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Abstract—The past decade has witnessed a growing trend in
designing and using workflow systems with a focus on supporting
the scientific research process in bioinformatics and other areas
of life sciences. The aim of these systems is mainly to simplify
access, control and orchestration of remote distributed scientific
data sets using remote computational resources, such as EBI web
services. In this paper we present the state of the art in the field
by reviewing six such systems: Discovery Net, Taverna, Triana,
Kepler, Yawl and BPEL.

We provide a high-level framework for comparing the systems
based on their control flow and data flow properties with a
view of both informing future research in the area by academic
researchers and facilitating the selection of the most appropriate
system for a specific application task by practitioners.

I. INTRODUCTION
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Fig. 1. Workflow example

Informally, a workflow, Figure 1, is an abstract description
of steps required for executing a particular real-world process,
and the flow of information between them. Each step is
defined by a set of activities that need to be conducted.
Within a workflow, work (e.g. data or jobs) passes through
the different steps in the specified order from start to finish,
and the activities at each step are executed either by people
or by system functions (e.g. computer programs). Workflows
are typically authored using a visual front-end or be hard-
coded, and their execution is delegated to a workflow execution
engine that handles the invocation of the remote applications.

Traditionally, workflow systems are split into two broad
families, one for control orchestration of business processes
and the other for functional style computation of data. How-
ever, the requirements of numerous applications do not fit
neatly into either of those categories. This was a rationale
for evolution of scientific workflow systems, that act as mid-
dleware in the scientific research process and typically have
properties of both control and data workflows. Their function
is to abstract over computational and data resources and enable
collaboration between researchers, a task which requires both
aspects. The question we are interested in is whether any single

workflow system (scientific or non-scientific) can be relied on
to cover the scope of requirements from different domains.

This paper approaches the problem by analysing leading
scientific and non-scientific workflow systems, exposing their
handling of control and data constructs, with the view of
informing future research and also facilitating the selection
of the most appropriate system for a specific application task.

As a start, Discovery Net [1] system will be presented
to illustrate the architectural and implementation complexity
associated with a full workflow system. Then, three other main
scientific workflow systems, Taverna [2], Triana [3] and Kepler
[4], will be described, followed by two workflow languages
aiming to be a generic solution across both business and
scientific domains. First of those, YAWL [5] is a theoretical
workflow system based on the Petri Net paradigm that has
been designed to satisfy the full set of workflow patterns,
under the assumption that this will satisfy the needs of both
communities. Second, BPEL [6] is the accepted standard for
business process orchestration, with several attempts being
made to adapt it for use in scientific settings, most notably
by the OMII initiative [7].

II. DISCOVERY NET

The Discovery Net system has been designed around a sci-
entific workflow model for integrating distributed data sources
and analytical tools within a grid computing framework. The
system was originally developed as part of the UK-e-Science
funded project Discovery Net (2001-2005) [8] with the aim of
producing a high-level application-oriented platform, focused
on enabling the end-user scientists in deriving new knowledge
from devices, sensors, databases, analysis components and
computational resources that reside across the Internet or grid.

Its dedicated set of components for data mining has been
used as a basis for numerous cross-domain projects. These
include Life Sciences applications [9], [10], Environmental
Monitoring [11] and Geo-hazard Modelling [12]. Many of
the research ideas developed within the system have also
been incorporated within the InforSense KDE system [13],
a commercial workflow management and data mining system
that has been widely used for business oriented applications. A
number of extensions have been based on the research outputs
of the EU-funded SIMDAT [14] project.
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Fig. 2. Discovery Net concept

A. System overview

Figure 2 provides a high-level overview of the Discovery
Net system. The system is based on a multi-tier architec-
ture, with a workflow server providing a number of support-
ing functions needed for workflow authoring and execution,
such as integration and access to remote computational and
data resources, collaboration tools, visualisers and publishing
mechanisms.

