
Imperial College London

Department of Computing

Diagnosing, Predicting and Managing
Application Performance in Virtualised

Multi-Tenant Clouds

Xi Chen

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London

and the Diploma of Imperial College London
July 2016

Abstract

As the computing industry enters the cloud era, multicore architectures and virtualisation

technologies are replacing traditional IT infrastructures for several reasons including reduced

infrastructure costs, lower energy consumption and ease of management. Cloud-based software

systems are expected to deliver reliable performance under dynamic workloads while efficiently

allocating resources. However, with the increasing diversity and sophistication of the environ-

ment, managing performance of applications in such environments becomes difficult.

The primary goal of this thesis is to gain insight into performance issues of applications run-

ning in clouds. This is achieved by a number of innovations with respect to the monitoring,

modelling and managing of virtualised computing systems: (i) Monitoring – we develop a mon-

itoring and resource control platform that, unlike early cloud benchmarking systems, enables

service level objectives (SLOs) to be expressed graphically as Performance Trees; these source

both live and historical data. (ii) Modelling – we develop stochastic models based on Queue-

ing Networks and Markov chains for predicting the performance of applications in multicore

virtualised computing systems. The key feature of our techniques is their ability to charac-

terise performance bottlenecks effectively by modelling both the hypervisor and the hardware.

(iii) Managing – through the integration of our benchmarking and modelling techniques with a

novel interference-aware prediction model, adaptive on-line reconfiguration and resource control

in virtualised environments become lightweight target-specific operations that do not require

sophisticated pre-training or micro-benchmarking.

The validation results show that our models are able to predict the expected scalability be-

haviour of CPU/network intensive applications running on virtualised multicore environments

with relative errors of between 8 and 26%. We also show that our performance interference

prediction model can capture a broad range of workloads efficiently, achieving an average error

of 9% across different applications and setups. We implement this model in a private cloud de-

ployment in our department, and we evaluate it using both synthetic benchmarks and real user

applications. We also explore the applicability of our model to both hypervisor reconfiguration

and resource scheduling. The hypervisor reconfiguration can improve network throughput by

up to 30% while the interference-aware scheduler improves application performance by up to

10% compared to the default CloudStack scheduler.

i

ii

Acknowledgements

I would like to thank the following people:

• My supervisor, Prof William Knottenbelt, who guided me tirelessly through my PhD.

He’s a brilliant researcher and advisor who was always ready to help, encourage and

push ideas one level further, and share his experience and insight about any problem.

His commitment to excellence is inspiring; his belief in his students is motivating; his

enthusiasm for research problems is catching. I have been very fortunate to work with

him and infected by his knowledge, vision, passion, optimism and inspiration everyday.

• The head of the Department of Computing, Prof Susan Eisenbach, for her support and

the financial assistance, the departmental international student scholarship.

• Dr Felipe Franciosi, for his efforts in improving the experiments and ideas, providing

insightful knowledge, and encouragement and help in broad areas.

• The DoC Computing Support Group (CSG) for their countless and prompt help, and

extremely awesome hand-on knowledge, and incredible problem solving techniques, and

their kind, patiences, understanding and endlessly support. In particular: I would like to

thank Mr Duncan White, Dr Lloyd Kamara and Thomas Joseph for helping me with the

many environmental setups, system configurations and countless difficult problems, and

many evenings that they had to work late because of these.

• My collaborators, Chin Pang Ho from Computational Optimisation Group for his great

input on the mathematical analysis and many other math problems, and Lukas Rup-

precht from LSDS group for his broad knowledge and experience on experiment design,

distributed systems and many valuable discussions. The work in this dissertation is the

result of collaboration with many other people, more broadly numerous people, Prof Pe-

ter Harrison, Giuliano Casale, Tony Field, Rasha Osman, Gareth Jones in AESOP group

contributed to the development and refinement of the ideas in this thesis.

• Dr Amani El-Kholy for her endless love, trust, and support for the last 6 years.

• My examiners, Prof Kin Leung and Dr Andrew Rice, for kindly agreeing to serve as

internal and external examiners for my viva. Their careful review and their insightful

iii

comments have helped improve the quality of the thesis and have provided directions for

my future research.

• And last but not least my family and friends, for their infinite love and perpetual support

no matter what I do or what I chose, especially during the hard times that happened 8

hours time difference away from home.

iv

Dedication

To my family

v

“Just keep swimming.”
Finding Nemo (2003)

vi

Copyright Declaration

© The copyright of this thesis rests with the author and is made available under a Creative

Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy,

distribute or transmit the thesis on the condition that they attribute it, that they do not use it

for commercial purposes and that they do not alter, transform or build upon it. For any reuse

or redistribution, researchers must make clear to others the licence terms of this work.

vii

viii

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Aims . 3

1.3 Contributions . 5

1.3.1 A Performance Tree-based Monitoring Platform for Clouds 5

1.3.2 Investigating and Modelling the Performance of Web Applications in Mul-

ticore Virtualised Environments . 7

1.3.3 Diagnosing and Managing Performance Interference in Multi-Tenant Clouds 8

1.4 Statement of Originality and Publications . 8

1.5 Thesis Roadmap . 9

2 Background 10

2.1 Introduction . 10

2.2 Cloud Computing . 10

2.3 Characterising Virtualised Multicore Scalability 11

ix

x CONTENTS

2.3.1 Multicore and Scalability . 12

2.3.2 Linux Kernel Internals and Imbalance of Cores 13

2.3.3 Virtualisation and Hypervisor Overhead 13

2.4 Characterising Performance Interference Caused by Virtualisation 14

2.4.1 Xen and Paravirtualisation . 15

2.4.2 CPU Scheduler . 17

2.4.3 Disk I/O . 19

2.4.4 Grant Table . 19

2.4.5 Network I/O . 20

2.5 Stochastic Modelling . 21

2.5.1 Discrete-time Markov Chains . 21

2.5.2 Transition Matrix and State Transition Diagram 23

2.5.3 State Transition Probability Distribution 23

2.5.4 Steady State and Stationary Distribution 26

2.6 Queueing Theory . 27

2.6.1 Important Performance Measures . 28

2.6.2 Processor-sharing Queueing Models . 29

2.6.3 BCMP Network . 30

2.7 Performance Trees . 32

2.8 Related Research . 34

2.8.1 Cloud Benchmarking Systems . 34

2.8.2 Performance Modelling of Web Applications in Virtualised Environments 35

2.8.3 Performance Interference Modelling in Multi-Tenant Clouds 38

CONTENTS xi

3 A Performance Tree-based Monitoring Platform for Clouds 42

3.1 Introduction . 42

3.2 The Design of a Performance Tree-based Monitoring Platform 43

3.2.1 System Requirements . 43

3.2.2 System Architecture . 44

3.3 The Myth of Monitoring in Clouds . 46

3.3.1 Measuring without Virtualisation . 46

3.3.2 Measuring with Virtualisation . 48

3.3.3 An Example of Measuring the Actual I/O Queue Size 52

3.4 GUI and Demo in Action . 55

3.5 Summary . 56

4 Predicting the Performance of Applications in Multicore Virtualised Envi-

ronments 57

4.1 Introduction . 57

4.2 Benchmarking . 59

4.3 Proposed Model . 63

4.3.1 Model Specification . 63

4.3.2 CPU 0 . 65

4.3.3 Two-class Markov Chain and its Stationary Distribution of CPU 0 65

4.3.4 Average Sojourn Time of CPU 0 . 68

4.3.5 Average Service Time and Utilisation of CPU 0 70

4.3.6 Likelihood for Estimating Parameters . 72

xii CONTENTS

4.3.7 Combined Model . 73

4.3.8 Validation . 74

4.4 Scalability and Model Enhancement . 75

4.4.1 Scalability Enhancement . 76

4.4.2 Model Enhancement . 76

4.4.3 Prediction with Previous Parameters . 77

4.4.4 Prediction validation for Type I hypervisor – Xen 80

4.4.5 Model Limitations . 80

4.5 Summary . 80

5 Diagnosing and Managing Performance Interference in Multi-Tenant Clouds 82

5.1 Introduction . 82

5.2 Characterising Performance Interference . 85

5.2.1 Recapping Xen Virtualisation Background 85

5.2.2 Measuring the Effect of Performance Interference 86

5.3 System Design . 89

5.3.1 Predicting Performance Interference . 91

5.3.2 CPU workloads . 92

5.3.3 I/O workloads . 93

5.3.4 Virtualisation Slowdown Factor . 95

5.4 Interference Conflict Handing . 96

5.4.1 Dynamic Interference Scheduling . 97

5.4.2 Local Interference Handling . 98

5.5 Evaluation . 99

5.5.1 Experimental Setup . 99

5.5.2 CPU, Disk, and Network Intensive Workloads 100

5.5.3 Mixed Workload . 101

5.5.4 MapReduce Workload . 102

5.5.5 Interference-aware Scheduling . 104

5.5.6 Adaptive Control Domain . 107

5.6 Summary . 108

6 Conclusion 110

6.1 Summary of Achievements . 111

6.2 Future Work . 113

A Xen Validation Results 115

Bibliography 117

xiii

xiv

List of Tables

4.1 Summary of the key parameters in the multicore performance prediction model . 74

4.2 Likelihood estimation of the mean service of class b job 74

4.3 Relative errors between model and measurements (%) 79

5.1 Benchmarking configuration of interference prediction 86

5.2 Specifications for interference-aware scheduler experimental environment 104

5.3 Related work of virtualisation interference prediction 108

xv

xvi

List of Figures

1.1 The decision making hierarchy . 4

1.2 The overview of this thesis . 6

2.1 Context switching inside a multicore server . 12

2.2 A brief history of virtualisation . 15

2.3 Xen hypervisor architecture with guest virtual machines 17

2.4 A state transition diagram example . 24

2.5 An example of Performance Tree query . 32

3.1 An example of Performance Tree-based SLO evaluation 44

3.2 System architecture . 45

3.3 The screenshot of iostat running fio benchmark tests 48

3.4 The path of an application issuing requests to disks without virtualisation . . . 52

3.5 The sequence diagram of an application issuing requests to disks 53

3.6 The path of an application issuing requests to disks with virtualisation 53

3.7 The sequence diagram of an application issuing requests to disks with virtualisation 54

3.8 Performance Tree evaluation GUI . 56

4.1 Testbed Infrastructures for Type-1 Hypervisor (left) and Type-2 Hypervisor (right) 60

xvii

4.2 CPU utilisation and software interrupt generated on CPU 0 of 4 core and 8 core

VM running web application . 62

4.3 Response time and throughput of 1 to 8 core VMs running web application . . . 62

4.4 Modelling a multicore server using a network of queues 63

4.5 State transition diagram of CPU 0 . 66

4.6 Comparing numerical and analytical solution E(K) 68

4.7 Response time validation of 1 to 8 core with 1 NIC 75

4.8 Revalidation of response time of 1 to 8 core with multiple number of NICs . . . 78

5.1 The load average (utilisation) example of the VM running sysbench experiment 87

5.2 Co-resident VM performance measurements for CPU, disk and network intensive

workloads . 88

5.3 CloudScope system architecture . 90

5.4 State transition diagrams for CPU, disk and network insensitive workloads . . . 92

5.5 Interference prediction model validation for CPU, disk and network intensive

workloads. 100

5.6 Interference prediction and model validation of mixed workloads 102

5.7 Interference prediction model validation for different Hadoop Yarn workloads

with different numbers of mappers and reducers 103

5.8 Histograms of the performance improvement of the CloudScope interference-

aware scheduler over the CloudStack scheduler 105

5.9 CDF plots for the job completion times of different tasks under CloudScope

compared to CloudStack . 106

5.10 CloudScope scheduling results compared to the default CloudStack scheduler . . 108

5.11 CloudScope self-adaptive Dom0 with different vCPU weights 108

xviii

A.1 Validation of response time of 1 to 8 core with multiple number of NICs on Xen

hypervisor . 116

xix

xx

Chapter 1

Introduction

1.1 Motivation

Cloud computing refers to both the applications delivered as services over the Internet and the

hardware and software in the data centres that provide those services [AFG+10]. The demand

for cloud computing has continuously been increasing during recent years. Millions of servers

are hosted and utilised in cloud data centres every day and many organisations deploy their

own virtualised computing infrastructure [OWZS13, MYM+11]. Virtualisation is the technol-

ogy that enables the cloud to multiplex different workloads and to achieve elasticity and the

illusion of infinite resources. By 2016, it is anticipated that more than 80% of enterprise work-

loads will be using IaaS (Infrastructure as a Service) clouds [Col16], whether these are public,

private and hybrid. Virtualisation and multicore technologies both enable and further en-

courage this trend, increasing platform utilisation via consolidating multiple application work-

loads [RTG+12, ABK+14]. This computing paradigm provides improved performance, reduced

application design and deployment complexity, elastic handling of dynamic workloads, and lower

power consumption compared to traditional IT infrastructures [NSG+13, GNS11a, GLKS11].

Efficient application management over cloud-scale computing clusters is critical for both cloud

providers and end users in terms of resource utilisation, application performance and system

throughput. Strategies for resource allocation in different applications and virtual resource con-

1

2 Chapter 1. Introduction

solidation increasingly depend on understanding the relationship between the required perfor-

mance of applications and system resources [SSGW11, TZP+16]. To increase resource efficiency

and lower operating costs, cloud providers resort to consolidating virtual instances, i.e. pack-

ing multiple applications into one physical machine [RTG+12]. Analysis performed by Google

shows that up to 19 distinct applications and components are co-deployed on a single multicore

node in their data centres [KMHK12]. Understanding the performance of consolidated appli-

cations is important for cloud providers to maximise resource utilisation and augment system

throughput while maintaining individual application performance targets. Satisfying perfor-

mance within a certain level of Service Level Objectives (SLOs) is also important to end users

because they are keen to know their applications are provisioned with sufficient resources to

cope with varying workloads. For instance, local web server infrastructure may not be provi-

sioned for high-volume requests, but it may be feasible to rent capacity from the cloud for the

duration of the increasing volume [LZK+11, ALW15].

Further, performance management in clouds is becoming even more challenging with grow-

ing cluster sizes and more complex workloads with diverse characteristics. Major cloud ser-

vice vendors not only provide a variety of VMs that offer different levels of compute power

(including GPU), memory, storage, and networking, but also a broad selection of services,

e.g. web servers, databases, network-based storage or in-network services such as load bal-

ancers [ABK+14, TBO+13]. A growing number of users from different organisations submit

jobs to these clouds every day. Amazon EC2 alone has grown from 9 million to 28 million

public IP addresses in the past two years [Var16]. The submitted jobs are diverse in nature,

with a variety of characteristics regarding the amount of requests, the complexity of processing,

the degree of parallelism, and the resource requirements.

Beside the fact that applications running in clouds exhibit a high degree of diversity, they

also remain highly variable in performance. Whereas efforts have improved both the raw

performance and performance isolation of VMs, the additional virtualisation layer makes it

hard to achieve bare metal performance in many cases. Multicore platforms and their current

hypervisor-level resource isolation management continues to be challenged in their ability to

meet the performance of multiple consolidated workloads [ZTH+13]. This is due to the fact

1.2. Objectives and Aims 3

that an application’s performance is determined not only by its use of CPU and memory

capacities, which can be carefully allocated and partitioned [BDF+03, HKZ+11], but also its

use of other shared resources, which are not easy to control in an isolated fashion, e.g. I/O

resources [TGS14]. As a result, cloud applications and appliance throughput varies by up to a

factor of 5 times in data centres due to resource contention [BCKR11]. Therefore, developers

and cloud managers require techniques to help them measure their applications executed in

such environments. Furthermore, they need to be able to diagnose and manage application

performance issues.

In summary, resource management in hypervisors or cloud environments must manage in-

dividual elastic applications along multiple resource dimensions while dealing with dynamic

workloads, and they must do so in a way that considers the runtime resource costs of meeting

the application requirements while understanding the performance implications caused by other

co-resident applications due to indirect resource dependencies.

1.2 Objectives and Aims

Our primary goal is to develop performance analysis techniques and tools that can help end

users and cloud providers to manage application performance efficiently. We tackle this goal

in the context of the decision making hierarchy shown in Figure 1.1. At the bottom level,

we develop monitoring and resource control tools to help describe ‘what is going on?’ in the

system. Next, we predict ‘what is going to happen if something changes?’ using performance

models. Finally, at the highest level, we prescribe the corresponding performance management

actions to answer ‘what value-adding decision can we make?’ for improved performance.

The primary research hypothesis that emerges from the above is: Within the context

of virtualised environments, and with appropriate tool and user interface support, performance

modelling can help to diagnose system bottlenecks and to improve resource allocation decision

in a way that increases horizontal scalability and lowers interference between co-resident VMs.

Our hypothesis has a broad scope and the related work, such as performance benchmarking

4 Chapter 1. Introduction

Description
(monitoring)

Prediction
(modelling)

Prescription
(managing)

What value-adding decision
can we make?

What is going to happen if
something changes?

 What is going on?

Figure 1.1: The decision making hierarchy

systems, performance modelling and resource management techniques, has been intensively

studied. Yahoo!’s YCSB [CST+10], MalStone [BGL+10], and COSBench [ZCW+13] are pro-

posed to create standard benchmarking frameworks for evaluating the performance of differ-

ent cloud systems, e.g. data processing systems, web services, cloud object storage etc. At

the same time, researchers have developed specialised prediction models [BGHK13, CGPS13,

BM13, DK13, CH11, NKG10, NBKR13, CKK11] to capture and predict performance under dif-

ferent workloads. These systems and techniques cope with certain aspects of the performance

management problem in cloud environments; however, they also come with several drawbacks.

We are going to present the objectives of this dissertation with the observation of current

systems and research. In this context the objectives of this thesis are:

1. To support flexible and intuitive performance queries: Many benchmarking frame-

works provide limited support for flexible and intuitive performance queries. Some of

them provide users with a query interface or a textual query language [GBK14], leading

to management difficulty for complex performance evaluation and decision making. We

seek to design an intuitive graphical specification of complex performance queries that

can reason about a broader range of concepts related to application SLOs than current

alternatives [DHK04, CCD+01].

2. To provide an automatic resource control: If an application does not fulfil the

performance requirements, the user must either manually decide on the scaling options

1.3. Contributions 5

and new instance types, or else write a new module in the system calling corresponding

cloud APIs to do so [BCKR11, FSYM13]. Efficient performance management should

be enhanced with self-managing capabilities, including self-configuration and self-scaling

once the performance is violated.

3. To provide lightweight and detailed models for targeted prediction: It is both

expensive and unwieldy to compose a prediction model based on comprehensive micro-

benchmarks or on-line training [DK13, CH11, NKG10, RKG+13, CSG13, KEY13, ZT12,

YHJ+10]. Current clouds require prediction to be general and efficient enough for complex

environments where applications change frequently. Apart from being lightweight, low-

level resource behaviour such as the utilisation of different CPU cores needs to be captured

to support fine-grained and target-specific resource allocation.

4. To investigate system and VM control strategies for better performance: Based

on the resource demand and performance prediction, successful management needs to be

able to not only add or remove servers [SSGW11, ZTH+13, NSG+13], but also to seek

the best configuration of the underlying servers and the hypervisor in order to serve the

guest VM applications in a more efficient way.

1.3 Contributions

As shown in Figure 1.2, this thesis presents a number of innovations with respect to monitoring,

modelling and managing the performance of applications in clouds. We outline the contributions

made in this dissertation and several key advantages over current techniques and methods.

1.3.1 A Performance Tree-based Monitoring Platform for Clouds

We implement a real time performance monitoring, evaluation and resource control platform

that reflects well the characteristics of contemporary cloud computing (e.g. extensible, user-

defined, scalable). The front-end allows for the graphical specification of SLOs using Perfor-

6 Chapter 1. Introduction

GAIN
INSIGHT INTO

PERFORMANCE OF
APPLICATIONS RUNNING IN CLOUDS

1. Monitoring and
Resource Control

Platform for
Clouds

2. Modelling
Performance in

Multicore
Virtualised

Environments

3. Managing
Performance

Interference in
Multi-Tenant

Clouds

Monitoring Modelling Managing

Monitoring tools
Performance tree

Queueing model
Markov chain

System
reconfiguration
and scheduling

Cloud Systems, hypervisor, applications

Figure 1.2: The overview of this thesis

1.3. Contributions 7

mance Trees (PTs), while violated SLOs trigger mitigating resource control actions. SLOs can

be specified over both live and historical data, and can be sourced from multiple applications

running on multiple clouds. We clarify that our contribution is not in the development of

the formalism (which is defined in [SBK06, KDS09]), nor in the Performance Tree evaluation

environment [BDK+08]. Rather it concerns the application of Performance Trees to cloud envi-

ronments. Specifically, we demonstrate how our system is capable of monitoring and evaluating

the application performance, and ensuring the SLOs of a target cloud application are achieved

by resource auto-scaling. Our system is amenable to multi-tenancy and multi-cloud environ-

ments, allowing applications to meet their SLOs in an efficient and responsive fashion through

automatic resource control.

1.3.2 Investigating and Modelling the Performance of Web Appli-

cations in Multicore Virtualised Environments

As the computing industry enters the Cloud era, multicore architectures and virtualisation

technologies are replacing traditional IT infrastructures. However, the complex relationship

between applications and system resources in multicore virtualised environments is not well

understood. Workloads such as web services and on-line financial applications have the re-

quirement of high performance but benchmark analysis suggests that these applications do

not optimally benefit from a higher number of cores [HBB12, HKAC13]. We begin by bench-

marking a real web application, noting the systematic imbalance that arises with respect to

per-core workload. Having identified the reason for this phenomenon, we propose a queueing

model which, when appropriately parametrised, reflects the trend in our benchmark results

for up to 8 cores. Key to our approach is providing a fine-grained model which incorporates

the idiosyncrasies of the operating system and the multiple CPU cores. Analysis of the model

suggests a straightforward way to mitigate the observed bottleneck, which can be practically

realised by the deployment of multiple virtual NICs within the VM. It is interesting to add

virtual hardware to the existing VM to improve performance (at no actual hardware cost). We

validate the model against direct measurements based on a real system. The validation results

8 Chapter 1. Introduction

show that the model is able to predict the expected performance across different number of

cores and virtual NICs with relative errors ranging between 8 and 26%.

1.3.3 Diagnosing and Managing Performance Interference in Multi-

Tenant Clouds

Virtual machine consolidation is attractive in cloud computing platforms for several reasons

including reduced infrastructure costs, lower energy consumption and ease of management.

However, the interference between co-resident workloads caused by virtualisation can violate

the SLOs that the cloud platform guarantees. Existing solutions to minimise interference be-

tween VMs are mostly based on comprehensive micro-benchmarks or online training which

makes them computationally intensive. We develop CloudScope, a system for diagnosing inter-

ference for multi-tenant cloud systems in a lightweight way. CloudScope employs a discrete-time

Markov chain model for the online prediction of performance interference of co-resident VMs.

It uses the results to (re)assign VMs to physical machines and to optimise the hypervisor

configuration, e.g. the CPU share it can use, for different workloads. We implement Cloud-

Scope on top of the Xen hypervisor and conduct experiments using a set of CPU, disk, and

network-intensive workloads and a real system (MapReduce). Our results show that Cloud-

Scope interference prediction achieves an average error of 9%. The interference-aware scheduler

improves VM performance by up to 10% compared to the default scheduler. In addition, the

hypervisor reconfiguration can improve network throughput by up to 30%.

1.4 Statement of Originality and Publications

I declare that this thesis was composed by myself, and that the work that it presents is my own

except where otherwise stated.

The following publications arose from the work carried out during my PhD.:

1.5. Thesis Roadmap 9

• 6th ACM/SPEC International Conference on Performance Engineering (ICPE

2015) [CK15] presents a Performance Tree-based monitoring and resource control platform

for clouds. The work presented in Chapter 3 is based on this paper.

• 5th ACM/SPEC International Conference on Performance Engineering (ICPE

2014) [CHO+14] presents a performance model for web applications deployed in multicore

virtualised environments. The work presented in Chapter 4 is based on this paper.

• 23rd International Symposium on Modeling, Analysis and Simulation of Com-

puter and Telecommunications Systems (MASCOTS 2015) [CRO+15] presents a

comprehensive system, CloudScope, to predict resource interference in virtualised envi-

ronments, and use the prediction to enhance the operation of cloud platforms. The work

presented in Chapter 5 is based on this paper.

1.5 Thesis Roadmap

The reminder of this dissertation is structured as follows. We explore the background and the

related work in Chapter 2. In Chapter 3, we introduce a Performance Tree-based monitoring and

resource control platform. In Chapter 4, we present a model that captures the performance of

web applications in multicore virtualised environments. In Chapter 5, we present CloudScope, a

system that diagnoses the bottlenecks of co-resident VMs and mitigates their interference based

on a lightweight prediction model. Chapter 6 concludes this dissertation with a summary of

our achievements and a discussion of future work.

Chapter 2

Background

2.1 Introduction

This chapter presents background related to the understanding and modelling of the systems

that we focus on. We begin by giving an overview of cloud computing, followed by a description

of two major enabling technologies heavily used in clouds: multicore architectures and virtual-

isation. We highlight the most important properties of the workloads and systems with a view

to incorporate them into an analytical model. We then present an overview of Markov chains

and Queueing theory, which are the key techniques we use for performance modelling. Next, we

briefly recap how Performance Trees can be utilised for graphical performance queries and eval-

uation. We conclude by reviewing the related scientific literature covering cloud benchmarking

systems, performance modelling for virtualised multicore systems and performance interference

prediction and management in multi-tenant cloud environments.

2.2 Cloud Computing

Cloud computing platforms are becoming increasingly popular for hosting enterprise applica-

tions due to their ability to support dynamic provisioning of virtualised resources. Multicore

10

2.3. Characterising Virtualised Multicore Scalability 11

systems are widespread in all types of computing systems, from embedded to high-performance

servers, which are widely provided in these public cloud platforms. More than 80% of mail

services (e.g. Gmail, or Yahoo!), personal data storage (e.g. Dropbox), on-line delivery (e.g.

Domino pizza), video streaming services (e.g. Netflix) and many other services are supported

by cloud-based web applications [CDM+12, ABK+14, ALW15, PLH+15]. Flexibility, high scal-

ability and low-cost delivery of services are key drivers of operational efficiency in many organi-

sations. However, the sophistication of the deployed hardware and software architectures makes

the performance studies of such applications very complex [CGPS13]. Often, enterprise appli-

cations experience dynamic workloads and unpredictable performance [ABG15, ZCM11]. As

a result, provisioning appropriate and budget-efficient resource capacity for these applications

remains an important and challenging problem.

Another reason for variable performance and a major feature of cloud infrastructure, is the fact

that the underlying physical infrastructure is shared by multiple virtual instances. Although

modern virtualisation technology provides performance isolation to a certain extent, the com-

bined effects from concurrent applications, when deployed on shared physical resources, are

difficult to predict, and so it is problematic to achieve application SLOs. For example, a

MapReduce cloud service has to deal with the interference deriving from contention in numer-

ous hardware components, including CPU, memory, I/O bandwidth, the hypervisor, and their

joint effects [BRX13, DK13, WZY+13]. Our goal is to build on the capability of performance

modelling to provide significant gains in automatic system management, in particular (a) im-

proving the horizontal scalability of a multicore virtualised system and (b) diminishing the

interference between co-resident VMs. We discuss the key aspects of each of these objectives

in the subsections below.

2.3 Characterising Virtualised Multicore Scalability

Here we present the background related to capturing the behaviour under scaling of CPU and

network intensive workloads (e.g. web applications) running on multicore virtualised platforms.

12 Chapter 2. Background

We start by briefly introducing multicore architectures; then we explain the basic steps involved

in receiving/transmitting traffic from/to the network and finally discuss the overhead introduced

by virtualisation.

2.3.1 Multicore and Scalability

To exploit the benefits of a multicore architecture, applications need to be parallelised [PBYC13,

VF07]. Parallelism is mainly used by operating systems at the process level to provide mul-

titasking [GK06]. We assume that the following two factors are inherent to web applications

which scale with the number of cores: (1) the workload of a web application typically involves

multiple concurrent client requests on the server and hence is easily parallelisable; (2) they

exploit the multithreading and asynchronous request services provided by modern web servers

(such as Nginx). Each request is usually processed in a separate thread and threads can run

simultaneously on different CPUs. As a result, modern web servers can efficiently utilise mul-

tiple CPU cores. However, scalability of web servers is not linear in practice as other factors,

such as synchronisation, sequential workflows, communication overhead, cache pollution, and

call-stack depth [NBKR13, VF07, CSA+14, JJ09] limit the performance.

