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Abstract—This paper describes the acceleration of virtual
ecology models using field-programmable gate arrays (FPGAs).
Our approach targets models generated by the Virtual Ecology
Workbench (VEW); an existing tool used by biological oceanog-
raphers to build and analyze models of the plankton ecosystem in
the upper ocean. Depending on the plankton study and required
level of detail, the logic, memory, and data transfer requirements
of the generated models can vary significantly. Using FPGAs,
hardware implementations can be customized to the specific
requirements of the ecological system under study and provide
significant speed-ups compared to software implementations. This
paper describes a framework for maximizing the speedup of
VEW generated models implemented on FPGA-based acceler-
ation platforms and then describes the implementation of a
typical VEW generated model to validate the framework and
demonstrate that significant speedups are possible. Based on
timing and area estimates from a commercial synthesis tool, the
example model implemented on a Celoxica RCHTX acceleration
board featuring a Xilinx Virtex-4 FPGA performs 39 times faster
at 150 MHz than the software implementation on an AMD
Opteron 2200 series CPU at 1.0 GHz.

Index Terms—ecology modeling, hardware acceleration, FPGA

I. INTRODUCTION

Significant improvements in FPGA size, speed, and storage

capacity have made them suitable for accelerating a wide range

of computationally intensive applications. Significant speedups

achieved using FPGAs to accelerate cryptography, sparse

matrix-vector multiplication, Viterbi decoding, and financial

computing systems have been reported in recent literature [1],

[2], [3], [4]. As an example, the study described in [2]

demonstrated a 2 times speedup for floating-point sparse

matrix-vector multiplication (a computational kernel at the

heart of many scientific computing applications) implemented

on a Virtex II FPGA compared to the fastest single processor

system at the time and even greater speedups for multi-

FPGA systems (compared to multi-processor systems). These

speedups can be attributed to the high on-chip and chip-to-chip

bandwidth provided by FPGAs.

This paper proposes the use of FPGAs to accelerate ecology

models. Specifically, it focuses on models generated using

the Virtual Ecology Workbench (VEW), which is used by

biological oceanographers to build and analyze models of the

plankton ecosystem in the upper ocean [5]. VEW models have

been used to study competition in the plankton ecosystem [6],

bio-optical feedback in ocean color [7], and the effect of

weather on juvenile recruitment in fisheries [8]. They also

have potentially important applications in understanding the

role of marine plankton in the regulation of atmospheric CO2

and, subsequently, climate.

The logic, memory, and communication requirements of

the ecological models generated using VEW can vary signif-

icantly depending on the nature of the study. Using FPGAs,

hardware implementations can be customized to the specific

requirements of the ecological system under study and provide

significant speed-ups compared to software implementations.

The acceleration of these types of models is important because

it allows the oceanographers to build more sophisticated mod-

els, run longer simulations, and/or perform more experiments

which leads to a better understanding of ecological systems.

The main challenge with using FPGAs to accelerate VEW

models is mapping the model to the underlying acceleration

platform. A tool that performs this mapping automatically is

needed to make this type of acceleration feasible for oceanog-

raphers. This paper takes the first steps in this direction.

Specifically, the following contributions are made:

1) A set of ecology parameters and platform parameters

that determine the performance of an implementation

are identified in Section III. The ecology parameters

describe attributes specific to the ecosystem model.

For example, the number of bytes needed to describe

plankton agents affects the time it takes to transfer

data between the host and the FPGA. Similarly, the

platform parameters describe attributes specific to the

acceleration platform. For example, the size of the FPGA

determines the number of computational kernels that can

be implemented in parallel. This directly affects the time

required to process the entire plankton population.

2) A framework that estimates the performance of an

implementation for given sets of model and platform

parameters is described in Section IV. This framework

is useful because it provides high-level system per-

formance estimates, gives insight into possible perfor-

mance bottlenecks, and helps in choosing the appropriate

platform and implementation for a specific ecosystem

model.