The design of the system targets the domain experts, i.e.
scientific and business end users, rather than distributed and
grid computing developers. The aim is that users can develop
and execute their distributed data mining workflows through
a drag-and-drop authoring client. The workflows created in
this way can also be executed from specialized web-based
interfaces. The three tier architecture model on which the
different versions of Discovery Net system were based on,
is presented in Figure 2. The implementation of the system
itself has evolved over the past few years from a prototype
targetted to specific projects to an industrial strength system
widely used by commercial and academic organizations.

B. Workflow representation in DPML

Within Discovery Net, workflows are represented and stored
using DPML (Discovery Process Markup Language) [15],
an XML-based representation language for workflow graphs
supporting both a data flow model of computation (for ana-
lytical workflows) and a control flow model (for orchestrating
multiple disjoint workflows).

Each node in a DPML workflow graph represents an exe-
cutable component (e.g. a computational tool or a wrapper
that can extract data from a particular data source). Each
component has a number of parameters that can be set by the
user and also a number of input and output ports for receiving
and transmitting data, as shown on Figure 3. Each arc in the
graph represents a connection from an output port, namely the
tail of the arc, to an input port, namely the head of the arc.
A port is connected if there is one or more arcs from/to that
port. Metadata of the node describes the input and output
ports, including the type of data that can be passed to the
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Fig. 3. Structure of a component in Discovery Net

component and parameters of the service that a user might
want to change. Such information is used for the verification of
workflows and to ensure meaningful chaining of components.
A connection between an input and an output port is only valid
if the types are compatible, which is strictly enforced.

C. Service deployment

One of the key contributions of Discovery Net to e-Science
community is its automated mapping of workflows into
reusable services that present a user–friendly web interface for
reserachers to execute analytical workflows and inspect their
results [15]. Deployment, as this process is known, consists
of specifying a subset of node inputs, node parameters and an
output to form a single task, which user can execute with a
single click, or a single service invocation. This method was
successfully used in multiple academic and industrial settings,
and has inspired a number of other workflow and analytical
tools.

D. Control flow

Discovery Net is primarily a data flow system, with a
control model added as a top level co-ordination layer. As
opposed to data flow graphs, nodes within the control graphs
represent special constructs that orchestrate execution, control
iteration and branching logic. These graphs can be cyclic in
their definition and communication between them is based
on passing control tokens rather than data. The execution
of Discovery Net control flow graphs is based on a push
paradigm where workflow components are invoked left-to-
right and nodes with multiple output ports can decide on
which port(s) they will place the tokens, hence determining the
direction of further execution. Control flows in Discovery Net
are used mainly to coordinate disconnected workflows whose
ordering is driven by business logic, rather than an explicit data
dependency. Therefore, control flow nodes may contain within
them data flows (deployed as services) that are invoked every
time the node executes. No communication exists between the
two layers, nor between two data flow nodes in a control flow.

E. Data flow

Discovery Net supports a data pull model for data flow
graphs with a workflow acting as an acyclic dependency graph.
Within this model a user requests execution of one the end-
point nodes in the graph, which then initiates the execution of
all the required preceeding nodes.
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Discovery Net is a typed workflow system, which not only
ensures that workflows can be easily verified during their
construction, but also helps in optimising the data management
by organizing components by their inputs or outputs. The
default type for the data in the system is a relational table,
consisting of rows of tuples of column values. However, for the
purpose of supporting additional applications, several specific
data models were added: a bioinformatics data model for
representing gene sequences [10], an image collection [11] and
a mark-up model for text mining based on the Tipster archi-
tecture [16]. Each model has with it an associated set of data
import and export components, as well as dedicated visualisers
which integrate with the generic import/export/visualisation
tools already present in the system. As an example, chemical
compounds represented in the widely used SMILES format
can be imported inside data tables where they can be rendered
adequately either using a 3-d representation or its structural
formula.

III. TAVERNA

Taverna is a common name used for a scientific workflow
system comprising Taverna Workbench graphical workflow
authoring client, together with SCUFL [17] workflow repre-
sentation language, and Freefluo [18] enactment engine. It is
a key part of the myGrid e-Science initiative, that includes
additional components such as a service directory, ontology–
driven search tools, data and metadata repositories and others.