0 1 n-1

Figure 2.1: Context switching inside a multicore server

2.3. Characterising Virtualised Multicore Scalability 13

2.3.2 Linux Kernel Internals and Imbalance of Cores

Modern computer architectures are interrupt-driven. If a device, such as a network interface

card (NIC) or a hard disk, requires CPU cycles to support an I/O operation, it triggers an inter-

rupt which calls a corresponding handler function [TB14]. As we investigate web applications,

we focus on interrupts generated by NICs. When packets from the network arrive, the NIC

places these in an internal packet queue and generates an interrupt to notify the CPU to process

the packet. By default, an interrupt is handled by a single CPU (usually CPU 0). Figure 2.1

illustrates the process of passing a packet from the network to the application and sending a

response back to the network (steps 1 to 5). The NIC driver copies the packet to memory and

generates a hardware interrupt to signal the kernel that a new packet is readable (step 1). A

previously registered interrupt handler is called which generates a software interrupt to push

the packet down to the appropriate protocol stack layer or application (step 2) [WCB07]. By

default, a NIC software interrupt is handled by CPU 0 (core 0) which induces a non-negligible

load and, as processing rates increase, creates a major bottleneck for web applications (interrupt

storm) [VF07]. Modern NICs can support multiple packet queues. The driver for these NICs

typically provides a kernel module parameter to configure multiple queues [PJD04, JJ09] and

assign an interrupt to the corresponding CPU (step 3). The signalling path for PCI (Peripheral

Component Interconnect) devices uses message signalled interrupts (MSI-X) that can route

each interrupt to a particular CPU [PJD04, HKAC13] (step 4). The NIC triggers an associated

interrupt to notify a CPU when new packets arrive or depart on the given queue (step 5).

2.3.3 Virtualisation and Hypervisor Overhead

In the context of modelling the performance of web applications running in virtualised envi-

ronments, the relationship between application performance and virtualisation overhead must

be taken into account. The virtualisation overhead greatly depends on the different

requirements of the guest workloads on the host hardware. With technologies like

14 Chapter 2. Background

VT-x/AMD-V1 and nested paging2, the CPU-intensive guest code can run very close to 100%

native speed whereas I/O can take considerably longer due to virtualisation [GCGV06]. For ex-

ample, Barham et al. [BDF+03] show that the CPU-intensive SPECweb99 benchmark and the

I/O-intensive Open Source Database Benchmark suite (OSDB) exhibit very different behaviour

in native Linux and XenoLinux (based on the Xen hypervisor). PostgreSQL in OSDB places

considerable load on the disk resulting in multiple domain transitions which are reflected in

the substantial virtualisation overhead. SPECweb99, on the other hand, does not require these

transitions and hence obtain very nearly the same performance as a bare machine [BDF+03].

2.4 Characterising Performance Interference Caused by

Virtualisation

The IT industry’s focus on virtualisation technology has increased considerably in the past

few years. In this section, we will recap the history of virtualisation and the key technologies

behind it. Figure 2.2 shows a brief overview of virtualisation technology over time. The

concept of virtualisation is generally believed to have its origins in the mainframe days back in

the late 1960s and early 1970s when IBM invested a lot of time and efforts in developing robust

time-sharing solutions3, e.g. the IBM CP-40 and the IBM System/370. Time-sharing refers to

the shared usage of computer resources among a large group of users, aiming to increase the

efficiency of both the user and the expensive compute resources they share. The best way to

improve resource utilisation, and at the same time simplify data centre management, is through

this time-sharing idea – virtualisation. Virtualisation is defined as enabling multiple operating

systems to run on a single host computer, and the essential component in the virtualisation

stack is the hypervisor. Hypervisors are commonly classified as one of these two types:

1“Hardware-assisted virtualization,” in Wikipedia: The Free Encyclopedia; available from https://en.

wikipedia.org/wiki/Hardware-assisted_virtualization; retrieved 9 June 2016.
2“Second Level Address Translation,” in Wikipedia: The Free Encyclopedia; available from https://en.

wikipedia.org/wiki/Second_Level_Address_Translation; retrieved 7 June 2016.
3“Brief history of virtualisation,” in Oracle Help Center; available from https://docs.oracle.com/cd/

E35328_01/E35332/html/vmusg-virtualization.html, retrieved 28 May 2016

https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://en.wikipedia.org/wiki/Second_Level_Address_Translation
https://docs.oracle.com/cd/E35328_01/E35332/html/vmusg-virtualization.html
https://docs.oracle.com/cd/E35328_01/E35332/html/vmusg-virtualization.html

2.4. Characterising Performance Interference Caused by Virtualisation 15

1960
IBM Cambridge Scientific

Center began development
of CP-40 - a virtual

machine/virtual memory
time-sharing operating

system.

1970
IBM System/370

announced – without
virtual memory.

1999
VMware introduced the

first x86 virtualisation
product, VMware
Virtual Platform.

2003
First release of first

open-source x86
hypervisor, Xen.

2006
 VMware released

VMware Server, a free
machine-level

virtualisation product
for the server market.

2007
 Open source

KVM released
integrated with

Linux kernel.

2008
 Microsoft

Hyper-V Server
was released.

2013
 XenServer 6.2
was fully open

source.

2013
 Docker was
released as

open source.

Figure 2.2: A brief history of virtualisation, compiled using information sourced from Timeline of
Virtualisation Development4

• Type-1 hypervisors run on the host hardware (native or bare metal), and include Xen,

Oracle VM, Microsoft Hyper-V, VMware ESX [BDF+03, CFF14, AM13].

• Type-2 hypervisors run within a traditional operating system (hosted), e.g. VMware

Server, Microsoft Virtual PC, KVM and Oracle Virtualbox [LWJ+13, TIIN10].

2.4.1 Xen and Paravirtualisation

Most of the Type-2 hypervisors discussed above are well-known commercial implementations of

full virtualisation. This type of hypervisor can be considered as a highly sophisticated emulator,

which relies on binary translation to trap and virtualise the execution. The hypervisor will

allocate a lot of memory to emulate the RAM of the VM and then start reading the disk image

of the VM from the beginning (the boot code). There is large overhead in interpreting the

VM’s instruction from the VM’s image and deciding what to do with it, e.g. placing data in

4“Timeline of Virtualisation Development,” in Wikipedia: The Free Encyclopedia; available from https:

//en.wikipedia.org/wiki/Timeline_of_virtualization_development; retrieved 7 June 2016.

https://en.wikipedia.org/wiki/Timeline_of_virtualization_development
https://en.wikipedia.org/wiki/Timeline_of_virtualization_development

16 Chapter 2. Background

memory, drawing on a screen or sending data over the network. This approach can suffer a large

performance overhead compared to the VM running natively on hardware. As a result, cloud

vendors use Type-1 hypervisors to provide virtual servers. Xen is widely used as the primary

VM hypervisor of the product offerings of many public and private clouds. It is deployed in the

largest cloud platforms in production such as Amazon EC2 and Rackspace Cloud. We picked

Xen as the target of this study in this dissertation due to its popularity and also because it is

the only open source bare-metal hypervisor.

Xen provides a spectrum of virtualisation modes, where paravirtualisation (PV) and full vir-

tualisation, or hardware-assisted virtualisation (HVM), are the poles. The main difference

between PV and HVM mode is that, a paravirtualised guest “knows” it is being virtualised on

Xen, contrary to a fully-virtualised guest. To boost performance, fully-virtualised guests can

use special paravirtualised device drivers, and this is usually called PVHVM or PV-on-HVM

drivers mode. Xen project 4.5 introduced PVH for Dom0 (PVH mode). This is essentially a

PV guest using PV drivers for boot and I/O5.

The entire Xen kernel has been modified to replace privileged instructions with hypercalls, i.e.

direct calls to the hypervisor. A domain is one of the VMs that run on the system. A hypercall

is a software trap from a domain to the hypervisor, just as a system call is a software trap from

an application to the kernel6. So, instead of issuing a system call to, for example, allocate a

memory address space for a process, the PV guest will make a hypercall directly to Xen. This

procedure is detailed in Figure 2.3. Domains will use hypercalls to request privileged operations.

Like a system call, the hypervisor communicates with guest domains using an event channel.

An event channel is a queue of synchronous hypervisor notifications for the events that need to

notify the native hardware.

The reason for this mechanism is that, before hardware-assisted virtualisation was invented,

the CPU would consider the guest kernel to be an application and silently fail privileged calls,

crashing the guest. With hardware support and the drivers in Dom0, we can run the guest

as a paravirtualised machine which allows the guest kernel to make the privileged call. The

5Xen Project Software Overview. http://wiki.xen.org/wiki/Xen_Project_Software_Overview
6Hypercall. http://wiki.xenproject.org/wiki/Hypercall

http://wiki.xen.org/wiki/Xen_Project_Software_Overview
http://wiki.xenproject.org/wiki/Hypercall

2.4. Characterising Performance Interference Caused by Virtualisation 17

 Hypervisor(VMM)

 Hardware NIC

Packets

N/W
Driver

Virtual
Switch

Control Domain
(Dom0)

blkback

Guest Domain (VM)

Event Channel

Disk

...

(VM)

Client
...

netback

Shared
Memory

A

B C

...
ClientClient Client

blkfront

netfront

Disk
Driver

Figure 2.3: Xen hypervisor architecture with guest VMs

hardware will understand the call comes from a guest kernel (the guest domain or DomU) and

trap it. It will then pass it to Xen, which in turn will invoke the same hypercall to, for example,

update the page table or issue an I/O request [BDF+03] as shown in Figure 2.3. This avoids

having to translate general system calls into specific calls to the hypervisor as in the HVM case.

PV is very efficient and lightweight compared to HVM and hence it is more widely adopted

as a virtualisation solution [XBNJ13, NKG10]. This is why we focus on modelling Xen’s PV

mode.

We continue our discussion of the Xen internals with the credit-based CPU scheduler, followed

by the grant table mechanism, and give more detail about the disk and network I/O data paths

in Xen.

2.4.2 CPU Scheduler

When a VM is launched, the control domain will tell the hypervisor to allocate memory and

copy the VM’s boot code and kernel to that memory. From this point, the VM can run on

its own, scheduled directly by the hypervisor. The Xen hypervisor supports three different

CPU schedulers which are (1) borrowed virtual time, (2) simple earliest deadline first, and (3)

18 Chapter 2. Background

credit scheduler. All of these allow users to specify CPU allocation via CPU shares (i.e. weights

and caps). Credit scheduler is the most widely deployed Xen CPU scheduler after Xen 3.0 was

released, because it provides better load balancing across multiple processors compared to other

schedulers [CG05, CGV07, PLM+13].

The credit scheduler is a proportional fair-share CPU scheduler designed for SMP hosts7. The

‘credit’ is a combination effect of weight, cap and time slice. A relative weight and a cap are

assigned to each VM. A domain with a weight of 512 will get twice as much CPU as a domain

with a weight of 256 on the same host. The cap optionally fixes the maximum proportion

of CPU a domain will be able to consume, even when the host is idle. Each VM is given

30 ms before being preempted to run another VM. After this 30 ms, the credits of all runnable

VMs are recalculated. All VMs in the CPU queues are served as FIFO and the execution

of these virtual CPUs (vCPUs) ends when the VM has consumed its time slice. The credit

scheduler automatically load balances guest vCPUs across all available physical CPUs (pCPUs);

however, when guest domains run many concurrent workloads, a large amount of time in

the scheduler is spent switching back and forth between tasks instead of doing the

actual work. This causes significant performance overhead.

A VM can enter a boost state which gives the VM a higher priority to be inserted into the head

of the queue in case it receives frequent interrupts. These effects of the credit scheduler should

be taken into consideration when analysing the performance of co-resident applications, as it

is more likely to prioritise an I/O-intensive workload while unfairly penalising CPU-intensive

workloads with higher processing latencies. For example, we also observe that executing a

CPU-intensive workload within a VM alongside a network-intensive benchmark will result in

better throughput for the network-intensive workload. However, to keep our model simple, this

work does not consider this effect. We consider CPU-intensive and I/O-intensive (including

disk and network) applications are allocated an equal share of CPU resources. We acknowledge

this might account for part of the prediction errors observed in Section 5.5.

7Credit Scheduler. http://wiki.xen.org/wiki/Credit_Scheduler

http://wiki.xen.org/wiki/Credit_Scheduler

2.4. Characterising Performance Interference Caused by Virtualisation 19

2.4.3 Disk I/O

While CPU-intensive applications generally exhibit excellent performance (close to bare metal)

on benchmarks, applications involving I/O (either storage or network) differ. When a user

application inside the guest VM makes a request to a virtual disk, almost every process in

the kernel behaves as in the case of a bare metal machine: the system call is processed; a

corresponding request for a block device is created; the request is placed in the request queue

and the device driver is notified to process the queue. From there, the driver passes the request

to the storage media such as a locally attached disk (e.g. SCSI, SATA) or a network-based

storage (e.g. NFS, iSCSI). Within a hypervisor, however, the device driver is handled by a

module called blkfront (see Figure 2.3).

blkfront has a shared memory page with another component called blkback in the control

domain. This page is used to place the requests that come to the request queue of the virtual

device. Once the virtual request is placed, blkfront notifies blkback through an interrupt sent

via the event channel. blkback will process the request that comes from blkfront and make

another call to Dom0’s kernel. This, in turn, creates another I/O request for the actual device

on which the virtual disk allocates. As the virtual disk for a VM can be in various locations,

Dom0’s kernel is responsible for directing requests coming from blkback to the correct place.

All these processes add processing overhead and increase the latency for serving I/O requests.

So the actual speed of I/O requests is dependent on the speed and availability of

the CPUs of Dom0. If there are too many VMs performing intensive CPU workloads, the

storage I/O data path can be significantly affected [PLM+13, SWWL14].

2.4.4 Grant Table

After a virtual device has been constructed, the guest VM shares a memory area with the control

domain which it uses for controlling the I/O requests, the grant table8. The paravirtualised

protocol has a limitation on the amount of requests that can be placed on this shared page

8Grant table. http://wiki.xen.org/wiki/Grant_Table

http://wiki.xen.org/wiki/Grant_Table

20 Chapter 2. Background

between blkfront and blkback (see Figure 2.3). Furthermore, these requests also have a

limitation on the amount of data they can address (the number of segments per request). These

two factors lead to higher latency and lower bandwidth, which limits I/O performance.

The guest will also issue an interrupt to the control domain which goes via the hypervisor; this

process has some latency associated with it.

2.4.5 Network I/O

Xen has a database on the control domain which is visible to all VMs through the hypervisor.

This is called XenStore9. When the control domain initialises a VM, it writes certain entries

into this database exposing virtual devices (network/storage). The VM network driver will read

those entries and learn about the devices it is supposed to emulate. This is the same process

as when a physical network card driver loads and examines the available hardware (e.g. PCI

bus) to detect which interfaces are available. The Xen VM network driver, called netfront,

will then communicate directly with another piece of software on the control domain, netback,

and handshake the network interface.

In contrast to storage, there are two memory pages shared between netfront and netback,

each of which contains a circular buffer. One of these is used for packets going out of the

guest operating system (OS) and another is used for packets going in to the guest OS from

the control domain. When one of the domains (either the guest or the control) has a network

packet, it will place information about this request in the buffer and notify the other end via a

hypervisor event channel. The receiving module, either netfront or netback is then capable of

reading this buffer and notifying the originator of the message that it has been processed. This

is different to storage virtualisation in that storage requests always start in the guest (the drive

never sends data without first being asked to do so); therefore, only one buffer is necessary

between the control domain and guest domains.

Having presented a brief overview of multicore and virtualisation technology, in the next part

of this chapter, we will introduce the theoretical background of this dissertation.

9XenStore. http://wiki.xen.org/wiki/XenStore

http://wiki.xen.org/wiki/XenStore

2.5. Stochastic Modelling 21

2.5 Stochastic Modelling

To abstract a sequence of random events, one can model it as a stochastic process. Stochastic

models play a major role in gaining insight into many areas of computer and natural sci-

ences [PN16]. Stochastic modelling concerns the use of probability to model dynamic real-

world situations. Since uncertainty is pervasive, this means that this modelling technique can

potentially prove useful in almost all facets of real systems. However, the use of a stochastic

model does not imply the assumption that the system under consideration actually behaves

randomly. For example, the behaviour of an individual might appear random, but an interview

may reveal a set of preferences under which that person’s behaviour is then shown to be en-

tirely predictable. The use of a stochastic model reflects only a practical decision on the part

of the modeller that such a model represents the best currently available understanding of the

phenomenon under consideration, given the data that is available and the universe of models

known to the modeller [TK14].

We can describe the basic steps of a stochastic modelling procedure as follows:

1. Identify the critical features that jointly characterise a state of the system under study.

This set of features forms the state vector.

2. Given some initial states, understand the universe of transitions which occur between

states, together with the corresponding probabilities and/or rates. The set of all states

that can be reached from the initial state is known as the reachable state space.

3. Analyse the model to extract the performance measurements of interests, for example,

the long run proportion of time spent in end state, or the passage time distribution from

one set of state to another.

2.5.1 Discrete-time Markov Chains

Consider a discrete-time random process {Xm,m = 0, 1, 2, . . . }. In the very simple case where

theXm’s are independent, the analysis of this process is relatively straightforward. In particular,

22 Chapter 2. Background

there is no memory in the system so each Xm can be considered independently from previous

ones. However, for many real-life applications, the independence assumption is not usually

valid. Therefore, we need to develop models where the value of Xm depends on the previous

values. In a Markov process, Xm+1 depends on Xm, but not any the other previous values

X0, X1, . . . , Xm−1. A Markov process can be defined as a stochastic process that has this

property which is known as Markov property [PN16].

Markov processes are usually used to model the evolution of “states” in probabilistic systems.

More specifically, consider a system with a state space S = {s1, s2, . . . }. If Xn = i, we say that

the system is in state i at time n. For example, suppose that we model a queue in a bank. The

state of the system can be defined as the non-negative integer by number of people in the queue.

This is, if Xn denotes the number of people in the queue at time n, then Xn ∈ S = {0, 1, 2, . . . }.

A discrete-time Markov chain is a Markov process whose state space S is a finite or countable

set, and whose time index set is T = {0, 1, 2, . . . } [PN16, TK14]. In formal terms, Discrete-time

Markov chains satisfy the Markov property:

P (Xm+1 = j | Xm = i,Xm−1 = im−1, . . . , X0 = i0) = P (Xm+1 = j | Xm = i),

for all t ∈ {0, 1, 2, . . . }, where P (Xm+1 = j | Xm = i) are the transition probabilities. This

notion emphasises that in general transition probabilities are functions not only of the initial

and final sates, but also of the time of transition. When the one-step transition probabilities are

independent of the time variable m, the Markov chain is said to be time-homogeneous [TK14]

and P (Xm+1 = j | Xm = i) = pij. In this dissertation, we limit our discussion to this

case. As it is common in performance modelling Markov chains are frequently assumed to

be time-homogeneous. When time-homogeneous, the Markov chain can be interpreted as a

state machine assigning a probability of hopping from each state to an adjacent one, so that

the process can be described by a single, time-independent matrix P = (pij), which will be

introduced in the next section. It greatly increases the trackability of the underlying system.

Also, it is easy to parametrise the model given the read measurement data.

2.5. Stochastic Modelling 23

2.5.2 Transition Matrix and State Transition Diagram

The matrix of one-step transition probabilities is given by P = (pij). For r states, we have,

P =

p11 p12 . . . p1r

p21 p22 . . . p2r

· · · ·

· · · ·

pr1 pr2 . . . prr

where pij ≥ 0, and, for all i,
r∑

k=1

pik = 1

Consider an example with four states and the following transition matrix:

P =

1
10

2
5

0 1
2

2
5

1
5

1
10

3
10

0 4
5

0 1
5

1
5

0 1
5

3
5

Figure 2.4 shows the state transition diagram for the above Markov chain. The arrows from

each state to other states show the transition probabilities pij. If there is no arrow from state

i to state j, it means that pij = 0.

2.5.3 State Transition Probability Distribution

A Markov chain is completely defined once its transition probability matrix and initial state

X0 are specified (or, more generally, an initial distribution is given a row vector). Recall the

Markov chain {Xm, t = 0, 1, 2, . . . }, where Xm ∈ S = {1, 2, . . . , r}. Suppose that the initial

24 Chapter 2. Background

1

2

3

4

0.5

0.4

0.1

0.4

0.3
0.2

0.1

0.8

0.2

0.2

0.6

0.2

Figure 2.4: A state transition diagram example

distribution of X0 is known. We can define the row vector π(0) as,

π(0) =
[
P (X0 = 1), P (X0 = 2), . . . , P (X0 = r)

]
.

We can obtain the probability distribution of X1, X2, . . . , at time step-n using the law of total

probability. More specifically, for any j ∈ S, we have,

P (X1 = j) =
r∑

k=1

P (X1 = j | X0 = k)P (X0 = k) =
r∑

k=1

pkjP (X0 = k)

If we define

π(m) =
[
P (Xm = 1), P (Xm = 2), . . . , P (Xm = r)

]
,

we can obtain the result,

π(1) = π(0)P,

Similarly,

π(2) = π(1)P = π(1)P2.

2.5. Stochastic Modelling 25

The n-step transition probability of a Markov chain is,

p
(n)
ij = P (Xm+n = j | Xm = i) (2.1)

and the associated n-step transition matrix is

P(n) = (p
(n)
ij) (P(1) = P).

The Markov property allows to express Equation 2.1 in the following theorem.

Theorem 2.1. The n-step transition probabilities of a Markov chain satisfy

p
(n)
ij =

∞∑
k=0

pikp
(n−1)
kj (2.2)

where we define

p
(0)
ij =

 1 if i = j,

0 otherwise.

From linear algebra we recognize the relation 2.2 as the formula for matrix multiplication, so

that P(n) = P×P(n−1). By iterating this formula, we obtain

P(n) = P×P×. . .×P.

In other words, the n-step transition probabilities p
(n)
ij are the entries in the matrix Pn, the nth

power of P.

Proof. The proof proceeds via a first step analysis, a break down of the possible transitions,

followed by an application of the Markov property. The event of going from state i to state j

after n transitions can be realised in the mutually exclusive ways of going to some intermediate

state k(k = 0, 1, . . .) after the first transition, and then going from state k to state j in the

remaining (n− 1) transitions [HP92].

Because of the Markov property, the probability of the second transition is pn−1kj and that of

26 Chapter 2. Background

the first is pik. If we use the law of total probability, then Equation 2.2 follows [TK14]. The

steps are,

p
(n)
ij = P (Xn = j | X0 = i) =

∞∑
k=0

P (Xn = j,X1 = k | X0 = i)

=
∞∑
k=0

P (X1 = k | X0 = i)P (Xn = j | X0 = i,X1 = k)

=
∞∑
k=0

pikp
(n−1)
kj

Let m and n be two positive integers and assume X0 = i. In order to get to state j in (m+ n)

steps, the chain will be at some intermediate state k after m steps. To obtain p
(m+n)
ij , we can

obtain the Chapman-Kolmogorov equation over all possible intermediate states:

p
(m+n)
ij = P (Xm+n = j | X0 = i) =

∑
k∈S

p
(m)
ik p

(n)
kj

2.5.4 Steady State and Stationary Distribution

Next we consider the long-term behaviour of Markov chains. In particular, we are interested in

the proportion of time that the Markov chain spends in each state when n becomes large [PN16].

A Markov chain’s equilibrium requires that: (i) the p
(n)
ij have settled to a limiting value; (ii)

this value is independent of the initial state; and (iii) the π
(n)
j also approach a limiting value

πj [HP92].

Formally, the probability distribution π = [π0, π1, π2, . . .] is called the limiting distribution of

the Markov chain Xn. We have,

πj = lim
n→∞

p
(n)
ij ,

for all i, j ∈ S, with ∑
j∈S

πj = 1,

2.6. Queueing Theory 27

since,

p
(n+1)
ij =

∑
k

p
(n)
ik pkj,

as n→∞,

πj =
∑
k

πkpkj,

π = πP. (2.3)

As we can see the π in Equation (2.3) is the left eigenvector of P with eigenvalue 1. Therefore,

we can solve the limiting distribution by computing the eigenvector of the transition probability

matrix P.

2.6 Queueing Theory

In many aspects of daily life, queueing phenomena may be observed when service facilities

(counters, web services) cannot serve their users immediately. Queueing systems are mainly

characterised by the nature of how customers arrive at the system and by the amount of work

that the customers require to be served [Che07]. Another important characteristic is described

as the service discipline, which refers to how the resources are allocated to serve the customers.

The interaction between these features has a significant impact on the performance of the

system and the individual customers.

The first queueing models were conceived in the early 20th century. Back in 1909, the Erlang loss

model, one of the most traditional and basic types of queueing models, was originally developed

for the performance analysis of circuit-switched telephony systems [Erl09]. Later, queueing

theory was successfully applied to many areas, such as production and operations management.

Nowadays, queueing theory also plays a prominent part in the design and performance analysis

of a wide range of computer systems [Che07].

A queueing system consists of customers arriving at random times at some facility where they

receive service of a specific type and then depart. Queueing models are specified as A/S/c,

28 Chapter 2. Background

according to a notation proposed by D. G. Kendall [Ken53]. The first symbol A reflects the

arrival pattern of customers. The second symbol S represents the service time needed for a

customer, and the ‘c’ refers to the number of servers. To fully describe a queueing system, we

also need to define how the server capacity is assigned to the customers in the system. The

most natural discipline is the first come first serve (FCFS), where the customers are served in

order of arrivals. Another important type of queueing discipline arising in performance analysis

of computer and telecommunication systems is so-called the processor-sharing (PS) discipline,

whereby all customers are served in parallel [Che07, HP92]. In this dissertation, we use both

disciplines to model systems of interest.

2.6.1 Important Performance Measures

Queueing models assist the design process by predicting and managing system performance.

For example, a queueing model might be employed to evaluate the cost and benefit of adding

an additional server to a system. The models facilitate us to calculate system performance

measures both from the perspective of the system, e.g. overall resource utilisation, or from the

perspective of individual customers, e.g. response time. Important operating characteristics of

a queueing system include [HP92]:

• λ: the average arrival rate of customers (average number of customers arriving per unit

of time)

• µ: the average service rate (average number of customers that can be served per unit of

time)

• ρ: the utilisation of the system, indicating the load of a queue

• L: the average number of customers in the system

• LQ: the average number of customers waiting in line

• Pn: the probability that there are n customers in the system at a given time

2.6. Queueing Theory 29

2.6.2 Processor-sharing Queueing Models

In the field of performance evaluation of computer and communication systems, the processor-

sharing discipline has been extensively adopted as a convenient paradigm for modelling capac-

ity sharing. PS models were initially developed for the analysis of time-sharing in computer

communication system in the 1960s. Kleinrock [Kle64, Kle67] introduced the simplest and best-

known egalitarian processor-sharing discipline, in which a single server assigns each customer

a fraction 1/n of the server capacity when n > 0 customers are in the system; the total service

rate is then fairly shared among all customers present.

An M/M/1 queue is the simplest non-trivial queue where the requests arrive according to a

Poisson process with rate λ, which is the inter-arrival times are independent, exponentially

distributed random variables with parameter λ. The service time are also assumed to be

independent and exponentially distributed with parameter µ. Similar to M/M/1-FIFO, the

arrival process of an M/M/1-PS queue is a Poisson process with intensity λ and the distribution

of the service demand is also an exponential distribution Exp(µ). Then the number of customers

in the system obeys the same birth-death process as in the M/M/1-FIFO queue [Vir16]. With

n customers in the system, the queue length distribution of the PS queue is the same as for the

ordinary M/M/1-FIFO queue,

πn = (1− ρ)ρn, ρ = λ/µ

Accordingly, the expected number of customers in the system, E[N], and by Little’s Law10, the

expected delay in the system E[T] are,

E[N] =
ρ

1− ρ
, E[T] =

1/µ

1− ρ

10“Little’s law,” in Wikipedia: The Free Encyclopedia; available from https://en.wikipedia.org/wiki/

Little’s_law; retrieved 12 June 2016.

https://en.wikipedia.org/wiki/Little's_law
https://en.wikipedia.org/wiki/Little's_law

30 Chapter 2. Background

The average sojourn time of a customer with service demand x is:

T (x) =
x

C(1− ρ)

where C is the capacity of the server. This means that jobs experience a service rate of

C(1− ρ) [HP92, Vir16].

2.6.3 BCMP Network

Queueing networks are the systems in which individual queues are connected by a routing

network. In the study of queueing networks one typically tries to obtain the equilibrium dis-

tribution of the network11. However, so as to enable computation of performance metrics such

as throughput, utilisation and so on, attempting to solve for the steady state distribution of

all queues joint often proves intractable on account of the state space explosion problem. For

efficient solution, separable approaches that analyse queues in isolation and then combine the

results to obtain a joint distribution are necessary. The leading example of this is the BCMP

theorem which defines a class of queueing networks in which the steady state joint probability

distributions have a product form solution. It is named after the authors of the paper where the

network was first described [BCMP75]: Baskett, Chandy, Muntz and Palacios. The theorem

was described in 1990 as “one of the seminal achievements of queueing theory in the last 20

years” by J.M. Harrison and R.J. Williams in [HW90].