3) An example VEW generated model is implemented on

an FPGA-based platform to show that custom FPGA

implementations can produce significant speedups and

to validate the performance estimation framework (Sec-

tion V). The example implementation is 39 times faster

(at 150 MHz) than the existing software implementation

(at 1.0 GHz).



II. BACKGROUND

The Virtual Ecology Workbench (VEW) [5] is used by bio-

logical oceanographers to build and analyze individual-based

models of the plankton ecosystem in the upper ocean [9]. The

individual-based approach is important, as it avoids the chaotic

instabilities often observed in population-based approaches to

ecosystem modeling [10]. Such models are used to explore

the emergent properties of large numbers of individual mi-

croscopic organisms and the nature of the various feedback

processes between physics, chemistry, and biology.

Models generated by VEW are one-dimensional and can be

thought of as simulating a virtual water column extending from

the ocean surface to some specified depth (See Figure 1). The

cross-sectional area of the column is arbitrary as the horizontal

dimensions do not feature explicitly in the model equations.

The column can be anchored at a specified location or can be

made to drift with ocean currents, using predetermined ocean

circulation data. Lateral fluxes through the side wall of the

column are ignored; for the plankton, the vertical dimension is

by far the most important as many of the biological processes

are dictated by light (e.g. photosynthesis, hunting, predator

evasion).

The column is divided into layers (typically 500 layers each

1m deep). Associated with each layer is the concentration of

each of a number of user-defined chemicals and the value of

various physics variables (see below). The lower boundary is

open, so a constant rain of particulate matter (agents) falls

through the base of the column; in nature, this is the key

process by which atmospheric carbon is fixed and recycled to

the ocean floor.
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Fig. 1. One-dimensional Water Column

The combined effect of solar heating and wind creates

a turbulent mixing layer in the upper section of the water

column. The turbocline defines the boundary between the

mixing layer and a region of laminar flow that extends to

the base of the column. Agents below the turbocline that

cannot swim sink under the influence of gravity; those above

the turbocline are advected by the turbulence. The time-steps

used in VEW simulations are sufficiently long (minimum

30 minutes) that the advection by turbulence can be well

approximated by random displacement.

Because the number of individual plankton in an equivalent

water column in nature can be extraordinarily large, the

agents in a VEW model actually represent sub-populations

of identical individuals, each with the same internal state

and life history – this is the essence of the Lagrangian

Ensemble (LE) method [9] embodied by the VEW. There is

no agent-agent interaction (an O(n2) process). Instead, the

LE method computes a concentration for each agent type

in each layer; explicit interactions between agents are then

approximated by interactions between agents and fields (an

O(n) process). The various biological processes are defined

by the user via primitive equations, expressed using a math-

ematical modeling language called Planktonica [11], that is a

part of the VEW. These equations are based on reproducible

laboratory experiments. They include equations for motion

(through turbulence/sinking), nutrient uptake, photosynthesis,

respiration, reproduction and death.

Models generated in VEW are all based on the same

algorithm, which is essentially a time-step simulation of the

interaction between biological agents and their environment.

The basic structure of the algorithm is as follows:

for numSteps {
readPhysics();

mixChemistry();

updateAgents();

updateChemistry();

manageParticles();

}

The first line reads the pre-computed physics variables. The

second mixes the chemicals in the water column that are

above the turbocline depth. This is modeled by calculating

the average of each chemical value for each layer in the water

column that are above the turbocline. The third updates the

state of the agents by applying the primitive equations to

each agent separately. On typical single processor platforms,

this task accounts for a substantial proportion of the overall

execution time (typically over 90%). The fourth line performs

chemical budgeting. Specifically, it updates the chemistry lev-

els in the water column to reflect the usage and/or production

of those chemicals by the agents. The final line invokes a

particle manager which splits and/or combines agents in order

to keep the total number of agents within defined bounds –

this is essentially a variance reduction technique that seeks to

balance statistical accuracy (variance) and execution time.