The primary aim of Taverna is to satisfy the needs of
bioinformaticians who need to build scientific workflows from
numerous remote web services. Therefore, a significant effort
in Taverna went towards harvesting and organizing these web
services into a usable collection of components.

Due to this reliance on components coming from different
autonomous service providers, Taverna has been designed to
operate in an open-world setting, where no common data
format is assumed beyond XML. Consequently, the user is
expected to resolve these formats manually when composing
services, a process known as shimming. In addition to these, a
set of generic component types is provided for fast integration
or development of new components based on WSDL files, Java
code, Soaplab [19] services, Seqhound [20] REST services and
existing SCUFL workflows (form of embedding).

SCUFL (Simple Conceptual Unified Flow Language) is
a language for representing workflows as Directed Acyclic
Graphs. A workflow may have zero or more formal input
parameters. These are represented in Scufl as sources. Sources
must have a unique name within the namespace of the other
sources in a Scufl document. Similarly, the formal outputs
of a Scufl workflow are represented as sinks. Sinks can be
associated with metadata in the form of any number of mime
types to aid with visualisation and must have a unique name
within the namespace of sinks within a Scufl document.

The basic execution units in SCUFL are processors which
may be regarded as a function of some set of input data to
a set of output data, represented as ports on the processor.
Two types of link are present, data links through which data

Fig. 4. Taverna workflow

flows between node ports, and coordination links that act as
additional ordering separate from data dependency.

The execution of a SCUFL workflow is performed in a
push manner, starting from the sources and finishing when
all sinks have either produced their outputs or failed. The
user can configure whether the workflow can execute partially,
allowing some sinks to complete even if another one failed.
The workflow subset that is being executed is determined at
runtime by calculating the path from the source nodes, and
any other nodes with no dependencies, to the sink nodes.

A. Control flow

SCUFL is an example of a dataflow language, with some
additional constructs typically associated with control flows.
The idea is that processors in SCUFL may have an effect
on the execution environment which is separate from inputs
and outputs, which introduces the requirement for explicit
ordering constraints not based on the data dependency between
processors.

For example, consider a workflow, one of whose tasks
is to update a database and perform indexing on it, before
proceeding with the other tasks. The indexing task is not
connected to subsequent tasks by a data dependency, however
it is a requirement that it needs to run. In order to achieve this,
a coordination link is created based on the gate constraint that
must be satisfied before a processor can effect a particular
state change – in this example completion of the indexing
task. Concurrency constraints are frequently used in Taverna
for dealing with stateful Grid services.

SCUFL also has a conditional construct, based on the notion
of having data passed to multiple components, all of which
are guaranteed (by the workflow author) to fail apart one.
This corresponds to the case structure in classic programming
languages.

The coordination links and the conditional construct are the
only control structures available in Taverna. A loop construct is
not present, however a limited form of iteration is available by
wrapping up date objects into lists and specifying the iteration
strategy.
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B. Data flow

At the basic level, two processors connected with a data
link represent function composition. So, if a processor A is
connected to B, the result of B will be fB(fA). Complexity
arises from Taverna’s generality.

One of the guiding principles of SCUFL is that it is data–
agnostic [21]. However, this still leaves the problem of how
to distinguish operations which work on one input object,
from the ones requiring a collection of those objects. The first
step of the solution was to introduce lists and trees, as data
structures in SCUFL. Since the processors are mainly remote
web services, a mechanism called configurable iteration was
developed to apply the same component to the input, or a
collection of inputs.

Configurable iteration amounts to specifying the strategy
for function application. For example, if a processor with
function f takes in one input a, the default output is f(a).
However, if the workflow designer knows that a is in fact a
list [a1, a2, ..., an], he can specify that function be applied as
a map, and produce the output [f(a1), f(a2), ..., f(an)].

In the cases where the input to the function
are two lists [a1, a2, ..., an] and [b1, b2, ..., bn], the
function can either be applied as a dot-product,
[f(a1, b1), f(a2, b2), ..., f(an, bn)], or as a cross-product,
[f(a1, b1), f(a1, b2), ...f(a1, bn), f(a2, b1), f(a2, b2), ...,
f(a2, bn), ..., f(an, bn)].

