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1. INTRODUCTION

Simulations requiring Gaussian random numbers are critical in fields including com-
munications, financial modelling, and many others. A wide range of Gaussian random
number generators (GRNGs) have been described in the literature. They all utilize
well-understood basic mathematical principles, usually involving transformations of
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uniform random numbers. Assuming suitably precise arithmetic, the GRNGs can gen-
erally be configured to deliver random numbers of sufficient quality to meet the de-
mands of a particular simulation environment.

Recent advances in computing and the increasing demands on simulation environ-
ments have made it timely to examine the question of what characterizes “sufficient
quality.” While the answer depends on the specifics of the simulation environment, it can
be bounded by considering the capabilities of modern processors and extrapolating for
expected trends. Modern processors programmed to implement a computational process
can often reach a rate of 108 outputs per second. Dedicating a large computer cluster
with 1000 machines to a single simulation for a ten-day period of time would result in
a total simulation size of approximately 1017. Adding another two orders of magnitude
to allow for technology improvements over the next decade gives an extrapolated total
of 1019. Additional factors, such as the use of collaborative Internet-based simulations
using significantly larger than 1000 machines could drive this number even higher.

The requirement to generate extremely large numbers of Gaussian random numbers
elevates the importance of the quality of the GRNG. For example, while Gaussian ran-
dom numbers with absolute values greater than 6σ or 7σ rarely occur, it is precisely
those extreme events that could contribute disproportionately to certain rare but im-
portant system behaviours that the simulation aims to explore. Samples from an ideal
GRNG with absolute value exceeding 9σ occur with probability 2.26 × 10−19. For 10σ ,
the corresponding probability is 1.52 × 10−23. Thus, a GRNG accurate in the tails to
about 10σ would be sufficient for the largest simulations practical using technology
available today and in the foreseeable future. More generally, when running large sim-
ulations it is vital to ensure that simulation results measure the performance of the
system under study, without contamination due to imperfections in the random number
generation process. Thus, the question of random number quality in GRNGs is central
to their utility.

This basic question of random number quality has been of interest since the ear-
liest days of computers. The first published survey of this topic appeared in 1959
[Muller 1959], and additional survey papers appeared in the 1960s [Kronmal 1964],
1970s [Ahrens and Dieter 1972], and 1980s [Chen and Burford 1981]. Schollmeyer and
Tranter [1991] discussed GRNGs for communications applications in 1991, providing a
survey of contemporary methods, and performing a limited number of tests. Their focus
was mainly on the pairing of specific uniform random number generators, particularly
linear congruential generators (LCGs) [Lehmer 1949] with transformation algorithms,
and utilized visual, as opposed to statistical, evaluations of the resulting distributions.
An overview of a limited set of GRNGs was provided by Kabal [2000], which compared
several of the classic methods for generating Gaussian numbers on modern computers.

Most of the attention to GRNGs in recent years has focused on new generation al-
gorithms as opposed to analysis of existing algorithms. Thus, while the number of
algorithms has grown, there has been relatively little published work addressing the
universe of GRNGs as a whole. The goals of this article are therefore:

(1) to provide an overview of GRNG methods and algorithms, including a classification
of the various techniques,

(2) to present results on the performance and accuracy of the GRNGs that will be
useful to practitioners, particularly those working in applications where statistically
accurate generation of the “extreme events” noted above is important.

Our discussion also addresses issues that have not previously received significant atten-
tion. For instance, to ensure accurate tails, we address the need for careful conversion
of uniform integer random numbers to floating-point values.
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GRNGs aim to produce random numbers that, to the accuracy necessary for a given
application, are statistically indistinguishable from samples of a random variable with
an ideal Gaussian distribution. We classify GRNGs into four basic categories: cumula-
tive density function (CDF) inversion, transformation, rejection, and recursive methods.
The CDF inversion method simply inverts the CDF to produce a random number from a
desired distribution. Transformation methods involve the direct transformation of uni-
form random numbers to a Gaussian distribution. The third category, rejection, again
starts with uniform random numbers and a transformation, but has the additional step
of conditionally rejecting some of the transformed values. Recursion, the final category,
utilizes linear combinations of previously generated Gaussian numbers to produce new
outputs.

An alternative classification is “exact” or “approximate.” Exact methods would pro-
duce perfect Gaussian random numbers if implemented in an “ideal” environment. For
example, the Box-Muller method subjects uniform numbers to various transformations
in order to produce Gaussian outputs. If a perfect, and infinitely precise, uniform RNG
were used, and if the functions themselves were evaluated with infinite precision, per-
fect Gaussian random numbers would be produced. Approximate methods, on the other
hand, will produce outputs that are approximately Gaussian even if the arithmetic used
is perfect. An example of this is the central limit theorem, which is only exact when
an infinite number of uniform random numbers are combined and so must be approxi-
mate in any practical implementation. In the subsequent discussion of the algorithms,
an indication of whether the algorithm is exact or approximate is provided.

Section 2 provides brief descriptions, pseudo code, and references for the GRNGs.
Section 3 covers algorithms that focus on the tail region of the Gaussian. Section 4
describes the test parameters and the corresponding results, and Section 5 presents
conclusions.

2. ALGORITHMS FOR GAUSSIAN SAMPLES

In the description of different Gaussian random number generator algorithms, we as-
sume the existence of a uniform random number generator (URNG) that can produce
random numbers with the uniform distribution over the continuous range (0, 1) (de-
noted U (0, 1) or U hereafter). Note that the range does not include 0 or 1 since each is
possibly an invalid input for a GRNG; for instance, the Box-Muller method requires a
non-zero URNG input and CDF inversion must have its URNG input strictly less than
1. Similarly, V is a continuous URNG with outputs in the range (−1, 1) (excluding 0). I
is used to denote a discrete uniform integer random number over the range [0, 2w − 1],
where typically w is the machine word-length. Where multiple samples from a uniform
random number generator are used within an algorithm, the different samples are
identified with subscripts, for example, U1 and U2 represent two independent uniform
samples in an algorithm. In algorithms with loops, all random numbers within the loop
body are freshly generated for each loop iteration.

A Gaussian distribution with mean zero and standard deviation one, often known as
a “standard normal” distribution, has the probability density function (PDF):

φ(x) = 1√
2π

e−x2/2. (1)

A plot of φ(x) versus x gives the familiar bell-curve shape, but does not directly indicate
the probability of occurrence of any particular range of values of x. Integrating the PDF
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from −∞ to x gives the cumulative distribution function (CDF):

�(x) =
∫ x

−∞
φ(x)dx = 1

2

[
1 + erf

(
x√
2

)]
. (2)

The CDF �(x) gives the probability that a random sample from the Gaussian distri-
bution will have a value less than x. The CDF can be used to calculate the probability
of values occurring within a given range, for example, the probability of a number be-
tween a and b (where a < b) is �(b) − �(a). There is no closed-form solution for �, or
for the related function erf, so it must be calculated numerically, or using some form of
approximation. A good reference on distributions and random number generation can
be found in Devroye [1986] (available for download at the address in the reference).

2.1. The CDF Inversion Method

CDF inversion works by taking a random number α from U (0, 1) and generating a
Gaussian random number x through the inversion x = �−1(α). Just as � associates
Gaussian numbers with a probability value between zero and one, �−1 maps values
between zero and one to Gaussian numbers. While this is conceptually straightforward,
and exact if �−1 is calculated without error, the lack of a closed form solution for �−1 for
the Gaussian distribution necessitates the use of approximations, which in turn affects
the quality of the resulting random numbers. Since achieving increased accuracy re-
quires increased complexity, most of the research in this area has focused on improving
this trade-off. Numerical integration offers arbitrarily high precision, but at a compu-
tational cost that makes it impractical for random number generation, particularly in
the tail regions of the Gaussian. As a result, most Gaussian CDF inversion methods
utilize polynomial approximations.

One of the earliest approximation efforts was introduced by Muller [1958], who
described a fast approximation to the inverse CDF with moderate precision. This
method approximates the inverse CDF to within 4 × 10−4 for inputs in the range
[6 × 10−7, 1 − 6 × 10−7], corresponding to an output range of ±5σ . As the emphasis was
on speed rather than accuracy, a simple polynomial approximation scheme was used.
The input range was split into 64 pairs of symmetric segments and an interpolating
polynomial was associated with each segment. For segments 1..56, linear approxima-
tion was sufficient; for 57..62, quadratic polynomials were used, and for segment 63, a
quartic polynomial was needed. For the final segment 64, corresponding to the input
ranges [0, 1/128] and [127/128, 1], the function becomes difficult to approximate with
a single polynomial of reasonable degree. Instead a rational approximation based on a
truncated continued fraction expansion was used, with the continued fraction expanded
until successive terms differed by less than the target accuracy. A similar approach was
used by Gebhardt [1964], though the approximation in the tails was based on iterative
refinement of a semiconvergent series rather than a continued fraction. At approxi-
mately the same time, Wetherill [1965] proposed another approximate CDF inversion
method based on polynomials, but splitting the range into just three sections to reduce
the table sizes needed.

More recently, Wichura [1988] described two high precision approximations to the in-
verse Gaussian CDF using rational polynomials. For inputs x in the range [0.075, 0.925]
a rational polynomial in (x − 0.5)2 was used, while for inputs outside this range, one of
two rational polynomials in

√− ln x was used. Because most of the inputs fall within
the first input range, the square root and logarithm only need to be calculated 15%
of the time. The first method, PPND7, gave 7 decimal digits of accuracy in the range
[10−316, 1 − 10−316], and the second, PPND16, gave about 16 decimal digits of accuracy
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over the same range. The lower precision PPND7 utilized rational polynomials with
degree 2 and 3, while PPND16 used rational polynomials with degree 7.

An approximate CDF inversion technique using only one rational polynomial was
provided by Hastings [Box and Muller 1958a]. This technique first transforms the in-
put x using

√
ln x−2, then uses a degree 2 over degree 3 rational polynomial. The cost of

having just one polynomial is that the square root and logarithm must be performed ev-
ery time, rather than only for the tails of the curve as in some of the other CDF inversion
methods. In addition, the Hastings technique only works for one side of the input range,
so it needs to be slightly modified to allow handling of a full range of inputs. Hardware
implementations of CDF inversion techniques have also been developed [Chen et al.
2004; McCollum et al. 2003].