Definition of a BCMP network. A network of m interconnected queues is generally iden-

tified as a BCMP network if each of the queues is one of the following four types:

1. FCFS with class-independent exponentially distributed service time

2. PS queue

3. IS (Infinite Server) queue

11“Queueing theory,” in Wikipedia: The Free Encyclopedia; available from https://en.wikipedia.org/

wiki/Queueing_theory; retrieved 12 June 2016.

https://en.wikipedia.org/wiki/Queueing_theory
https://en.wikipedia.org/wiki/Queueing_theory

2.6. Queueing Theory 31

4. LCFS (Last Come First Serve) with pre-emptive resume

In the final three cases, the service time distribution must have a rational Laplace trans-

form [HP92]. That is,

L(s) =
N(s)

D(s)

where N(s) and D(s) are polynomials in s. Also, it must meet the following conditions:

• External arrivals to node i (if any) follow a Poisson process.

• A customer completing service at queue i will either move to some new queue j with

(fixed) probability pij or leave the system with probability 1−
∑M

j=1 pij, which is non-zero

for some subset of the queues12.

Also it is assumed that the routing of jobs among queues is state-independent. That is, jobs are

routed among the queues according to fixed probabilities (which could be different for different

classes of jobs) and not based on the number of jobs in the queues. Then the steady-state joint

probability distribution πn1n2...nM
is of the form,

πn1n2...nM
=
π1(n1)π2(n2) . . . πM(nM)

K

where πm(nm) is the stationary probability of observing nm jobs in queue m if the queue were

in isolation with a Poisson input process having the same rate as the throughput for queue m,

and K is a normalisation constant [HP92]. In the case of an open network, K is always 1. For

a closed network, K is determined by the constraint that the state probabilities sum to 1,

K =
∑

all states

π1(n1)π2(n2) . . . πM(nM)

12“BCMP network,” in Wikipedia: The Free Encyclopedia; available from https://en.wikipedia.org/wiki/

BCMP_network; retrieved 21 June 2016.

https://en.wikipedia.org/wiki/BCMP_network
https://en.wikipedia.org/wiki/BCMP_network

32 Chapter 2. Background

Figure 2.5: An example of Performance Tree query: “what is the 95th percentile of the passage time
density of the passage defined by the set of start states identified by label ‘start’ and the set of target
states identified by label ‘target’?

2.7 Performance Trees

Finding a way to represent complex performance queries on models of systems in a way that

is both accessible and expressive is a major challenge in performance analysis [SBK06]. This

section describes an intuitive way to address this challenge via the graphical Performance Trees

(PTs) formalism. PTs are designed to be accessible by providing intuitive query specification,

expressive by being able to reason about a broad range of concepts, extensible by supporting

additional user-defined concepts, and versatile through their applicability to multiple modelling

formalisms [KDS09]. Whereas PT queries can also be expressed in textual form [SBK06], the

formalism was primarily designed as a graphical specification technique and we focus on this

graphical interface to help performance management.

A PT query consists of a set of nodes that are connected via arcs to form a hierarchical tree

structure, as shown in Figure 2.5. Nodes in a PT can be of two kinds: operation or value

nodes. Operation nodes represent performance concepts and behave like a function, taking

one or more child nodes as arguments and returning a result. Child nodes can return a value

of an appropriate type or value nodes, which can represent other operations such as states,

functions on states, actions, numerical values, numerical ranges or Boolean values. PT queries

2.7. Performance Trees 33

can be feasibly constructed from basic concepts by linking nodes together into query trees. Arcs

connect nodes together and are annotated with labels, which represent roles that child nodes

have for their parent nodes. The root node of a PT query represents the overall result of the

query. The type of the result is determined by the output of the root’s child node while PTs are

evaluated from the bottom-up [KDS09, SBK06]. For example, the bottom right of Figure 2.5

computes the probability density function (PDF) of a response time from a set of start states

to a set of target states. Then the percentile node extracts the desired percentile i.e. 95th with

the response time PDF to yield the 95th percentile of the response time.

PTs have several advantages over current methods for performance query specifications:

Expressiveness: They are represent both performance requirements (that is, Boolean SLO

satisfaction) and performance measures in a single query [KDS09]. PTs can represent a broad

range of performance-related concepts and operations in their queries, such as availability,

reliability and response time/throughput of key services.

Versatility: Different modelling formalisms represent reason about system states and actions

differently. PTs feature an abstract state specification mechanism to ensure its versatility.

This supports the reasoning about system states in performance queries through state labels.

A state label is a user-defined string that identifies sets of system states through a set of

associated constraints on the underlying system that are suitable to the modelling formalism

applied. [KDS09].

Accessibility: A certain amount of statistical and engineering background is necessary for the

understanding and use of PTs; however, such a background is normally characteristic of the

target audience of system designers and engineers. PTs further ensure ease of use through their

graphical nature allowing for convenient visual composition of performance queries [SBK06].

34 Chapter 2. Background

2.8 Related Research

2.8.1 Cloud Benchmarking Systems

The first part of this dissertation introduces a Performance Tree-based monitoring platform for

clouds. While the use of cloud services for either web applications or data analysis has been

widely recognised and studied, we have recently seen an explosion in the number of systems de-

veloped for benchmarking cloud-based applications and services. Qing et al. [ZCW+13] develop

a benchmarking tool, named COSBench, for cloud object storage to help evaluate and compare

different object storage systems. The authors show how hardware profiling data can be used

to identify performance bottlenecks. Our platform shares the same goal of facilitating system

tuning and optimisation via comprehensive hardware and application profiling. By contrast, we

focus on providing users an intuitive way of building various performance queries that source

from both on-line and historical profiling data, and utilise the performance evaluation result for

automatic resource control. YCSB (Yahoo! Cloud Serving Benchmark) [CST+10] is designed

with the purpose of facilitating performance comparisons of the new generation of cloud data

serving systems, e.g. Bigtable [CDG+08], PNUTS [CRS+08], Cassandra13, HBase14, Microsoft

Azure15, and many others. One contribution of this benchmark system is an extensible work-

load generator, which can load datasets and execute workloads across a variety of data serving

systems. Similar to YCSB, we use a series of bash scripts to facilitate the execution of launching

different benchmarks, generating workloads, collecting monitoring data etc. LIMBO [KHK+14]

introduces a toolkit for emulating highly variable and dynamic workload scenarios. Kashi et

al. [VN10] focus on another important dynamic factor in cloud environments – hardware fail-

ure. The authors characterise server repair/failure rates in order to understand the hardware

reliability for massive cloud computing infrastructure. They find that hard disks are the most

replaced component, not just because they are the most numerous components, but as they are

one of the least reliable ones. Carsten et al. [BKKL09] discuss some initial ideas of how a new

benchmark system should look like that fits better to the characteristics of cloud computing

13The Apache Cassandra Project. http://cassandra.apache.org/
14The Apache Hbase. https://hbase.apache.org/
15Microsoft Azure. https://azure.microsoft.com/

http://cassandra.apache.org/
https://hbase.apache.org/
https://azure.microsoft.com/

2.8. Related Research 35

The authors argue that a benchmark for the cloud should have additional ways for measuring

complex architectures and systems in which resources are not constantly utilised. We seek

in the benchmark that we develop to meet these requirements. All the components of our

platform communicate via a publish-subscribe model, which makes it effortless to scale and

to further extend. Also, our system calls the corresponding cloud APIs, either CloudStack or

Amazon EC2, and the new scaled instance will be registered directly in the registry centre of

our platform for future performance monitoring and evaluation, which eliminates the complex-

ity of different application architectures while providing a centralised resource control even for

multi-cloud scenarios.

2.8.2 Performance Modelling of Web Applications in Virtualised

Environments

The second part of this dissertation is about understanding, modelling and improving the

performance of web application in multicore virtualised environments. We are going to cover

these three aspects in the following related work.

Multicore system benchmarking. Veal and Foong [VF07] argue that the key to ensur-

ing that performance scales with cores is to ensure that system software and hardware are

designed to fully exploit the parallelism that is inherent in independent network flows. The

authors perform a comprehensive performance study on commercial web servers and identify

that distributing the processor affinity of NICs to different cores can improve the performance

of web applications on multicore systems. Harji et al. [HBB12] examine how web application

architectures and implementations affect application performance when trying to obtain high

throughput on multicore servers. Their experiments reveal that “the implementation and tun-

ing of web servers are perhaps more important than the server architecture”. They find that

the key factors affecting the performance of this architecture are: memory footprint, usage of

blocking or non-blocking system calls, controlling contention for shared resources (i.e. locks),

preventing the use of arbitrary processor affinities, and supporting a large number of simulta-

neous connections. While we share the same idea of improving the performance of a multicore

36 Chapter 2. Background

system, we further incorporate these features into an analytical model to guide the system

reconfiguration. Peternier et al. [PBYC13] present a new profiler for characterising the paral-

lelism level within applications. It generates traces based on kernel scheduler events related to

thread state changes, profiles the execution of parallel multi-threaded benchmarks on multicore

systems and uses the collected profile to predict the wall time execution of the benchmarks for

a target number of cores. Hashemian et al. [HKAC13] characterise the performance of dynamic

and static network intensive Web applications on a system with two quad-core processors. The

authors show that achieving efficient scaling behaviour entails application specific configura-

tions to achieve high utilisation on multiple cores. Also, the authors observe the single CPU

bottleneck caused by the default configuration of the NIC affinity. We observe this bottleneck in

a virtualised setting in our work and solve it by distributing the NIC interrupts to all available

cores to improve the overall CPU utilisation and network throughput.

Virtual machine performance study. Akoush et al. [ASR+10] study the behaviour of live

VM migration using the Xen virtualisation platform. The authors show that the Xen migration

architecture does not scale up well with high speed links and implement several optimisations

to improve migration throughput. They also introduce two migration simulation models based

on different migration processes and memory page dirty rate to predict migration time. Pu

et al. [PLM+13] present a series of experiments related to measuring the performance of co-

located web applications in a virtualised environment. Cherkasova and Gardner [CG05] present

a lightweight monitoring system for identifying the CPU overhead in the Xen control domain

when processing I/O-intensive workloads. The authors focus on the CPU overhead caused by a

particular VM domain, while we focus on the aggregated overhead caused by the hypervisor and

all guest VMs. Kousiouris et al. [KCV11] study a wide range of parameters that could affect the

performance of an application when running on consolidated virtualised infrastructures, such as

workload types, the effect of scheduling, and different deployment scenarios. The authors use

a genetically optimised artificial neural network to quantify and predict the performance of the

application for a given configuration and enable the cloud providers to optimise the management

of the physical resources according to the prediction result. Chiang et al. [CHHW14] present

Matrix, a performance prediction and resource management system. Matrix also uses machine

2.8. Related Research 37

learning techniques and an approximation algorithm to build performance models. It needs a

workload classifier to identify new workloads that are running in the guest VMs while our model

can adapt to the new workloads by an automatic on-line parametrisation mechanism. Chow

et al. [CMF+14] show how to automatically construct a model of request execution from pre-

existing logs. This can be achieved by generating a significant number of potential hypotheses

about program behaviour and rejecting hypotheses contradicted by the empirical observations.

The model for the application behaviour includes the causal relationships between different

components and can be constructed for analysing the performance of concurrent distributed

systems. This approach points out a new direction to deal with performance analysis in large-

scale dynamic environments.

Multicore modelling. Most queueing network models represent k-core processors as M/M/k

queues. M/M/k models have also been used when modelling virtualised applications running

on multicore architectures. Cerotti et al. [CGPS13] benchmark and model the performance

of virtualised applications on a multicore environment using an M/M/k queue. The model

is able to obtain good estimates for the mean end-to-end response time for CPU intensive

workloads. In our model, we provide a mutli-class queueing network model for abstracting not

only CPU/network-intensive workloads but also the imbalanced CPU usage when processing

I/O requests. Brosig et al. [BGHK13] predict the overhead of virtualised applications using a

multi-server queueing model, which is similar to an M/M/k queue with additional scheduling

mechanisms for overlapping resource usage. The authors assume that the relevant model param-

eters, such as the number of VMs, the VM-specific CPU demands and the VM-specific overhead

in terms of induced CPU demand on Dom0 are known, and use extra tools (e.g. ShareGuard

in [GCGV06]) to obtain these overhead parameters. They report accurate prediction of server

utilisation; however, significant errors occur for response time calculations for multiple guest

VMs. Bardhan et al. [BM13] develop an approximate two-level single-class queueing network

model to predict the execution time of applications on multicore systems. The model captures

the memory contention caused by multiple cores and incorporates it into an application-level

model. The authors also use hardware counters provided by the Intel processor to param-

eterise the memory contention model; however, such counters are usually difficult to obtain

38 Chapter 2. Background

when the servers are virtualised on a hypervisor. Deng et al. [DP11] tackle the performance

optimisation problem using queueing analysis. The multicore pipline processes are analysed in

a tandem queueing model16. They conduct simulations to review the best models derived from

the optimal average time in the model.

2.8.3 Performance Interference Modelling in Multi-Tenant Clouds

The third part of this dissertation is about diagnosing and managing performance interference

in multi-tenant Clouds. We discuss the related work in the following.

Hypervisor overhead benchmarking is an essential part of performance study and anal-

ysis. Cherkasova et al. [CG05] present a lightweight monitoring framework for measuring the

CPU usage of different VMs including the CPU overhead in the control domain caused by

I/O processing. The performance study attempts to quantify and analyse this overhead for

I/O-intensive workloads. Also, the authors analyse the impact of different Xen schedulers

on application performance and discuss challenges in estimating application resource require-

ments in virtualised environments. Shea et al. [SWWL14] study the performance degradation

and variation for TCP and UDP traffic, then provide a hypervisor reconfiguration solution to

enhance the overall performance. Pu et al. [PLM+13] present experimental research on perfor-

mance interference on CPU and network intensive workloads on the Xen hypervisor and reach

the conclusion that identifying the impact of exchanged memory pages is essential to the in-

depth understanding of interference costs in Dom0. We also find this is critical to maintain the

performance of I/O-intensive workloads in our benchmark experiments. Barker et al. [BS10]

conduct a series of empirical studies to evaluate the efficacy of cloud platforms for running

latency-sensitive multimedia applications. The study focuses on whether dynamically varying

background load from such applications can interfere with the performance of latency-sensitive

tasks. The EC2 experiments reveal that the CPU and disk jitter and the throughput seen by a

latency-sensitive application can indeed degrade due to background load from other VMs. Their

hypervisor experiments also indicate similar fluctuation when sharing the CPU and the authors

16A finite chain or a loop of queues where each customer visit each queue in order

2.8. Related Research 39

observe fair throughput when CPU allocation is pinned by the hypervisor. Their experiments

also reveal significant disk interference, resulting in up to 75% degradation under sustained

background load. We have the same configuration for conducting our benchmark experiments,

and our work makes similar findings but then uses those to guide our analytical model. Due

to the combination effect of hypervisor and other VMs, acquiring reliable performance mea-

surements of VMs becomes harder than on a physical server. Shadow Kernels [CCS+15] is

proposed to avoid this problem by forgoing hypervisor fidelity and using the hypervisor to

provide a performance measurement technique that cannot be used on bare metal.

Performance interference modelling. Most work on performance interference modelling is

based on machine learning, heuristic methods, and queueing models. Nathuji et al. [NKG10]

use online feedback to build a multiple-input multiple-output model that captures performance

interference interaction. The implementation and the evaluation of this work only focuses on

CPU-bound applications while we consider different types of workloads. Caglar et al. [CSG13]

propose a machine learning-based technique to classify the performance of VMs based on his-

torical mean CPU and memory usage, and extract the patterns that provide the lowest per-

formance interference while still allowing resource overbooking. The dataset for classification

and pattern training sources from the Google cluster trace log, and an artificial neural network

model is proposed to capture the performance interference among VMs in terms of CPU and

memory capacity. Kang et al. [KKEY12] propose a consolidation mechanism by exploring the

performance impact of contention in the last-level shared cache (LLC). In our experiment, we

try to reduce this impact by pinning virtual CPUs (vCPUs) to physical CPUs to let vCPUs

run on specific NUMA nodes. Casale et al. [CKK11] propose a simple linear prediction model

to predict the throughput and response time degradation of mixed read/write disk requests

due to storage device contention in consolidated virtualised environments. Lim et al. [LHK+12]

introduce a dilation-factor based model to derive the completion time of jobs in shared service

systems. This is similar to the idea of our virtualisation slowdown factor in Chapter 5. The

main differences between their work and our work is that our model not only considers the con-

tention of systems with multiple resources, but also takes the hypervisor scheduling effects into

account. Govindan et al. [GLKS11] propose a technique for predicting performance interfer-

40 Chapter 2. Background

ence due to a shared processor cache. The technique includes using a synthetic cache loader to

profile an application’s cache usage, creating an application clone, building degradation tables

and predicting a candidate placement by looking up the performance degradation tables. By

contrast, we aim to propose a lightweight method to identify, predict and minimise performance

interference without comprehensive micro-benchmarks or online training to keep the approach

simple and feasible.

Scheduling and consolidation. To avoid excessive interference between VMs, scheduling

and consolidation decisions are critical. Urgaonkar et al. [UWH+15] propose a dynamic ser-

vice migration and workload scheduling control policy to optimise the network operational cost

while providing rigorous performance guarantees based on the analysis of a Markov Decision

Process (MDP). The authors develop a series of novel techniques solving a class of constrained

MDPs that possess a decoupling property, and design an online control algorithm to achieve

cost-optimal placement. The method does not require any statistical knowledge of the system

parameters. Roytman et al. [RKG+13] propose a polynomial time algorithm to yield a solution

determining the best suited VM consolidation within performance constraints. However, they

propose is an offline-based approach, while we seek to provide on-line performance degrada-

tion prediction and resource consolidation in an online manner. Chiang et al. [CH11] present

the TRACON system, a task and resource allocation control framework that mitigates the

interference effects from concurrent data-intensive applications and improves the application

performance. Kim et al. [KEY13] present a VM consolidation method based on the idea that

a highly interference-sensitive VM should be co-located with less interference-sensitive ones.

Ajay et al. [GSA+11] present Pesto, an automated and on-line storage management system for

virtualised data centres. Similar to our work which uses the model results to derive scheduling

mechanism, their experimental evaluation on a diverse set of storage devices demonstrates that

Pesto’s online device model is accurate enough to guide storage planning and management

decisions. By contrast, our VM placement decision is proposed for consolidating any type of

applications in Clouds. Farley et al. [FJV+12] show how cloud customers can deliberately guide

the placement of their workloads to improve performance by applying gaming strategies. To

eliminate performance interference in shared data centres, Angel et al. [ABK+14] present Pul-

2.8. Related Research 41

sar, a system that enables data centre operators to provide guaranteed end-to-end performance

isolation. Pulsar proposes virtual data centres (VDCs) as an abstraction which encapsulates

the performance guarantees given to tenants. The design of Pulsar consists of a centralised

controller with full visibility of the data centre topology and tenants’ VDC specifications and a

rate enforcer inside the hypervisor at each compute server. We share a similar design for iden-

tifying the guests’ performance. In our CloudScope system, we use a virtualisation slowdown

factor to indicate performance interference. However, instead of placing a rate enforcer at the

hypervisor, our Dom0 controller automatically configures the hypervisor on-the-fly to provide

performance guarantees to the guest VMs.

Chapter 3

A Performance Tree-based Monitoring

Platform for Clouds

3.1 Introduction

This chapter presents a performance tree-based monitoring and resource control framework. It

begins with an overview of the system design requirements then discusses the system archi-

tecture and different components. We next present some lessons we learned for reproducible

and reliable application measurements in virtualised environments. Finally, we show how our

platform captures the SLO violations of applications running in clouds and automatically scales

out the virtual resource.

Cloud-based software systems are expected to deliver reliable performance under dynamic work-

load while efficiently managing resources. Conventional monitoring frameworks provide limited

support for flexible and intuitive performance queries. We develop a prototype monitoring and

control platform for clouds that is a better fit to the characteristics of cloud computing (e.g.

extensible, user-defined, scalable). Service Level Objectives (SLOs) are expressed graphically

as Performance Trees, while violated SLOs trigger mitigating control actions.

Active performance management is necessary to meet the challenge of maintaining QoS in cloud

42

3.2. The Design of a Performance Tree-based Monitoring Platform 43

environments. In this context, we present a Performance tree-based monitoring and automatic

resource control framework for clouds which makes several contributions:

• We outline system requirements for an extensible modular system which allows for mon-

itoring, performance evaluation and automatic scaling up/down control of cloud-based

Java applications.

• We introduce a series of methodologies to produce reliable measurements.

• We present a front-end which allows for the graphical specification of SLOs using PTs.

SLOs may be specified by both live and historical data, and may be sourced from multiple

applications running on multiple clouds.

• We demonstrate how our monitoring and evaluation feedback loop system ensures the

SLOs of a web application are achieved by auto-scaling.

3.2 The Design of a Performance Tree-based Monitoring

Platform

3.2.1 System Requirements

In this section, we present an overview of our system by discussing the requirements for an

effective cloud-based monitoring platform and the techniques used to achieve them.

In-depth performance profiling. We require the ability to extract generic metrics on a per-

application basis, such as CPU utilisation, memory usage, etc., as well as custom application-

specific metrics [ZCW+13]. This functionality is best delivered through a well-defined API.

Accessible performance query specification & online/offline evaluation. An impor-

tant feature which distinguishes our platform from other available tools is the fact we use

Performance Trees (PTs) [SBK06, DKS09] for the graphical intuitive, and flexible definition of

44 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

Figure 3.1: An example of Performance Tree-based SLO evaluation : “With respect to Apache
OFBizs 146.169.47.121 instance, is it true that 95% of observed response times are smaller than 20ms
and the utilisation of the machine is smaller than 70%”?

performance queries and evaluation, while most of the readily available monitoring tools pro-

vide users with a textual query language [GBK14]. We also incorporate support for historical

trend analysis by retaining past performance data. A performance query which is expressed

in a textual form as follow can be described as a form of hierarchical tree structure, as shown

in Figure 3.1. Figure 3.1 shows a fully constructed PT query in GUI, which demonstrates an

on-line SLO evaluation on both response time and utilisation of the corresponding server.

Extensible & Scalable. First, since multiple applications and multi-cloud environments

may impose different choices of programming language and monitoring tool, a light-weighted

platform independent data format (i.e. JSON) is used for monitoring data exchange. Second,

all components of our system communicate using a publish-subscribe model, which allows for

easy scaling and extensibility. Third, a NoSQL database is used due to ability to support large

data volumes found in real-world use cases [BBM+13].

3.2.2 System Architecture

Figure 3.2 illustrates the architecture of our system. To provide users with a complete frame-

work that is able to monitor application performance, design performance performance models,

specify performance queries in the form of PTs, evaluate these and provide resource scaling

3.2. The Design of a Performance Tree-based Monitoring Platform 45

Client
(Httperf)

Application
(Petstore)

VM
(Xen, Virtualbox)

Data
Collector (JMS)

Data
Extractor (JMX) DB

Performance
Evaluation (PT)

Performance
Model

Automatic
Control

Application
Data

Resource
Data

Real-time
Data

Historical
Data

Predictive
Results

Provisioning
Decisions

Figure 3.2: System architecture

based on the evaluation result, we have developed a performance analysis platform that sup-

ports this functionality in an integrated manner. The system is realised as a Java application

capable of monitoring and evaluating the performance of a target cloud application, with con-

current scaling of the cloud system so as to meet user-specified SLOs.

All components of our platform communicate using a publish-subscribe fashion. The use of

event streams can help make the system more scalable, more reliable, and more maintainable.

People now are excited about these ideas because they point to a future of simpler code,

better robustness, low latency and more flexible for doing interesting things with data [Kle16].

The data collector (Java Message Service) extracts application metrics, e.g. response time,

throughput and job completion time. This is combined with the output of the data extractor

(Java Management Extension), which provides hardware-related metrics, i.e. utilisation of each

core of the VM, memory bandwidth, etc. The data collector is responsible for aggregating all

the performance data published by applications running on monitored VMs. It can either feed

this data directly into the performance evaluator or store it a database for future analysis.

The performance evaluator evaluates metrics starting from the leaves of the PTs and ending

with the root, thus producing performance indices which are compared to target measurements

for resource management. The automatic controller (autoscale) then optimises the resource

configuration to meet the performance targets [CHO+14].

46 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

3.3 The Myth of Monitoring in Clouds

Performance analysis and resource management begin with the monitoring of system behaviour.

There is a rich history of methods and techniques that understand, profile and troubleshoot

system performance, both in practice and in the research literature as mentioned in Section 2.8.

Yet, most of these prior techniques do not deal sufficiently with the complexities that arise from

virtualised cloud infrastructures. The complexity comes from the additional virtualisation layer

and performance delay can be caused by different components, e.g. virtual blocks, hypervisor,

or the communication between these components. In this section, we introduce a series of

performance analysis methodologies for measuring and uncovering performance insights into

complex virtualised systems. It is also important to understand the sensitivity of the system by

tuning different parameters. This gives a good understanding of the workload when comparing

different results or creating experiments that are easily reproducible.

3.3.1 Measuring without Virtualisation

We start with measuring I/O performance on a bare metal as an example. Modern storage

systems are a complex mixture of potentially heterogeneous storage devices, networking hard-

ware and layers of cache. Their performance is driven by the underlying service capacity and

the characteristic of the workload. Examples of important workload characteristics are:

• Workload intensity – Changes in workload intensity, such as in the number of active

users and arrival rates of concurrent requests, can significantly influence the behaviour

of systems. Response times can grow exponentially with increasing workload intensity.

The workload intensity of many systems also show periodic patterns over the day and

week [Roh15].

• Access pattern – The total throughput that an application can achieve depends on the

access pattern the application generates on the disk subsystem. For example, a mail

server might have 67% random reads and 33% random writes with an 8 KB block size;

3.3. The Myth of Monitoring in Clouds 47

while a video streaming server might have 100% sequential reads with large block size

greater than 64 KB [HBvR+13].

Examples of factors which influence servers capacity are:

• Block sizes – A data transfer is performed in blocks when a disk is accessed. The size

of the transferred data blocks depends on the features of the operating system and the

application [WID+14]. To have a better understanding of how the disks behave, we issue

requests with different block sizes, varying from 512 bytes to 4 MB in our benchmarking

experiments. This provides a good representation of the performance delivered by the

storage infrastructure.

• Different LBAs (logical block addressing) – In the ZCAV (Zoned Constant Angular Veloc-

ity) scheme, a disk is divided into a series of regions. As a result, disks perform differently

in different regions. It is necessary to read and write to numerous different zones in order

to obtain a reliable model of performance for the disk [LDH+09].

• IQ queue depth – To understand the effect of I/O queue depth, we show a screen-shot

of iostat (see Figure 3.3) when running the fio benchmark (a flexible I/O benchmark1)

in an 8-core PM as an example. Fio is capable of generating I/O workloads based on

parameters describing, such as read/write mix, queue depth, request size, and sequen-

tially/randomly [WID+14]. The screen-shot displays the information about CPU usage

and I/O statistics about all the devices in the system. We explain the detail of each

column as follows:

– “avgqu-sz”– average queue size is the average I/O waiting time in the queue.

– “r await” and “w await”– host read and write time (in milliseconds) are the times

that read and write I/Os spend in the I/O queue.

– “svctm”– service time (in milliseconds) is the time it takes to send the I/O request

to the storage and get a response back – that is, the time the storage subsystem

requires to handle the I/O.

1fio. http://freecode.com/projects/fio

http://freecode.com/projects/fio

48 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

R
ea

ds

W
rit

es

Q
ue

ue
in

g

H
os

t w
ai

t

S
to

ra
ge

 w
ai

t

U
til

is
at

io
n

Figure 3.3: The screenshot of iostat running fio benchmark tests

We consider a simple example to explain the relationship between these three metrics:

Assume that a storage system manages each I/O in exactly 10 milliseconds and there are

always 10 I/O requests in the queue; then the average wait time for a newly arriving I/O

request will be 10 × 10 = 100 milliseconds . In that case, we can verify by Little’s Law

that storage wait * queue size ≈ host wait. So the actual delay of an I/O request

is the reported average wait time plus the reported service time. Some measurement

systems will report either of the higher, or the lower numbers with respect to the actual

response time. It is necessary to make sure which statistics are used when analysing I/O

performance [CGPS13].