The goal of this approach is to minimize the number of
processors available in the system and make them as applicable
as possible to various data structures. This reflects the open-
world assumption at the basis of Taverna. This differs from
closed-world systems such as Discovery Net, which, in addi-
tion to generic capabilities, has privileged relational operations
which are used to explicitly define dual input operations that
are considered useful.

IV. TRIANA

Triana is a visual workflow-based problem solving envi-
ronment, developed at Cardiff University. Originally, it was
associated with a gravitational wave detection project, GEO
600 [22] and used as a rapid analysis tool for wave data.
Subsequently, it has been extended to incorporate a range
of modules, such as peer-to-peer component communication,
GAT [23] integration for Grid services, GAP [24] integration
with Web services and JXTA service invocation, all with the
purpose of providing better integration with existing Grid
technologies. Despite the inclusion of a multitude of remote
components, it retains the core set of local processing units as
well to allow for local data transformations and visualisations.

The functional component in Triana is called a unit. Units
are connected by directed cables coming in and out of their
ports to form workflows, similarly to other scientific workflow
systems presented here. A higher-level group unit exists for the
purpose of embedding workflows into each other as units.

Unlike Taverna, Triana supports several data models, re-
flecting its use in multiple application domains. Over 500

Fig. 5. Triana workflow

components [25] were developed for signal, image and audio
processing and statistical analysis, grouped in toolboxes of
related components. In addition to these, a generic set of
components was developed for integration of Java code, legacy
appications, WS–RF, P2P or WSDL web services. The cable
implementations are resolved at runtime based on the types of
units that are connected. For example, a cable between two
local units will cause a file to be moved from one location in
the filesystem to another, while the cable between two remote
tools will initiate a GridFTP transfer.

One notable capability of Triana is to modify and republish
any node. The source code for each node in the toolbox can be
viewed, modified and recompiled within the environment, al-
lowing for rapid development of new components in pure Java.
Similar techniques in other workflow systems utilize scripting
languages, Groovy [26] in Discovery Net and NetBeans [27]
in Taverna.

A. Control flow

Execution in Triana is push–based, with each component’s
output sent down the cables to receiving components which
then start executing. Despite being a data–flow system, Triana
provides support for control flow through special messages
that trigger control between units. In addition to these, there
are dedicated nodes for branching, which pass data only to
one of the recipients, and looping. These constructs can be
freely combined with functional components. The conditional
selection is based on the coupled use of If and Switch
components. If passes the data to one of two nodes based
on some condition, while Switch selects one of two inputs
also based on some condition.

B. Data flow

The default data flow in Triana is from the source unit to the
destination unit, representing function composition. However,
addition of numerous control structures breaks the functional
metaphor through non–determinism. Effectively, a history of
executed components represents the functional composition
that was performed.

The standard data flow mechanism completes the execution
of one node before passing the result to the next one. This
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is not the only supported paradigm, and streaming is possible
using a set of dedicated components such as Sequence, Block,
Merge, and others. Through these constructs it is possible to
schedule parallel execution of several units in the graph on
different subsets of data.

V. KEPLER

Kepler is a scientific workflow construction, composition,
and orchestration engine, evolved from Ptolemy II [28], an
actor-oriented modeling tool meant primarily for embedded
and real-time system design. Kepler’s focus is on data analysis
and modelling, which influenced the design in that it is suitable
for modelling processes in a wide variety of scientific domains,
from physics via ecosystems to bioinformatics web services.

Instead of trying to provide a generic semantic for all
possible types of processes encountered in these domains,
Kepler separates the execution engine from the workflow
model, and assigns one model of computation, director, to
each workflow.