2.2. Transformation Methods

2.2.1. Box-Muller Transform. The Box-Muller transform [Box and Muller 1958b; Pike
1965] is one of the earliest exact transformation methods. It produces a pair of Gaussian
random numbers from a pair of uniform numbers. It utilizes the fact that the 2D distri-
bution of two independent zero-mean Gaussian random numbers is radially symmetric
if both component Gaussians have the same variance. This can be easily seen by simply
multiplying the two 1D distributions e−x2

e− y2 = e−(x2+ y2) = e−r2
. The Box-Muller algo-

rithm can be understood as a method in which the output Gaussian numbers represent
coordinates on the two-dimensional plane. The magnitude of the corresponding vector
is obtained by transforming a uniform random number; a random phase is then gener-
ated by scaling a second uniform random number by 2π . Projections onto the coordinate
axes are then performed to give the Gaussian numbers. Algorithm 1 gives pseudo-code
for implementing this method. Because the algorithm produces two random numbers
each time it is executed, it is common for a generation function to return the first value
to the user, and cache the other value for return on the next function call.

Algorithm 1. Box-Muller

1: a ← √−2 ln U1, b ← 2πU2
2: return (a sin b, a cos b) {Return pair of independent numbers}

Computation of cosine and sine can often be performed in one step, and highly op-
timized algorithms based on function evaluation and suitable for fixed-precision hard-
ware implementation have been reported [Lee et al. 2004; Boutillon et al. 2003; Xilinx
2002].

2.2.2. Central Limit Theorem (Sum-of-uniforms). The PDF describing the sum of multiple
uniform random numbers is obtained by convolving the constituent PDFs. Thus, by the
central limit theorem, the PDF of the sum of K uniform random numbers V/2 each, over
the range (−.5, .5), will approximate a Gaussian with zero mean and standard-deviation√

K
12 , with larger values of K providing better approximations. The main disadvantage

of this approach is that the convergence to the Gaussian PDF is slow with increasing K .
Some intuition can be gained by realizing that the sum is bounded at −K /2 and K /2,
and that the PDF of the sum is composed of segments that are polynomials limited in
degree to K − 1. Thus, the approximation in the tails of the Gaussian is particularly
poor. Methods to mitigate this problem by “stretching” the PDF in the tail regions
[Teichroew 1953] have used a Chebyshev interpolating polynomial to map the CDF
of the distribution for a given K to that of the Gaussian distribution. The polynomial
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Fig. 1. Approximation to the Gaussian distribution composed of multiple triangle distributions.

will only provide an accurate mapping at a fixed number of finite inputs, based on the
polynomial degree, so a trade-off must be made between accuracy and complexity. An
example of Teichrow’s method given in Muller [1959] uses a 9th degree polynomial on
the sum of 12 uniforms.

While this technique improves the resulting distribution, deviations from a true
Gaussian PDF remain significant for practical values of K . Additionally, the need
to generate and additively combine large numbers of uniform random numbers itself
constitutes a computational challenge, so the central limit theorem is rarely used in
contemporary GRNGs. However, this approach has been used in hardware implemen-
tations as a way of combining two or more lower quality Gaussian numbers to produce
one good one [Danger et al. 2000; Lee et al. 2004; Xilinx 2002]. This technique can also
be used directly when the fractional accuracy does not need to be large: for example,
it has been shown [Andraka and Phelps 1998] that the sum of 128 1-bit variables can
provide a useful binomial approximation to the Gaussian distribution. The central limit
theorem of course is an example of an “approximate” method—even if perfect arithmetic
is used, for finite K the output will not be Gaussian.

2.2.3. Piecewise Linear Approximation using Triangular Distributions. Kabal [2000] describes
an approximate method for generating Gaussian random numbers, using a piecewise
linear approximation. The Gaussian distribution is decomposed into a set of k basic
component triangular distributions t1..tk , each with the same width 2w, centered at
ci = w((k + 1)/2 − i), and associated with probability qi. The regular spacing means
that each triangle overlaps with one triangle to the left and one triangle to the right,
and the sum of the overlaps creates a piecewise linear approximation to the Gaussian
PDF, as illustrated in Figure 1 with w = 0.5.

Since the component distributions are triangles, only addition and multiplication are
needed. Outputs are generated by first probabilistically choosing one of the triangles,
and then generating a random number from within the selected triangle distribution.
The triangles are selected using Walker’s alias method [Walker 1977] for sampling
from a discrete distribution using one uniform input; the triangle distributions are
then generated using the sum of two more appropriately scaled uniform inputs.

In software this method has the disadvantage of requiring three random numbers
per output sample, making it quite computationally expensive to implement. However,
in hardware, uniform random numbers are comparatively cheap to generate, while
multiplications and other operations are more expensive, so this method is more at-
tractive. By using large numbers of triangles, and by using the central limit theorem
to combine multiple random numbers, this method can provide an efficient Gaussian
random number generator in hardware [Thomas and Luk 2006].
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Fig. 2. Packing of the Gaussian distribution into a rectangular area using the Monty Python method.

2.2.4. Monty Python Method. The Monty Python method [Marsaglia and Tsang 1998]
relies on a technique of packing the Gaussian distribution into a rectangle, using an ex-
act transform. Figure 2 shows the arrangement graphically, with the desired Gaussian
PDF shown as a dashed curve. The central idea is to partition the Gaussian PDF into
four disjoint areas, shown as A, B, C, and D. These four areas are designed so that they
can be exactly packed into a rectangle, using a transform that leaves the large areas
A and B unchanged, maps area C in the Gaussian PDF to area C′ in the rectangle
through an affine transform, and uses a more complex process to pack the Gaussian
tail area D into area D′. Generating a sample using the Monty Python method consists
of uniformly generating a random point within the rectangle, identifying which of the
areas the point is in, and applying the appropriate unpacking transform for that seg-
ment. The advantage of the method is that in the most common cases, areas A and B,
the uniform random point can be returned untransformed as a Gaussian sample.

Algorithm 2. Monty Python

1: s ← 2�2U1� − 1 {Choose random sign (+1 or −1) for output sample}
2: x ← bU2 {Horizontal component of uniform 2D random sample}
3: if x < a then {Check if point is in area A}
4: return sx
5: end if
6: y ← U3/(2b) {Vertical component of uniform 2D random sample}
7: if y < φ(x) then {Check if point is under Gaussian PDF in area B}
8: return sx
9: end if

10: (x, y) ← fC(x, y) {Point is in region C′, transform it to region C}
11: if y < φ(x) then {Check if point is under Gaussian PDF in area C}
12: return sx
13: else
14: return Return x from the tails with |x| > b (see section 3)
15: end if

Algorithm 2 provides a simplified description of the sampling process, omitting some
optimizations for clarity. The first two conditionals check for points in A and B, re-
turning the horizontal component of the random uniform sample (with attached sign)
in either case. If neither case is true then the point is mapped from area C′ to area
C using a fixed affine mapping fC. For example, in Figure 2 the two points p′ and q′
are mapped back to the equivalent points p and q in C. If the transformed point lies
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under the Gaussian PDF (third conditional) then the original point was within C′, so
the transformed horizontal component is returned. Any other points must fall within
D′, but the mapping from D′ to D is nontrivial, so instead a new random value from
the tail |x| > b is generated using a method such as those described in Section 3. Note
that the area of D′ is the same as the area under the tail, as the area of the rectangle
is b 1

2b = 0.5 = �(∞) − �(0), and the areas of A, B and C′ clearly sum to �(b) − �(0).
The constant b, and the derived constant a = φ−1(1/2b), determine the overall effi-

ciency of the method. The larger b is made, the smaller the expensive tail area of D.
However, b must not be so large that the regions B and C′ overlap, as this would distort
the shape of the region C. In Figure 2 the value of b = 2.29 is used, which requires
random numbers from the tail 2.2% of the time. In order to use slightly larger values of
b without areas B and C′ overlapping, it is possible to apply an area preserving trans-
form to C′, stretching horizontally and compressing vertically. This allows b = √

2/π ,
reducing the number of random numbers taken from the tail to 1.2% [Marsaglia and
Tsang 1998].

It should be noted that while Marsaglia originally used a rejection method to sample
from the tails, the Monty Python method itself involves the “folding” of the positive
Gaussian PDF into the rectangle with width b and height 1/2b in Figure 2, and the
association of 2D locations in that rectangle with different portions of the Gaussian.
Rejection of samples occurring in D′ followed by use of a separate tail sampling method
(which can be either a direct transform or a rejection method) is one way to implement
it, though a direct, computationally impractical, transformation from D′ to D does exist.
For this reason the Monty Python method is classed as a transformation method, rather
than a rejection method.

2.3. Rejection Methods

The rejection method for generating a random number can be described as follows. Let
y = f (x) be a function with finite integral, C be the set of points (x, y) under the curve,
and Z be a finite area superset of C: Z ⊃ C. Random points (x, y) are taken uniformly
from Z until (x, y) ∈ C and x is returned as the random number [Knuth 1981; Press
et al. 1997].

The density of such an x will be cf(x), where c is a normalizing value that makes cf(x)
a probability density function (

∫
cf(x)dx = 1).

2.3.1. Polar. The polar method [Bell 1968; Knop 1969] is an exact method related
to the Box-Muller transform and has a closely related two-dimensional graphical in-
terpretation, but uses a different method to get the 2D Gaussian distribution. While
several different versions of the polar method have been described, we focus on the
form by Knop [1969] because it is the most widely used, in part due to its inclusion in
Numerical Recipes [Press et al. 1997].

As noted earlier, for the Box-Muller transform, two uniform random numbers are used
to generate the magnitude and phase of a vector of which the two Cartesian coordinates
are the output Gaussian numbers. In the polar method, two uniform random numbers
in the interval (−1, 1) are initially generated and the magnitude of the vector they
describe is evaluated. If the magnitude exceeds 1, the uniform numbers are discarded.
If the magnitude is less than 1, which occurs with probability π/4, it is transformed and
the result is scaled by each of the two uniform random numbers to give the two Gaussian
outputs. This is described in Algorithm 3. In addition to having the conditional step,
the polar method differs from the Box-Muller method in that it does not need a sine or
cosine calculation, but it does require a division and two additional multiplications. A
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fast vectorized implementation that also has the advantage of reducing the number of
square root and ln computations has been described in Brent [1993].