• Local cache control. Some benchmarking tools communicate with storage directly while

others go through the local file system. Additionally, they can be configured to cache

data or not using the O DIRECT flag [RNMV14]. It is important to understand the exact

way the tool is performing I/O.

3.3.2 Measuring with Virtualisation

While the nature of data centre operations has changed, the measurement and management

methodology for VMs has not been adapted adequately [GSA+11]. We found that some of the

existing techniques do not work properly in virtualised environments. This makes performance

management difficult as the input data is critical to make correct decisions, such as resource

3.3. The Myth of Monitoring in Clouds 49

allocation and configuration. A recent Google analysis [KMHK12] presents a prime example

of the effect of this limitation, whereby a significant portion of Google’s production systems

became unpredictable and unresponsive due to misconfiguration of the underlying systems. We

present some of the lessons we learned and how we collect the data in the data extractor

component (see Figure 3.2) to conduct reliable and reproducible monitoring in virtualised

environments. The main areas to pay attention to are:

1. Hypervisor:

• Give Dom0 enough vCPUs – When the PM hosts network or storage I/O-intensive work-

loads, a large portion of the processing will happen in Dom0. It is important that Dom0

has enough vCPUs and these cores are configured to deliver the power the guest VMs

require from them [XBNJ13]. The actual number will depend on your environment: the

size of NUMA nodes, the amount of other guests that plan to run, etc.

• Control C/P states and turbo mode – Processor performance states (P-states) and pro-

cessor operating states (C-states) are the capability of a processor to switch between

different supported operating frequencies and voltages to modulate power consumption2.

For example, a processor in P3 state will run more slowly and use less power than a pro-

cessor running at P1 state, and at higher C-states, more components shut down to save

power [GNS11b]. For rigorous measurements, it is recommended to turn hyper-threading,

C/P states and turbo off to avoid system from behaving differently under different modes.

With hyper-threading turned off, stress on the first level cache lines is also reduced.

• Change all VMs to PV mode to avoid QEMU processes – Xen can also run in HVM mode

as we discussed. Hardware is emulated via a QEMU device model daemon running as

a backend in Dom03 It is recommend to disable the QEMU process (i.e. qemu-dm) while

conducting experiments in a PV mode VM.

• Give Dom0 dedicated memory – It is important to make sure that Dom0 memory is

2CPU performance states (P-states) and CPU operating states (C-states). https://www.ibm.com/support/
knowledgecenter/linuxonibm/liaai.cpufreq/CPUPerformanceStates.htm

3“QEMU,” in Wikipedia: The Free Encyclopedia; available from https://en.wikipedia.org/wiki/QEMU;
retrieved 9 June 2016.

https://www.ibm.com/support/knowledgecenter/linuxonibm/liaai.cpufreq/CPUPerformanceStates.htm
https://www.ibm.com/support/knowledgecenter/linuxonibm/liaai.cpufreq/CPUPerformanceStates.htm
https://en.wikipedia.org/wiki/QEMU

50 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

never ballooned down while starting new guests. Dedicating fixed amount of memory

for Dom0 is favourable for the two reasons: (i) Dom0 calculates various network related

parameters based on the boot time amount of memory [BDF+03] and; (ii) Dom0 needs

memory to store metadata and this allocation is also based on the boot time amount of

memory [BDF+03, MST+05]. Ballooning down Dom0 might affect the calculation, with

bad side effects4.

2. Individual VMs:

• Fine-tune and pin vCPUs to pCPUs – This is helpful to make sure: (i) interrupts are

delivered to the exact cores that the VMs are running [GDM+13] and (ii) the vCPUs

running on NUMA hardware can allocate memory closer to its node [NLY+11]. If vC-

PUs are dynamically swapped between different pCPUs, cache misses are likely to affect

performance detrimentally.

• Give the application VMs enough RAM. The whole performance might degrade because

the guest VM runs out of memory and starts to swap to disk. It is also recommended to

not to give more RAM than the hypervisor is able to physically allocate [RNMV14].

3. Where and how to measure:

• CPU measurements – Xentop is widely used to monitor and record the physical CPU

utilisation of each domain, because a top command in each domain can only get the

domain’s virtual CPU utilisation [CH11, BRX13, GDM+13]. However, within each guest

(including the control domain) it is also recommended to run ‘top’ to keep an eye on

certain fields. For example, when running ‘top’ within a VM, if it reports any number

different than zero on the “st” field (steal time), this means that another VM (or even the

hypervisor) is “stealing” time from that particular domain. In that case, it is necessary

to make sure the VM is running without other VMs or hypervisor stealing its own time

by pinning of VMs to PMs if necessary.

4Xen Project Best Practices. http://wiki.xenproject.org/wiki/Xen_Project_Best_Practices

http://wiki.xenproject.org/wiki/Xen_Project_Best_Practices

3.3. The Myth of Monitoring in Clouds 51

• I/O measurements in bare metal, Dom0 and guests – To produce reliable I/O measure-

ments in virtualised environments it is useful to run benchmarks on: (i) the bare metal

hardware (a typical Linux installation with Xen); (ii) Dom0 and (iii) the ordinary guest

domains. Many people believe that running benchmarks from Dom0 is the same thing as

running benchmarks from bare metal [MLPS10, SIB+14]. This is only partially correct.

In Dom0, every hardware interrupt is, in reality, an event channel notification delivered

by the hypervisor (Xen). This includes both timers and interrupts from devices such as

hard drives completing requests or NICs handling packets. Even though these processes

are fast and low-impact in Xen, there is still some overhead that is noticeable. With the

new kernel (i.e. XenServer 6.5 – Creedence), it is feasible to boot a bare-metal kernel

without the hypervisor for conducting bare metal experiment comparisons to make sure

the I/O requests perform correctly and the performance reach the hardware limit instead

of having bottlenecks in the Dom0 or other components.

4. Network-attached storage:

• The iSCSI5-attached storage array – If one is present, the target configuration that is ne-

gotiated between the host and the storage array should be checked [CWM+14, LDDT12].

Depending on certain parameters, the array might respond differently to different block

sizes or concurrent processes.

• It is required to write into the whole virtual disk first from VMs before the actual exper-

iments, because some of the format, e.g. VHD, are very thin-provisioned. When requests

first arrive at Dom0, tapdisk6 (every virtual disk is backed by a tapdisk process) will

reply with an array of zeros, because it knows there is no actual data allocated on certain

block addresses. When measuring writes, it is also important to measure the time of the

first write and the time for subsequent writes separately. Again, due to thin-provisioning,

writing the first time takes longer than later as VHD metadata needs to be updated as

the virtual disks grow.

5iSCSI, Internet Small Computer Systems Interface. https://en.wikipedia.org/wiki/ISCSI
6Blktap. http://wiki.xenproject.org/wiki/Blktap

https://en.wikipedia.org/wiki/ISCSI
http://wiki.xenproject.org/wiki/Blktap

52 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

User Application

user space

Block Layer

kernel space

Storage Drivers

Network
attached
storage

Figure 3.4: The path of an application issuing requests to disks without virtualisation

3.3.3 An Example of Measuring the Actual I/O Queue Size

There are many discussions on technical blogs about ‘why I/O queue depth matters’ for trou-

bleshooting and measuring storage performance. To understand how the average I/O queue size

can be measured correctly, we first consider a Linux system processing I/O requests without

virtualisation. Figure 3.4 presents fio that issues requests to a SCSI disk. As shown in the

sequence diagram of this process in Figure 3.5 , each request reaches the block layer first and

then the device driver. The number of read and write “ticks”, the amount of time per request

that the device has been occupied to keep the disk busy, are available in the block layers7. The

block layer starts this accounting immediately before shipping the request to the driver and

stops it immediately after the request completed. It contains vertical arrows between the layers

representing requests departing from and arriving at different layers. Figure 3.5 represents this

time in the red and blue horizontal bars. Bars might overlap with each other if more than

one request has been submitted concurrently. The ticks might increase at a greater rate when

requests overlap.

As shown in Figure 3.6, I/O requests start in a virtual machine’s user space application. When

moving through the kernel, however, they are directed to PV storage drivers (e.g. blkfront) in-

stead of an actual SCSI driver. These requests are picked up by the storage backend (tapdisk3)

7https://www.kernel.org/doc/Documentation/block/stat.txt

https://www.kernel.org/doc/Documentation/block/stat.txt

3.3. The Myth of Monitoring in Clouds 53

fio

block layer

device driver

time

time

time

Figure 3.5: The sequence diagram of an application issuing requests to disks

Storage Backend (td3)

user space

Block Layer

kernel space

Storage Drivers

Network
attached
storage

User Application

user space

Block Layer

kernel space

PV Drivers

Domain 0 Virtual Machine

Xen Hypervisor

Figure 3.6: The path of an application issuing requests to disks with virtualisation, compiled using
information sourced from Citrix virtualisation blog8

in Dom0’s user space. They are submitted to Dom0’s kernel via libaio, pass the block layer

and reach the disk drivers for the corresponding storage infrastructure.

Figure 3.7 shows the sequence diagram of processing an I/O request in this case. The technique

described in the following to calculate the average queue size will produce different values

depending on where in the stack it is applied. For example, when issuing the fio benchmark

(e.g. random reading 4 KB requests using libaio and with io depth set to 1), we run iostat

8“Average queue size and storage I/O metrics,” in XenServer: Open Source Virtualisation; avail-
able from http://xenserver.org/discuss-virtualization/virtualization-blog/entry/avgqusz.html;
retrieved 7 June 2016.

http://xenserver.org/discuss-virtualization/virtualization-blog/entry/avgqusz.html

54 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

fio

block layer
(guest)

PV driver
(guest)

time

time

time

tapdisk3
(Dom0) time

time

time

block layer
(Dom0)

device driver
(Dom0)

Figure 3.7: The sequence diagram of an application issuing requests to disks with virtualisation,
compiled using information sourced from Citrix virtualisation blog9

to profile the disk device workload. We show how to obtain the targeted performance metrics

within the sequence in Figure 3.7 as follows:

• Within the guest, the value of interest reported in the column “avgqu-sz” indicates the

queue size of the guest’s block layer (guest) as shown in Figure 3.7.

• The next layer of the storage subsystem that accounts for utilisation is tapdisk3. The

average queue size can be obtained by running /opt/xensource/debug/xsiostat in

Dom0. This gives an idea of the time that passed between a request being received in the

guest’s block layer (guest) and in Dom0’s backend system (tapdisk3).

• Further, it is possible to run iostat in Dom0 and find out what is the perceived queue size

at the last layer before the request is issued to the device driver as shown in Figure 3.7

from block layer (Dom0) to device driver (Dom0).

Next, We apply these monitoring techniques to our Performance Tree-based monitoring plat-

form to obtain reliable performance measurements. We will show how our monitoring and

evaluation system guarantees the SLOs of a cloud-based application by auto-scaling of resource.

9“Citrix virtualisation blog,” in XenServer: Open Source Virtualisation; available from http://xenserver.

org/discuss-virtualization/virtualization-blog/blogger/listings/franciozzy.html; retrieved 7
June 2016.

http://xenserver.org/discuss-virtualization/virtualization-blog/blogger/listings/franciozzy.html
http://xenserver.org/discuss-virtualization/virtualization-blog/blogger/listings/franciozzy.html

3.4. GUI and Demo in Action 55

3.4 GUI and Demo in Action

Oracle Java Petstore10, a typical HTTP-based web application, is used to expose a server to

high HTTP request volumes which cause intensive CPU activity related to the processing of

input and output packets. The hypervisor (XenServer 6.2) is running on an a Dell PowerEdge

C6220 compute server with two Intel Xeon E5-2690 8-core 2.9 GHz processors and two 1 TB

hard drives. The network between each server is 10 Gbps. Each server virtual machine is

assigned with on vCPU with 1 to 4 cores, 4 GB memory and one vNIC. Httperf is configured

on the other servers to send a fixed number of HTTP requests rate incrementally for each

Petstore instance [CHO+14].

The user interface contains a dashboard where the user can manage up to 8 different PTs as

shown in Figure 3.8. The graphical nature allows easy comprehension and manipulation by

the users, and – thanks to their extensibility – new nodes can be added. The user can design

their own PTs, either from scratch or by loading in a saved tree from a file. The user can

specify the performance metrics, the application, and the server they want to evaluate. Once

the tree has been designed and the evaluation has been started, the editor receives data from

the data collector or the database, which it uses to update the square panel in the GUI. If

the performance requirement is violated, this is represented by a red colour applied to the

evaluation box; otherwise, it is green.

Figure 3.8 illustrates two cases: (a) the monitoring and control of a response-time-related

SLO with autoscaling enabled, (b) the monitoring of a memory-consumption-related SLO with

autoscaling disabled. In the first evaluation, once the PT detects the SLO is violated, the

automatic controller module migrates the server to a larger instance. In this case, the server

is migrated from a 1 core to a 2 core instance, so the response time decreases and the SLOs

is not violated, represented as a ‘green’ PT block. The migration time is usually around 8 to

10 secs inside of the same physical machine. In the second case, the ‘red’ block illustrates the

memory-consumption-related SLO is violated since autoscaling is not enabled.

10Java Petstore. http://www.oracle.com/technetwork/java/index-136650.html

http://www.oracle.com/technetwork/java/index-136650.html

56 Chapter 3. A Performance Tree-based Monitoring Platform for Clouds

Figure 3.8: A Performance Tree evaluation in progress. Once users create a performance tree and
clicks ’Start Evaluation’, users receive instant feedback of performance criteria meets or not showing
in green or red. Violated SLOs trigger mitigating resource control actions.

3.5 Summary

The current trend of moving business applications into the cloud has exposed the need of moni-

toring and resource control systems to allow administrators better understand and troubleshoot

their applications. We have devised a modular architecture with feedback loop which allows

for comprehensive monitoring of cloud-based applications and is readily available for expan-

sion. Another important feature we were able to incorporate into the architecture is the use of

Performance Trees as means for defining arbitrary complex performance queries. In this way,

we combine a thorough monitoring methodology for virtualised cloud environments. Lastly, we

demonstrate that the platform can be successfully used to evaluate SLOs on-the-fly and react

to the SLO violations via automatic scaling out the virtual resource.

Chapter 4

Predicting the Performance of

Applications in Multicore Virtualised

Environments

4.1 Introduction

This chapter presents a modelling technique for predicting the scalability of CPU/network

intensive applications running in multicore virtualised environments. Key to our approach is

providing a fine-grained model which incorporates the idiosyncrasies of the operating system

and the imbalance between multiple CPU cores.

Applications running in cloud environments exhibit a high degree of diversity; hence, strate-

gies for allocating resources to different applications and for virtual resource consolidation

increasingly depend on understanding the relationship between the required performance of

applications and system resources [SSM+11]. To increase resource efficiency and lower operat-

ing costs, cloud providers resort to consolidating resources, i.e. packing multiple applications

into one physical machine [CSA+14]. Understanding the performance of these applications is

important for cloud providers to maximise resource utilisation and augment system throughput

57

58Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

while maintaining individual application performance targets. Performance is also important

to end users, because they are keen to know their applications are provisioned with sufficient

resources to cope with varying workloads. Instead of increasing or decreasing the same in-

stances one by one [IDC09], a combination of multiple instances might be more efficient to deal

with the burstiness of dynamic workloads [WSL12, SST12, NBKR13]. To handle the resource

scaling problems, a model that can appropriately express, analyse, and predict the performance

of applications running on multicore VM instances is necessary.

There are at least three observations we can make in light of present research. First, not all

workloads/systems benefit from multicore CPUs [FAK+12, TCGK12] as they do not scale lin-

early with increasing hardware. Applications might achieve different efficiency based on their

concurrency level, intensity of resource demands, and performance level objectives [EBA+11].

Second, the effects of sharing resources on system performance are inevitable but not well-

understood. The increased overhead and dynamics caused by the complex interactions be-

tween the applications, workloads and virtualisation layer introduce new challenges in system

management [HvQHK11]. Third, modelling of low-level resources, such as CPU cores, are not

generally captured by models [GNS11a, KTD12] or models are not comprehensive enough to

support dynamic resource allocation and consolidation [RBG12, TT13].

Many benchmarking studies suggest that each individual core performs differently across the

cores of one multiprocessor [JJ09, PJD04, HKAC13]. Veal et al. [VF07] and Hashemian et

al. [HKAC13] observe a CPU single core bottleneck and suggest methods to distribute the

bottleneck to achieve better performance. However, most modelling work treats each core of a

multicore processor equally by using M/M/k queues [CGPS13, BGHK13], where k represents

the number of cores. To the best of our knowledge, the problem of modelling the imbalance

between cores and the performance of applications in multicore virtualised environment has

not been adequately addressed.

This chapter presents a simple performance model that captures the virtual software interrupt

interference in network-intensive web applications on multicore virtualised platforms. We first

conduct some benchmark experiments of a web application running across multiple cores, and

4.2. Benchmarking 59

then introduce a multi-class queueing model with closed form solution to characterise aspects

of the observed performance. Target metrics include utilisation, average response time and

throughput for a series of workloads. The key idea behind the model is to characterise the im-

balance of the utilisation across all available cores, model the processing of software interrupts,

and correctly identify the system bottleneck. We validate the model against direct measure-

ments of response time, throughput and utilisation based on a real system. We take steps

to alleviate the bottleneck, which turns out to involve at a practical level the deployment of

multiple virtual NICs. Analysis of the model suggests a straightforward way to mitigate the

observed bottleneck, which can be practically realised by the deployment of multiple virtual

NICs within our VM. Next we make blind predictions to forecast performance with multiple

virtual NICs. Thereafter, we make blind prediction to forecast the performance of the system

with multiple virtual NICs for improved performance.

The rest of the chapter is organised as follows. Section 4.2 presents our testbed setup and

performance benchmarking results. Section 4.3 introduces our performance model and validates

it. Section 4.4 extends our model for new hardware configurations and Section 4.5 concludes.

4.2 Benchmarking

In this section, we conduct an initial benchmarking experiment to study the impact of multiple

cores and software interrupt processing on a common HTTP-based web application. Requests

do not involve database access and hence, no disk I/O is required during a response. Our

application is the Oracle Java Petstore 2.01 which uses GlassFish2 as the HTTP server. We

run the Petstore application on VirtualBox and Xen hypervisor, respectively. The Oracle Java

Petstore 2.0 workload is used to expose the VM to high HTTP request volumes which cause

intensive CPU activity related to processing of input and output network packets as well as

HTTP requests. Autobench3 was deployed to generate the HTTP client workload.

1Java Petstore. http://www.oracle.com/technetwork/java/index-136650.html
2GlassFish. https://glassfish.java.net/
3Autobench. http://www.xenoclast.org/autobench/

http://www.oracle.com/technetwork/java/index-136650.html
https://glassfish.java.net/
http://www.xenoclast.org/autobench/

60Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

Testbed Infrastructure. We set up two virtualised platforms Xen and Virtualbox as shown

in Figure 4.1, using the default configurations. The hypervisors are running on an IBM System

X 3750 M4 with four Intel Xeon E5-4650 eight-core processors at 2.70GHz to support multicore

VM instances comprising 1 to 8 cores. The server has a dual-port 10 Gbps Ethernet physical

network interface card (pNIC), which can operate as a virtual 1 Gbps Ethernet NIC (vNIC). The

physical NIC interrupt handling is distributed across the cores, providing maximum interrupt

handling performance. The machine is equipped with 48 GB memory and connected to sockets

with DDR3-1333MHz channels. The key aspect of our testbed infrastructure that physical

CPU cores and network bandwitch are over-provisioned in the physical hardware compared to

the corresponding resources in the VMs.

Physical Hardware

Memory10Gb NIC Timer

core core core
...

core core

Physical Hardware

Memory10Gb NIC Timer

core core core
...

core core

Type I Hypervisor (Xen) OS

Type II Hypervisor (VirtualBox)Virtual Machine

vCPU
0 ... vCPU

n-1

1Gb vNIC

Virtual Memory Virtual Machine

vCPU
0 ... vCPU

n-1

1Gb vNIC

Virtual Memory

Virtual Machine

...
Virtual Machine

...

Privileged

Unprivileged Unprivileged

Privileged

Figure 4.1: Testbed Infrastructures for Type-1 Hypervisor (left) and Type-2 Hypervisor (right)

Testbed Setup. The system used to collect the performance data of our tests consists of

several components as shown in Figure 3.2.

The data collector extracts a set of application statistics, e.g. response time and throughput.

This is combined with the output of the data extractor, which provides hardware characteristics,

i.e. utilisation of each core of the VM, memory bandwidth, etc. The data collector can either

feed this data directly to the performance evaluator or store it a database for future analysis.

The performance evaluator is based on the concept of Performance Trees [SBK06, DKS09],

4.2. Benchmarking 61

which translate the application and system characteristics into parameters that can be directly

used by our performance model. The performance model is then analysed and performance

indices of the system are derived and compared to actual measurements. The automatic con-

troller optimises the resource configuration for specific performance targets. The system is

designed for both on-line and off-line performance evaluation and resource demand estimation,

which can be applied in areas such as early stage deployment and run-time management on

cloud platforms.

Benchmark. Each server VM is configured with one vCPU with a number of virtual cores

(from 1 core up to 8 cores for eight experiments) with 4 GB of memory and one vNIC. To

mitigate the effect of physical machine thread switching and to override hypervisor scheduling,

each virtual core (vCore) was pinned to an individual physical core. For each experiment,

Autobench sends a fixed number of HTTP requests to the server at a specific request rate.

The mean request rate incrementally increases for each experiment by 10 req/sec from 50

(e0.02)4 to 1400 (e0.00071). Figure 4.2 presents the vCore utilisation for the 4 and 8 core VMs

running on Virtualbox at increasing request rates for a total duration of 600s. Figure 4.3 shows

the corresponding response time and throughput for the VM from 1, 2, 4 and 8 cores. The

utilisation, response times, and throughput for the Xen hypervisor are not shown; however,

they exhibit similar performance trends.

From Figure 4.2(a) and 4.2(b), we observe that the utilisation of vCore 0 reaches 90% and 98%

at 500 secs (corresponding to 1200 req/sec) for 4 and 8 vCore servers respectively, while the

utilisation of the other vCores are under 80% and 60% for the same setup. Figure 4.3(a) shows

that the system becomes overloaded at 400 req/s for a single vCore and at 600 req/s for a dual

core. The saturation points for 4 vCores (800 req/s) and 8 vCores (900 req/s) do not reflect the

doubling of vCPU capacity. Figure 4.3(b) also shows that for the single and dual core cases,

the improvement of system throughput asymptotically flattens with a higher request rate and

finally saturates around 4000+ bytes/sec and 7000+ bytes/sec. However, the capacity of the

VM servers does not increase linearly when the number of vCores changes from 4 to 8 vCores.

4e0.02 refers to an exponential distribution with a mean interarrival time of 0.02s. http://www.hpl.hp.

com/research/linux/httperf/httperf-man-0.9.txt

http://www.hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt
http://www.hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt

62Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

Experiment Time (seconds)

(a) 4 Core

Experiment Time (seconds)

(b) 8 Core

Figure 4.2: CPU utilisation and software interrupt generated on CPU 0 of 4 core and 8 core VM
running the Petstore application on VirtualBox

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

1600

1800

Petstore Response Time

R
e
s
p
o
n
e
s
e
 T

im
e
 (

m
s
)

Request Rate (req/s)

1 core

2 core

4 core

8 core

(a) Response Time

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

10000

12000

14000

Petstore Throughput
N

e
tw

o
rk

 I
/O

 (
b
y
te

s
/s

)

Request Rate (req/s)

1 core

2 core

4 core

8 core

(b) Throughput

Figure 4.3: Response time and throughput of 1 to 8 Core VMs running the Petstore application on
VirtualBox

When investigating the imbalance of vCore utilisation and lack of scalability across vCores, we

have observed that the software interrupt processing causes 90% of the vCore 0 utilisation, as

shown in Figure 4.2. This saturates vCore 0 as network throughput increases and it becomes

the bottleneck of the system. This bottleneck has also been observed in network-intensive web

applications executing on non-virtualised multicore servers [HKAC13].

In summary, Figures 4.2 and 4.3 show that, when using the default configurations of VirtualBox,

the multicore VM server exhibits poor performance scalability across the number of cores for

network intensive workloads. Additionally, the utilisation of each vCore behaves differently

across the cores and as vCore 0 deals with software interrupts, it saturates and becomes the

4.3. Proposed Model 63

bottleneck of the system.

4.3 Proposed Model

This section describes our proposed model for the performance of a web application running in a

multicore virtualised environment. We first give the specification of the model and then present

an approximate analytical solution followed by the description of our method to estimate the

model parameters. Finally, we validate our model with the testbed from Section 4.2. Here we

refer to vCore 0, . . ., vCore n− 1 as CPU 0, . . ., CPU n− 1.

4.3.1 Model Specification

Consider a web application running on an n-core VM with a single NIC (eth0), as in our set-up

in Section 4.2.

...

a

b

b

p 1-p

out

out'
CPU
 0

CPU
 2

CPU
 n-1

CPU
 1

b

b

b

a

Figure 4.4: Modelling a multicore server using a network of queues

Modelling Multiple Cores: We model the symmetric multicore architecture as we discussed

in Section 2.3 using a network of queues. Each queue (CPU 0, . . ., CPU n − 1) in Figure 4.4

represents the corresponding CPU 0, . . ., CPU n − 1 in Figure 2.1. The interrupts generated

by eth0 that is represented by job a (green) are handled by CPU 0 by default. In a Linux

system, one can see that CPU 0 serves an order of magnitude more interrupts than any other

core in /proc/interrupts. We assume that two classes are served under processor sharing (PS)

64Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

queueing discipline in CPU 0; the other queues are M/M/1-PS with single class, which reflects

the scheduling policy in most operating systems (e.g. Linux CPU time sharing policy).

When a request arrives from the network (see both Figure 2.1 and Figure 4.4):

1. The NIC driver copies the packet to memory and generates a interrupt to signal the kernel

that a new packet is readable. This process is represented by job class a (interrupt) being

served by CPU 0.

2. The interrupt is processed and the packet is forwarded to the application which reads the

request. From the model perspective, a class a job turns into a class b job, which reflects

that the interrupt triggers the scheduling of a request process.

3. After the package is pushed down to the appropriate protocol stack layer or application,

the jobs (which are represented by job class b in red) are either scheduled to CPU 0 with

probability p or to one of the remaining CPUs with probability 1− p. Class a and b jobs

are served at service rate µ1 and µ2 respectively.

4. After a class b job has been processed, the response is sent back to the client. Note that

we naturally capture output NIC interrupts by including them into the service time of

class a jobs.

In our model, the arrival of jobs is a Poisson process with arrival rate λ and job service times

are exponentially distributed. The system has a maximum number of jobs that it can process

as shown in Figure 4.3, which is also very common for computer systems. For each experiment,

an arrival is dropped by the system if the total number of jobs in the system has reached a

specified maximum value N .

The preemptive multitasking scheme of an operating system, such as Windows NT, Linux

2.6, Solaris 2.0 etc., utilises the interrupt mechanism, which suspends the currently executing

process and invokes the kernel scheduler to reschedule the interrupted process to another core.

Otherwise, when a class a job arrives, a class b job executing in CPU 0 could be blocked.

However, in a multicore architecture, the blocked processes could experience a timely return

4.3. Proposed Model 65

to execution by a completely fair scheduler, shortest remaining time scheduler, or some other

CPU load-balancing mechanism. To simplify the model, class a and class b jobs are processed

separately with a processor sharing policy in CPU 0.

4.3.2 CPU 0

The proposed queueing model in Figure 4.4 abstracts the process of serving web requests on a

multicore architecture. In this model, CPU 1 to CPU n− 1 are modelled as standard M/M/1-

PS queues, the arrivals to which emanate at CPU 0 as class b jobs. An M/M/1-PS queue is

one of the common queue types in the literature [HP92]. The nontrivial part of the model,

however, is CPU 0. CPU 0 processes two classes of jobs, a and b, and the number of jobs can

be described as a two dimensional Markov chain X = (i, j), where i is the number of class a

job and j is the number of class b job. Figure 4.5 illustrates the state transitions corresponding

to the generator matrix of its stochastic process, Q.

One can compute the stationary distribution numerically by solving the normalised left zero

eigenvector of Q. However, as the capacity of the system, N , is a very large number in the

real system, the size of Q, is combinatorially large and hence, computing the zero eigenvector

becomes infeasible. Next, we obtain the stationary distribution of the Markov chain.