The workflow components in Kepler are represented by
actors which represent operations or data sources, with a
number of ports, whether input, output, or mixed, that act as
end-points for connections that transport tokens. The simplest
interaction consists of an actor consuming one data token on
each input port and producing one token on each output port
whenever it executes (“fires”). However, there are numerous
cases where more than one token may be consumed (or
produced) for each execution. An example is the “Sequence
to Array” actor, which consumes a certain number of input
tokens specified in advance and then outputs a single array
token.

Directors are the key concept in Kepler. While actors and
relations together constitute a workflow model, the directors
form the execution model, or Model of Computation (MoC).
In this setup, intelligence of an actor stretches as far as
knowing its inputs, the operation to be performed on them and
what outputs to produce. The decision when to schedule the
execution of each actor is left to the director. For example, an
addition operation can accept input data delivered by any of a
number of mechanisms, including discrete events, rendezvous,
and asynchronous message passing. Therefore, depending on
the director used, the actors may have separate threads of
control, or they may have their executions triggered by the
availability of new input, in a more conventional dataflow
manner. This architecture, in which components are agnostic
to the manner in which they are executed, is referred to as
behavioural polymorphism [29].

Furthermore, in order to increase reusability, Kepler actors
are data polymorphic in the sense that they can be applied to
multiple data types on inputs. That way, the same component
can be used to perform, for example, addition of integers, real
numbers and string concatenation.

A. Control flow

The execution of actors by the directors is centered around
the notion of tokens. When an actor receives a token, it

runs the required number of times, and as it does it fires
new tokens with the resulting data on the output port. The
execution consists of preinitialising all components, type-
checking compositions, running each node and finalizing the
task. When a node runs, it initializes any resources it requires
and then continues firing whenever it receives a token.

Kepler’s architecture allows new execution semantics to
be plugged in by the users, defined using programmatic
manipulation of objects in the system. Below are described
the four core directors.

SDF (Synchronous Data Flow) is characterized by fixed
token production and consumption rates per firing. The actor
is invoked as soon as all inputs have data, which is possible
to know since all actors have to declare their token production
before the execution. Therefore, the order of execution is
statically determined from the model, and components cannot
change the routing of tokens during execution. This type of
semantics is suitable for modelling linear dataflows such as
mathematical calculations, or tabular manipulation.

PN (Process Network) is a derestricted variant of SDF, in
that the actor is invoked when the data arrives. However, there
is no requirement that all data has to be present, which results
in a more dynamic environment, where actors are executing in
parallel and sending each other data when and if needed. The
tokens are created on output ports whenever input tokens for
an actor are available and the outputs can be calculated. The
output tokens are then passed to connected actors where they
are held in a buffer until that next actor can fire. The workflow
is thus driven by data availability. This modelling is naturally
suited to messaging environments, such as communicating
web and Grid services, and parallel processing on distributed
systems.

The CT (Continuous Time) director introduces the notion
of time that is affixed to tokens in order to perform system
simulations. The system is usually described in terms of
differential equations, and the start conditions, which are then
used to predict the state at some specified time in the future.
For example, given some equation, the system can calculate
the value of the function at each step, display it in some
dynamic visualiser, and pass it back into the function so it
can calculate the next step. The data tokens that are passing
through the system then have a timestamp that the director is
using to determine the step and the stop condition.

Similarly to CT, the DE (Discrete Event) director is working
with timestamps; however they are not used to approximate
functions and schedule executions, but to measure average wait
times and occurrence rates. Therefore, the actors determine
when tokens are sent, as in PN, but they also capture the time
dimension of the token passing process. Typical use of this
sort of workflow is to model the bus/passenger problem [30]
and similar modelling questions.

Kepler supports hierarchical embedding of a workflow into
another workflow, depending on the compatibility of their
directors. The allowed combinations are determined by two
factors: the requirements of the director from underlying
workflows under its control, and the semantics exported by
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the director to the actor within which it is placed. Based on
the semantics, each director can be classified as strict, loose or
loosest, and the embeddings are allowed only when the inner
director is at least as strict as the outer one. Detailed analysis
can be found in [31].