Algorithm 3. Polar-Rejection

1: repeat
2: x ← V1, y ← V2

3: d ← x2 + y2

4: until 0 < d < 1
5: f ← √−2(ln d )/d
6: return ( f × x, f × y)

2.3.2. Marsaglia-Bray Rejection Method. The Marsaglia-Bray method [Marsaglia and
Bray 1964] is an exact method that uses a combination of four distributions: two direct
transformations and one rejection-based distribution are summed to produce outputs
in the range [−3, 3], and another rejection-based transformation is used to provide
random numbers from the tail regions outside this range. Each distribution has an
associated probability, so the overall Gaussian PDF φ(x) in the range [−3, 3] can be
broken into a mixture of two easily generated distributions (g1 and g2) plus a more
complex residual distribution (g3):

φ(x) = a1 g1(x) + a2 g2(x) + a3 g3(x) (3)
g1(x) = 2(U1 + U2 + U3 − 1.5) (4)
g2(x) = 1.5(U4 + U5 − 1) (5)

g3(x) = φ(x) − (a1 g1(x) + a2 g2(x))
a1 + a2 + a3

(6)

where

a1 = 0.8638 a2 = 0.1107 a3 = 0.0228002039 a4 = 1 − a1 − a2 − a3

Outside [−3, 3] a function directly approximating φ(x) is used (with probability a4).
The top half of Figure 3 shows the three distributions g1(x), g2(x), and g3(x) in the
range [−3, 3]. Note that a1 is as large as possible, with g1 just touching the actual
Gaussian PDF at ±2, so that this case occurs with the highest probability. The more
computationally expensive densities, g3 (the small residual density) and g4 (the tail
distribution outside the [−3, +3] range), occur infrequently. Within the range [−2, 2],
g2 fills in the relatively large gap between g1 and φ, leaving g3 to compensate for the
remaining difference to the Gaussian, as shown using an expanded vertical axis in the
lower half of the figure and given by:

g3(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ae−x2/2 − b(3 − x2) − c(1.5 − |x|) |x| < 1

ae−x2/2 − d (3 − |x|)2 − c(1.5 − |x|) 1 < |x| < 1.5

ae−x2/2 − d (3 − |x|)2 1.5 < |x| < 3
0 3 < |x|.

(7)
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Fig. 3. The Marsaglia-Bray rejection generator relies on the composition of three distributions over the
[−3, +3] range. The top graph shows the PDF of the three distributions g1..g3, along with the Gaussian
distribution that they sum to. The lower graph shows the shape of g3 using an expanded vertical axis, which
must be generated through rejection.

where

a = 17.49731196 b = 4.73570326 c = 2.15787544 d = 2.36785163

Algorithm 4 gives pseudo-code for the generator. The g3 distribution is generated
using a rejection method and g4 is generated using one of the methods discussed in
section 3 for sampling from the tail.

Algorithm 4. Marsaglia-Bray Rejection

1: s ← U
2: if s < a1 then
3: return 2(U1 + U2 + U3 − 1.5) {Sample from g1 with probability a1}
4: else if s < a1 + a2 then
5: return 1.5(U4 + U5 − 1) {Sample from g2 with probability a2}
6: else if s < a1 + a2 + a3 then
7: repeat [Perform rejection step using smallest rectangle fully enclosing g3]
8: x ← 6U6 − 3, y ← 0.358U7

9: until y < g3(x)
10: return x {Sample from g3 with probability a3}
11: else
12: return Return x from the tails with |x| > 3 (see section 3)
13: end if

2.3.3. Ratio of Uniforms. Generation of Gaussian random numbers using a ratio of
uniform random numbers was originally proposed by Kinderman and Monahan [1977],
with enhancements given by Leva [1992a, 1992b]. The ratio of uniforms method has
an advantage over the Box-Muller method in that the square root is replaced by a
possibly cheaper division, and that the logarithm function, while still present, can in
some cases be avoided. A potential disadvantage is that two uniform random numbers
are consumed, but at most one Gaussian number is produced. The ratio of uniforms is
an exact method.

Figure 4 shows the geometric interpretation, with each of the axes correspond-
ing to one of the input uniform random numbers. Points enclosed by the solid curve
|v| <

√−4u2 ln u need to be retained, while those outside need to be rejected. To
avoid unnecessary evaluation of the exact boundary of the acceptance region, most
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Fig. 4. Acceptance and rejection zones for the ratio of uniforms method. Points in the grey regions are
accepted or rejected immediately, while points in the white area must be compared against the exact curve.

implementations of the ratio method approximate it using lower complexity equations
that avoid computing the logarithm for many candidate points. The bounds shown in
the figure are those suggested in tKinderman and Monahan [1977], and are shown in
pseudo-code in Algorithm 5. The central grey region contains points that can be imme-
diately accepted, corresponding to the test in step 2.3.3, while the upper and lower grey
regions can be immediately rejected by step 2.3.3. Points in the white region must be
tested against the exact curve, shown as a solid line in the figure, and step 2.3.3 in the
algorithm. Note that either or both of these quick tests can be eliminated, which may
be desirable if the logarithm function is very fast.

Algorithm 5. Ratio-of-Uniforms

1: loop
2: u ← U1

3: x ← V1

√
2/e/u

4: if x2 ≤ 5 − 4e1/4u then {Test for quick accept}
5: return x
6: else if x2 < 4e−1.35/u + 1.4 then {Test for quick accept}
7: if v2 < −4u2 ln u then {Do full test against exact curve}
8: return x
9: end if

10: end if
11: end loop

The bounds shown in Figure 4 are not very tight, and on average still require the full
test to be made 0.23 times for each Gaussian number produced. If the logarithm function
is very slow it may be worthwhile to use more complex bounds to avoid performing the
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exact test. Tighter bounds have been presented [Leva 1992b], where an ellipse is fitted
to the curve. This technique reduces the number of full tests per output to 0.012. Another
possible advantage for machines with slow division operations is that the division by u
only occurs when a point is accepted, rather than for every candidate pair. Pseudo-code
for the method is shown in Algorithm 6, which adopts the constants:

s = 0.449871 t = −0.386595 r1 = 0.27597
a = 0.19600 b = 0.25472 r2 = 0.27846.

Algorithm 6. Leva’s Ratio-of-Uniforms

1: loop
2: u ← U1, v ← √

2/eV1

3: x ← u − s, y ← |v| − t
4: Q ← x2 + y(ay − bx)
5: if Q < r1 then
6: return v/u
7: else if Q < r2 then
8: if v2 < −4u2 ln u then
9: return v/u

10: end if
11: end if
12: end loop

Hörmann has noted that when a linear congruential generator (LCG) is used for the
uniform random numbers, the relationship between successive LCG values will prevent
certain ratios from occurring, leaving gaps in the PDF [Hörmann 1994].

2.3.4. Ahrens-Dieter Table-Free Method. The Ahrens-Dieter Table-Free method is an ex-
act Gaussian generator that transforms a pair of independent exponential and Cauchy
random numbers into two independent Gaussian random numbers [Ahrens and Dieter
1988]. This is similar to the idea behind the Box-Muller method, except that instead
of applying a complex transform to easily generated uniform random numbers, it ap-
plies a simpler transform to two distributions that are more complex to generate. In
principle, the exponential and Cauchy distributions could be generated directly, using
− ln U and tan(π (U − 1/2)) respectively, which would make this a transform method.
However, the only reason this method is feasible is because the authors develop two
rejection based algorithms for samples from the exponential and Cauchy distributions.
For this reason we have classed this as a rejection algorithm.

Algorithm 7. Ahrens-Dieter Exponential Generator

1: x ← U1, a ← A
2: while x < 0.5 do
3: x ← 2x, a ← a + ln 2
4: end while
5: x ← x − 1
6: if x < P then {First branch taken 98% of time.}
7: return a + B/(C − x)
8: else
9: return Return sample using rejection from residual distribution.

10: end if

ACM Computing Surveys, Vol. 39, No. 4, Article 11, Publication date: October 2007.



Gaussian Random Number Generators 11:13

Algorithm 8. Ahrens-Dieter Cauchy Generator

1: b ← U1 − 0.5
2: c ← A − (U1 − 0.5)2

3: if c > 0 then {First branch taken 99.8% of the time.}
4: return b(B/c + C)
5: else
6: return Return sample using rejection from residual distribution.
7: end if

Algorithm 9. Ahrens-Dieter Table-Free Normal General

1: s ← U
2: if s < 0.5 then
3: s ← 1
4: else
5: s ← −1
6: end if
7: x ← Generate Exponential random number.
8: y ← Generate Cauchy random number.
9: z ←

√
2x/1 + y2

10: return (s × z, y × z) {Return pair of independent Gaussian random numbers.}

The structure of the exponential and Cauchy generation algorithms are shown in
Algorithms 7 and 8. The exponential generator uses the memoryless property as an
initial range reduction step, allowing exponential generation to be split into the calcu-
lation of a geometric random offset in steps 1 to 5 of Algorithm 7, followed by an approxi-
mation to the truncated exponential distribution over the range [0, ln 2) in steps 6 to 10.
98% of the time the method uses the quick return path in step 7, but 2% of the time
a rejection process against the residual distribution must be used. Algorithm 8 uses
a different rejection method, using steps 1 and 2 to create an approximation to the
Cauchy distribution that can be used 99.8% of the time. These two algorithms can then
be used by Algorithm 9 to generate pairs of Gaussian random samples.

Only an algorithmic overview of the common execution paths of the method is pro-
vided here, as providing the details of the methods would take up too much space.
Indeed, one of the drawbacks of this method is that it is complex to understand, must
be carefully implemented, and requires many constants. The original paper provides
full pseudo-code for the method, along with the required constants, but readers should
note that algorithm EA on page 1332 has two errors. First, constant b should be 2+√

2,
as defined in Equation 2.4, rather than the value of

√
2 shown at the beginning of the

algorithm. Second, the constant called “h” at the beginning of the algorithm should
actually be called “H”, and is defining the value used in step 7 of the listing.

2.3.5. GRAND. GRAND [Brent 1974] is the best known implementation of a class of
exact random number generators known as the odd-even method, first presented by
Forsythe [1972], but originally developed by John von Neumann. The odd-even method
can be used to produce random numbers from distributions of the form f (x) = K e−G(x)

over a range [a, b), where a ≤ x < b ⇒ 0 ≤ G(x) ≤ 1, and K is a constant. In order
to generate a sample, first a random number x ∼ U [a, b) is generated, then u0 = G(x)
is calculated. Next a sequence of U [0, 1) random numbers u1, u2, . . . is generated until

ACM Computing Surveys, Vol. 39, No. 4, Article 11, Publication date: October 2007.



11:14 D. B. Thomas et al.

Fig. 5. GRAND division of Gaussian PDF into separate ranges. Range ci is selected with probability 2−i−1

and then used to implement a rejection based selection of a random number within that range.

uk > uk−1. If k is odd then x is returned as a sample (with PDF f (x) in the range
[a, b)), or if k is even then x is rejected. This process is repeated until some value of x
is accepted, which the method guarantees will eventually happen.

For the Gaussian distribution G(x) = 1
2 (x2−a2), but in order to ensure that 0 ≤ G(x) ≤

1, it is necessary to split the distribution range into a set of contiguous sections. Forsythe
used boundaries of the form a0 = 0, ai = √

2i − 1, corresponding to 0, 1, 1.73, 2.23 . . . ,
which resulted in an average of 4.04 uniform random numbers consumed per output
number, including one uniform random number used to select the section to sample.