4.3.3 Two-class Markov Chain and its Stationary Distribution of

CPU 0

The model specification given in Section 4.3.1 and the state transition diagram of Figure 4.5

make the approximating assumption that the total service rate for each class (a and b) does

not degrade as the population of the network increases, remaining at the constant values µ1

and µ2. Therefore the classes behave independently and the modelled behaviour of CPU 0 is

equivalent to a tandem pair of single-class PS queues with rates µ1 (for class a) and µ2 (for

class b) respectively. The arrival rate at the first queue is λ and at the second pλ (since we

are considering only CPU 0). This is a standard BCMP network [HP92] with a population

66Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

0, 0start 0, 1
µ2

0, 2
µ2

0, N

1, 0

λ (1− p)µ1

1, 1

λ (1− p)µ1

pµ1

µ2

pµ1

2, 0

λ (1− p)µ1

pµ1

N, 0

N − 1, 1

...

...

· · ·

pµ1

1, N − 1

pµ1

. .
.

· · ·

· · ·

...

Figure 4.5: State transition diagram for CPU 0

constraint and so has the product-form given in equation (4.2)5. Moreover, the result is a

trivial application of the Reversed Compound Agent Theorem (RCAT), see for example [Har03]

[HLP09]. The normalising constant can be obtained as a double sum of finite geometric series

and gives the value of π0,0 shown in equation (4.1).

We therefore have the following product-form solution:

Proposition 1. Assuming that a steady state exists, let the steady-state probability of state

(i, j) in Figure 4.5 be denoted πi,j. Then,

π0,0 =
(α− 1)(α− β)(β − 1)

αN+2(β − 1) + βN+2(1− α) + α− β
, (4.1)

5We thank a referee for pointing out that the result was first derived in [Lam77]

4.3. Proposed Model 67

and

πi,j = αiβjπ0,0, (4.2)

where

α :=
λ

µ1

and β :=
pλ

µ2

. (4.3)

Proof. By the proceeding argument, the BCMP Theorem yields,

πi,j = Cπ1(i)π2(j).

where C is a normalising constant. The marginal probabilities are,

π1(k) = αkπ1(0), π2(k) = βkπ2(0) ∀k = 0, 1, . . . , N.

Therefore,

πi,j = Cπ1(i)π2(j) = Cαiβjπ1(0)π2(0) = αiβjπ0,0.

Normalising, we have

∑
i,j

πi,j = 1

∑
i,j

αiβjπ0,0 = 1

π0,0

N∑
i=0

N−i∑
j=0

αiβj = 1

Since
N∑
i=0

N−i∑
j=0

αiβj =
αN+2(β − 1) + βN+2(1− α) + α− β

(α− 1)(α− β)(β − 1)
,

we obtain

π0,0 =
(α− 1)(α− β)(β − 1)

αN+2(β − 1) + βN+2(1− α) + α− β
.

68Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

4.3.4 Average Sojourn Time of CPU 0

Proposition 1 provides the stationary distribution of the Markov chain associated with CPU 0.

With that information, we can find the average number of jobs in the system.

Proposition 2. Let the random variable k denote the total number of jobs at CPU 0. Then,

E(k) =
g(α, β)− g(β, α) + (β − α)(2αβ − α− β)

[αN+2(β − 1) + βN+2(1− α) + α− β](α− 1)(β − 1)
, (4.4)

where g(x, y) := xN+2(y − 1)2(xN −N − 1).

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

analytical

numerical

Figure 4.6: Comparing numerical and analytical solution of E(k)

Proof. By definition, the expected number of jobs is

E(k) =
∑
i,j

(i+ j)πi,j.

4.3. Proposed Model 69

Using results from Proposition 1, we have

E(k) =
∑
i,j

(i+ j)πi,j,

= π0,0
∑
i,j

(i+ j)αiβj,

= π0,0

N∑
i=0

N−i∑
j=0

(i+ j)αiβj,

= π0,0
g(α, β)− g(β, α) + (β − α)(2αβ − α− β)

(α− 1)2(α− β)(β − 1)2
,

=
g(α, β)− g(β, α) + (β − α)(2αβ − α− β)

[αN+2(β − 1) + βN+2(1− α) + α− β](α− 1)(β − 1)
,

where g(x, y) := xN+2(y − 1)2(xN −N − 1).

Figure 4.6 plots the value of E(k) against N .

Consider again CPU 0 with two job classes a and b. Arrivals will be blocked if the total number

of jobs reaches N . The probability function of the total number of jobs at CPU 0 can be

calculated as,

PN = P [na + nb = N] =

i+j=N∑
i,j

πi,j

Using Proposition 2, a job’s expected sojourn time E(T) can be calculated from the long-term

average effective arrival rate λ and the average number of jobs E(k), using Little’s Law for the

system as follows:

E(T) =
E(k)

λ(1− PN)

70Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

4.3.5 Average Service Time and Utilisation of CPU 0

Proposition 3. Let Ts be the random variable denoting the service time of a job γ entering

service. The expected service time is

E(Ts) =
1

µ1

n0
a +

1

µ1

λ

λ+ pµ1

(1− n0
a) +

1

µ2

pµ1

λ+ pµ1

(1− n0
a), (4.5)

where

n0
a = π0,0

1− βN+1

1− β
.

Proof. Let na be the current number of class a job in the system, we have

E(Ts) = E(Ts | γ is job a)P (γ is job a)

+E(Ts | γ is job b)P (γ is job b)

=
1

µ1

P (γ is job a) +
1

µ2

P (γ is job b)

=
1

µ1

P (γ is job a | na = 0)P (na = 0)

+
1

µ1

P (γ is job a | na > 0)P (na > 0)

+
1

µ2

P (γ is job b | na = 0)P (na = 0)

+
1

µ2

P (γ is job b | na > 0)P (na > 0).

Since

P (γ is job b|na = 0) = 0, P (γ is job a|na = 0) = 1,

4.3. Proposed Model 71

we have

E(Ts) =
1

µ1

P (na = 0)

+
1

µ1

P (γ is job a | na > 0)P (na > 0)

+
1

µ2

P (γ is job b | na > 0)P (na > 0).

=
1

µ1

P (na = 0) +
1

µ1

λ

λ+ pµ1

P (na > 0)

+
1

µ2

pµ1

λ+ pµ1

P (na > 0)

=
1

µ1

P (na = 0) +
1

µ1

λ

λ+ pµ1

(1− P (na = 0))

+
1

µ2

pµ1

λ+ pµ1

(1− P (na = 0)).

Notice that from previous results,

P (na = 0) =
N∑
j=0

π0,j

= π0,0

N∑
j=0

α0βj

= π0,0
1− βN+1

1− β
.

Therefore,

E(Ts) =
1

µ1

n0
a +

1

µ1

λ

λ+ pµ1

(1− n0
a) +

1

µ2

pµ1

λ+ pµ1

(1− n0
a),

where

n0
a = π0,0

1− βN+1

1− β
.

72Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

With the result above, the utilisation of a single core can be derived by the Utilisation Law,

U = λE(Ts)

4.3.6 Likelihood for Estimating Parameters

The stationary distribution π of the Markov process in Figure 4.5 with generator matrix Q

and the expected number of jobs E(k) are given in Propositions 1 and 2. There are three

corresponding parameters, µ1, µ2, and p. We assume that the average response time for a

certain request arrival rate λi can be estimated from real system measurements. From our

previous observations, for example, when a one core system receives 100 req/sec, on average,

2.9% of the CPU utilisation are spent for processing software interrupts while for 200 req/sec,

this amount increases to 7.2%. We can obtain µ1 from utilisation law,

λ̄

µ1

= Ūsi (4.6)

where Ūsi denotes the average utilisation of software interrupts (si) processed by CPU 0 during

a monitoring window of size t and λ̄ is the average λi during t. Then the reciprocal of µ1 is

the mean service time of CPU 0 handling si. Note that by using the average utilisation for

software interrupts to calculate µ1, the service time for a class a job includes the service time

for all software interrupts involved to successfully process the corresponding class b job (see

Section 4.3.1). Here, we find µ1 to be 3301 req/sec. In the single core case, p is 1. However,

for multiple core cases, p can be obtained by the inverse proportion of the utilisation as a load

balancing across multiple cores.

Let Ti be the average response time estimated for a certain arrival rate from the model and T ′i

be the average time from the real system measurements when the arrival rate is λi, i = 1, . . . ,m.

Since the estimated response time T ′ is the mean of samples, it is approximately a normally

distributed random variable with mean T and variance
σ2
T

n
when the number of samples n is

very large [CANK03]. Hence µ2 can be estimated by maximising the log-likelihood function,

4.3. Proposed Model 73

log
m∏
i=1

1√
2πσ2

i/ni

exp

[
(T ′i − Ti)2

2πσ2
i/ni

]
(4.7)

Maximising the log-likelihood function above is equivalent to minimising the weighted sum of

squared errors:
m∑
i=1

(T ′i − Ti)2
2πσ2

i/ni

(4.8)

Now the problem of finding the parameters becomes an optimisation problem,

µ2 = arg min
µ2

m∑
i=1

(T ′i − Ti)2
2πσ2

i/ni

(4.9)

The optimisation problem can be solved in different ways, such as steepest descent and trun-

cated Newton [CANK03]. We carried out the experiments in the single core case with λ varying

from 10 req/s to 500 req/s. For each λ we sent requests from 300 to 30 000 req/s and measured

the mean response time and the corresponding standard deviation.

4.3.7 Combined Model

In the previous section, we analysed the properties of CPU 0, which gives us a better under-

standing of how its performance is affected by interrupts. To build the entire model, we will

combine the previous results of CPU 0 and the results of CPU 1 to CPU n− 1 given in [HP92].

For K jobs arriving in the system, we expect Kp of them will stay in CPU 0 and K(1 − p)

of them will be sent to CPU 1, . . ., CPU n− 1. Given request arrival rate λ, we approximate

the arrival rate of jobs at CPU 1, . . ., CPU n − 1 as λ(1 − p). We further assume that those

jobs are uniformly assigned to different cores and so for CPU i, the corresponding (class b) job

arrival rate is λi = λ(1− p)/(n− 1). Given the service rate of class b jobs is µ2, the expected

number of jobs at these CPUs is λi/(µ2 − λi), ∀i = 1, . . . , n− 1.

Table 4.1 gives the brief summary of key model parameters. Let ki denote the number of jobs

in the queue of CPU i; then by Little’s Law, the expected sojourn time of a request in the

74Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

CPU 0 CPU 1, . . ., CPU n-1
Arrival Rate λ λ(1− p)

pµ1(a→ b)
Service Rate µ1 (a) µ2

µ2 (b)
Mean Jobs Proposition 2 λi/(µ2 − λi)

Table 4.1: Summary of the key parameters in the multicore performance prediction model

Values of µ2 (req/sec)
1 core 2 core 4 core 8 core
367 345 300 277

Table 4.2: Likelihood estimation of the mean service rate (req/sec) for class b job

whole system is,

E(Tsys) ≈
E(k0 + k1 + · · ·+ kn−1)

λ

=
E(k0) + E(k1) + · · ·+ E(kn−1)

λ
.

4.3.8 Validation

We validate our model against real system measurements of response time and throughput,

focusing on benchmarks running on the VirtualBox hypervisor and using the system set-up of

Section 4.2.

Prior to validation, we conducted baseline runs of the benchmark in our test-bed system. Each

measurement point was the average over 200 measurements. We assume this is long enough

to acquire a steady state average response time for each request. For each run, we varied the

number of cores and collected information about workload and response time for the parameter

estimation (see Section 4.3.6). The parameters we obtained for class b decrease from 1 core to

8 cores as shown in Table 4.2. The decreasing µ2 captures the fact that the web server scales

poorly on multiple cores because of (i) the virtualisation overhead; (ii) the inherent problem

of multicore, such as context switching overhead. Figure 4.7 shows the validation of response

time.

4.4. Scalability and Model Enhancement 75

 1

 10

 100

 1000

 200 250 300 350 400 450

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Request Rate (per second)

Measurement
Model

(a) 1 core 1 NIC

 1

 10

 100

 1000

 200 300 400 500 600 700

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Request Rate (per second)

Measurement
Model

(b) 2 core 1 NIC

 1

 10

 100

 1000

 200 400 600 800 1000

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Request Rate (per second)

Measurement
Model

(c) 4 core 1 NIC

 1

 10

 100

 1000

 200 400 600 800 1000 1200

A
ve

ra
ge

 R
es

po
ns

e
Ti

m
e

(m
s)

Request Rate (per second)

Measurement
Model

(d) 8 core 1 NIC

Figure 4.7: Response time validation of 1 to 8 core with 1 NIC

4.4 Scalability and Model Enhancement

In this section, we first describe a set of complementary techniques of system and hardware

configurations aimed to prevent the single core bottleneck discussed in Section 4.2. We apply

one of the techniques to increase parallelism and improve performance for multicore web ap-

plications. Second, we derive our model for performance under an improved configuration. We

then validate our model under the new configurations and show that the results fit with the

obtained performance improvements.

76Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

4.4.1 Scalability Enhancement

Multiple network interfaces can provide high network bandwidth and high availability [JJ09,

HKAC13, VF07]. Enforcing CPU affinity for interrupts and network processing has been shown

to be beneficial for SMP systems [VF07] and the same benefits should apply to virtualised

multicore systems. Combining multiple NICs and CPU affinity allows us to distribute the

software interrupts for different NICs to different cores and hence mitigate load imbalance.

In real systems, installing multiple network interfaces might cause space and power issues;

however, in virtualised environments, this can be trivially achieved by using virtual NICs. To

gain the benefit of reducing the bottleneck of CPU 0, as we illustrated in Figure 4.1, the network

resource and the physical CPU resource are over-provisioned to ensure that these two resources

are not the bottlenecks in our testbed. For our enhanced configuration, we configure multiple

vNICs as follows:

• Fix the number of web server threads to the number of cores and assign each web server

thread to a dedicated core to avoid the context switching overhead between two or more

threads [HKAC13].

• Distribute the NIC interrupts to multiple cores by assigning multiple virtual NICs, i.e.

vboxnet, to the VM.

4.4.2 Model Enhancement

Since we model the imbalance of multicore system by distinguishing two different types of

queues, we can derive the model for the new configuration by increasing the number of leading

two-class queues to match the number of cores m which deal with NIC interrupts. Recall that

our baseline model assumes a single core (queue) handling NIC interrupts (job a). Consider the

situation when job a comes to m two-class queues (equals to m CPU 0), in which m represents

the number of cores that handle NIC interrupts. Then, a class a job transfers into a class b job

and either returns to the queue with probability p or proceeds to CPU m, . . ., CPU n− 1 with

probability 1− p.

4.4. Scalability and Model Enhancement 77

4.4.3 Prediction with Previous Parameters

We apply the model for the enhanced configurations with the same parameters as shown in

Table 4.2. What we expect to see is that the performance of the application improves with

the new configurations, and exhibits better scalability. This is due to: (i) network interrupt

storms are distributed to more cores instead of directing to a single core; (ii) the use of flow

affinity [HKAC13, VF07], which ensures that all packets in a TCP flow (connection-oriented)

are processed by a single core. This reduces contention for shared resources, minimises software

synchronization and enhances cache efficiency [JJ09].

The prediction results with previous parameters are shown in Figure 4.8. As we can see that,

with 4 cores and 1 NIC, the knee-bend in system performance occurs at around 800 req/sec;

using 2 NICs this increases to around 1000 req/sec and for 4 NICs to around 1200 req/sec.

These figures suggest that more virtual NICs can help improve TCP/IP processing in multicore

environments. The summary of the error found in all validation results of Figure 4.7 and

Figure 4.8 are shown in Table 4.3. The average relative modelling error is around 15%. This

shows a tendency to decrease with an increasing number of NICs. We see a relative error of

e.g. 7.9% and 7.4%, for a 4 core machine with 2 NICs and a 4 core machine with 4 NICs,

respectively. Since distributing the NIC interrupts in the real system causes extra context

switching overhead, the response time of relatively low intensity workloads (i.e. 200 to 600

req/sec) is round 10-20% higher than that for the default configuration.

78Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

 1 1
0

 1
00

 1
00

0 2
00

 2
50

 3
00

 3
50

 4
00

 4
50

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(a
)

1
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(b
)

2
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
12

00
 1

40
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(c
)

4
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
12

00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(d
)

8
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(e
)

2
co

re
2

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
12

00
 1

40
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(f
)

4
co

re
2

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
12

00
 1

40
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(g
)

8
co

re
2

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
12

00
 1

40
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(h
)

4
co

re
4

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
12

00
 1

40
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(i
)

8
co

re
4

N
IC

s

F
ig
u
re

4
.8
:

R
ev

al
id

at
io

n
of

re
sp

on
se

ti
m

e
of

1
to

8
co

re
w

it
h

m
u

lt
ip

le
n
u

m
b

er
o
f

N
IC

s

4.4. Scalability and Model Enhancement 79

T
a
b
le

4
.3
:

R
el

at
iv

e
er

ro
rs

b
et

w
ee

n
m

o
d

el
an

d
m

ea
su

re
m

en
ts

(%
)

1
N

IC
2

N
IC

s
4

N
IC

s
O

ve
ra

ll

N
u

m
.

of
C

or
e

1
2

4
8

2
4

8
4

8

R
es

p
on

se
T

im
e

23
.8

23
.2

25
.8

11
.3

19
.4

7.
9

10
.3

7.
4

14
.2

15
.9

T
h
ro

u
gh

p
u
t

14
.1

12
.9

13
.4

16
.5

14
.5

11
.9

15
.6

10
.6

16
.7

14
.0

2
U

ti
l.

C
or

e
0

to
m

-1
10

.5
7.

9
8.

4
9.

8
8.

4
8.

9
12

.9
11

.4
13

.4
10

.2

U
ti

l.
C

or
e

m
to

N
-1

-
-9

.4
-1

4.
6

-2
3.

7
-

-1
0.

4
-

16
.7

-
-1

7.
8

-1
5.

4

80Chapter 4. Predicting the Performance of Applications in Multicore Virtualised Environments

4.4.4 Prediction validation for Type I hypervisor – Xen

See Appendix A.

4.4.5 Model Limitations

We identify several factors that affect model accuracy:

1. The routing probability p: we use a simple load balancing policy as we discussed in

Section 4.3.7, which cannot represent the Linux kernel scheduling algorithm used in our

testbed, which is a completely fair scheduler. More advanced scheduling policies like O2

[WGB+10] can also not be described with this simple model.

2. Interrupt priority : in general, NIC interrupts (job a) have higher priority than system

and user processes (job b). In the single core case, job b is blocked when a new job a

arrives. However, in the multicore case, the scheduler will assign it to another core. To

simplify the model, we do not consider priorities and interference between job classes a

and b.

3. Context switching overhead : an operating system executes a context switch by loading a

new context, i.e. registers, memory mappings, etc., in one CPU. Though we try to reduce

the context switching overhead by assigning each web server thread statically to a distinct

core, other context switches, such as register, task, and stack, need to be considered.

4. Hypervisor overhead : our model implicitly considers virtualisation overhead, e.g. via the

decrease of service rate with increasing number of cores. However, how the overhead of

processing requests at the different virtualisation layers has yet to be accounted for.

4.5 Summary

This chapter has presented a performance model for web applications deployed in multicore

virtualised environments. The model is general enough to capture the performance of web

4.5. Summary 81

applications deployed on multicore VMs and can account for hardware idiosyncrasies such as

CPU bottlenecks and interrupt influences. We gave an approximate analytical solution and

validated our model in our testbed using an open-source web application running on multicore

VMs. In addition, we presented a simple approach to achieve better scalability for multicore web

servers through use of virtual hardware. We also demonstrated the applicability of our model

in the enhanced configurations. In the next chapter, we will refine our method to overcome the

approach limitations, mainly focused on the hypervisor overhead.

Chapter 5

Diagnosing and Managing Performance

Interference in Multi-Tenant Clouds

5.1 Introduction

Virtual machine consolidation is attractive in cloud computing platforms for several reasons

including reduced infrastructure costs, lower energy consumption and ease of management.

However, the interference between co-resident workloads caused by virtualisation can violate

the SLOs that the cloud platform guarantees. Existing solutions to minimise interference

between VMs are mostly based on comprehensive micro-benchmarks or online training which

makes them computationally intensive. In this chapter, we present CloudScope, a system for

diagnosing interference for multi-tenant cloud systems in a lightweight way.

The demand for cloud computing has been constantly increasing during recent years. Millions

of servers are hosted and utilised in data centres every day and many organisations deploy

their own, private cloud services to be able to better manage their own computing infrastruc-

ture [DK13]. Virtualisation enables cloud providers to efficiently allocate resources to tenants

on demand and consolidate tenants’ workloads to reduce operational cost. Successful man-

agement of a cloud platform requires the optimal assignment of incoming VMs or guests to

available PMs or hosts. This scheduling problem is constrained by both the tenants’ SLOs and

82

5.1. Introduction 83

the available resources. Co-resident VMs are desirable for the cloud provider as this means

utilising available resources more efficiently. However, the more VMs are consolidated on a

single machine, the more instances compete for resources and the hypervisor capacity. As a

result of this interference, guest systems may experience high performance variations which

lead to unpredictable system behaviour and SLO violations [XBNJ13, CH11] such as a drop in

application throughput or an increase in the response time of a web service.

Recognising this problem, researchers have developed many methods to identify and predict

performance interference. This work can be categorised into two groups: (1) machine learning-

based approaches [DK13, CH11, NKG10, RKG+13, CSG13, KEY13, ZT12, YHJ+10] and (2)

queueing model-based approaches [NBKR13, CKK11, KKEY12]. The first group uses sophisti-

cated micro-benchmarks and online training to predict the performance interference of different

applications. As prediction is based on historical data, adaptation to unknown workloads be-

comes difficult. Also, continuously updating the models is computationally expensive. The

second group relies on unified queueing models and system attributes such as service and ar-

rival rates which are usually difficult to obtain due to system complexity and varying workloads.

In addition, these methods support only specific hardware configurations and existing applica-

tions. They do not provide a method which is general and efficient enough for complex cloud

environments where applications change frequently.

In this chapter, we consider this co-residency problem and present CloudScope, a system

that diagnoses the bottlenecks of co-resident VMs and mitigates their interference based on a

lightweight prediction model. The model is a discrete-time Markov chain that predicts perfor-

mance slowdown when compared to an environment without hypervisor overhead and resource

contention, represented by a virtualisation-slowdown (V-slowdown) factor. The key feature of

CloudScope is its ability to efficiently characterise the performance degradation by probing the

system behaviour which includes both the behaviour of the hypervisor layer and the hardware

characteristics of different workloads. Current systems [DK13, CH11, RKG+13, CSG13, ZT12]

do not explicitly consider these factors in an analytical model.

CloudScope’s model parameters can be easily obtained via hypervisor profiling utilities such as

84 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

xentop. As these values are by default reported from the hypervisor, no overhead is introduced.

CloudScope employs its model to control guest instance placement and reduce SLO violations

by minimising interference effects. It also manipulates the hypervisor to achieve an optimal

configuration by, for example, increasing the CPU share available to the Dom0. Because of the

practicality of this analytical model, adaptive hypervisor control and migration or consolidation

of VMs becomes a lightweight and fast operation that does not require complex training or

micro-benchmarking.

We implement CloudScope and evaluate its accuracy and effectiveness using a wide spectrum

of workload scenarios including a set of CPU, disk, and network intensive benchmarks and

a real workload using Hadoop MapReduce. CloudScope’s interference prediction model can

achieve a minimum prediction error of 4.8% and is less than 20% for all our test workloads. We

illustrate the feasibility of CloudScope’s interference-aware VM scheduler by comparing it to the

default scheduler of a CloudStack deployment and achieve an overall performance improvement

of up to 10%. In addition we show how CloudScope can be applied to self-adaptive hypervisor

control to answer questions such as: which configurations can best serve the guests performance

requirements? We make the following contributions:

• We introduce a lightweight analytical model solely based on available system parameters

to predict the impact of co-residing VMs on performance.

• We combine both the behaviour of the hypervisor and the specific hardware requirements

of different workloads in our model for fast and accurate predictions.

• We implement an interference-aware scheduler for a CloudStack deployment and illustrate

the effect of a self-adaptive Xen control domain.

The rest of this chapter is organised as follows. Section 5.2 demonstrates the performance

degradation caused by hypervisor overhead and resource contention using benchmarking ex-

periments. We present CloudScope’s system design and its performance model in Section 5.3

and discuss details on interference handling in Section 5.4. The validation and experimental

results are presented in Section 5.5. Section 5.6 concludes this chapter.

5.2. Characterising Performance Interference 85

5.2 Characterising Performance Interference

Performance interference in multi-tenant data centres is well studied both in the context of pre-

diction and measurement. Many benchmarking studies are devoted to understanding the per-

formance of EC2 VM instances [DK13, TIIN10], their network [XBNJ13, RKG+13, SWWL14]

and applications deployed in them [BRX13, CHO+14]. These studies found that virtualisation

and multi-tenancy are the major causes for resource contention as multiple VMs are placed on

a single host. This leads to performance variation in EC2 instances. In this section, we will

quickly recap the background of virtualisation and show that these performance bottlenecks

depend on different workload parameters and quantify the impact on the underlying system.

5.2.1 Recapping Xen Virtualisation Background

The Xen hypervisor is widely used as the basis of many commercial and open source applica-

tions. It is also used in the largest clouds in production such as Amazon and Rackspace. We

picked Xen as the basis for our model in this work as it is the only open source bare-metal

hypervisor. Although PV has significant performance benefits as demonstrated in the original

Xen paper [BDF+03], the existence of an additional layer between the VM applications and

the hardware introduces overhead. The overhead depends on the type of workload that is exe-

cuted by the guest [GCGV06]. In general, CPU-intensive guest code runs close to 100% native

speed, while I/O might take considerably longer due to the virtualisation layer [GCGV06].

However, CPU oversubscription is common in cloud environments which also limits the per-

formance of CPU-intensive jobs [BWT12] . CPU performance is affected by the time slices

allocated to the VMs which are based on a weight (the CPU share for each VM and the

hypervisor), a cap (the maximum usage), and the amount of pending tasks for the physical

processors [CG05, CGV07, PLM+13]. Recall what we discussed in Section 2.4, disk and net-

work I/O suffer from overhead caused by moving data between the VM, shared memory, and

the physical devices [SWWL14, PLM+13]. Xen uses two daemon processes, blkfront and

blkback, to pass I/O requests between DomU and Dom0 via a shared memory page. Similarly,

86 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

PM Two Intel 8-core 2.9 GHz (32 hyper-threading), 256 GB Memory
VM-CPU 4 vCPUs (1 GHz per vCPU), 2 GB Memory, 5 GB local storage
VM-disk 4 vCPUs (1 GHz per vCPU), 8 GB Memory, 32 GB local storage
VM-net 4 vCPUs (1 GHz per vCPU), 8 GB Memory, 1 vNic

Table 5.1: Benchmarking Configuration

netfront and netback share two pages, one for passing packets coming from the network and

the other for packets coming from DomU as shown in Figure 2.3. Xen also places upper limits

on the number of I/O requests that can be placed in this shared memory which may result

in delays due to blocking. This means that not only the latency increases but also that the

bandwidth is reduced.

5.2.2 Measuring the Effect of Performance Interference

To illustrate the problems resulting from the above described virtualisation techniques, we

measure the performance of CPU, disk, and network intensive applications sharing resources

on one physical server. Table 5.1 gives the configurations for the PM and the VMs for each

experiment.

To generate a CPU intensive workload we use the sysbench1 benchmark with 4 threads on

4 virtual CPU cores (one thread on each virtual core) to generate CPU load average for a

single VM. We measure the load average of the VM for different prime number calculations.

For prime numbers up to 2000, 3000, and 5000, we see load average of 25%, 50%, and 90%

respectively over a period of time within a single VM. Figure 5.1 explains why different prime

numbers produce different load averages on single VM. This measurement includes job process

setup and termination overhead including both idle and busy periods during the experiment.

After the experiment of single VM running these three prime numbers, we used the same VM

image to launch up to 45 VMs to concurrently run these prime number to see the effect of

performance interference on CPU resource. What we expect to see here is an increase in job

completion time due to resource over-subscription and hypervisor scheduling overhead.

1Sysbench Benchmark. http://wiki.gentoo.org/wiki/Sysbench

http://wiki.gentoo.org/wiki/Sysbench

5.2. Characterising Performance Interference 87

Figure 5.1: The load average (utilisation) example of the VM running sysbench experiment

Figure 5.2(a) shows the mean completion time for the jobs while increasing the number of co-

resident VMs from 1 to 45. We observe that the time for calculating prime numbers up to 2000

is stable until 35 VMs and then slightly increases. For prime numbers up to 3000 and 5000,

we can observe an increase in completion time for 5 co-resident VMs with a steeper increase

from 25 VMs on. This behaviour reflects the effects of (1) the high VM CPU load, (2) the

Xen scheduling overhead and (3) CPU resource contention. Resource contention depends on

the individual loads within each VM and the number of VMs running such loads. For example,

when each VM runs prime 3000 it will produce an average CPU load of 50% individually on each

vCPU; thus we expect the physical machine to be saturated with 46 simultaneously running

VMs:

VMs50 =
32× 2.9 GHz

4× 1 GHz× 50%
≈ 46

Hence, the results for prime 3000 in Figure 5.2(a) show the Xen scheduling overhead without

CPU contention which can go as high as 1.7x for 45 VMs. We also observe that for prime

5000, the mean execution time is affected earlier as each VM produces 90% utilisation. After

25 VMs, the increase in execution time then comes from both Xen scheduling overhead and

resource contention.