B. Data flow

The tokens in Kepler contain data. Whenever a node execu-
tion is initiated, the node reads its inputs from the incoming
token and places the results into the outgoing one. The director
that is assigned to the given workflow handles the order
in which the calculations are executed, so they are not a
direct consequence of the functional dependencies between
components. Therefore, despite having data passed around the
workflow, Kepler does not have a purely functional compo-
sition model, reflecting the dual nature of Kepler’s aim, to
support both analysis processes and process simulations. The
lack of functional composition also makes it less applicable
to analytical tasks with a strong prototyping slant, where
decisions as to which component to apply next are performed
dynamically [4].

VI. YAWL

YAWL, or Yet Another Workflow Language, was not de-
signed as a scientific workflow system and unlike other
systems described so far, it has its origins in theoretical
work and was not developed for the purposes of any single
application project. What makes it interesting for the purpose
of this review is that it was designed with the purpose of
being a generic workflow tool, equally applicable to scientific
work and organization of business processes, reflecting the
philosophy that there is no significant difference between the
two [32].

Fig. 6. YAWL workflow

The requirements for YAWL came from the work on
workflow patterns [33] which delivered a comparison of a
number of (mostly business) workflow systems and attempted
to formalize each feature as a pattern. The goal of YAWL
was to provide a language that would capture the superset of
all these capabilities. Realizing that all the patterns described
can be implemented in high-level Petri nets, they were used
as a formal basis for the language. While the control flow
perspective of YAWL is the most used one, the language also
supports the data and resource perspectives.

Workflow in YAWL, as shown in Figure 6, is a set of tasks,
conditions and flows between them. Unlike Petri Nets, tasks
can be connected to each other directly, without a condition
in–between, which is interpreted as an implicit condition that
automatically succeeds. A task in a workflow can be either
atomic or composite, with composite tasks containing another
workflow, or extended workflow net in YAWL terminology,
forming a tree like structure of hierarchical workflows.

Each workflow, whether top-level or inner, must have a
single input and a single output condition, thereby simplifying
verification and soundness computation. Each task can have
multiple instances specified, and be restricted with upper and
lower bounds, instance threshold (being able to trigger some
condition based on the number of instances of a task) and
a parameter that specifies whether the number of instances
is static during task execution or dynamic, ie. can change
depending on the execution result.

A. Control flow

In YAWL, the basic Petri Net model was extended with fea-
tures to support three main tasks: multiple process instances,
advanced synchronization of tasks (where several tasks can
trigger the OR-join) and removal of tokens from the net, used
for cancellation.

There are six explicit branching constructs: a split and a
join of AND, XOR, and OR, which model every legal
data routing through the workflow. Due to the nature of
splits the execution path through the workflow is determined
dynamically at runtime, as opposed to being apriori statically
determined.

Conditional branching is achieved through XOR and OR
splits and joins, that have to be paired up, forming a condi-
tional block. Looping is performed through the use of OR join
and a state node (in the style of Petri Nets) that can decide
what to fire.

B. Data flow

All data in YAWL is represented as XML documents with
XPath and XQuery used for any transformation operations.
The transfer of data between components is achieved via
a shared workflow state containing variables. There is no
concept of data being passed down the connections between
nodes. Two types of data transfers exist, internal and external,
both using XQuery.

Internal transfers are always performed between the tasks
and their workflows, since all variables inside the tasks are
internal to that task and cannot be shared with another task.
Data sharing between tasks is performed via task parameters,
which are associated with an environment variable in the
workflow. So, in order to communicate some data between
tasks A and B, task A has to register its variable as the output
parameter, and pass it to some global workflow variable N,
which task B will take as its input parameter.

External transfers operate, at run–time, between global
variable and the user or the global variable and an external
component, such as a web or Grid service. The exact process

Authorized licensed use limited to: Imperial College London. Downloaded on August 21, 2009 at 04:40 from IEEE Xplore.  Restrictions apply. 



Proceedings of the 2008 IEEE, CIBEC'08                                                              978-1-4244-2695-9/08/$25.00 ©2008 IEEE

of retrieving or sending the data is handled by the YAWL
enactment engine.