The GRAND algorithm, shown in Algorithm 10, uses a different set of boundaries
to split the distribution range into sections that increase the candidate acceptance
rate, and hence reduces the number of uniform random numbers consumed. First a
geometric random index i is generated from a uniform sample, so the probability of
using index i is 2−i−1. This index is used to select from within a table of offsets A, where
ai = �−1(1−2−i−1). Index i is responsible for producing values in the range [ai, ai+1), so
the length of the table directly influences the maximum σ that can be achieved. Figure 5
shows how the Gaussian curve is split up into these ranges, where in each rectangle
the area under the curve is the acceptance region, and points in the area above the
curve are rejected. Moving away from the origin, the area of the acceptance region is
exactly half that of the preceding region. Although the odd-even method does not use
direct (x, y) rejection, the rectangles give an accurate idea of the accept/reject rate for
each point in the range.

Algorithm 10. GRAND method.

1: i ← 0, x ← U {Note that 0 < x < 1 according to definition of U }
2: while x < 0.5 do {Generate i with geometric distribution}
3: x ← 2x, i ← i + 1
4: end while
5: loop {Now sample within chosen segment using odd-even method}
6: u ← (ai+1 − ai)U1

7: v ← u(u/2 + ai)
8: repeat
9: if v < U2 then

10: if U3 < 0.5 then
11: return ai + u
12: else
13: return −ai − u
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Fig. 6. Diagram showing the Gaussian distribution divided into rectangular, wedge, and tail regions in the
Ziggurat method.

14: end if
15: else
16: v ← U4

17: end if
18: until v < U5

19: end loop

The algorithm shown here is a simplified version, which uses more uniform inputs
than are necessary. A more practical and sophisticated implementation is described
by Brent [1974], which recycles uniforms between stages within the algorithm, and be-
tween successive calls to the algorithm. This technique reduces the number of uniforms
needed per output from 4.04 [Forsythe 1972] to 1.38, at the expense of introducing a
division and some extra additions.

2.3.6. Ziggurat. The Ziggurat method [Marsaglia and Tsang 1984a, 2000] (the second
of these two publications is used as the basis for the discussion here) uses an enclosing
curve for the positive half of the PDF, which is chosen as the union of n sections, Ri
(1 ≤ i ≤ n), made up of (n−1) rectangles, and the tail region, as illustrated in Figure 6.
The rectangles and tail region are chosen so that they are all of equal area, v and their
right-hand edges are denoted by xi. All but one of the rectangles can be further divided
into two regions: a “subrectangle” bounded on the right by xi−1, which is completely
within the PDF, and to the right of that a wedge shaped region, that includes portions
both above and below the PDF. The rectangle bounded by x1 consists of only a wedge
shaped region.

Each time a random number is requested, one of the n sections is randomly (with
equal probability) chosen. A uniform sample x is generated and evaluated to see if it
lies within the subrectangle of the chosen section that is completely within the PDF. If
so, x is output as the Gaussian sample. If not, this means that x lies in the wedge region
(unless the tail section is being considered; in that case separate processing occurs), and
an appropriately scaled uniform y value is chosen. If the x, y location is below the PDF
in the wedge region, then x is output. Otherwise x and y are discarded and the process
starts again from the beginning. In the case of the tail section and x > xn−1, a value
from the tail is chosen using a separate procedure (see Section 3). Provided that the tail
sampling method is exact, the Ziggurat method as a whole, is exact. Algorithm 11 gives
pseudo-code for the Ziggurat generator, omitting some common optimizations for clarity.
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Algorithm 11. The Ziggurat method

1: loop
2: i ← 1 + �nU1� {Usually n is a binary power: can be done with bitwise mask}
3: x ← xiU2

4: if |x| < xi−1 then
5: return z {Point completely within rectangle.}
6: else if i �= n then {Note that φ(xi−1) and φ(xi) are table look-ups.}
7: y ← (φ(xi−1) − φ(xi))U {Generate random vertical position.}
8: if y < (φ(x) − φ(xi)) then {Test position against PDF.}
9: return x {Point is inside wedge.}

10: end if
11: else
12: return |x| > r from the tail {see section 3}
13: end if
14: end loop

The values of xi (i = 1, 2, . . . , n) are calculated prior to execution, or on program
startup, and are determined by equating the area of each of the rectangles with that of
the base region. If this area is v, the equations are as follows:

v = xi[φ(xi−1) − φ(xi)] = rφ(r) + 1
∫ ∞

r
φ(x)dx. (8)

The value of r can be determined numerically, and can then be used to calculate the
values of xi. More details on the method used to calculated constants, and detailed code
for implementing the Ziggurat method can be found in Marsaglia and Tsang [2000].
When n = 256 the probability of choosing a rectangular region is 99%.

The Ziggurat method is a refinement of an older method, called the Rectangle-Wedge-
Tail Algorithm [Marsaglia et al. 1964], which also uses rectangles in order to provide
candidate rejection points, but the rectangles are arranged as adjacent columns, rather
than being stacked on their sides. A similar arrangement of quick acceptance of points
within the rectangles, with a more complicated accept-reject test for the wedges on top
of the columns and the tail is also used. The Ziggurat method improves on this technique
by reducing the computation needed to generate a candidate value and increasing the
probability of its acceptance. The implementation in the paper also contains a number
of improvements which incorporate the conversion from an integer random source to
floating point, making the most common code path (where the sample is contained
within a rectangle) extremely efficient.

2.4. The Recursive Method (Wallace)

The Wallace random number generator [Wallace 1996] relies on the property that lin-
ear combinations of Gaussian distributed random numbers are themselves Gaussian
distributed, avoiding the evaluation of elementary functions entirely. Wallace provides
several generations of source code referred to as FastNorm1, FastNorm2 and Fast-
Norm3 [Wallace 2005]. Brent has described an optimized implementation on vector
processors [Brent 1997] as well as outlined potential problems and remedies for this
method [Brent 2003].

The Wallace method uses an initial pool of N = KL independent random numbers
from the Gaussian distribution, normalized so that their average squared value is one.
In L transformation steps, K numbers are treated as a vector X , and transformed
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into K new numbers from the components of the K vector X ′ = AX, where A is an
orthogonal matrix. If the original K values are Gaussian distributed, then so are the
K new values. The process of generating a new pool of Gaussian distributed random
numbers is called a “pass,” and R passes are made before the numbers in the pool are
used in order to achieve better decorrelation.

The initial values in the pool are normalized so that their average squared value is
one. Because A is orthogonal, the subsequent passes do not alter the sum of the squares.
This would be a defect, since if x1, . . . , xN are independent samples from the Gaussian
distribution, we would expect

∑i=N
i=1 x2

i to have a chi-squared distribution χ2
N . To correct

this defect, a random number from the previous pool is used to approximate a random
sample S from the χ2

N distribution, and all values taken from the pool are scaled by
this value before being output. The value used to generate S cannot be further used as
a random sample, as it would be correlated with the sum of squares for the next set of
output samples, so from each pool of numbers only N − 1 are actually returned to be
used as normal random numbers.

The pseudo-code is shown in Figure 12. The generate_addr() function is used to
permute the addresses in a pseudorandom manner, further decorrelating the outputs.
Parameter values that provide a good compromise between high statistical quality and
performance are R = 2, L = 1024, K = 4 as used in FastNorm3.

Algorithm 12. The Wallace method

1: for i = 1..R do {R = retention factor}
2: for j = 1..L do {L = N/K}
3: for z = 1..K do {K = matrix size}
4: x[z] ← pool[generate addr()]
5: end for {Apply matrix transformation to the K values}
6: x ′ ← transform(x)
7: for z = 1..K do {write K values to pool}
8: pool[generate addr()] ← x[z]′

9: end for
10: end for
11: end for
12: S ← √

pool[N ]/N {Approximate a χ2
N correction for sum of squares.}

13: return pool[1..(N − 1)] × S {Return pool with scaled sum of squares.}

In Wallace’s implementation the orthogonal transform is implemented using a
Hadamard matrix. A Hadamard matrix is an orthogonal matrix with the property that
all the elements are either +1 or −1, making it particularly efficient to implement. With
K = 4 the following two scaled Hadamard matrices A1 and A2 are used in alternating
passes:

A1 =1
2

⎛
⎜⎜⎝

−1 1 1 1
1 −1 1 1

−1 −1 1 −1
−1 −1 −1 1

⎞
⎟⎟⎠ A2 =1

2

⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 −1 −1

1 1 −1 1
1 1 1 −1

⎞
⎟⎟⎠ . (9)

Note that A2 = −A1. For the given set of four values x[1], x[2], x[3], x[4], to be trans-
formed, and with our choice of A1 and A2, the new values x[1]′, x[2]′, x[3]′, x[4]′; can be
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calculated from the old ones as follows:

x[1]′ = t − x[1]; x[2]′ = t − x[2]; x[3]′ = x[3] − t; x[4]′ = x[4] − t; (10)

and

x[1]′ = x[1] − t; x[2]′ = x[2] − t; x[3]′ = t − x[3]; x[4]′ = t − x[4]; (11)

where t = 1
2 (x[1] + x[2] + x[3] + x[4]). This approach, as used in the FastNorm imple-

mentations, reduces the number of additions/subtractions required in a matrix-vector
multiplication. Orthogonal matrices of size 8 and 16 are obtained by using the property
that if H is a Hadamard matrix, then H ′( H H

H −H ) is also a Hadamard matrix. Appropri-
ate scaling factors should be applied to the Hadamard matrices to preserve a Euclidean
norm of 1.

The use of previous outputs to generate future outputs means that the Wallace
method is not exact because there will be some correlation between output samples.
However, by careful choice of the system parameters the correlation effects can be
mitigated to the point where the output Gaussian number quality would be satis-
factory for many applications. While the foregoing discussion, and Wallace himself,
used Hadamard matrices, other transforms are possible as well (see for example Brent
[1997]). The original motivation for using Hadamard was to avoid multiplies, though
on machines with dedicated multiply-add instructions, this may not be an important
issue.

3. ALGORITHMS FOR GAUSSIAN TAIL SAMPLES

The generation of values from the tails is an important issue, both as a necessary
subroutine for some of the previously presented algorithms, and as a means of efficiently
testing the distribution of large sigma multiple random numbers. Here we explore
techniques that are explicitly designed as algorithms for generating Gaussian random
numbers x, with |x| > r for a given value of r. In some cases, it may not be possible
to generate these numbers directly. In this case, we generate values of |x| > q, where
0 ≤ q < r, and then discard the random numbers until |x| > r. We explore how this
approach can be followed efficiently for all of the algorithms to be evaluated, with the
aim of testing large sigma multiples without requiring the generation of intractably
large numbers of random numbers.

All the methods presented here are theoretically exact, but only under the assumption
of a source of perfect uniform random numbers and infinite precision arithmetic. The
issue of uniform random number generation is considered next, while the effect of finite
precision calculations is explored in the evaluation section.