88 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(m
s)

Number of VMs

prime = 5000
prime = 3000
prime = 2000

(a) CPU intensive workload

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

1 4 16 64 256 1k 4k

To
ta

l D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

Block Size (KB)

Dom0
1 DomU

2 DomUs
5 DomUs

10 DomUs

(b) Disk intensive workload

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10
 0

 100

 200

 300

 400

 500

 600

 700

 800

N
or

. T
hr

ou
gh

pu
t P

er
 V

M

A
ve

. C
P

U
 U

til
 o

f D
om

0
(%

)

Number of VMs

Nor. Thro
Dom0 Ave. Util

(c) Network intensive workload

Figure 5.2: Co-resident VM performance measurements for (a) CPU, (b) disk and (c) network
intensive workloads for revealing different system bottlenecks. Figure (a) shows the average execution
time of executing prime 2000, 3000, and 5000. Figure (b) shows the total sequential read disk I/O
throughput of Dom0 and 1, 2, 5, and 10 guest VMs with different block sizes. Figure (c) shows the
normalised network throughput of one VM co-resident with another 1 to 9 VMs and the corresponding
utilisation of Dom0.

For the disk intensive workload, we run the fio2 benchmark on Dom0 and individual VMs.

The application issues requests to the kernel through libraries such as libc or libaio. On the

simple case where the benchmark is configured with an IO Depth of 1. ‘fio’ will attempt to

keep one request in execution at all times, which means as soon as one request completes, ‘fio’

will send another. We perform sequential reads and vary the block size from 1 KB to 4 MB.

Figure 5.2(b) details the total disk throughput of Dom0 and 1 to 10 DomUs processing requests

to read a 5 GB file simultaneously. We can split the results into three phases:

(1) For small block sizes (1 KB to 16 KB), we observe a high load (80 to 90%) on Dom0 as it

has to process a large number of requests in parallel. In this phase, the total disk throughput

is bounded by Dom0’s capacity. (2) After that (32 KB to 128 KB) the system is bound by the

disk throughput. (3) Once the block size goes beyond 128 KB, the throughput drops for 2, 5,

and 10 DomUs while the average utilisation of Dom0 stays at 30 to 40%.

It might be conjectured that the reason for the deterioration in disk throughput with increasing

block size may be due to poor I/O subsystem performance, caused by for example, a resource

bottleneck of CPU or system bus. However, this is unlikely the case because the green line of

1 guest domain (1 DomU) shows that without contention the guest I/O can perform as well as

2Fio benchmark. http://freecode.com/projects/fio

http://freecode.com/projects/fio

5.3. System Design 89

Dom0. The grant table contention explains the drop in throughput for the VMs from a block

size of 256 KB. The size of a Xen grant table entry is 4 KB [CG05] and the maximum number

of entries is limited to 1283 [PLM+13, CGV07]. As a result, we have: 256 KB/4 KB = 64

table entries and 64 × 2 = 128. When the block sizes of more than two VMs are larger than

256 KB, the grant table will be locked when there are too many concurrent disk requests which

causes delays and decreases the total disk throughput significantly. We acknowledge that the

grant table size is an essential aspect of limiting the application I/O performance. It would

be valuable to validate the impact of changing the grant table sizes. However, this involves a

lot of efforts on kernel building. In this thesis, we conduct all the I/O experiments with the

default size of grant table.

To produce a network intensive workload, we start 10 VMs with iperf4 servers on the same

physical machine. We then launch another 10 VMs as clients on other hosts in our local pri-

vate cloud. All the VMs are connected via 10 Gbps links. Figure 5.2(c) shows the average

normalised network throughput and the corresponding average utilisation of Dom0. Through-

put is normalised against the performance of when there is only one VM processing network

requests. The throughput of the VMs decreases and the mean CPU utilisation of Dom0 in-

creases with a larger number of co-resident VMs. The reason for the drop is a combination

of the memory page locking for network requests (see Section 5.2.1) and the scheduling and

processing overhead of Dom0.

5.3 System Design

Our benchmarking results demonstrate that VM interference can have a significant impact on

performance. We now describe CloudScope, a system that predicts the effects of interference

and reacts accordingly to prevent performance degradation. CloudScope runs within each host

in the cloud system and is complementary to current resource management components (e.g.

3This is set in the Xen kernel via: MAX MAPTRACK TO GRANTS RATIO and gnttab max nr frames
4Iperf Benchmark. https://iperf.fr/

https://iperf.fr/

90 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

 Dom0

Resource +
performance
monitoring

Interference
Handling
Manager

VM/Dom0
controller

VM +
application

 Xen hypervisor

Application analysis

Interference prediction

Interference conflict handling

 Application SLOs targets
Host

Figure 5.3: CloudScope system architecture

VMware Distributed Resource Scheduler5 or CloudStack resource manager6) that handle SLO

violations, dynamic VM scaling and elastic server consolidation [TGS14, NSG+13]. Cloud-

Scope incorporates the VM application SLO monitor and evaluator developed in our previous

work [CHO+14, CK15]. Figure 5.3 illustrates the overall system architecture which consists of

three main parts:

Monitoring Component. The Monitoring Component collects application and VM metrics

at runtime. A daemon script reads the resource usage for Dom0 and every VM within Dom0

via xentop. The resource metrics include CPU utilisation, memory consumption, disk I/O

request statistics, network I/O, number of virtual CPUs (vCPUs), and number of virtual NICs

(vNICs). External monitoring tools [CHO+14] are used to keep track of application SLOs in

terms of application metrics such as response time, disk/network throughput, or job completion

time. The resource and SLO profiling metrics are fed to the Interference Handling Manager.

Interference Handling Manager. The Interference Handling Manager is composed of three

main modules. The application analysis module analyses the monitoring data from each VM

and obtains the application metrics. The result is an initial application loading vector for each

application VM. The interference prediction module incorporates an analytical model based

on the V-slowdown factor (see Section 5.3.4) that infers the expected application performance

5WMware Distributed Resource Scheduler. https://www.vmware.com/uk/products/vsphere/features/

drs-dpm
6CloudStack Resource Manager. http://cloudstack.apache.org/software/features.html

https://www.vmware.com/uk/products/vsphere/features/drs-dpm
https://www.vmware.com/uk/products/vsphere/features/drs-dpm
http://cloudstack.apache.org/software/features.html

5.3. System Design 91

degradation from the profile of currently running guest domains and Dom0. The interference

conflict handling module provides interference-aware scheduling and adaptive Dom0 reconfig-

uration.

Dom0 Controller. The Dom0 controller calls the corresponding APIs to trigger VM migration

or Dom0 reconfiguration based on the prediction results and the SLO targets.

5.3.1 Predicting Performance Interference

Section 5.2 showed that the performance of co-resident CPU, disk, and network intensive appli-

cations may decrease due to the paravirtualisation protocol, the load of Dom0, and the number

of VMs competing for resources. We can view an application as a sequence of micro job slices

accessing different system resources. Each application can be characterised with a certain re-

source statistic using a loading vector [ZT12, LHK+12] that represents the proportion of the

time that an application spends on each resource. We define the V-slowdown δj of a VM j, as

the percentage of degradation in performance due to co-residency compared to no co-residency.

We obtain the V-slowdown of an application VM by combining the slowdowns of each resource.

Consider multiple applications running in VMs 1, . . . , n with CPU utilisations util1, . . ., utiln on

a single PM. A job is considered a sequence of job slices scheduled by the hypervisor to access

the physical CPU, memory, disk and network resources. We represent the processing steps

of a VM request within a PM as a discrete-time Markov chain in which the states represent

the hypervisor layer and physical resources: Dom0, pCPU, Disk, and Net as illustrated in

Figure 5.4. In this model, we do not deal with memory as a resource as it is by default

isolated and efficiently managed in Xen. Phenomenons such as memory ballooning or cache

effects [GLKS11] are out of scope for this work.

Each Markov chain in Figure 5.4 represents the processing steps of a specific workload in the

Xen virtualised system in Figure 2.3. Note that one job slice can only be processed in one of

the four states (Dom0, pCPU, Disk, and Net) at any one time. A job moves from state to

state based on a probability that depends on the current workloads within the system. In the

92 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

Dom0start pCPU end
pDom0

1− pDom0

pcpu

1− pcpu

(a) CPU workload

pCPUstart Dom0 Disk end
p′cpu

1− p′cpu

pDom0

1− pDom0

pdisk

1− pdisk

(b) Disk workload

pCPUstart Dom0 Net end
p′′cpu

1− p′′cpu

pDom0

1− pDom0

pnet

1− pnet

(c) Network workload

Figure 5.4: State transition diagrams for (a) CPU, (b) disk, and (c) network intensive workloads

following we calculate these probabilities.

5.3.2 CPU workloads

When a CPU job arrives (see Figure 5.4(a)), the CPU scheduler (within hypervisor) has to

schedule the vCPU to a runnable queue of a pCPU (physical CPU). pDom0 denotes the proba-

bility that in the next interval the job will be forwarded to a pCPU. Assume that the vCPUs

of Dom0 are modelled by n M/G/1-PS queues, in which n represents the number of vCPUs

and the PS (processor sharing) policy reflects the scheduling policy. In an M/G/1-PS queue,

the average time spent in the system by customers that have service time x is denoted by

T (x) =
x

C(1− ρ)

5.3. System Design 93

where C is the capacity of the server [HP92] and ρ is the utilisation of the server. As each job

sees the same effective service capacity C(1 − ρ), the probability of leaving the Dom0 state,

i.e., a job is scheduled by Dom0 and assigned to the queue of a pCPU:

pDom0 = 1− ρDom0 (5.1)

where pcpu represents the probability that a job completes service at a pCPU and leaves the

state. The derivation of pcpu is based on the delay caused by oversubscribed resources presented

in Section 5.2.

pcpu ≈

 1 if CPU is not oversubscribed∑
j pCPUj∑

i utili×vCPUi
if CPU is oversubscribed

(5.2)

where pCPUj denotes the capacity of the jth physical CPU, vCPUi denotes the capacity of the

ith virtual CPU and utili denotes the CPU utilisation due to VMi. If pcpu < 1, then the CPU

resources of the physical machine are oversubscribed; otherwise pcpu = 1.

5.3.3 I/O workloads

Recall that the guest VM has a shared memory area with Dom0 for processing I/O requests

in Figure 2.3. The Xen hypervisor also has an event channel for handling the interrupts from

guest VMs. This channel goes through the hypervisor and has some latency associated with it.

Note that we account for this delay in our Dom0 state. When one VM needs to perform I/O,

it follows these steps (see also Figures 5.4(b) and 5.4(c)):

1. The VM creates an I/O request and places it in the shared memory area (grant table).

This process is represented by state pCPU .

2. The VM sends an interruption to Dom0 (state Dom0) via a pre-established channel.

Dom0 reads the shared memory and asks the hypervisor for access to the memory areas

pointed to by this request.

94 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

3. Dom0 submits the request either to storage or the network (see state Disk and Net).

When the request completes, Dom0 places the response back in the shared memory,

revokes its access to the memory areas pointed to by the request and sends a notification

to the guest VM. The guest VM reads the response from the shared memory, clears the

interruption channel and accepts the response as success or failure for that request.

Equation 5.3 abstracts the effect of the memory map locking delay, where
∑

i bsi represents

the total I/O sizes of all requests issued at the same time. When this number is larger than

the maximum 128 entries × 4 KB, the memory page locks and updates itself; thus some of the

requests have to be placed in the next interval. p′cpu and p′′cpu represent the probability of a

request successfully accessing the memory table and passing the request to Dom0 for disk and

network requests respectively. They depend on pcpu because performing I/O operations also

consumes CPU cycles.

p′cpu = p′′cpu ≈

1 if b

∑
i bsi

128×4c < 1

1

b
∑

i bsi
128×4

c+1
× pcpu if b

∑
i bsi

128×4c ≥ 1
(5.3)

Note that calculation of p′cpu and p′′cpu differ slightly as
∑

i bsi depends on whether it relates to

disk or network I/O. In the case of disk I/O, the total I/O size counts both read and write

requests. However, we have to count the total I/O size of sending and receiving packets for

network I/O separately because they use separate memory tables.

Disk requests are served in FIFO order and thus, the arrival queue length at any disk is equal to

ρ
1−ρ , where ρ is the utilisation of the server. If the queue length is smaller than 1, meaning there

are no queued requests, then the probability of a job accessing the physical disk is pdisk = 1 .

Based on this, the probability of completing disk service is:

pdisk =
1

ρdisk
1−ρdisk

+ 1
= 1− ρdisk (5.4)

where ρdisk represents the utilisation of the disk channel. For block devices such as iSCSI, which

are common in cloud environments, ρdisk would be the utilisation of the connection between

5.3. System Design 95

the host and the iSCSI server. In our setup, we have 10 Gbps links between the server and

the storage server which comprises multiple disk volumes. We found that in this case pdisk is

usually close to 1.

The probability of network requests being served and leaving the system can be calculated as,

pnet ≈

 1 if pNIC is not oversubscribed∑
j pNIC j∑

i utili×vNIC i
if pNIC is oversubscribed

(5.5)

where pNICj denotes the capacity of the jth physical network interface, while vNIC i denotes

the capacities of the ith virtual network interface. utili denotes the network utilisation due to

VMi. Note that we can easily obtain all these parameters, such as physical or virtual CPU

utilisation or network capacity, from hypervisor profiling utilities such as xentop.

5.3.4 Virtualisation Slowdown Factor

The states of the Markov chains of Figure 5.4 represent a system of inter-related geometric

distributions in sequence. Thus the mean time to absorption, i.e. the mean delay for each chain

is:

E(Kcpu) =
1

pDom0

+
1

pcpu

E(Kdisk) =
1

pDom0

+
1

p′cpu
+

1

pdisk

E(Knet) =
1

pDom0

+
1

p′′cpu
+

1

pnet

E(Kcpu), E(Kdisk) and E(Knet) represent the mean time that a VM request will take to complete

execution on the CPU, disk or network given a certain workload on the virtualised system. We

define E ′(Kcpu), E ′(Kdisk) and E ′(Knet) as the expected execution time for a VM running alone

or running with other VMs in an environment with unsaturated resources, i.e. when pDom0,

pcpu, p′cpu, p′′cpu, pdisk, and pnet are equal to 1.

96 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

Thus, the virtualisation slowdown for each resource given a current workload on the system is:

γcpu =
E(Kcpu)

E ′(Kcpu)

γdisk =
E(Kdisk)

E ′(Kdisk)

γnet =
E(Knet)

E ′(Knet)

An application needs a certain proportion of CPU, disk, and network resources to run a job. For

example, a file compression job might spend 58% of the total execution time on CPU and 42% on

disk I/O. Without any other system bottleneck or competing job, the vector βi,j represents an

application’s resource usage profile, referred to as the loading vector [ZT12, LHK+12, GLKS11].

βi,j =
the time of job j spent on resource i

the total completion time
(5.6)

Therefore, the virtualisation slowdown δ of an application/VM when co-located with other

VMs on a system with a known current workload is:

δj =
∑
i

γi × βi,j (5.7)

where j denotes a particular application VM and i represents different types of resources. δj

allows us to evaluate how much performance slowdown one application VM might experience

if co-resident with n− 1 VMs.

5.4 Interference Conflict Handing

CloudScope can answer several key questions that arise when trying to improve VM scheduling

and consolidation in cloud environments. For example: (1) among multiple VM placements

which physical machine can best satisfy the required SLO; (2) what should be the right degree

of VM consolidation in terms of the utilisation-performance trade-off; (3) can the hypervisor

be self-adaptive without having to reboot to improve the performance of applications? In this

5.4. Interference Conflict Handing 97

section, we illustrate how CloudScope is able to provide insight for answering these questions.

5.4.1 Dynamic Interference Scheduling

Workload consolidation increases server utilisation and reduces overall energy consumption but

might result in undesirable performance degradation. By default, all newly created VMs are

assigned to a PM by a load balancing scheduler that is generally based on a heuristic such as

bin packing.

CloudScope currently decides whether to trigger migration by comparing the V-slowdown factor

among all potential PMs, and migrates VMs to the PM with the smallest V-slowdown factor

as shown in Algorithm 1. The algorithm is executed when a new virtual machine needs to be

launched. In addition, every 60 seconds, CloudScope makes a decision on whether it is necessary

to migrate VMs to PMs with less interference or not. The algorithm greedily finds the most

suitable PM for each VM by picking the PM with the smallest slowdown when assigned the

new VM. It requires the loading vectors from each VM as input. Previous work has shown how

to obtain these [ZT12, LHK+12, GLKS11]. In our experiments (see Section 5.5.4) we acquire

the loading vectors online from running monitoring tools (such as top) inside each VM. This

allows us to continuously update and refine migration and consolidation decisions without prior

knowledge of the applications.

The time complexity of Algorithm 1 is the product of the number of targeted VMs and PMs,

O(mn). However, the V-slowdown model runs simultaneously across the Dom0 of each PM, so

in practice the time complexity is linear in the number of targeted VMs.

98 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

Algorithm 1 Interference-aware Scheduling Algorithm

Data: Targeted VM j, where j ∈ 1, . . . , n;
Resource pool consist of PM k, where k ∈ 1, . . . , m;
Obtain the workload factor βi,j for each task within VM j;
Model is the V-slowdown interference prediction model.

Result: VM j to PMk assignments
1: for j = 1 to n do
2: for k = 1 to m do
3: δj = Predict(βi,j, PM k, Model);
4: end for
5: end for
6: PMcandidate = minj(δj);
7: Assign(VM j,PM candidate);

5.4.2 Local Interference Handling

In some cases, CloudScope will not migrate the application VM but instead resolve the problem

locally using Dom0 reconfiguration. This prevents the application from experiencing a period

of high SLO violations and the destination PM from experiencing increased utilisation in Dom0

due to migration.

CloudScope allows adaptive Dom0 configuration to transfer unused resources for better perfor-

mance without affecting application SLOs. For example, in Figure 5.2(c), 8 vCPUs are given

to Dom0. These are needed in order for Dom0 to sustain the workload and fully utilise the

hardware resource for the current guests. The same effect can be achieved by changing the

CPU weight and cap of Dom0. For example, a domain with a weight of 512 will get twice as

much CPU as a domain with a weight of 256 on a contended host. The cap fixes the maximum

amount of CPUs a domain can consume. With different weights and caps in the system, we

can modify the models by setting:

pDom0 = (1− ρ) ∗ wDom0∑
i
wi

n

(5.8)

where wDom0 and wi represent the weight of Dom0 and each guest VM respectively, and n is

the number of guest VMs. We assume that the SLOs are provided to CloudScope by the users

or cloud providers. Therefore, when a violation of an SLO is detected and the current host

5.5. Evaluation 99

does not have a full CPU utilisation, which in our model means pcpu = 1 and
∑

j pCPUj >∑
i utili×vCPUi, CloudScope will derive the Dom0 CPU weight needed by Equation 5.8. This

will change the attributes of file /boot/extlinux.conf in Dom0 triggering a hot reconfiguration

without rebooting. In Section 5.5.5, we illustrate the effect of modifying the attributes of Dom0

on-the-fly.

5.5 Evaluation

In this section, we evaluate a variety of workloads to validate the proposed model. We use (1)

the single workloads for CPU, disk, and network as presented in Section 5.2.2, (2) a synthetic

workload in which we combine the three, and (3) a realistic workload which consists of Hadoop

MapReduce jobs. The results in this section show that CloudScope is able to accurately capture

the performance degradation and the interference of VMs caused by Xen virtualisation. The

validation experiments are run with the same hardware configurations as introduced in Table 5.1

of Section 5.2 with the results averaged over 30 runs for each experiment.

5.5.1 Experimental Setup

To ensure that our benchmarking experiments are reproducible, we provide the configuration

for the Xen hypervisor used in our experiments. All the experiments are running on XenServer

6.2.0 (Clearwater)7 with the following configurations: (1) we fine-tune Dom0’s vCPU to pCPU

affinity before the domains boot. The reason for this is that the vCPU will run on specific

NUMA nodes and try to allocate memory closer to it, so it helps Dom0 to deliver better

performance; (2) we turn off power saving mode to avoid Xen adjusting the CPU clock rate

dynamically8 (3) we enable hyper-threading on the test machine as the Xen and VMware

hypervisors perform better with hyper-threading [CSG13] and to emulate Amazon EC2 in

7XenServer – Download. http://xenserver.org/open-source-virtualization-download.html
8Tuning XenServer for Maximum Scalability. http://blogs.citrix.com/2012/06/23/xenserver-

scalability-performance-tuning/

http://xenserver.org/open-source-virtualization-download.html
http://blogs.citrix.com/2012/06/23/xenserver-scalability-performance-tuning/
http://blogs.citrix.com/2012/06/23/xenserver-scalability-performance-tuning/

100 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

 0

 0.5

 1

 1.5

 2

 2.5

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 E
xe

cu
tio

n
Ti

m
e

(m
s)

Number of VMs

prime = 5000
model

prime = 3000
model

(a) CPU execution time validation

 0

 20

 40

 60

 80

 100

 120

1 4 16 64 256 1k 4k

To
ta

l D
is

k
T

hr
ou

gh
pu

t (
M

B
/s

)

Block Size (KB)

2 DomUs
5 DomUs

10 DomUs

(b) Disk throughput validation

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

N
or

. T
hr

ou
gh

pu
t P

er
 V

M
 (

G
b/

s)

Number of VMs

Nor. Thro
model

(c) Network throughput validation

Figure 5.5: Interference prediction model validation for (a) CPU, (b) disk, and (c) network intensive
workloads. Figure (a) shows the validation results for average execution time, executing prime 3000
and 5000. Figure (b) shows the validation results for the total disk I/O throughput of 2, 5, and 10
VMs with all block sizes. Model results are shown in the same color but as dashed lines. Figure (c)
shows the validation results of the normalised throughput with measurement standard deviation of
one VM co-resident with another 1 to 9 VMs.

which VM instances run on hyper-threaded CPUs. The system used to collect the performance

data from our benchmarks is similar to the testbed setup in [CK15].

For disk I/O, before running the actual experiments, we create a large file on each VM to

completely fill the file system and then delete this file. This ensures that the virtual hard disk

is fully populated and performance metrics will be correct. We also run iostat to make sure

that all the virtual block devices are active.

5.5.2 CPU, Disk, and Network Intensive Workloads

First we present the prediction results for the scenarios in which the VMs are running CPU, disk,

or network intensive workloads generated by sysbench, fio, and iperf, respectively (equal to

Section 5.2). We validate our model against system measurements presented in Figure 5.5.

Figure 5.5(a) shows the validation results of the average execution time of prime 3000 and

prime 5000 workloads with an increasing number of VMs. The mean model prediction error is

3.8% for prime 5000 and 10.5% for prime 3000. From 1 to 25 VMs, the model deviates from

the measurement data but the results are still within standard deviation of the measurements.

In particular, the model underestimates execution time for the prime 3000 workload, as the

5.5. Evaluation 101

performance is affected by hyper-threading overhead which is not considered in the model.

The disk intensive workload validation results are shown in Figure 5.5(b). The dashed lines

represent the model predictions. The total throughput of 2, 5, and 10 VMs running sequential

read workloads with varying block sizes from 1 to 4 MB is predicted with a mean error of 8.6%.

Three stages as we discussed in Section 5.2.2 including the drops at around 256 KB block size

in all three scenarios are precisely captured. As shown in Figure 5.2(b), block sizes from 1

to 32 KB are dominated by the hypervisor overhead caused by the performance differences

between non-virtualised and virtualised domains. Secondly, block sizes from 32 KB to 256 KB,

the system is bound by the disk throughput. Thirdly, for block sizes larger than 512 KB, our

model can account for the processing of memory page locking and updating by capturing the

fact that the disk throughput are limited by the size of the grant table.

Figure 5.5(c) represents the normalised network throughput validation with 1 to 9 VMs running

iperf. The vertical bars represent the standard deviation of the throughput measurements.

The mean prediction error is 4.8%. This shows that our model follows the measurements closely

and can reflect the effect of intensive Dom0 overhead and sharing network resources with other

co-resident VMs.

5.5.3 Mixed Workload

Next, we apply our model to a workload consisting of a mix of disk I/O and network intensive

jobs in combination with a moderate CPU workload running together within each VM. The

VMs were configured with 4 vCPUs with 1 GHz per vCPU, 8 GB memory, 32 GB storage, and

1 vNIC. We refer to the network intensive workload as std-net. It comprises a set of HTTP

requests over the network to the VM which runs an HTTP server. httperf was deployed to

generate the HTTP client workload with clients distributed across the hosts in our private

departmental cloud. The disk intensive workload is referred to as std-disk which is a sequential

read of 1 GB data with block size 64 KB and without buffer access. The CPU workload is

referred to as std-cpu which is a sysbench prime 3000 workload.

102 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

 0

 20

 40

 60

 80

 100

 120

1 5 10 15 20

D
is

k
I/O

 T
hP

ut
 o

f t
he

 V
M

 (
M

B
/s

)

Number of Co-resident VMs

Measurement
Model

(a) Disk throughput

 0

 10

 20

 30

 40

 50

1 5 10 15 20

N
et

 I/
O

 T
hP

ut
 o

f t
he

 V
M

 (
re

q/
s)

Number of Co-resident VMs

Measurement
Model

(b) Network throughput

Figure 5.6: Interference prediction model validation of mixed workload. Figure (a) and (b) show the
disk and network throughput of a targeted VM collocated with 5, 10, 15, and 20 VMs

We predict the virtualisation slowdown of a VM running a mixed workload when co-resident

with 5, 10, 15, and 20 VMs running the same mixed workloads. Figure 5.6 shows the prediction

of the model for the disk and network throughput for a target VM as the number of co-resident

VMs increases. The std-cpu workload (not shown) did not incur obvious degradation resulting

from co-residency (also predicted by the model). The average relative prediction error is less

than 8.3% and 18.4% for disk and network throughput respectively. The prediction error of

network throughput is higher than disk throughput likely due to other cloud network traffic

between our client and server VMs.

5.5.4 MapReduce Workload

In this section we investigate the accuracy of our interference prediction model based on a real

workload. We deploy Apache Hadoop Yarn9 on 4 VMs (4 2.9 GHz vCPUs, 8 GB memory, and

40 GB local disk) co-located within the same physical machine with one master node and three

workers. We use Apache Pig10 to run a subset of the queries from the TPC-H benchmark11

on a 10 GB dataset with varying complexities. Some of the queries need several consecutive

9Apache Hadoop Yarn. http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/

YARN.html
10Apache Pig. http://pig.apache.org/
11TPC-H benchmark. http://www.tpc.org/tpch//

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://pig.apache.org/
http://www.tpc.org/tpch//

5.5. Evaluation 103

 0

 10

 20

 30

 40

 50

 60

 70

1:1 8:1 10:2 58:8

A
vg
. M
ap

an
d
R
ed
uc
e
T
im
e
(s
ec
)

Dedicated

Reduce
Map

(a) 4 MapReduce jobs on dedicated
PM

 0

 10

 20

 30

 40

 50

 60

 70

1:1 8:1 10:2 58:8

A
vg
. M
ap

an
d
R
ed
uc
e
T
im
e
(s
ec
)

With 20 VMs running CPU job (3000)

Reduce
Map

Model (reduce)
Model (map)

(b) Map and Reduce time prediction
with 20 VMs executing prime 3000

 0

 10

 20

 30

 40

 50

 60

 70

1:1 8:1 10:2 58:8

A
vg
. M
ap

an
d
R
ed
uc
e
T
im
e
(s
ec
)

With 20 VMs running CPU job (5000)

Reduce
Map

Model (reduce)
Model (map)

(c) Map and Reduce time prediction
with 20 VMs executing prime 5000

Figure 5.7: Interference prediction model validation for different Hadoop workloads with different
numbers of mappers and reducers. For example 1:1 represents 1 mapper and 1 reducer. Figure (a)
shows each Hadoop Yarn job running dedicated within one PM. Figure (b) and (c) show the validation
results of each Hadoop job with 20 co-resident VMs executing prime 3000 and 5000, respectively.