C. YAWL as a scientific workflow system

The idea at the heart of YAWL is that the difference between
scientific and business workflows is immaterial [32]. While it
is certainly true that two areas can inform each other and a
number of research topics are common to both, the authors’
view is that the key difference between the two lies in the sci-
entific workflows’ focus on innovation, rather than automation.
This is not a cosmetic feature, but has a more fundamental
impact on the design of workflow systems that can adequately
support high levels of abstraction and transparently integrate
a wide variety of resources and computational models.

Considering the data aspect, which is key to any scientific
workflow system, the role of data flow in YAWL is not to
perform computations, but to perform data transformations as
a possible side-effect of workflow execution. So, despite its
very solid theoretical framework, and a wide spectrum of ca-
pabilities, it provides no workflow–style view of computation,
and is therefore not applicable as a scientific workflow system.

VII. BPEL

BPEL4WS (Business Process Execution Language for Web
Services) was established in 2002, when it superseded and
amalgamated IBM’s WSFL (Web Services Flow Language)
and Microsoft’s XLANG. An important aspect of BPEL is its
transactionality, reflected in advanced error handling mecha-
nisms. While it is not a graphical language, many of BPEL
constructs can be represented graphically. BPEL 2.0 came
out in 2004 and is the most widely accepted version of the
language.

At the core of BPEL design are web services. Each BPEL
workflow can be observed as a web service in its own right.
Hierarchical composition is supported through invocation of
other BPEL workflows as services. The workflow consists of
partner links, which are external entities (other web services
or users) that are going to communicate with the workflow,
variables which store data used in the workflow, and a control
structure.

An example of a BPEL workflow is shown in Figure 7.
Workflows typically start with a {receive} activity and ends
with a {reply} indicating that the workflow was invoked
as a service, and returns some value to its invoker. The
{invoke} operation allows calls to a remote service, either
in a synchronous or an asynchronous way.

A. Control flow

BPEL offers two ways of specifying relationships between
activities. One is by using the control constructs: If, Pick,
ForEach, RepeatUntil and While, which implement different
forms of conditional branching and looping. The other is by
using activity containers such as sequence and flow, which
schedule several activities either sequentially or in parallel.
Iterated activities cannot be parallelized.

Fig. 7. BPEL workflow

In addition to this, tasks in BPEL can be composed using
graph–like links. In those cases, an activity with multiple links
coming in will wait for all the messages to arrive before
proceeding, and once it completes, it will send out messages
on all its outgoing links.

B. Data flow

All data in BPEL is represented by XML documents, and
operated on using XPath and XQuery. No data operations are
present in BPEL, they are left to the underlying implementa-
tion of individual services, but an {assign} task is present to
link the service inputs and outputs to variables in the workflow,
similarly to the way variable space is used in YAWL.

C. BPEL as a scientific workflow system

In [34], it was argued that scientists prefer to think of their
analysis on a higher level than that of web service ports,
and therefore BPEL is not at the right level of abstraction
for scientific purposes. Still, several attempts have been made
at adapting BPEL for scientific workflows. OMII-BPEL [35],
led by the Open Middleware Infrastructure Institute [7], pro-
duced an integration of Active BPEL and BPEL Designer
tools, enhancing them with some Grid-specific components.
GPEL4SW [36] (Grid Process Execution Language for Sci-
entific Workflows) has been developed at the University of
Indiana with the aim of specializing BPEL to running Grid
processes.

Sedna [37] is the effort to simplify the process of construc-
tion of workflows with BPEL, and make it more accessible to
domain users with little knowledge of technical detail. This is
done through a graphical construction environment for BPEL
workflows, and several extensions to the language, namely: in-
dexed flows (which allow parallelization of iteration), different
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modes of reducing components (through hierarchical abstrac-
tion or reuse of existing components in other workflows) and
macros, which automate message interactions.

VIII. FEATURE COMPARISON OF REVIEWED SYSTEMS

Following the presentation of these six systems, let us
now see how they compare with respect to some syntactical
features, and control and data flow aspects.