3.1. Accurate Floating Point URNGs

Most methods for generating accurate random numbers from the Gaussian tail dis-
tribution rely (either implicitly or explicitly) on the singularity of the logarithmic or
division operations for values near zero to transform uniformly distributed numbers
to the infinite range required by the Gaussian distribution. The closer the uniform
random numbers get to zero, the larger the corresponding output value, although de-
pending on the method, not every such value generated will be used. However, the
generation of uniform floating-point values involves subtleties that can significantly
affect the accuracy of this method.

ACM Computing Surveys, Vol. 39, No. 4, Article 11, Publication date: October 2007.



Gaussian Random Number Generators 11:19

Fig. 7. (a) shows the change in resolution of 4-bit fraction floating-point numbers as the magnitude of the
numbers changes, (b) shows the resolution for a 5-bit fixed-point number, such as might be generated by
an integer uniform random number generator, (c) shows the results of converting a random number from
fixed-point to floating-point. The resulting values inherit both the poor resolution of fixed-point numbers
near zero, and the poor resolution of floating-point numbers near one.

Most uniform random number generators produce integer values, while most Gaus-
sian random number generators require floating-point inputs. The standard method for
converting a w-bit integer, I , to floating-point is simply to multiply by the floating-point
constant 2−w.

Figure 7 demonstrates why this method may lead to problems for GRNGs, particu-
larly near zero. In Figure 7(a) the representable values of 4-bit fraction floating-point
numbers are shown. For floating-point, accuracy improves as zero is approached. Fig-
ure 7(b) shows the representable numbers for a 5-bit fixed-point value, where the accu-
racy is the same over the entire range. In Figure 7(c) the result of converting from fixed-
point to floating-point is shown, showing how the resulting values inherit the worst of
both worlds, with lower precision near zero due to the original fixed-point value, and low
precision near one, due to the floating-point representation. An ideal U (0, 1) random
number generator should generate every floating-point value with appropriate proba-
bility, but if a 32-bit number is converted directly to floating-point through scaling then
the smallest number generated is only 2−32. If this were transformed to the Gaussian
distribution using the inverse CDF, the maximum value that could be produced is only
�−1(2−32) = −6.2. Even if 64-bit integers are used, this would only lead to a maximum
σ of 9.1, which is still lower than the target of 10σ .

A better method for converting uniform integers to floating-point values would ensure
that all representable floating-point numbers in the range (0, 1) could occur. As the
density of representable numbers near zero is much higher than near one, the values
near zero will need to have a correspondingly lower chance of occurring.

Such a random number generator is used in the Matlab environment, where the rand
function is capable of generating any representable double-precision value in the range
(0, 1) [Moler 1995, 2004]. This method uses two uniform random number generators,
and uses a truncated log2 operation on one random number to give the required geo-
metric distribution for the uniform random number’s floating point exponent, then uses
another random number to ensure that the floating-point mantissa is fully-randomized.
Even this generator, however, is not without flaws—for example it is relatively slow,
and this could be problematic in some applications.

An alternative method is to simulate an infinite precision fixed-point random value
between 0 and 1, but to only generate as many of the leading bits as can be represented
in a floating-point value. An n-bit uniform random number can be generated by con-
catenating �n/w� w-bit random numbers. If the floating-point fraction is m bits wide,
then half of the time (when the most significant bit of the n-bit wide fixed point number
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Fig. 8. Extended-precision fixed-point.

Fig. 9. Graphical representation of the acceptance regions for Algorithm 16 with different values of r. The
x and y axes are the absolute input values, and areas under the curve are acceptance regions. The dotted
boxes show the restricted region that must be sampled to produce values greater than 2.2.

is one) only the first m bits are needed, a quarter of the time only the first m + 1 bits
are needed, and in general the probability of needing b or fewer bits is 1 − 0.5b−m. We
can take advantage of this observation by expanding the fixed-point number until the
most-significant non-zero bit is seen, to provide the floating-point fraction.

Figure 8 demonstrates this technique using the same 4-bit fraction floating-point
and 5-bit fixed-point system used earlier. Each group of five bits represents a uniform
random number, and as soon as the first one, and trailing m − 1 digits, have been
determined, the following bits are not needed (indicated by grey crosses). Simplified
pseudo-code for the case where m < w is shown in Algorithm 13, but in practice the
code can be simplified using bitwise operations and machine-specific instructions. In
particular the most common case, where a one is found within the first random integer,
can be optimized, costing just one extra comparison per uniform random number (which
replaces an equivalent comparison to check for zero, which is no longer needed). In the
common case of IEEE single precision, where m = 24 and w = 32, the extra code is
only needed for 1 in every 256 calls.

A potential advantage of this method over the Matlab technique is that on aver-
age, only slightly more than one integer uniform sample is needed to generate each
floating-point output sample and hence may be faster, depending on the relative
speed of the underlying operations. If the integer random numbers are of a differ-
ent overall width than the floating-point format then more integer samples may be
needed; for example, two 32-bit integers will be needed for each 64-bit double-precision
sample.
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Algorithm 13. Method for producing floating-point numbers with fully-random fractions (where
w > m)

1: c = 1 {Sets maximum value that can be generated}
2: repeat
3: x ← I1, c ← 2−wc
4: until x �= 0 {Loop until first one is found}
5: t ← w {Number of random bits left in x}
6: while x < 2w−1 do
7: t ← t − 1, x ← 2x, c ← c

2 {Shift first one to MSB}
8: end while
9: if t < m then {Add more random less significant bits if necessary}

10: x ← x + 2−t I2 {Right shift new value into place}
11: end if
12: return c x {Convert to floating-point}

Signed floating-point numbers can be generated in the same way, with the sign de-
termined by an extra bit from the URNG.

3.2. CDF Inversion

To generate |x| > r from an approximation to the inverse CDF G(u) = �−1(u), one can
simply restrict the inputs of the generators to uniform values in the ranges (0, �(−r)]
and [�(r), 1). However, the asymmetric accuracy of floating-point representation over
the range (0, 1), shown in Figure 7(c), means that although negative output values
can be accurately reproduced, as input values very close to zero can be represented,
positive values cannot, due to the lower accuracy of floating-point numbers near 1. This
asymmetry leads to a potentially large asymmetry between the negative and positive
tails.

For example, in single-precision IEEE the smallest number greater than zero is
roughly 10−44, while the largest number less than one is about 1 − 10−7. It is thus
possible to represent numbers much closer (more than 30 orders of magnitude) to zero
than to one. This means that the largest possible Gaussian number that can be pro-
duced by CDF inversion is around +5, while the smallest value is −14. Even worse, the
large value will occur with much higher probability, as the corresponding input value
covers a larger segment of the uniform range.

A solution to this problem is to only apply the inverse CDF approximation to values
less then 0.5 and to attach the sign afterwards. Internally many of the CDF inversion
techniques already perform this step to take advantage of the Gaussian distribution’s
symmetry, since this calculation may be achieved at little or no cost. Pseudo-code for
generating values from the tails is show in Algorithm 14, although this organization
should be applied to any uses of the CDF inversion technique for Gaussian random
number generation, not just when tail values are the focus.

3.3. Marsaglia Tail Algorithm

Marsaglia proposed an algorithm specifically for sampling from the tails [Marsaglia
1964], and it was used to produce random numbers from the tails in the Marsaglia-
Bray rejection method from Section 2.3.2 [Marsaglia and Bray 1964] and the Rectangle-
Wedge-Tail method mentioned at the end of Section 2.3.6 [Marsaglia et al. 1964]. The
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Algorithm 14. Sampling From the Tails Through CDF Inversion

1: a ← U
2: if a < 1

2 then {Extract random sign from uniform sample}
3: s ← 1, a ← 2a
4: else
5: s ← −1, a ← 2a + 1
6: end if
7: a ← �(−r) 1

2 a {Scale uniform sample a to smaller range.}
8: x ← G(|a|) {Where G(u) ≈ �−1(u)}
9: return sx {Attach random sign.}

algorithm is based on the Polar method, first generating two uniform values whose sum-
of-squares is less than 1, then performing a transformation biased to produce values
over a threshold. Algorithm 15 gives pseudo-code for the method, an obvious difference
from the polar method is that two rejection steps are required rather than just one, as
even after selecting a suitable pair of uniform values there is no guarantee that either
will be larger than |r|.

Algorithm 15. Original Marsaglia Tail Method

1: loop
2: repeat
3: a ← V1, b ← V2

4: d ← a2 + b2

5: until 0 < d < 1
6: t ←

√
r2−2 ln d

d

7: x ← ta, y ← tb
8: if |x| > r then
9: return x

10: else if | y | > r then
11: return y
12: end if
13: end loop

In his more recent work, Marsaglia introduced [Marsaglia and Tsang 1984b] and
used [Marsaglia and Tsang 1998, 2000] a different version of the tail algorithm. The
algorithm is shown as Algorithm 16, and requires only one loop and fewer operations
than the original method, although it requires two logarithms per iteration rather than
just one.

Algorithm 16. New Marsaglia Tail Method

1: repeat
2: a ← V1, b ← U2

3: x ← − 1
r ln |a|, y ← − ln b

4: until 2 y > x2

5: return a > 0 ? r + x : −r − x
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3.4. Box-Muller

With reference to Algorithm 1, it is clear that the magnitude of the outputs is bounded
by a since the subsequent steps multiply a by a value between −1 and 1. Thus, in order
to generate all values above some threshold r, cases where:

u1 > e− 1
2 r2

(12)

can be ignored.

3.5. Polar-Rejection

As with Box-Muller, the Polar method described in Algorithm 3 is bounded by f , which
provides its magnitude. In this case it is derived from both inputs:

r =
√

−2
ln d
d

, d = x2 + y2. (13)

The maximum value of x that needs to be considered happens when y = 0, and vice
versa, so the equation can be simplified to d = x2. This gives

x, y <

√
e− 1

2 r2 , (14)

which, unsurprisingly, is the square root of the Box-Muller limit. This method is also
closely related to Marsaglia’s original tail method.

3.6. GRAND

The odd-even method can be used as a tail production method simply by altering the
table of constants. To produce values above q the first table entry needs to be set to
A[0] = q, then the rest of the entries can be calculated using the recurrence A[i] =
�−1(1 − �(−A[i − 1])/2). As with the full Gaussian GRAND generator, the maximum
sigma-multiple that can be achieved in the tails is limited by the size of the table.

