the binding information as
it traverses the tree by implementing a library typeclass called
Bound .

class (Language l) ⇒ Bound l t where
bindingHook :: Context l from to → t → t

The single function bindingHook takes a Context (which was
generated earlier) and a value that is the result of the traversal
for the “hole” in the Context , and expects a modified value for
performing any binding necessary.

In the case of LAM, whenever we move into an Abs node from
its containing Exp, we need to make the binding of the current
abstraction become visible. In all other cases we can just propogate
up the value of the traversal:

instance (LamBinder c) ⇒ Bound Lam (c a) where
bindingHook (CW ctx) hole = bindingHook ′ ctx

where
bindingHook ′ :: ContextI from to → c a
bindingHook ′ (ExpToAbs s) = addBinding s hole
bindingHook ′ = hole

The current implementation of the code generator introduces a
level of indirection to enable this code to work with GHC 6.8, mak-
ing the associated type Context Lam a constructor wrapper CW
over a GADT called ContextI . With GHC 6.10 this indirection
should be able to be removed.

CLASE currently provides two simple traversal operations
that use this binding hook. The first interrogates the current fo-
cus of a Cursor and then uses the ctx path to nest the appropriate
bindingHook calls over its value:

inBindingScope :: (Bound l t) ⇒ (a → t) →
Cursor l x a → t

Using this, we can simply get a map of the currently in-scope
variables for LAM under our Monad :

varsInScope = inBindingScope (const getBindingMap)

The second type of traversal supported by CLASE is a complete
traversal, suitable for rendering the program, while also indicating
where the cursor currently is located. This traversal needs to know
(in the case of LAM) how to compute values for normal (Lam ,
Exp and Type) values, as-well as how to modify this result to
indicate the cursor location, and finally how to combine a partial

location in to a Context as the modified cursor location result
needs propagating up the tree inside its enclosing Contexts.

The code to render a Context with a missing value and to
render a normal value would be almost identical (except that to
render a normal value an extra recursive call to render would
have to be made whereas the context has it made already). In
order to prevent this duplication, and to ensure that the previously
defined Bound information is used, CLASE provides a script to
generate a set of adapters that explain how to combine values
from the constructors together. Instantiating these adapters allows a
very natural implementation of rendering that abstracts away from
binding and traversal code.

An editor for LAM may want to keep track of multiple loca-
tions in the tree (e.g. to provide a bookmark functionality). Ide-
ally we would like these bookmarks to be persistent across up-
dates to the tree, and coping with invalidated bookmarks caused
by changing the LAM program. Underlying CLASE is a notion of
language specific primitive movements (declared in an Associated
Type Movement in type class Language). Routes (e.g. the log
field in Cursor) represent a unique path from the current cursor
location to some other part of the tree by tracking a path of upward
movements to some location, and a path of downward movements
from that intermediate place down a different branch to the desti-
nation. CLASE provides an API for creating Routes, appending
them and incrementing them by primitive movements.

The internals of the CLASE library are designed to handle
heterogeneous data types. This is achieved by using GADTs to
represent the Contexts which are parameterised by the type of
the “hole” in the context, and the type of the value that can be
built when a suitable value for the hole is available. Movement
is handled using the primitive Movement associated data types
as witnesses which also express where to move to and from. The
library also recovers generalized up/down/left/right operators that
return an existentially wrapped cursor.

We also support persisting and restoring the Cursor data struc-
ture to / from Strings. Another Template Haskell script is used to
generate some boilerplate code for this, but it simplifies what would
be otherwise quite a hard and tedious task for the user.

Our library is necessarily a work in progress and incomplete. It
was borne out of our own practical experience of trying to build
a structured-editor like application, and as we re-integrate it back
into our motivating program we hope to find further interesting
extensions we can add to our library to make it more useful.

References
[1] Huet, G. The Zipper. Journal of Functional Programming, 7(5):549-

554, 1997
[2] Sulzmann, M. and Chakravarty, M. M. T. and Jones, S. P. and Don-

nelly, K. System F with Type Equality Coercions, in The Third ACM
SIGPLAN Workshop on Types in Language Design and Implementation
(TLDI’07), January 2007.

[3] Allwood, T. Clase library download and screenshots, (Online), 2008,
http://www.zonetora.co.uk/NonBlog/toral/lib/.

[4] de Bruijn, N. G. Lambda calculus notation with nameless dummies. a
tool for automatic formula manipulation with application to the Church-
Rosser Theorem, in Indagationes Mathematicae (34) 381–392, 1972

[5] Manuel M. T. Chakravarty, Gabriele Keller, Simon Peyton Jones, and
Simon Marlow. Associated types with class. In POPL ’05: Proceedings
of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages, pages 1–13, 2005. ACM Press.

[6] Tim Sheard and Simon Peyton Jones. Template metaprogramming for
Haskell. In ACM SIGPLAN Haskell Workshop 02. Pages 1–16, 2002.
ACM Press.

[7] C. McBride. The derivative of a regular type is its type of one-hole
contexts. Unpublished manuscript, 2001.