A. Syntactical features

Several syntactical features are relevant to the discussion.
The ability of a node to have multiple ports that produce dif-
ferent output types, is present in all of the systems apart from
Triana. Shared variable space is not present in the data flow
systems listed here, since the communication of data happens
through component links, however it is used in BPEL and
YAWL to exchange values in absence of data flows. Finally,
Discovery Net, Triana and Kepler attach type information to
the data being passed and ensure that component composition
is type-safe.

B. Control behaviour

Elements of control and data separation exist in these
workflow systems in three distinctive flavours: as different
types of workflow, as different subsets of nodes that implement
both control and data functionality in the same workflows, or
as different types of links that transports control or data.

• Separate layers. Discovery Net implements control flows
as separate entities from the data flows, with no interac-
tion involved. BPEL and YAWL only provide control-
style workflows. Kepler defines control using directors
that determine the workflow node behaviour.

• Separate nodes. Triana has a set of control nodes which
are used to achieve branching, parallelism and looping.

• Dedicated control and data links. Taverna uses control
links, which pass no data, to synchronize execution of
components with no data dependency. No looping is
present.

C. Data behaviour

Data flow execution can be orchestrated in a data-driven or
model-driven manner, also known as push and pull semantics,
or it can be choreographed by giving each node detailed
instructions on how to behave when data becomes available.

• Data-driven orchestration. Taverna and Triana execu-
tion proceeds by running all the nodes with no predeces-
sors and continues until there are no more nodes left to
run.

• Model-driven orchestration. Discovery Net performs
only the operations needed to produce the required result,
executing the subset of the graph that is relevant to the
output.

• Choreographed behaviour. Each node is given instruc-
tions on how to behave with regards to data. In Kepler,
this behaviour is common to all the nodes in the layer
and defined by the director. In YAWL, it is specified by

the node interaction properties. In BPEL, it is left to the
individual service.

D. Embedding

When it comes to combining control and data aspects,
Discovery Net, Triana and Kepler all provide such mechanisms
through embedding constructs in which a workflow of one type
is embedded into the workflow of another type.

• Data as implementation of control execution. Dis-
covery Net allows the control flow to perform the or-
chestration of individual data flows by embedding them
inside the control nodes. The logic is then dictated by the
control flow, with any data transformations performed in
the internal data flows.

• Control flow as computational pattern. Triana asso-
ciates explicit coordination logic with an embedded work-
flow by using scripts. Primary use of this mechanism is to
create advanced looping constructs, but more generally it
enables creation of any imperative logic. The coordination
is performed by script code, not a workflow, manipulating
input and output values between the embedded and the
outside workflow.

• Multiple process semantics. Kepler aims to generalize
all notions of computations applicable to graph represen-
tations by defining a fixed number of workflow semantics,
embodied in directors, each with a particular process
behaviour [38]. For example, an enclosing director may
impose the restriction that the internal component has
to return a concrete value or a clear termination signal,
while some others may just require it to start, without
being concerned whether it ever completes.

• Embedding of the same types. Embedding of a work-
flow into another workflow of the same type is present in
Discovery Net, Taverna, BPEL and YAWL as a grouping
operation, which hides away some of the complexity of
the graph. In addition to being just a visual feature,
Discovery Net and BPEL use the grouped entity for
publishing the functionality as a service.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we reviewed four of the most popular scientific
systems, one purely theoretical system that has not evolved
from the needs of any particular research project, and a
generally accepted standard system for business process work-
flows. The differences between them were in their approach
to handling data, with scientific workflow systems treating
their data structures as parts of the workflow representation,
rather than as disconnected objects. The role of embedding in
combining the two semantics was also presented.

The variety of control and data elements that are available to
workflow authors and users indicate that scientific workflow
systems will continue being developed for various domains
and guided by those domains’ needs. Due to this, it is highly
unlikely that standardization will occur on any one system, as
it did with BPEL in the business process domain. Therefore,
modelling and analysing the process and data capabilities
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of workflow systems in a framework independent of any
particular implementation is a valid and necessary research
goal.
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