3.7. Ratio-of-Uniforms

Large values in the ratio-of-uniforms method are produced when small values of the
denominator u occur, corresponding to values very close to the origin of Figure 4. To
limit generation to values above r, we first determine the upper limit for the u axis, u f ,
and then select the minimum threshold v f for the v axis that encloses that area:

v2 = − 4u2
f ln u f

v
u f

=r (15)

u f = exp
(

1
4

r2
)

(16)

v f =
{ √−4u2 ln u f , if u f < e−1/2√

2/e, otherwise
. (17)

Unfortunately, this method results in rapidly decreasing acceptance ratios as r is
increased, with 33% of points accepted at r = 1, 10% at r = 2, and 3% at r = 4. Due
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to these poor acceptance rates, the ratio-of-uniforms method is unlikely to be a good
candidate for generating samples from the tail distribution.

3.8. Ahrens-Dieter

In the Ahrens-Dieter generator the exponential and Cauchy distributions interact to
determine the magnitude of the output sample, but it is the exponential component
that determines the magnitude. For samples x and y , from the exponential and Cauchy
standard distributions respectively, the maximum output magnitude is given by:

max
(

y
√

2x/(1 + y2),
√

2x/(1 + y2)
)

. (18)

This equation is maximized at y = 0 and y = ∞, leading to the minimum value of x
that should be generated for a threshold r of:

x f = r2/2. (19)

This can be implemented in Algorithm 7 simply by initializing a to A + x f in step 1.

4. TESTS, TEST PARAMETERS AND RESULTS

Much has been written on the general issue of testing for randomness and the specific
issue of testing for goodness of fit. Good overall discussions for testing of uniform ran-
dom number generators can be found [L’Ecuyer 1992, 2001]. Sophisticated test suites
and procedures are available from the U.S. NIST [Rukhin et al. 2001] and from the
“Diehard” tests developed by Marsaglia [1997]. Another comprehensive test suite for
randomness is TestU01 [L’Ecuyer and Simard 2005], which provides a wide selection of
paramaterizable tests, as well as some predefined test suites such as Crush [L’Ecuyer
2001]. Specific attention to GRNGs can also be found [Molle et al. 1992].

4.1. Testing Methodology

The main uniform random number generator used in the tests presented here is the
MT19937 Mersenne Twister [Matsumoto and Nishimura 1998], which is among the
best quality generators commonly in use. As well as passing all common empirical
tests for randomness, the generator also has a number of theoretically determined
qualities such as a very long period and good equidistribution. Although not the fastest
generator available, it provides a good trade-off between speed and quality, and so it
is used as the generator in all tests for statistical quality. It is also used as the main
generator in performance tests, although additional results using alternate uniform
generators are also explored.

4.1.1. Goodness-of-Fit Tests. Both the standard and tail generation algorithms are
evaluated using the χ2 test. In the classic χ2 test, a set of observed samples is compared
against the expected distribution. This requires that a histogram be constructed and
the frequency compared with the expected number. The number and allocation of his-
togram “buckets” is an area of substantial flexibility. Using more buckets gives higher
resolution with respect to different input values, but reduces the expected number in
each bin. Another choice is whether to use regularly-spaced bucket boundaries or equal-
probability buckets. In order to achieve maximum sensitivity an equal-probability bin
arrangement is used in preference to one with regular spacing, as it allows more bins to

ACM Computing Surveys, Vol. 39, No. 4, Article 11, Publication date: October 2007.



Gaussian Random Number Generators 11:25

Table I. Number of bins k (according to Equa-
tion 20) and expected number of samples bucket
E used in χ2 tests for different numbers of sam-
ples n.

n 210 220 230 236

k 64 4096 218 3.17 × 106

E 16 256 4096 21619

be used without the minimum expected count in any bin falling below the level at which
the χ2 assumptions break down. In the results presented here, the number of buckets,
k, used in a test, is determined from the number of samples, n, to be accumulated,
through the following formula:

k = �n3/5�. (20)

The choice of 3/5 as the exponent is somewhat arbitrary, and the trade-off is between
avoiding overly wide buckets, which inhibits the ability to identify local inaccuracies in
the PDF, and overly narrow buckets, which can lead to too few samples per bucket for
statistical significance. Often, an exponent of 1/2 is used, though in our experiments
we found this produced too few bins.

Table I gives the number of bins, k, and expected frequency, E, for different numbers
of samples, n, under this approach. Each generator is tested with successively larger
sample sizes, starting from 210 and doubling in size up to 236. After processing each
batch the p-value is calculated: a p-value greater than 0.1 is considered a pass, and
the next batch size will be tested; a p-value less than 10−6 is an immediate fail, and
the generator will be considered to have failed at that sample size; or if the p-value is
in between, another batch of the same size is tested, until the geometric mean of all
the p-values at a given batch size rises above or falls below the pass or fail threshold.
The same χ2 test is applied to both Gaussian generators and tail generators, with the
appropriate distribution used in each case in order to ensure equal probability buckets.

The χ2 test is the only goodness-of-fit used here to test the Gaussian distribution
(as opposed to the Gaussian tail distribution), as it is found that in this context
the Empirical-Distribution-Function (EDF) tests, such as the Anderson-Darling and
Kolmogorov-Smirnov tests, do not have significantly better analytical power. The cho-
sen bucketing strategy provides a relatively fine-grain analysis of the structure, and
using an equal-probability scheme means that the coverage across the distribution is
good even for tail values, removing the need for EDF tests. It is also extremely difficult
to apply EDF tests to large numbers of samples, due to the need to store and sort the
entire sample before calculating the test statistic. However, the EDF tests are used in
the high sigma-multiple tests described next.

4.1.2. High Sigma-Multiple Tests. One of the goals of our tests is to assess the perfor-
mance of the GRNGs in the tails. This goal poses an additional challenge in that, on
the one hand, the randomness tests require large numbers of samples to achieve ap-
propriate sensitivity, but samples in the tails occur infrequently. If, for example, one
million samples from the tail region beyond |x| > 10σ are desired, it is impractical to
run an unmodified GRNG long enough to accumulate the desired number of samples.

Our approach, therefore, is to modify the GRNGs to force the generation of random
numbers with large σ multiples. Here we examine how the different ways in which
values from the tails can be generated, as well as how each method could be forced to
produce values over a given threshold. These forcing techniques are used with special
attention to ensure that the algorithms are not changed from their standard forms. The
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only change made is to modify the input uniform random numbers that the algorithms
consume, with all other constants remaining the same, in order to guarantee that the
large sigma-multiple random numbers generated accurately characterize the original
generators.

In order to avoid introducing bias, the uniform random numbers are filtered in their
original integer form before conversion to floating-point representation. To filter for
values below a certain threshold, the uniform random numbers are first reduced to the
nearest power of two range using a bitwise mask, then the final range reduction to the
desired threshold is performed through rejection.

As noted further below, there is no clear way to force the Wallace method to generate
high sigma-multiple values. Thus the brute force approach of generating a large number
of samples and selecting all values over a certain threshold is applied.

The aim of the high-sigma multiple tests is to determine at what point a generator
starts to deviate significantly from the Gaussian distribution. The approach used here
is to determine for each generator a threshold value q, such that a set of n samples
above this threshold will not conform to the Gaussian tail distribution. Although this
threshold will clearly depend on the value of n and the method used to detect goodness-
of-fit, it allows meaningful comparisons between generators to be made, and gives a
general idea of the maximum absolute value (and hence total number of samples) that
a generator can accurately produce.

When testing the performance of a generator at forced high sigma-multiples, it is
necessary to reject many candidate samples, even when manipulating the source ran-
dom number generator. Combined with the inherent inefficiency of many methods at
high sigma-multiples, it is computationally infeasible to generate 236 random numbers
(as was used with the basic goodness-of-fit test described above), particularly as many
different thresholds must be tested to determine that failure point. Instead, a pool of
n samples is maintained, and as the threshold is raised, all samples below the thresh-
old are discarded and replaced with new samples above the threshold. Because many
samples in the pool will not change as the threshold is raised, there will be correlations
between goodness-of-fit statistics at successive thresholds, which tends to lead to a
gradual decrease in p-values. This issue is taken into account by reporting the highest
threshold at which a “good” p-value is seen, rather than the first threshold at which a
“bad” p-value is seen.

The algorithm for this testing procedure is shown in Algorithm 17. The pool size,
n, is chosen to be 100000, while �t is 0.1. The goodness-of-fit algorithm applied in
step 4.1.2 uses the EDF based Anderson-Darling and Kolmogorov-Smirnov tests, re-
turning whichever of the two p-values is lower.

When we apply the high sigma-multiple tests, it is infeasible to run each generator
until sufficient samples have been gathered. To test the distribution of a generator above
8σ using brute-force, over 1.6 × 1020 values, would need to be generated. Instead the
generators are adjusted such that given a target sigma q, the generator is guaranteed
to generate all possible values greater than q, but is no longer guaranteed to generate
samples below q. This adjustment is achieved by limiting the range of the uniform
samples generated for use within the generator, and the generator algorithm itself
remains unchanged.

The method for constraining uniform random number generation must be calculated
for each generator type. In many cases the methods described in Section 3 can be used
unchanged, but further constraints are required for some of the algorithms.

Old Marsaglia Tail Method. When forcing the production of values above a thresh-
old q for an old-style Marsaglia Tail generator, the existing threshold parameter r must
be taken into consideration (where q > r). The correct constraints are achieved by only
choosing values for the uniform random numbers a and b that produce values of d

ACM Computing Surveys, Vol. 39, No. 4, Article 11, Publication date: October 2007.



Gaussian Random Number Generators 11:27

Algorithm 17. High Sigma-Multiple test algorithm

1: S ← ∅, q ← 0, g ← 0
2: loop
3: S ← S/{s ∈ S : |s| < q} {Remove values below current threshold}
4: while |S| < n do {Replace any discarded samples}
5: x ← Generate()
6: if |x| > q then
7: S ← S ∪ {x}
8: end if
9: end while

10: p ← EDF(S) {Apply EDF tests to get p-value for sample}
11: if p > 0.01 then
12: g ← r {Record last-known-good point}
13: else if p < 10−6 then
14: return g {On failed p-value return last-known-good point}
15: end if
16: q ← q + �q
17: end loop

below a certain threshold dq :

q =√
dq

√
r2 − 2 ln dq

dq
(21)

dq =
√

exp(r2 − q2). (22)

Hence only values of |a| and |b| less than dq need be generated in order to force values
larger than r.

New Marsaglia Tail Method. This method is not symmetric, so the two values a
and b must be limited separately. From inspection, it is clear that a directly controls
the magnitude of the output, while b is only used for rejection. We first limit the range
of a by choosing a < aq where aq defines the maximum value for a, and then calcu-
late a corresponding limit bq for b that reduces the rejection probability as much as
possible:

aq = exp(r2 − qr) (23)

bq = exp

(
− ln2 aq

2r2

)
. (24)

GRAND. Forcing values above a threshold q for an existing generator can be achieved
by ignoring sections of the table that produce lower values. So find an index iq , such
that A[iq] < q < A[iq + 1], and only generate table indices greater or equal to iq
in Algorithm 10. Because the area in sector i is equal to the area in all sectors at
higher indices, at least half the time the generated values will be above q, although
this could be slightly improved by restricting the values of w generated in step 2.3.5 of
Algorithm 10.