MapReduce jobs to be processed. We run the first four TPC-H queries for 30 times both alone

and with another 20 VMs running prime 3000 and 5000. For space reasons, we do not list all

the MapReduce jobs involved during a query but rather pick individual jobs from each query

in a way that we cover a broad spectrum of different numbers of map and reduce tasks. Each

job has M mappers and R reducers, written as M :R.

Figure 5.7 presents the average performance of 1:1, 8:1, 10:2, and 58:8 jobs running alone and

co-located with the other 20 VMs running either prime 3000 or 5000. The model predictions

are compared to measurements. Map and reduce tasks were validated separately because they

have different proportions of resource usage. The mean relative error for map and reduce tasks

is 10.4% and 11.9%, respectively. The mean relative errors for each 1:1, 8:1, 10:2 and 58:8 job

are 14.3%, 6.7%, 8.3% and 14.8%.

The evaluation shows that in this case study, our model is able to achieve a prediction error less

than 20% across all workloads. In the following, we use our model to enhance VM performance

by implementing an interference-aware scheduling approach and an adaptive Dom0.

104 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

PMs 13 Dell PowerEdge C6220 & 8 Dell PowerEdge C6220-II
VMs 250 to 270 other VMs running during the experiments
Shared Storage NetApp + Cumulus 04 (ZFS) shared storage (iSCSI)
Network 10Gbps Ethernet. 10Gbps switch
IaaS Apache Cloudstack v4.1.1
Hypervisor XenServer 6.2.0

Table 5.2: Specifications for interference-aware scheduler experimental environment

5.5.5 Interference-aware Scheduling

To evaluate CloudScope’s interference-aware scheduling mechanism, we compare it to the de-

fault CloudStack VM scheduler. Using the experimental setup described in Table 5.2, we utilise

our private cloud consisting of 21 physical machines running Apache CloudStack. At the time

of our experiments, the cloud was open to other users and was running between 250 to 270

other VMs with unknown workloads. We prepare the 34 VMs with the following workloads:

10 VMs running std-cpu, 10 VMs running std-disk, and 10 VMs running std-net and another 4

VMs running Hadoop as configured in the previous section.

We launched these 34 VMs (including 10 std-cpu, 10 std-disk, 10 std-net and 4 Hadoop VMs)

using both the default CloudStack VM scheduler and our CloudScope scheduler and measured

the average execution time, throughput, and Map/Reduce job completion times for all VMs. We

repeated the std-cpu, std-disk and std-net experiments 5 times and we conduct the Map/Reduce

experiments 10 times. Since we conduct this experiment in a real clouds environment, we do

not have access to all the applications running in the cloud. We assume that the I/O requests

of other tenants that are larger than 10 IOPS (Input/Output Operations per Second) are small

random read/write with 8KB block size; the rest of the I/O requests are sequential read/write

with 64KB block size. CloudScope does not make a migration decision unless the performance

gain on the new PM destination is over 5%, so what we expect to see is that for some cases

CloudScope does not migrate the VM instances. Also, due to the dynamic nature of the Cloud

environment, it is not guaranteed that CloudScope can always make the ideal decision with

performance improvement after VM migration or scheduling.

Figure 5.8 details the performance improvement histograms of CloudScope over CloudStack

5.5. Evaluation 105

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-5 0 5 10 15 20

R
el
at
iv
e
fr
eq
ue
nc
y

Performance improvements (%)

42% of runs for which CloudScope makes a migration decision

After migration

(a) std-cpu

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-5 0 5 10 15 20

R
el
at
iv
e
fr
eq
ue
nc
y

Performance improvements (%)

70% of runs for which CloudScope makes a migration decision

After migration

(b) std-disk

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-5 0 5 10 15 20

R
el
at
iv
e
fr
eq
ue
nc
y

Performance improvements (%)

60% of runs for which CloudScope makes a migration decision

After migration

(c) std-net

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

-5 0 5 10 15 20

R
el
at
iv
e
fr
eq
ue
nc
y

Performance improvements (%)

55% of runs for which CloudScope makes a migration decision

After migration

(d) Hadoop

Figure 5.8: Histograms of the performance improvement of the CloudScope interference-aware sched-
uler over the CloudStack scheduler, for those cases where CloudScope migrates some of the VMs to
the PM with the smallest interference. Figures (a), (b), (c) and (d) show the results of CPU, disk and
network intensive jobs, and Hadoop job respectively.

scheduler of different jobs, in which the x-axis shows different ranges of the percentile per-

formance improvements. We compare the job completion time results under CloudScope to

the ones under CloudStack scheduler. The title of each plot shows the percentage of runs

CloudScope decided to make a migration decision, which means that in some cases Cloud-

Scope scheduler accepted the VM placement decision made by CloudStack. As illustrated

in Figure 5.8(a), migration decision was made for only 42% of the total runs of cpu-intensive

jobs, while migration decision was made for 70% and 60% of the total runs of disk and network-

intensive jobs respectively. This is due to CPU resource is more sufficient in the cloud compared

to disk and network resources. For some cases in Figure 5.8(b) and Figure 5.8(c), CloudScope

can obtain more than 15% performance improvement for both disk and network-intensive jobs

maximumly; however, a few cases in the range of [−5, 0] show that the migration decisions do

not always guarantee the overall performance without any knowledge of the future workload

106 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54

Completion time (ms)

CloudScope
CloudStack

(a) std-cpu

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 60 65 70 75 80 85 90 95 100 105 110

Disk Throughput (MB/s)

CloudScope
CloudStack

(b) std-disk

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 25 30 35 40 45 50

Network Throughput (req/s)

CloudScope
CloudStack

(c) std-net

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 32 34 36 38 40 42 44 46 48

Completion time (s)

map CloudScope
map CloudStack

reduce CloudScope
reduce CloudStack

(d) Hadoop

Figure 5.9: CDF plots for the job completion times of different tasks under CloudScope compared to
CloudStack, for those cases where CloudScope migrates some of the VMs to the PM with the smallest
interference. Figures (a), (b), (c) and (d) show the results of CPU, disk and network intensive jobs,
and Hadoop job respectively.

and the dynamics.

Figure 5.9 shows the CDF (Cumulative Distribution Function) of the job completion times of

CPU, disk, network-intensive and Map/Reduce job under CloudScope compared to CloudStack.

This provides an overview of the percentile distribution of the completion times of different

jobs. Figure 5.9(b) shows that CloudScope does not make migration decision for 60% of the

total numbers of runs. Also, it shows that with CloudScope, std-cpu completion time can

be greatly improved by reducing the 90th percentile of completion time from 0.53 ms to 0.47

ms. The job completion time under CloudScope is between 0.42 to 0.46 ms. In addition,

Figure 5.9(b) and Figure 5.9(c) both show that CloudScope manages to migrate VMs to a PM

with smaller disk or network I/O interference to avoid the presence of the long tail throughput.

For example, Figure 5.9(b) presents that CloudScope significantly improve the 10th percentile

of disk throughput from 60 MB/s to 75 MB/s. Last, Figure 5.9(c) illustrates the completion

5.5. Evaluation 107

time of the task with 58 mappers and 8 reducers. It shows CloudScope can improve both

mapper and reducer completion time.

Figure 5.10 shows the average performance improvement of each type of VM when scheduled

with CloudScope in comparison to the default CloudStack scheduler. The error bars show the

standard deviation across all VMs for a single workload and all runs. The std-disk and std-net

VMs show a performance improvement of 10% when scheduled with CloudScope. The std-cpu

and Hadoop VMs show an improvement of 5.6% and 2.1%, respectively. The std-cpu VMs do

not obtain significant improvement, this is due to the CPU resource of our cloud platform is

not oversubscribed. Because of the grant memory management (see Section 5.2.2), the I/O

intensive VMs are more sensitive to resource contention and hence, the CloudScope scheduler

achieves larger improvements in these cases. However, because we only migrate the VM image

but without the data image for Hadoop. Due to the data locality problem, the Hadoop workload

might experience high network communication instead of being benefit from lower performance

interference. Also, the estimation of other co-located applications also limits the performance

improvement.

5.5.6 Adaptive Control Domain

We also use CloudScope to implement an adaptive Dom0 which is able to its configuration

parameters at runtime. We run the std-net workload using VM-net VMs (see Table 5.1) using

the same PM. 10 VMs running iperf server were launched on the PM. Dom0 was configured

with 4 vCPUs with weight 256 and a cap of 400. CloudScope could recognise that Dom0

suffered heavy network I/O workload while handling the network traffic. CloudScope obtained

the weight needed by Equation 5.7 and 5.8, calculating a new weight of > 425. Changing the

weight of Dom0 to 512 provides an average performance gain of 28.8% (see Figure 5.11).

The two presented simple use cases demonstrate that our model can be successfully applied to

improve VM performance. We believe that more sophisticated scheduling and reconfiguration

approaches can also benefit from CloudScope.

108 Chapter 5. Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

 0

 2

 4

 6

 8

 10

 12

 14

cpu disk net Hadoop

A
ve

ra
ge

 Im
pr

ov
em

en
t (

%
)

Figure 5.10: CloudScope schedul-
ing results compared to the default
CloudStack scheduler

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

N
or

. T
hr

ou
gh

pu
t P

er
 V

M
 (

G
b/

s)

Number of VMs

Dom0 weight 512
Dom0 weight 256

Figure 5.11: CloudScope self-
adaptive Dom0 with different vCPU
weights

Approaches Application Techniques Avg. Err.
TRACON [CH11] Data-intensive Model training & Nonlinear 19%
CloudScale [SSGW11] CPU contention Linear regression 14%
CPI2 [ZTH+13] CPU contention Correlation function n/a
Paragon [DK13] CPU or IO-bound Microbenchmark & ML 5.3%
Cuanta [GLKS11] Cache, memory Cache pressure clone 4%
Q-Clouds [NKG10] CPU contention Nonlinear 13%
CloudScope [CRO+15] Any application No microbenchmark & lin-

ear model
9%

Table 5.3: Related work of virtualisation interference prediction (ML represents machine learning)

5.6 Summary

CloudScope is lightweight and provides good prediction accuracy in comparison to previous

work. Table 5.3 compares CloudScope to similar work in the literature. The main difference

is that, CloudScope works for any application with the smallest prediction error and no pre-

training or microbenchmark is needed for the prediction.

In this chapter, we have presented CloudScope, a comprehensive system to predict resource

interference in virtualised environments, and used the prediction to optimise the operation of a

cloud environment. CloudScope incorporates a lightweight analytical model for the prediction

of performance degradation. To this end, we have characterised and analysed different workload

behaviours by benchmarking CPU, disk, and network intensive workloads. CloudScope predicts

the completion time of jobs by a using virtualisation-slowdown factor that incorporates the

effect of hypervisor overhead and resource contention. Evaluation shows that CloudScope can

5.6. Summary 109

achieve an average relative error of 6.1% for single resource intensive workloads, 13.4% for

mixed resource workloads, and 11.2% for MapReduce workloads. CloudScope provides an

efficient interference-aware VM scheduling mechanism which can improve job completion time

on average by 7.5%.

Chapter 6

Conclusion

This dissertation has addressed the question of how to effectively diagnose performance prob-

lems and manage application performance in large-scale virtualised multi-tenant cloud environ-

ments. We have shown that a lightweight analytical model based on comprehensive monitoring

data can in many cases provide an efficient solution.

Many related methods and systems have attended to solve different aspects of this problem. Our

work fills some gaps in the areas of monitoring, modelling and managing and combines them

in a coherent framework. Specifically, we begin by showing how a cloud benchmarking system

or a performance management system can benefit from graphical and intuitive specification of

performance queries and SLOs using Performance Trees. We next show that a model can tell us

how many VMs of different granularities (e.g. different numbers of CPU cores) should serve a

workload in light of the budget and performance trade-off. Finally, we show how a lightweight

and general performance interference prediction model can identify bottlenecks and enable in-

telligent interference-aware resource scheduling policies. In an era of cloud-based systems that

are rapidly evolving, we believe that simple, modular-based frameworks for performance man-

agement can enable rapid innovation. Indeed, our Performance Tree-based automatic control

platform is currently only 9 000 lines of code, and our frameworks for multicore scalability and

performance interference prediction are significantly smaller.

Even though we readily acknowledge that our methods and techniques will not solve all

110

6.1. Summary of Achievements 111

performance-related problems in this area, we believe that our monitoring, modelling and man-

aging methodology provides a useful reference approach for performance engineering in clouds.

In the rest of this chapter, we summarise our most important contributions and outline some

possibilities for future work.

6.1 Summary of Achievements

Performance monitoring and performance evaluation are fundamental to track the health of

cloud applications and to ensure SLA compliance. To enable this, performance engineers should

have the ability to specify complex SLOs in an intuitive accessible way. To this end, in chapter 3

we present a Performance Tree-based monitoring and resource control platform for applications

running in clouds which makes the following contributions:

• We conduct extensive benchmarking experiments and present some lessons we learned

related to accurate and reproducible monitoring in a virtualised environment.

• We discuss system requirements for an extensible modular system which allows for mon-

itoring, performance evaluation and automatic scaling up/down control of cloud-based

applications.

• We present a front-end which allows for the graphical specification of SLOs using PTs.

SLOs may be specified by both live and historical data, and may be sourced from multiple

applications running on multiple clouds.

• We demonstrate how our monitoring and evaluation feedback loop can ensure that the

SLOs of a web application are met by auto-scaling.

To leverage monitoring data efficiently, cloud managers and end users are keen to understand

the relationship between their applications and the system resources in multicore virtualised

environments. In Chapter 4 we try to understand the scalability behaviour of network/CPU

intensive applications running on a virtualised multicore architecture. This work makes the

following contributions:

112 Chapter 6. Conclusion

• We develop a multi-class queuing model for predicting the performance of network-

intensive applications deployed in multicore virtualised environments.

• We derive an approximate analytical solution and validate our model in our testbed.

The validation results show that the model is able to predict the expected performance

in terms of response time, throughput and CPU utilisation with relative errors ranging

between 8 and 26%

• We present a means to achieve better scalability for multicore web servers through the

use of virtual hardware. We also demonstrate the applicability of our model in predicting

the performance of different system configurations.

In the corresponding validation experiments, we found that the service rate of the vCPU core

varies with different set of co-resident applications. As a result, the idea of the performance

interference prediction and management came to us. Thus, instead of requiring comprehensive

micro-benchmarks, online training or complex parametrisation, we seek flexible lightweight

models that can be deployed in cloud environments where applications and workloads change

frequently. We make the following contributions:

• We introduce a lightweight analytical model solely based on available system parameters

which predicts the impact of co-residing VMs on performance.

• Evaluation shows that CloudScope (the system we implement) interference prediction can

achieve an average relative error of 6.1% for single resource intensive workloads, 13.4%

for mixed resource workloads, and 11.2% for MapReduce workloads with respect to real

system measurements.

• CloudScope provides an efficient interference-aware VM scheduling mechanism which can

improve job completion time on average by 7.5% compared to the default scheduler and

the adaptive control domain can provide an average performance gain of 28.8% with

respect to the default configuration.

6.2. Future Work 113

6.2 Future Work

There are several avenues to be explored in future work as follows:

• New model to solve the limitations: We outlined some limitations of our multicore

performance prediction model in Section 4.4.4. We identified limitations with respect to

routing probability, interrupt priority, context switching overhead and hypervisor over-

head. Consideration of hypervisor overhead has already been accounted for in our subse-

quent development of CloudScope. For other limitations, possible directions would be to

use a modelling technique such as multi-class processor sharing queues with priority.

• Performance diagnosing: The Performance Tree-based platform introduces a flexible

way of monitoring and evaluating performance through intuitive graphical performance

query specification. However, it is sometimes difficult to have an intuition about what

results in good performance and what causes performance bottlenecks. This is especially

true when users are dealing with large-scale distributed systems, such as Hadoop Yarn,

Spark, Flink etc. Factors such as communication between multiple nodes, memory over-

head of various data representations, CPU overhead of data serialisation, data skew can

significantly impact the performance. In CloudScope we also introduce the idea of ‘diag-

nosing’ where each parameter in the model is associated with a corresponding hardware or

hypervisor attribute. With the similar idea and comprehensive profiling, it would be chal-

lenging to develop tools that can automatically detect these inefficiencies, and give users

directions about the sensitivity of application performance to hardware and hypervisor

attributes.

• Workload-aware VM consolidation: Although CloudScope interference-aware sched-

uler supports flexible VM consolidation through minimising the interference slowdown-

factor, which has already been implemented, finding the right policies for consolidating

VMs in terms of, e.g. different applications, various SLO requirements etc, remains an

open challenge. CloudScope is designed to enable complex polices that are easy to change.

Some possible directions can be, for example, how can VMs be consolidated and scheduled

114 Chapter 6. Conclusion

to enforce priorities and individual SLOs? How can a workload-aware scheduler reduce

the impact of contention in a last-level shared cache, while minimising the contention on

the disk and network I/O?

• Self-adaptive hypervisor: CloudScope currently allows adaptive Dom0 configuration

on-the-fly to improve the job completion time and aggregated throughput, but there are

other requirements such as per-VM SLO guarantees that can benefit from this approach.

Exploring more algorithms based on this idea could improve application performance and

create more opportunities for on-line system optimisation and performance guarantee

mechanisms.

• Multiple control domains: We currently refer to Dom0 as control domain; however,

this is going to change. With the observed evolution of hardware towards NUMA ar-

chitectures and servers with several dozen cores, Xen is now supporting multiple “driver

domains”1. This means we wil have separate domains for handling network and stor-

age I/O. Multiple control domains is the future development of virtualisation technology.

CloudScope models CPU, disk and network requests individually, which gives a better

way of understanding how each type of request consumes each resource. Thus, it would

be interesting to have a mechanism which can decide the size of each mini-domain to

serve each of the corresponding guest domains.

As cloud environments and applications grow more complex and users start demanding more

reliable services, these policies will be important to maintain good performance. We hope that

continued experience and research with the performance engineering in clouds will help address

these challenges, and lead to solutions that improve the experiences of cloud managers and

users.

1Device passthrough to driver domain in Xen. http://wiki.xenproject.org/mediawiki/images/1/17/

Device_passthrough_xen.pdf

http://wiki.xenproject.org/mediawiki/images/1/17/Device_passthrough_xen.pdf
http://wiki.xenproject.org/mediawiki/images/1/17/Device_passthrough_xen.pdf

Appendix A

Xen Validation Results

The validation results we present in Section 4.4 is based on a Type-2 hypervisor, namely

VirtualBox. Here we present the corresponding results of a Type-1 hypervisor, Xen, as shown

in Figure A.1. The infrastructure setup is illustrated in Section 4.2 Figure 4.1, using the default

configurations. The hypervisor runs on an IBM System X 3750 M4 with four Intel Xeon E5-

4650 eight-core processors at 2.70GHz to support multicore VM instances comprising from 1

to 8 cores. Each virtual CPU is configured with 2GHz frequency.

115

116 Appendix A. Xen Validation Results

 1 1
0

 1
00

 1
00

0 2
00

 2
50

 3
00

 3
50

 4
00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(a
)

1
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 3
00

 4
00

 5
00

 6
00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(b
)

2
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(c
)

4
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(d
)

8
co

re
1

N
IC

 1 1
0

 1
00

 1
00

0 2
00

 3
00

 4
00

 5
00

 6
00

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(e
)

2
co

re
2

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(f
)

4
co

re
2

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(g
)

8
co

re
2

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(h
)

4
co

re
4

N
IC

s

 1 1
0

 1
00

 1
00

0 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

Average Response Time (ms)

R
eq

ue
st

 R
at

e
(p

er
 s

ec
on

d)

M
ea

su
re

m
en

t
M

od
el

(i
)

8
co

re
4

N
IC

s

F
ig
u
re

A
.1
:

V
al

id
at

io
n

of
re

sp
on

se
ti

m
e

of
1

to
8

co
re

w
it

h
m

u
lt

ip
le

n
u

m
b

er
of

N
IC

s
o
n

X
en

h
y
p

er
v
is

o
r

Bibliography

[ABG15] George Amvrosiadis, Angela Demke Brown, and Ashvin Goel. Opportunistic stor-

age maintenance. In Proceedings of the 25th Symposium on Operating Systems

Principles (SOSP), pages 457–473. ACM, 2015.

[ABK+14] Sebastian Angel, Hitesh Ballani, Thomas Karagiannis, Greg O’Shea, and Eno

Thereska. End-to-end performance isolation through virtual datacenters. In Pro-

ceedings of the 11th USENIX Symposium on Operating Systems Design and Im-

plementation (OSDI), pages 233–248, 2014.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A

view of cloud computing. Communications of the ACM, 53(4):50–58, 2010.

[ALW15] Marcos K Aguilera, Joshua B Leners, and Michael Walfish. Yesquel: scalable SQL

storage for Web applications. In Proceedings of the 25th Symposium on Operating

Systems Principles (SOSP), pages 245–262. ACM, 2015.

[AM13] Arwa Aldhalaan and Daniel A Menascé. Analytic performance modeling and

optimization of live VM migration. In Computer Performance Engineering, pages

28–42. Springer, 2013.

[ASR+10] Sherif Akoush, Ripduman Sohan, Andrew Rice, Andrew W Moore, and Andy Hop-

per. Predicting the performance of virtual machine migration. In Proceedings of

the 18th International Symposium on Modeling, Analysis and Simulation of Com-

117

118 BIBLIOGRAPHY

puter and Telecommunication Systems (MASCOTS), pages 37–46. IEEE/ACM,

2010.

[BBM+13] Piotr Bar, Rudy Benfredj, Jonathon Marks, Deyan Ulevinov, Bartosz Wozniak,

Giuliano Casale, and William J Knottenbelt. Towards a monitoring feedback loop

for cloud applications. In Proceedings of the International Workshop on Multi-

cloud Applications and Federated Clouds (MODAClouds), pages 43–44. ACM,

2013.

[BCKR11] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards

predictable datacenter networks. In Proceedings of the ACM SIGCOMM Confer-

ence, volume 41, pages 242–253. ACM, 2011.

[BCMP75] Forest Baskett, K Mani Chandy, Richard R Muntz, and Fernando G Palacios.

Open, closed, and mixed networks of queues with different classes of customers.

Journal of the ACM (JACM), 22(2):248–260, 1975.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. In

Proceedings of the 9th ACM Symposium on Operating Systems Principles (SOSP),

volume 37, pages 164–177. ACM, 2003.

[BDK+08] Darren K Brien, Nicholas J Dingle, William J Knottenbelt, Harini Kulatunga, and

Tamas Suto. Performance trees: Implementation and distributed evaluation. In

Proceedings of the 7th International Workshop on Parallel and Distributed Methods

in Verification (PDMC), 2008.

[BGHK13] Fabian Brosig, Fabian Gorsler, Nikolaus Huber, and Samuel Kounev. Evaluating

approaches for performance prediction in virtualized environments. In Proceedings

of the 21st International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems (MASCOTS), pages 404–408. IEEE,

2013.

BIBLIOGRAPHY 119

[BGL+10] Collin Bennett, Robert L Grossman, David Locke, Jonathan Seidman, and Steve

Vejcik. Malstone: towards a benchmark for analytics on large data clouds. In

Proceedings of the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD), pages 145–152. ACM, 2010.

[BKKL09] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. How is the

weather tomorrow? Towards a benchmark for the cloud. In Proceedings of the

Second International Workshop on Testing Database Systems (DBTest), page 9.

ACM, 2009.

[BM13] Shouvik Bardhan and Daniel A Menascé. Analytic Models of Applications in

Multi-core Computers. In Proceedings of the 21st International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems

(MASCOTS), pages 318–322. IEEE, 2013.

[BRX13] Xiangping Bu, Jia Rao, and Cheng-zhong Xu. Interference and locality-aware

task scheduling for MapReduce applications in virtual clusters. In Proceedings of

the 22nd International Symposium on High-performance Parallel and Distributed

Computing (HPDC), pages 227–238. ACM, 2013.

[BS10] Sean Kenneth Barker and Prashant Shenoy. Empirical evaluation of latency-

sensitive application performance in the cloud. In Proceedings of the 1st Annual

ACM SIGMM Conference on Multimedia Systems (MMSys), pages 35–46. ACM,

2010.

[BWT12] Salman A Baset, Long Wang, and Chunqiang Tang. Towards an understanding of

oversubscription in cloud. In Proceedings of the 2nd USENIX Workshop on Hot

Topics in Management of Internet, Cloud, and Enterprise Networks and Services

(Hot-ICE), 2012.

[CANK03] Jianhua Cao, Mikael Andersson, Christian Nyberg, and Maria Kihl. Web server

performance modeling using an M/G/1/K* PS queue. In Proceedings of the 10th

120 BIBLIOGRAPHY

International Conference on Telecommunications (ICT), volume 2, pages 1501–

1506. IEEE, 2003.

[CCD+01] Graham Clark, Tod Courtney, David Daly, Dan Deavours, Salem Derisavi, Jay M

Doyle, William H Sanders, and Patrick Webster. The Möbius modeling tool. In

Proceedings of the 9th International Workshop on Petri Nets and Performance

Models (PNPM), pages 241–250. IEEE, 2001.

[CCS+15] Oliver RA Chick, Lucian Carata, James Snee, Nikilesh Balakrishnan, and Ripdu-

man Sohan. Shadow Kernels: A General Mechanism For Kernel Specialization in

Existing Operating Systems. In Proceedings of the 6th Asia-Pacific Workshop on

Systems (APSys), pages 1–7. ACM, 2015.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:

A distributed storage system for structured data. ACM Transactions on Computer

Systems (TOCS), 26(2):4–16, 2008.

[CDM+12] Jianjun Chen, Chris Douglas, Michi Mutsuzaki, Patrick Quaid, Raghu Ramakr-

ishnan, Sriram Rao, and Russell Sears. Walnut: a unified cloud object store. In

Proceedings of the ACM SIGMOD International Conference on Management of

Data, pages 743–754. ACM, 2012.

[CFF14] Antonio Corradi, Mario Fanelli, and Luca Foschini. VM consolidation: A real case

based on OpenStack Cloud. Future Generation Computer Systems, 32:118–127,

2014.

[CG05] Ludmila Cherkasova and Rob Gardner. Measuring CPU Overhead for I/O Process-

ing in the Xen Virtual Machine Monitor. In Proceedings of the USENIX Annual

Technical Conference (USENIX ATC), volume 50, 2005.

[CGPS13] Davide Cerotti, Marco Gribaudo, Pietro Piazzolla, and Giuseppe Serazzi. End-to-

End performance of multi-core systems in cloud environments. Computer Perfor-

mance Engineering, pages 221–235, 2013.

BIBLIOGRAPHY 121

[CGV07] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Comparison of the three

CPU schedulers in Xen. ACM SIGMETRICS Performance Evaluation Review,

35(2):42–51, 2007.

[CH11] Ron C Chiang and H Howie Huang. TRACON: interference-aware scheduling for

data-intensive applications in virtualized environments. In Proceedings of 2011

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC), page 47. ACM, 2011.

[Che07] Sing-Kong Cheung. Processor sharing queue and resource sharing in wireless

LANs. PhD thesis, University of Twente, 2007.

[CHHW14] Ron C Chiang, Jinho Hwang, H Howie Huang, and Timothy Wood. Matrix:

Achieving predictable virtual machine performance in the clouds. In 11th Inter-

national Conference on Autonomic Computing (ICAC), pages 45–56, 2014.

[CHO+14] Xi Chen, Chin Pang Ho, Rasha Osman, Peter G Harrison, and William J Knotten-

belt. Understanding, modelling, and improving the performance of web applica-

tions in multicore virtualised environments. In Proceedings of the 5th ACM/SPEC

International Conference on Performance Engineering (ICPE), pages 197–207.

ACM, 2014.

[CK15] Xi Chen and William Knottenbelt. A Performance Tree-based Monitoring Plat-

form for Clouds. In Proceedings of the 6th ACM/SPEC International Conference

on Performance Engineering (ICPE), pages 97–98. ACM, 2015.

[CKK11] Giuliano Casale, Stephan Kraft, and Diwakar Krishnamurthy. A model of storage

I/O performance interference in virtualized systems. In Proceedings of the 31st In-

ternational Conference on Distributed Computing Systems Workshops (ICDCSW),

pages 34–39. IEEE, 2011.

[CMF+14] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F Wenisch.

The mystery machine: End-to-end performance analysis of large-scale internet

122 BIBLIOGRAPHY

services. In Proceedings of the 11th USENIX Symposium on Operating Systems

Design and Implementation (OSDI), pages 217–231, 2014.

[Col16] Louis Columbus. Roundup Of Cloud Computing Forecasts And Market Esti-

mates, 2015. Forbes/Tech. http://docs.aws.amazon.com/general/latest/gr/

aws-ip-ranges.html. Accessed 14 June 2016.