Wallace. Generating or forcing high σ multiple outputs with the Wallace method
is difficult. As noted earlier, the Wallace method utilizes linear transformations of
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previous outputs. One can insert one or more large values into a pool and be confident
that the subsequent pool will be more likely to contain larger values as a result. How-
ever, by definition, this approach intentionally creates and utilizes inter-pool correla-
tions, and the degree of “randomness” has been substantially reduced. The alternative,
while computationally expensive but certainly cleaner, is to simply run the generator
for long enough (fortunately it is very fast) to accumulate the desired number of high
σ multiple outputs.

4.1.3. Conversion to a Uniform Distribution. In order to test for statistical randomness, we
use the Crush battery which is part of the TestU01 suite. The Crush battery applies 94
separate tests for uniform randomness, consuming a total of about 235 inputs. The input
random numbers can be provided as double-precision floating-point or 32-bit integer
values, as long as the numbers contain at least 30 “random” bits.

The Gaussian distributed samples output by the generator under test are mapped
to the uniform distribution by applying the Gaussian CDF to each random number in
the sample. The mapping process is performed using a double-precision Gaussian CDF
approximation [Marsaglia 2004] with absolute error less than 10−15, and so will provide
more than the required 30 bits of accuracy when applied to double-precision Gaussian
samples.

The tests for statistical randomness assume that the inputs will be 32-bit uniform
random integers, and if there are less than 30 bits, some tests will always fail (although
TestU01 does support parameterization for different numbers of random bits, the pre-
defined battery Crush does not support this). However, if a Gaussian single-precision
floating-point value is transformed to a uniform 32-bit integer then only a subset of
integers can be produced, due to the limited accuracy of the floating-point source value.
For example, consider the Gaussian values 1 and 1 + ε, the next largest representable
number. In single precision ε = 1.192092896 × 10−7, so 232(�(1 + ε) − �(1)) = 124.
This means that there are 123 integers that cannot occur after the transformation,
and over the entire range there are thousands of values that cannot occur. The ef-
fect of this is to interfere with the randomness of the low-order bits of the gener-
ated numbers, effectively reducing the number of random bits to a value less than
32.

To allow the existing tests to be used without modifying them for fewer bits, we
retain the n random most-significant bits and drop the 32 − n low bits, replacing them
with bits from another uniform random number generator. The generator supplying
the additional low bits is known to pass the test suites, and so if the combination of
Gaussian-derived high bits and additional low bits also passes the tests, then we can
say with some confidence that the Gaussian generator provides at least n random bits,
although it may provide more.

In the studies reported here, we retain 23 bits of precision after the transformation,
motivated in part by the fact that the fraction in IEEE 754 single precision floating-point
arithmetic utilizes 24 bits. The choice of 23 bits was made as a compromise that allows
one bit of “spare” precision in the single-precision Gaussian representation, and two bits
in the integer uniform representation. No detailed analysis of the maximum number of
bits that could be retained is made, but we note that at least some of the generators pass
the test suites with 23 bits, showing evidence that this does not exceed the maximum
number of bits that can be retained. Also, as we mention earlier, for Gaussian values
near 1 there are gaps of at least 123 between the possible integer values, suggesting
that at best 32 − �log2 123� = 25 bits could be used. However, this is an upper bound,
and the non-exact transform from the Gaussian distribution to the uniform distribution
could possibly further reduce the number of bits that can be safely used.
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4.1.4. Test for Interblock Correlations. The Wallace random number generator has a de-
fect whereby large output samples bias the distribution of the nearby samples in the
sequence. To detect such biases it is necessary to wait for samples that exceed a se-
lected trigger threshold, then test the distribution of the samples following the trigger
sample (not including the trigger sample itself). The distribution of each sample should
be independent of any preceding samples, but if the defect exists then the distribu-
tion of samples closely following large values will be biased away from the Gaussian
distribution towards large values.

The test used here is to choose a trigger threshold t, then to generate blocks of k
samples Si = xki . . . xki+k−1. A block Si, which contains a value with absolute value
greater than k, acts as a trigger block, and the following block Si+1 is then added to the
set F of samples to be tested. If F has not yet reached a target size, then the process
continues by examining block Si+2.

Once the size of F has reached a target size n, its distribution is investigated by using
a χ2 test with 16 equal probability (under the expected Gaussian PDF) buckets. If the
resulting p-value is greater than a “good” threshold pg then n is recorded as the last
known good sample ng , while if the p-value is less than a failure threshold pf the test
is reported as failed with a sample count of ng = ng + 1 and the test is finished. If the
test is not failed then the target count n is doubled, and more blocks are added to F
until either the test fails or n exceeds a maximum value.

Our tests are performed for n = 214 . . 232, with a block size of k = 210, the last known
good threshold pg = 0.01, and the failure threshold pf = 10−6. The test could be made
more sensitive by changing these parameters.

4.2. Results: Gaussian Generators

Table II gives the relative speed and operation count for each of the algorithms. The
speed is expressed relative to that of the Polar Rejection method, as this is a simple and
commonly used method and so can be considered as a baseline for performance. The
underlying absolute speed is calculated as the geometric average of the measured speed
on four different platforms (described shortly), using the Mersenne Twister [Matsumoto
and Nishimura 1998] as the source generator. In all cases, direct implementation of the
algorithms using the C++ programming language is used, with no explicit attempt to
perform processor-specific optimization. The table also contains a full breakdown of
the operation counts. For operations that occur only conditionally, average numbers
derived either analytically or based on simulation are presented.

The Wallace algorithm provides the highest performance, but only when the qual-
ity parameter is at its lowest setting. The Ziggurat, while not as fast as the Wallace
method, has better statistical properties with respect to correlation. Table III provides a
break-down of the Ziggurat and Mersenne Twister combination’s speed across the four
platforms used for benchmarking. These consist of two Intel and two AMD processors,
using versions of either Microsoft Visual Studio (msvc) or the GNU Compiler Collec-
tion (gcc) to compile and link the executables. The peak speed (measured in millions
of generated samples per second) of 56.96 MSamples/s is achieved using the Pentium-
4, which is also the highest clock rate processor tested. If the generator sample rate
is scaled by the processor clock rate, then the Pentium-4 actually provides the worst
performance per processor cycle, and the Opteron the best.

Figure 10 shows the performance (not adjusted for clock rate) for a reduced set of
generators, relative to the geometric mean across all platforms. Except for the Ziggurat
method, the Opteron is the fastest for all other generators (including those not shown
in the chart), it just happens that the Pentium-4 is fastest for the most important
generator. In some cases, for example, Box-Muller, the Pentium-4 is actually slower
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Table III. Performance comparison of the ziggurat generator across four different platforms, us-
ing the mersenne twister generator as the source for uniform random numbers. Performance is
measured using millions of generated samples per second (MSamples/s), and relative performance
is in comparison to the geometric mean of the four platforms.

Observed Performance Adjusted for Clock Rate
Processor GHz Compiler MSamples/s Relative MSamples/s/GHz Relative
Pentium-M 1.73 msvc 2005 37.11 0.78 21.45 1.02
Athlon-MP 2.13 msvc 2003 46.14 0.97 21.66 1.03
Pentium-4 3.20 gcc 3.4.3 56.94 1.20 17.79 0.84
Opteron 2.20 gcc 3.4.5 52.72 1.11 23.96 1.14

Fig. 10. Performance for generators on different platforms, relative to the geometric mean performance
across platforms.

than the Pentium-M, even though it is running at almost twice the clock rate (possibly
due to superior support for floating-point intrinsics in the Microsoft compiler). However,
even with this significant variation between platforms, the relative ordering of the
fastest four generators always followed that shown in Table II.

This evaluation used the Mersenne Twister as the source of uniform random num-
bers, as it is a well established and widely used high quality generator. However in
certain situations it may be acceptable to degrade the quality of the uniform random
numbers in favor of speed, or a platform may provide an instruction for fast hardware
random number generation. Figure 11 compares the absolute performance of a sub-
set of the Gaussian generators using three different uniform sources on the Opteron
2.2GHz test platform. A less complex Combined Tausworthe generator (Taus88) is used,
which provides higher speed but lower statistical quality [L’Ecuyer 1996] as well as the
Mersenne Twister. An even higher speed uniform generator is provided using a “Quick
and Dirty” Linear Congruential generator [Press et al. 1997], which requires just one
addition and one multiplication per output sample. However, it has significant statis-
tical defects, and is only used here to provide the simplest possible generator that will
allow the Gaussian generators to function correctly. In most of the cases in Figure 11,
the variation in speed is small, even when moving from the complex Mersenne Twister
to the extremely simple Quick and Dirty generator. The difference is most noticeable in
the Ziggurat method, where performance is more than doubled by using an extremely
fast uniform random number generator.

One aspect of the generator algorithms we have not considered in this article is
the possible vectorization of algorithms. For obvious reasons, this has the potential
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Fig. 11. Performance of selected Gaussian generators using different uniform random number sources on
an Opteron 2.2GHz.

Table IV. Statistical quality of generators as measured by the χ2 and high sigma-multiple
tests for single-precision generators, using standard integer to floating-point conversion
(standard) and fully-random fraction (Full-Fraction) conversion. Generators passing the
χ2 test for more than 236 samples are shown using “+.” Where high sigma testing becomes
computationally infeasible before generator failure, the point at which testing stopped is
suffixed with “+.” An entry of “n/a” indicates that the test or parametrisation do not apply
to that particular generator.

χ2 Test (log2(n)) High Sigma Test
Standard Full-Fraction Standard Full-Fraction

Wallace (qual = 1) [1996] + n/a 6+ n/a
Ziggurat [2000] + + 8.15 17.4
Wallace (qual = 4) [1996] + n/a n/a n/a
Monty Python [1998] 34 n/a 8.27 14.88
PPND7 (ICDF) [1988] 34 34 4.11 12.64
Ahrens-Dieter [1988] 15 + 17.3 17.3
Mixture-of-Triangles [2000] 26 n/a n/a n/a
Polar [1969] 36 + 8.09 11.59
GRAND [1974] 36 + 9.2 17+
Hastings (ICDF) [1959] 29 30 5.25 12.64
Leva (Ratio) [1992b] + + 7.91 17+
PPND16 (ICDF) [1988] 35 + 4.11 13.7
Marsagla-Bray [1964] 35 + 8.35 15.78
Box-Muller [1958b] 26 35 5.57 13.96
Kinderman (Ratio) [1977] + + 7.91 17+
Central-Limit (n = 12) 20 n/a 0.99 n/a
CLT-Stretched [1959] 28 n/a 2.84 n/a

to greatly speed up execution. The challenge is that it is difficult to make any general
statements about vector performance in light of the many differences between different
vector and SIMD architectures and in the possible ways to exploit these. The issue of
vectorised random number generators has been addressed in Brent [1993] and Brent
[1997], where the performance of the Box-Muller, Polar, Ratio-of-Uniforms and Wallace
algorithms is considered. Of these the Wallace appears to offer the best performance.

Table IV shows the χ2 goodness-of-fit results for the Gaussian generators as well as
the tests for high sigma-multiple correctness. The χ2 test results are presented either as
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Table V. Statistical quality of generators as measured by crush for single-precision and double-
precision generators. All generators were tested, but only generators that failed at least one test
are shown here.

Single-Precision Double-Precision
Generator Failures Classes Failures Classes
Ziggurat [2000] 0 0 1 1 (COLL)
Mixture-of-Triangles [2000] 3 3 (MOT,SP,WD) 3 3 (MOT,SP,WD)
GRAND [1974] 2 1 (MOT) 0 0
Ahrens-Dieter [1988] 3 3 (COLL,BDAY,PIS) 3 3 (COLL,BDAY,PIS)
Hastings (ICDF) [1959] 2 1 (MOT) 2 1 (MOT)
Central-Limit (n = 12) 19 12 19 12
CLT-Stretched [1959] 3 2 (COLL,MOT) 3 2 (COLL,MOT)

the + symbol, indicating that the generator does not fail the tests for samples sizes less
than or equal to 236, as an integer, representing the binary power at which the test failed,
or as not applicable (“n/a”) if the tests do not apply. The high sigma-multiple tests are
shown as a number, indicating the point (sigma-multiple) above which the tests fail, or if
suffixed with + then the point at which testing is stopped due to excessive computation
time. The tests are applied in single-precision using both direct conversion from integer
to floating-point random numbers, and using the method for fully-random fractions.
The χ2 tests are also applied using double-precision arithmetic, but the results are
not shown here, as the only observed differences from the single-precision full-fraction
results are that both the Box-Muller and PPND7 pass the χ2 tests.

Table V shows the results of applying the Crush battery to the generators. Only gener-
ators that produce failures are shown. Single-precision results are collected by masking
in 10 bits of “good” randomness after transforming to uniform as explained earlier, while
double-precision tests are transformed directly. The tests were performed using both
standard integer to floating-point conversion, and fully-random fraction conversion,
but this was not found to change the results of the tests. The Failures column indicates
the total number of failed tests, while the Classes indicates how many different types
of test fail, since some classes of statistical tests are applied with different parameters.
Where only a few tests fail, the specific cases are identified using the key: COLL =
Collisions, MOT = Max-Of-T, SP = Sample-Products, WD = Weight-Distribution,
BDAY = Birthday, PIS = Period-in-Strings.

The most commonly failed test is Max-Of-T, which collects groups of samples and
examines the statistics of the maximum element in each group. Generators that produce
a poor Gaussian curve fail this test due to a poor distribution in the near tails. The
Ziggurat method passes all tests in single-precision, but in double-precision, fails a
single test, the Collisions test. This is because in the published version of the Ziggurat
algorithm [Marsaglia and Tsang 2000] the same random value is used both to select
the rectangle and to provide the sample, so there is a correlation between the low bits
of the sample used to select the rectangle, and the absolute magnitude of the sample.
Using an independent random number generator to select the rectangle fixes this minor
problem. For example, the eight least significant bits of the floating point fraction can be
replaced using bit-wise operations, requiring one extra 32-bit uniform random integer
for every four generated Gaussian random samples.

The test for inter-block correlations is applied to the Ziggurat and the Monty Python
generators, and to the Wallace generator with quality levels (number of pool transfor-
mations per output) of 1 and 4. The slower generators are not tested due to the large
numbers of samples that must be generated in these tests when the generator passes,
and it is expected that all will pass apart from Wallace. Initially the test is applied to
all generators for triggering thresholds from 1 to 5. The Ziggurat and Monty Python
generators passed all tests.

ACM Computing Surveys, Vol. 39, No. 4, Article 11, Publication date: October 2007.



11:34 D. B. Thomas et al.

Table VI. Number of samples (log2) before bias
is noticeable in wallace algorithm for increasing
trigger thresholds (+ means no bias detected).

Trigger Threshold

Iterations 1 2 3 4 5 6
1 + + + 26 24 22
4 + + + + 32 26
8 + + + + + +

Table VII. Generation rate and uniform samples per output tail sample.
Algorithm Generation Rate Uniform Samples per Output Sample

r 0 1 2 3 4 0 1 2 3 4
GRAND [1974] 8.80 8.09 7.85 7.67 7.62 2.47 2.76 2.91 2.98 3.02
Box-Muller [1958b] 8.69 4.50 2.97 2.15 1.69 1.00 1.91 2.97 4.11 5.30
New-Marsaglia [1984b] 3.65 4.69 5.08 5.26 3.05 2.37 2.19 2.11
Old-Marsaglia [1964] 10.71 5.48 3.60 2.64 2.08 2.55 2.89 3.88 5.25 6.74
Polar [1969] 10.43 4.96 3.17 2.34 1.84 2.55 2.89 3.88 5.25 6.74
PPND7 [1988] 15.41 15.41 15.40 15.40 15.3 1 1 1 1 1
Ahrens-Dieter [1988] 4.62 3.91 2.92 2.18 1.70 1.34 2.57 4.00 5.53 7.11

The low-quality Wallace fails with a trigger threshold of 4, while the higher quality
version fails with a trigger threshold of 5. Table VI shows the results of the tests on the
Wallace generators, including the results for a trigger threshold of 6 (calculated using
parallel generators). Increasing the number of iterations from 1 to 4, reduces the effect
of correlations, and the table shows that if the number of iterations is increased to 8
then the correlations are no longer detectable using this test.

The results described convey several messages. First, some of the algorithms are
more resilient than others when used with single-precision uniform random numbers
derived directly from 32-bit integers. For example, the Box-Muller method fails beyond
5.6σ while the Ziggurat method does not fail until 8.1σ . That said, since values with
magnitude exceeding 8σ occur fewer than one time out of 1014, using a uniform random
number generator with period ≈ 109 would be a very poor idea if random numbers
in the 8σ region are desired. Provided that input single-precision uniform random
numbers with fully-random fractions are used, all of the tested algorithms deliver good
performance to at least 11σ , and in many cases well beyond. Since fewer than one in
1027 Gaussian numbers can be expected to have magnitude exceeding 11σ , it could be
argued that differences among GRNGs in terms of where failure occurs in the region
above 11σ are less important. That said, it is nonetheless noteworthy that the Ziggurat
and Marsaglia-Bray methods extended significantly further than the others, failing at
17.4σ and 15.8σ respectively.

In terms of speed, Table II shows that the Ziggurat and Wallace methods are the
fastest. The Wallace method, however, is recursive, utilizing transformations of pre-
vious outputs to generate new ones. The resulting inevitable correlations are seen in
Table VI. This can be mitigated by increasing the pool size and mixing in Wallace, but
care must be taken so that the pool size doesn’t become so large that speed, the Wallace
method’s most significant advantage, is sacrificed.

4.3. Results: Gaussian Tail Methods

The Gaussian tail methods all use a parameter r, which controls the minimum abso-
lute value that will be produced. As r is varied, the behavior of the methods varies,
altering the acceptance ratios and computation per output random number, as well as
magnitude and accuracy of the numbers used in calculations. For this reason, the tests
are performed with different values of r.
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Table VIII. Number of sample (log2) before failure
of χ2 test for gaussian tail sampling methods.

r 1 2 3 4
Box-Muller [1958b] 33 32 32 30
Polar [1969] 36 + + +
Old-Marsaglia [1964] 36 36 + +
New-Marsaglia [1984b] 33 34 34 34
GRAND [1974] 36 36 36 36
PPND7(Std) [1988] 30 29 29 28
Ahrens-Dieter [1988] + + 36 35
PPND7(Full) [1988] + 36 34 33

Table IX. Results of high sigma-multiple tests for tail generation methods using single
precision floating-point.

Standard Full-Fraction

1 2 3 4 1 2 3 4
GRAND [1974] 10.2 11.1 11.7 11.9 17+ 17+ 17+ 17+
Box-Muller [1958b] 5.9 6.6 7.2 7.5 14.2 14.9 15.4 15.6
New-Marsaglia [1964] 6.6 7.7 8 7.9 14.8 15.9 17.1 17.4
Old-Marsaglia [1984b] 7.9 8 8.3 8.6 14.8 15.9 17.1 17.4
Polar [1969] 8.2 8.5 8.9 9.1 12.8 13.2 13.5 13.7
PPND7 [1988] 4.8 5.7 6.5 7.1 12.1 12.3 12.3 12.2

4.3.1. � 2 Tests. Although the tests are performed on standard and fully-random frac-
tion floating-point numbers (using single-precision), only the standard results are
shown for the majority of the tests, since there is almost no difference observed be-
tween the two. The only cases where a difference is seen are for the Box-Muller method
with r = 1, where the fully-random fraction version fails at 234. Interestingly, the Box-
Muller method is also the only generator that degrades when higher thresholds are
used: all the other generators either maintain quality or improve.

4.3.2. High Sigma-Multiple Tests. Table IX shows the results of the high sigma-multiple
test when applied to the methods for tail sample generation. In all cases the single-
precision full-fraction versions perform significantly better than the standard single-
precision cases. The Box-Muller method performs particularly badly when the standard
uniform generation method is used, and when generating samples above a threshold of
one, it is only accurate out to 5.9σ . These results suggest that this generator can only
be used to generate �(1)/�(5.9) ≈ 7.7 × 107 samples.

5. CONCLUSION

This article presents a survey and a classification of Gaussian random number genera-
tors. We describe a comprehensive test methodology to determine the statistical quality
of the different methods, particularly with regards to the distribution in the tails. This
testing has demonstrated that single-precision calculations are usually sufficient, even
for applications requiring good coverage in the tails of the Gaussian distribution, as
long as care is taken when converting uniform random integers to floating-point ran-
dom numbers. It is shown that the Wallace method is the fastest, but can suffer from
correlation problems; the Ziggurat method, the second in speed, is about 33% slower
than the Wallace method but does not suffer from correlation problems. Thus, when
maintaining extremely high statistical quality is the first priority, and subject to that
constraint, speed is also desired, the Ziggurat method will often be the most appropri-
ate choice. If the quality requirements are not so stringent but speed is essential then
Wallace may be appropriate. One disadvantage of Ziggurat lies in the large number
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of constants (388 for single-precision), so in environments where that is problematic
simpler methods such as polar or GRAND may also be appropriate.
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