[CRO+15] Xi Chen, Lukas Rupprecht, Rasha Osman, Peter Pietzuch, Felipe Franciosi, and

William Knottenbelt. CloudScope: Diagnosing and Managing Performance Inter-

ference in Multi-Tenant Clouds. In Proceedings of the 23rd International Sympo-

sium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems (MASCOTS), pages 164–173. IEEE, 2015.

[CRS+08] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,

Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana

Yerneni. PNUTS: Yahoo!’s hosted data serving platform. In Proceedings of the

34th International Conference on Very Large Data Bases (VLDB), volume 1, pages

1277–1288. VLDB Endowment, 2008.

[CSA+14] Lydia Y Chen, Giuseppe Serazzi, Danilo Ansaloni, Evgenia Smirni, and Walter

Binder. What to expect when you are consolidating: effective prediction models

of application performance on multicores. Cluster computing, 17(1):19–37, 2014.

[CSG13] Faruk Caglar, Shashank Shekhar, and Aniruddha Gokhale. A Performance

Interference-aware Virtual Machine Placement Strategy for Supporting Soft Real-

time Applications in the Cloud. Institute for Software Integrated Systems, Van-

derbilt University, Nashville, TN, USA, Tech. Rep. ISIS-13-105, 2013.

[CST+10] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st

ACM Symposium on Cloud Computing (SoCC), pages 143–154. ACM, 2010.

[CWM+14] Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Dee-

gan, Daniel Stodden, Geoffre Lefebvre, Daniel Ferstay, and Andrew Warfield.

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html

BIBLIOGRAPHY 123

Strata: High-performance scalable storage on virtualized non-volatile memory.

In Proceedings of the 12th USENIX Conference on File and Storage Technologies

(FAST), pages 17–31, 2014.

[DHK04] Nicholas J Dingle, Peter G Harrison, and William J Knottenbelt. Uniformization

and hypergraph partitioning for the distributed computation of response time den-

sities in very large Markov models. Journal of Parallel and Distributed Computing,

64(8):908–920, 2004.

[DK13] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-aware scheduling for

heterogeneous datacenters. In Proceedings of the 8th International Conference on

Architectural Support for Programming Languages and Operating Systems (ASP-

LOS), volume 41, pages 77–88. ACM, 2013.

[DKS09] Nicholas J Dingle, William J Knottenbelt, and Tamas Suto. PIPE2: a tool for the

performance evaluation of generalised stochastic Petri Nets. ACM SIGMETRICS

Performance Evaluation Review, 36(4):34–39, 2009.

[DP11] Jeremiah D Deng and Martin K Purvis. Multi-core application performance op-

timization using a constrained tandem queueing model. Journal of Network and

Computer Applications, 34(6):1990–1996, 2011.

[EBA+11] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,

and Doug Burger. Dark silicon and the end of multicore scaling. In Proceedings

of the 38th Annual International Symposium on Computer Architecture (ISCA),

pages 365–376. IEEE, 2011.

[Erl09] Agner Krarup Erlang. Sandsynlighedsregning og telefonsamtaler (In Danish, trans-

lated: The theory of probabilities and telephone conversations). Nyt tidsskrift

Matematik, 20:33–39, 1909.

[FAK+12] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad

Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ail-

amaki, and Babak Falsafi. Clearing the clouds: a study of emerging scale-out

124 BIBLIOGRAPHY

workloads on modern hardware. In Proceedings of the 7th International Confer-

ence on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), volume 47, pages 37–48. ACM, 2012.

[FJV+12] Benjamin Farley, Ari Juels, Venkatanathan Varadarajan, Thomas Ristenpart,

Kevin D Bowers, and Michael M Swift. More for your money: exploiting perfor-

mance heterogeneity in public clouds. In Proceedings of the 3rd ACM Symposium

on Cloud Computing (SoCC), pages 20–33. ACM, 2012.

[FSYM13] Seyed Kaveh Fayazbakhsh, Vyas Sekar, Minlan Yu, and Jeffrey C Mogul. Flowtags:

Enforcing network-wide policies in the presence of dynamic middlebox actions. In

Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software

Defined Networking (HotSDN), pages 19–24. ACM, 2013.

[GBK14] Fabian Gorsler, Fabian Brosig, and Samuel Kounev. Performance queries for

architecture-level performance models. In Proceedings of the 5th ACM/SPEC In-

ternational Conference on Performance Engineering (ICPE), pages 99–110. ACM,

2014.

[GCGV06] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vahdat. Enforcing

performance isolation across virtual machines in Xen. In Proceedings of the 7th

ACM/IFIP/USENIX International Middleware Conference (Middleware), pages

342–362, 2006.

[GDM+13] HaiBing Guan, YaoZu Dong, RuHui Ma, Dongxiao Xu, Yang Zhang, and Jian Li.

Performance enhancement for network I/O virtualization with efficient interrupt

coalescing and virtual receive-side scaling. Parallel and Distributed Systems, IEEE

Transactions on, 24(6):1118–1128, 2013.

[GK06] Pawel Gepner and Michal F Kowalik. Multi-core processors: New way to achieve

high system performance. In Proceedings of the International Symposium on Par-

allel Computing in Electrical Engineering (PARELEC), pages 9–13. IEEE, 2006.

BIBLIOGRAPHY 125

[GLKS11] Sriram Govindan, Jie Liu, Aman Kansal, and Anand Sivasubramaniam. Cuanta:

quantifying effects of shared on-chip resource interference for consolidated vir-

tual machines. In Proceedings of the 2nd ACM Symposium on Cloud Computing

(SoCC), page 22. ACM, 2011.

[GNS11a] Vishal Gupta, Ripal Nathuji, and Karsten Schwan. An analysis of power reduction

in datacenters using heterogeneous chip multiprocessors. ACM SIGMETRICS

Performance Evaluation Review, 39(3):87–91, 2011.

[GNS11b] Vishal Gupta, Ripal Nathuji, and Karsten Schwan. An analysis of power reduction

in datacenters using heterogeneous chip multiprocessors. ACM SIGMETRICS

Performance Evaluation Review, 39(3):87–91, 2011.

[GSA+11] Ajay Gulati, Ganesha Shanmuganathan, Irfan Ahmad, Carl Waldspurger, and

Mustafa Uysal. Pesto: online storage performance management in virtualized

datacenters. In Proceedings of the 2nd ACM Symposium on Cloud Computing

(SoCC), pages 19–33. ACM, 2011.

[Har03] Peter G. Harrison. Turning back time in Markovian process algebra. Journal of

Theoretical Computer Science, 290:1947–1986, Jan. 2003.

[HBB12] Ashif S Harji, Peter A Buhr, and Tim Brecht. Comparing high-performance multi-

core web-server architectures. In Proceedings of the 5th Annual International Sys-

tems and Storage Conference (SYSTOR), pages 1–12. ACM, 2012.

[HBvR+13] Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev Kumar, and

Harry C Li. An analysis of Facebook photo caching. In Proceedings of the 24th

ACM Symposium on Operating Systems Principles (SOSP), pages 167–181. ACM,

2013.

[HKAC13] Raoufehsadat Hashemian, Diwakar Krishnamurthy, Martin Arlitt, and Niklas

Carlsson. Improving the scalability of a multi-core web server. In Proceedings of the

4th ACM/SPEC International Conference on Performance Engineering (ICPE),

pages 161–172. ACM, 2013.

126 BIBLIOGRAPHY

[HKZ+11] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A Platform for

Fine-Grained Resource Sharing in the Data Center. In Proceedings of the 12th

USENIX Symposium on Networked Systems Design and Implementation (NSDI),

volume 11, pages 22–22, 2011.

[HLP09] Peter G Harrison, Catalina M Lladó, and Ramon Puigjaner. A unified approach to

modelling the performance of concurrent systems. Simulation Modelling Practice

and Theory, 17(9):1445–1456, 2009.

[HP92] Peter G Harrison and Naresh M Patel. Performance Modelling of Communication

Networks and Computer Architectures. Addison-Wesley Longman Publishing Co.,

Inc., 1992.

[HvQHK11] Nikolaus Huber, Marcel von Quast, Michael Hauck, and Samuel Kounev. Evaluat-

ing and Modeling Virtualization Performance Overhead for Cloud Environments.

In Proceedings of the International Conference on Cloud Computing and Services

Science (CLOSER), pages 563–573, 2011.

[HW90] J Michael Harrison and Ruth J Williams. On the quasireversibility of a multiclass

Brownian service station. The Annals of Probability, pages 1249–1268, 1990.

[IDC09] Waheed Iqbal, Matthew Dailey, and David Carrera. SLA-driven adaptive resource

management for web applications on a heterogeneous compute cloud. Cloud Com-

puting, pages 243–253, 2009.

[JJ09] Hye-Churn Jang and Hyun-Wook Jin. MiAMI: Multi-core aware processor affinity

for TCP/IP over multiple network interfaces. In Proceedings of the 17th IEEE An-

nual Symposium on High-Performance Interconnects (HOTI), pages 73–82. IEEE,

2009.

[KCV11] George Kousiouris, Tommaso Cucinotta, and Theodora Varvarigou. The effects of

scheduling, workload type and consolidation scenarios on virtual machine perfor-

BIBLIOGRAPHY 127

mance and their prediction through optimized artificial neural networks. Journal

of Systems and Software, 84(8):1270–1291, 2011.

[KDS09] W J Knottenbelt, Nicholas J Dingle, and Tamas Suto. Chapter 9 Performance

Trees : A Query Specification Formalism for Quantitative Performance Analysis.

Parallel, Distributed and Grid Computing for Engineering, 2009.

[Ken53] David G Kendall. Stochastic processes occurring in the theory of queues and their

analysis by the method of the imbedded Markov chain. The Annals of Mathemat-

ical Statistics, pages 338–354, 1953.

[KEY13] Shin-gyu Kim, Hyeonsang Eom, and Heon Y Yeom. Virtual machine consolidation

based on interference modeling. The Journal of Supercomputing, 66(3):1489–1506,

2013.

[KHK+14] Jóakim V Kistowski, Nikolas Herbst, Samuel Kounev, et al. Limbo: a tool for

modeling variable load intensities. In Proceedings of the 5th ACM/SPEC Inter-

national Conference on Performance Engineering (ICPE), pages 225–226. ACM,

2014.

[KKEY12] Seungmin Kang, Shin-gyu Kim, Hyeonsang Eom, and Heon Y Yeom. Towards

workload-aware virtual machine consolidation on cloud platforms. In Proceedings

of the 6th International Conference on Ubiquitous Information Management and

Communication (IMCOM), page 45. ACM, 2012.

[Kle64] Leonard Kleinrock. Analysis of a time-shared processor. Naval research logistics

quarterly, 11(1):59–73, 1964.

[Kle67] Leonard Kleinrock. Time-shared systems: A theoretical treatment. Journal of the

ACM (JACM), 14(2):242–261, 1967.

[Kle16] Martin Kleppmann. Making sense of stream processing. O’Reily Media, Inc., 2016.

[KMHK12] Melanie Kambadur, Tipp Moseley, Rick Hank, and Martha A Kim. Measuring in-

terference between live datacenter applications. In Proceedings of the International

128 BIBLIOGRAPHY

Conference on High Performance Computing, Networking, Storage and Analysis

(SC), pages 51–62. IEEE, 2012.

[KTD12] Nontokozo P Khanyile, Jules-Raymond Tapamo, and Erick Dube. An analytic

model for predicting the performance of distributed applications on multicore clus-

ters. IAENG International Journal of Computer Science, 39:312–320, 2012.

[Lam77] Simon S. Lam. Queuing networks with population size constraints. IBM Journal

of Research and Development, 21(4):370–378, 1977.

[LDDT12] Hui Lv, Yaozu Dong, Jiangang Duan, and Kevin Tian. Virtualization challenges: a

view from server consolidation perspective. In ACM SIGPLAN Notices, volume 47,

pages 15–26. ACM, 2012.

[LDH+09] Abigail S Lebrecht, Nicholas J Dingle, Peter G Harrison, William J Knotten-

belt, and Soraya Zertal. Using bulk arrivals to model I/O request response time

distributions in zoned disks and RAID systems. In Proceedings of the Fourth In-

ternational ICST Conference on Performance Evaluation Methodologies and Tools

(VALUETOOLS), pages 23–32. ACM/EAI conference series, 2009.

[LHK+12] Seung-Hwan Lim, Jae-Seok Huh, Youngjae Kim, Galen M Shipman, and

Chita R Das. D-factor: a quantitative model of application slow-down in

multi-resource shared systems. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE Joint International Conference on Measurement and

Modeling of Computer Systems, volume 40, pages 271–282. ACM, 2012.

[LWJ+13] Jie Li, Qingyang Wang, Danushka Jayasinghe, Junhee Park, Tao Zhu, and Calton

Pu. Performance overhead among three hypervisors: An experimental study using

hadoop benchmarks. In Proceedings of the IEEE International Congress on Big

Data (BigData Congress), pages 9–16. IEEE, 2013.

[LZK+11] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-

Prophet: towards application performance prediction in cloud. In Proceedings of

the ACM SIGCOMM Conference, volume 41, pages 426–427. ACM, 2011.

BIBLIOGRAPHY 129

[MLPS10] Yiduo Mei, Ling Liu, Xing Pu, and Sankaran Sivathanu. Performance measure-

ments and analysis of network i/o applications in virtualized cloud. In Proceedings

of the 3rd International Conference on Cloud Computing (CLOUD), pages 59–66.

IEEE, 2010.

[MST+05] Aravind Menon, Jose Renato Santos, Yoshio Turner, G John Janakiraman, and

Willy Zwaenepoel. Diagnosing performance overheads in the Xen virtual machine

environment. In Proceedings of the 1st ACM/USENIX International Conference

on Virtual Execution Environments (VEE), pages 13–23. ACM, 2005.

[MYM+11] Jayaram Mudigonda, Praveen Yalagandula, Jeff Mogul, Bryan Stiekes, and Yanick

Pouffary. NetLord: a scalable multi-tenant network architecture for virtualized

datacenters. In Proceedings of the ACM SIGCOMM Conference, number 4, pages

62–73. ACM, 2011.

[NBKR13] Qais Noorshams, Dominik Bruhn, Samuel Kounev, and Ralf Reussner. Predictive

performance modeling of virtualized storage systems using optimized statistical

regression techniques. In Proceedings of the 4th ACM/SPEC International Con-

ference on Performance Engineering (ICPE), pages 283–294. ACM, 2013.

[NKG10] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds: managing per-

formance interference effects for qos-aware clouds. In Proceedings of the 5th Euro-

pean Conference on Computer Systems (EuroSys), pages 237–250. ACM, 2010.

[NLY+11] Jun Nakajima, Qian Lin, Sheng Yang, Min Zhu, Shang Gao, Mingyuan Xia, Peijie

Yu, Yaozu Dong, Zhengwei Qi, Kai Chen, et al. Optimizing virtual machines using

hybrid virtualization. In Proceedings of the 2011 ACM Symposium on Applied

Computing, pages 573–578. ACM, 2011.

[NSG+13] Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Sethuraman Subbiah, and John Wilkes.

Agile: Elastic distributed resource scaling for infrastructure-as-a-service. In

Proceedings of the USENIX International Conference on Automated Computing

(ICAC), 2013.

130 BIBLIOGRAPHY

[OWZS13] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Sparrow: dis-

tributed, low latency scheduling. In Proceedings of the 24th ACM Symposium on

Operating Systems Principles (SOSP), pages 69–84. ACM, 2013.

[PBYC13] Achille Peternier, Walter Binder, Akira Yokokawa, and Lydia Chen. Parallelism

profiling and wall-time prediction for multi-threaded applications. In Proceed-

ings of the 4th ACM/SPEC International Conference on Performance Engineering

(ICPE), pages 211–216. ACM, 2013.

[PJD04] Ravi Prasad, Manish Jain, and Constantinos Dovrolis. Effects of interrupt coales-

cence on network measurements. Passive and Active Network Measurement, pages

247–256, 2004.

[PLH+15] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia Rat-

nasamy, Luigi Rizzo, and Scott Shenker. E2: a framework for NFV applications.

In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP),

pages 121–136. ACM, 2015.

[PLM+13] Xing Pu, Ling Liu, Yiduo Mei, Sankaran Sivathanu, Younggyun Koh, Calton

Pu, and Yuanda Cao. Who is your neighbor: Net I/O performance interference

in virtualized clouds. IEEE Transactions on Services Computing, 6(3):314–329,

2013.

[PN16] Hossein Pishro-Nik. Introduction to probability, statistics and random processes.

https://www.probabilitycourse.com/chapter11/11_2_1_introduction.php,

Accessed 27 May 2016.

[RBG12] Anshul Rai, Ranjita Bhagwan, and Saikat Guha. Generalized resource allocation

for the cloud. In Proceedings of the 3rd ACM Symposium on Cloud Computing

(SoCC), pages 15–28. ACM, 2012.

[RKG+13] Alan Roytman, Aman Kansal, Sriram Govindan, Jie Liu, and Suman Nath. PAC-

Man: Performance Aware Virtual Machine Consolidation. In Proceedings of the

https://www.probabilitycourse.com/chapter11/11_2_1_introduction.php

BIBLIOGRAPHY 131

4th ACM/SPEC International Conference on Performance Engineering (ICPE),

pages 83–94. ACM, 2013.

[RNMV14] Navaneeth Rameshan, Leandro Navarro, Enric Monte, and Vladimir Vlassov.

Stay-away, protecting sensitive applications from performance interference. In

Proceedings of the 15th International Middleware Conference (Middleware), pages

301–312. ACM, 2014.

[Roh15] Matthias Rohr. Workload-sensitive Timing Behavior Analysis for Fault Localiza-

tion in Software Systems. BoD–Books on Demand, 2015.

[RTG+12] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A

Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.

In Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC), pages

56–69. ACM, 2012.

[SBK06] Tamas Suto, Jeremy T Bradley, and William J Knottenbelt. Performance trees:

A new approach to quantitative performance specification. In Proceedings of the

14th IEEE International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunication Systems (MASCOTS), pages 303–313. IEEE,

2006.

[SIB+14] Sahil Suneja, Canturk Isci, Vasanth Bala, Eyal De Lara, and Todd Mummert.

Non-intrusive, Out-of-band and Out-of-the-box Systems Monitoring in the Cloud.

In Proceedings of International Conference on Measurement and Modeling of Com-

puter Systems (SIGMETRICS), volume 42, pages 249–261. ACM, 2014.

[SSGW11] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. CloudScale:

elastic resource scaling for multi-tenant cloud systems. In Proceedings of the 2nd

ACM Symposium on Cloud Computing (SoCC), pages 5–18. ACM, 2011.

[SSM+11] Akbar Sharifi, Shekhar Srikantaiah, Asit K Mishra, Mahmut Kandemir, and

Chita R Das. METE: meeting end-to-end QoS in multicores through system-wide

resource management. In Proceedings of the ACM SIGMETRICS International

132 BIBLIOGRAPHY

Conference on Measurement and Modeling of Computer Systems, pages 13–24.

ACM, 2011.

[SST12] Upendra Sharma, Prashant Shenoy, and Donald F Towsley. Provisioning multi-

tier cloud applications using statistical bounds on sojourn time. In Proceedings of

the 9th International Conference on Autonomic Computing (ICAC), pages 43–52.

ACM, 2012.

[SWWL14] Ryan Shea, Feng Wang, Haiyang Wang, and Jiangchuan Liu. A deep investigation

into network performance in virtual machine based cloud environments. In Pro-

ceedings of IEEE Conference on Computer Communications (INFOCOM), pages

1285–1293. IEEE, 2014.

[TB14] Andrew S Tanenbaum and Herbert Bos. Modern operating systems. Prentice Hall

Press, 2014.

[TBO+13] Eno Thereska, Hitesh Ballani, Greg O’Shea, Thomas Karagiannis, Antony Row-

stron, Tom Talpey, Richard Black, and Timothy Zhu. IOFlow: a software-defined

storage architecture. In Proceedings of the 24th ACM Symposium on Operating

Systems Principles (SOSP), pages 182–196. ACM, 2013.

[TCGK12] Alexey Tumanov, James Cipar, Gregory R Ganger, and Michael A Kozuch.

alsched: Algebraic scheduling of mixed workloads in heterogeneous clouds. In

Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC), page 25.

ACM, 2012.

[TGS14] Priyanka Tembey, Ada Gavrilovska, and Karsten Schwan. Merlin: Application-and

platform-aware resource allocation in consolidated server systems. In Proceedings

of the ACM Symposium on Cloud Computing (SoCC), pages 1–14. ACM, 2014.

[TIIN10] Omesh Tickoo, Ravi Iyer, Ramesh Illikkal, and Don Newell. Modeling virtual ma-

chine performance: challenges and approaches. ACM SIGMETRICS Performance

Evaluation Review, 37(3):55–60, 2010.

BIBLIOGRAPHY 133

[TK14] Howard M Taylor and Samuel Karlin. An introduction to stochastic modeling.

Academic press, 2014.

[TT13] Bogdan Marius Tudor and Yong Meng Teo. On understanding the energy con-

sumption of arm-based multicore servers. In Proceedings of the ACM SIGMET-

RICS International Conference on Measurement and Modeling of Computer Sys-

tems, number 1, pages 267–278. ACM, 2013.

[TZP+16] Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A Kozuch, Mor Harchol-

Balter, and Gregory R Ganger. TetriSched: global rescheduling with adaptive

plan-ahead in dynamic heterogeneous clusters. In Proceedings of the 11th European

Conference on Computer Systems (EuroSys), pages 35–48. ACM, 2016.

[UWH+15] Rahul Urgaonkar, Shiqiang Wang, Ting He, Murtaza Zafer, Kevin Chan, and

Kin K Leung. Dynamic Service Migration and Workload Scheduling in Micro-

Clouds. In Proceedings of the 33rd International Symposium on Computer Per-

formance, Modeling, Measurements and Evaluation (IFIP WG 7.3 Performance),

2015.

[Var16] Various. AWS IP Address Ranges. http://docs.aws.amazon.com/general/

latest/gr/aws-ip-ranges.html. Accessed 28 May 2016.

[VF07] Bryan Veal and Annie Foong. Performance scalability of a multi-core web server.

In Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking

and Communications Systems (ANCS), pages 57–66. ACM, 2007.

[Vir16] Jorma Virtamo. PS queue. http://www.netlab.tkk.fi/opetus/s383141/

kalvot/E_psjono.pdf. Accessed 26 May 2016.

[VN10] Kashi Venkatesh Vishwanath and Nachiappan Nagappan. Characterizing cloud

computing hardware reliability. In Proceedings of the 1st ACM symposium on

Cloud computing (SoCC), pages 193–204. ACM, 2010.

[WCB07] Wenji Wu, Matt Crawford, and Mark Bowden. The performance analysis of Linux

networking–packet receiving. Computer Communications, 30(5):1044–1057, 2007.

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
http://www.netlab.tkk.fi/opetus/s383141/kalvot/E_psjono.pdf
http://www.netlab.tkk.fi/opetus/s383141/kalvot/E_psjono.pdf

134 BIBLIOGRAPHY

[WGB+10] David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin Modzelewski,

Adam Belay, Lamia Youseff, Jason Miller, and Anant Agarwal. An operating

system for multicore and clouds: mechanisms and implementation. In Proceedings

of the 1st ACM Symposium on Cloud computing (SoCC), pages 3–14. ACM, 2010.

[WID+14] Jake Wires, Stephen Ingram, Zachary Drudi, Nicholas JA Harvey, and Andrew

Warfield. Characterizing storage workloads with counter stacks. In Proceedings of

the 11th USENIX Symposium on Operating Systems Design and Implementation

(OSDI), pages 335–349, 2014.

[WSL12] Fetahi Wuhib, Rolf Stadler, and Hans Lindgren. Dynamic resource allocation with

management objectives - Implementation for an OpenStack cloud. In Proceedings

of the 8th Internationl Conference on Network and Service Management (CNSM),

pages 309–315. IEEE, 2012.

[WZY+13] Weina Wang, Kai Zhu, Lei Ying, Jian Tan, and Li Zhang. A throughput opti-

mal algorithm for map task scheduling in mapreduce with data locality. ACM

SIGMETRICS Performance Evaluation Review, 40(4):33–42, 2013.

[XBNJ13] Yunjing Xu, Michael Bailey, Brian Noble, and Farnam Jahanian. Small is better:

Avoiding latency traps in virtualized data centers. In Proceedings of the 4th ACM

Symposium on Cloud Computing (SoCC), pages 7–20. ACM, 2013.

[YHJ+10] Kejiang Ye, Dawei Huang, Xiaohong Jiang, Huajun Chen, and Shuang Wu. Vir-

tual machine based energy-efficient data center architecture for cloud computing:

a performance perspective. In Proceedings of the IEEE/ACM International Con-

ference on Green Computing and Communications (GreenCom), pages 171–178.

IEEE, 2010.

[ZCM11] Eyal Zohar, Israel Cidon, and Osnat Ossi Mokryn. The power of prediction: Cloud

bandwidth and cost reduction. In Proceedings of the ACM SIGCOMM Conference,

number 4, pages 86–97. ACM, 2011.

BIBLIOGRAPHY 135

[ZCW+13] Qing Zheng, Haopeng Chen, Yaguang Wang, Jian Zhang, and Jiangang Duan.

COSBench: cloud object storage benchmark. In Proceedings of the 4th

ACM/SPEC International Conference on Performance Engineering (ICPE), pages

199–210. ACM, 2013.

[ZT12] Qian Zhu and Teresa Tung. A performance interference model for managing con-

solidated workloads in QoS-aware clouds. In Proceedings of the 5th International

Conference on Cloud Computing (CLOUD), pages 170–179. IEEE, 2012.

[ZTH+13] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John

Wilkes. CPI 2: CPU performance isolation for shared compute clusters. In Pro-

ceedings of the 8th ACM European Conference on Computer Systems (EuroSys),

pages 379–391. ACM, 2013.

	Abstract
	Acknowledgements
	Introduction
	Motivation
	Objectives and Aims
	Contributions
	A Performance Tree-based Monitoring Platform for Clouds
	Investigating and Modelling the Performance of Web Applications in Multicore Virtualised Environments
	Diagnosing and Managing Performance Interference in Multi-Tenant Clouds

	Statement of Originality and Publications
	Thesis Roadmap

	Background
	Introduction
	Cloud Computing
	Characterising Virtualised Multicore Scalability
	Multicore and Scalability
	Linux Kernel Internals and Imbalance of Cores
	Virtualisation and Hypervisor Overhead

	Characterising Performance Interference Caused by Virtualisation
	Xen and Paravirtualisation
	CPU Scheduler
	Disk I/O
	Grant Table
	Network I/O

	Stochastic Modelling
	Discrete-time Markov Chains
	Transition Matrix and State Transition Diagram
	State Transition Probability Distribution
	Steady State and Stationary Distribution

	Queueing Theory
	Important Performance Measures
	Processor-sharing Queueing Models
	BCMP Network

	Performance Trees
	Related Research
	Cloud Benchmarking Systems
	Performance Modelling of Web Applications in Virtualised Environments
	Performance Interference Modelling in Multi-Tenant Clouds

	A Performance Tree-based Monitoring Platform for Clouds
	Introduction
	The Design of a Performance Tree-based Monitoring Platform
	System Requirements
	System Architecture

	The Myth of Monitoring in Clouds
	Measuring without Virtualisation
	Measuring with Virtualisation
	An Example of Measuring the Actual I/O Queue Size

	GUI and Demo in Action
	Summary

	Predicting the Performance of Applications in Multicore Virtualised Environments
	Introduction
	Benchmarking
	Proposed Model
	Model Specification
	CPU 0
	Two-class Markov Chain and its Stationary Distribution of CPU 0
	Average Sojourn Time of CPU 0
	Average Service Time and Utilisation of CPU 0
	Likelihood for Estimating Parameters
	Combined Model
	Validation

	Scalability and Model Enhancement
	Scalability Enhancement
	Model Enhancement
	Prediction with Previous Parameters
	Prediction validation for Type I hypervisor – Xen
	Model Limitations

	Summary

	Diagnosing and Managing Performance Interference in Multi-Tenant Clouds
	Introduction
	Characterising Performance Interference
	Recapping Xen Virtualisation Background
	Measuring the Effect of Performance Interference

	System Design
	Predicting Performance Interference
	CPU workloads
	I/O workloads
	Virtualisation Slowdown Factor

	Interference Conflict Handing
	Dynamic Interference Scheduling
	Local Interference Handling

	Evaluation
	Experimental Setup
	CPU, Disk, and Network Intensive Workloads
	Mixed Workload
	MapReduce Workload
	Interference-aware Scheduling
	Adaptive Control Domain

	Summary

	Conclusion
	Summary of Achievements
	Future Work

	Xen Validation Results
	Bibliography