III. PARAMETERIZATION

Virtual ecology models can be implemented using a number

of different platforms including single or multi-processor

systems running pure software implementations; custom hard-

ware such as FPGAs, application specific integrated circuits

(ASICs), or graphics processing units (GPUs); or hybrid

systems that combine software and custom hardware. For any

implementation, the performance depends on the complexity

of the ecosystem being modeled, the underlying acceleration



platform, and the efficiency of the actual implementation

(how the model is mapped to the platform). This section

identifies a set of model parameters, platform parameters, and

mapping scenarios that determine the performance and system

requirements of an implementation.

A. Model Parameterization

It is important to understand the main loop of the algorithm

and the data dependencies between computational tasks in or-

der to identify the model parameters which affect performance.

Figure 2 illustrates the main loop of the algorithm and the

corresponding data dependencies. Note that the mix chemistry

and update chemistry tasks have been combined for simplicity.

Fig. 2. Block diagram of the outer loop of the algorithm

The first computational task is the update agents (UA) task.

This task cannot begin until all the physics information (P)

and the updated chemistry information (C) is available because

both information sets are accessed pseudo-randomly by the UA

kernel(s). The UA task, however, does not have to wait for all

the updated agent information (A) to arrive because the agent

information is accessed sequentially. Therefore, the UA task

can process the agent information as it arrives and send it back

(if necessary) as soon as it is processed. The update chemistry

(UC) and particle management (PM) tasks must both wait for

the UA task to finish before beginning, because the UA task

changes the chemistry budgeting information (CB) and agent

state (A) information pseudo-randomly.

Table I summarizes the model parameters and gives example

values for the implementation described in Section V. The T

parameter represents the number of time steps that will be

simulated. Simulation periods can range from a few months

to many years and a typical time step size is half an hour,

therefore T typically ranges between 103 and 105. The N

parameter represents the number of agents that are simulated.

The IP , IA, IC , and ICB
parameters represent the information

size (in bytes) of the physics, agent, chemistry, and chem-

istry budgeting information. The CUA−CPU , CUC−CPU , and

CPM−CPU parameters represent the number of CPU clock

cycles needed to perform the UA, UC, and PM tasks in soft-

ware, respectively. Similarly, the CUA−FPGA, CUC−FPGA,

and CPM−FPGA parameters represent the number of FPGA

clock cycles needed to perform the UA, UC, and PM tasks

on the FPGA. The SUA, SUC , and SPM parameters represent

the size (in logic gates) of the UA, UC, and PM components

when implemented on the FPGA. Finally, the LUA parameter

represents the latency of the UA component on the FPGA.

TABLE I
MODEL PARAMETER DESCRIPTION AND EXAMPLE VALUES

Description Parameter Example Values

Duration (time steps) T 35040

Number of Agents N 4-8k

Info Size (bytes)

IP 6k (per time step)
IA 44 (per agent)
IC 12k
ICB

12k

Exec Time (CPU clk cycles)
CUA−CPU 2k (per agent)
CUC−CPU 49k
CPM−CPU 100k

Exec Time (FPGA clk cycles)
CUA−F PGA 1 (per agent)
CUC−F PGA 1.5k
CPM−F PGA 23k

Area (FPGA gates)
SUA 95k
SUC 11k
SPM 30k

Latency (FPGA clk cyles) LUA 156

B. Platform Parameterization

The platform implementing the ecology model affects the

speed of both the computational tasks and communication

of information between devices. Although the model can be

implemented on a number of different platforms, this paper fo-

cuses on platforms consisting of one single core processor and

one FPGA device because acceleration platforms of this type

have been used previous studies and are readily available [12].

Another simplifying assumption made in this paper is that

the FPGA device has enough on-chip memory to store the

agent, chemistry, and physics information (for one iteration).

In most cases, the agent information IA requires the greatest

amount of storage; if the FPGA did not have enough on-chip

memory, the information would have to be stored off-chip and

the transfer of this information could severely affect system

performance (if the transfer was slower than the processing).

This assumption was satisfied in the example implementation

described in Section V. Furthermore, the amount of on-chip

memory available on FPGAs is generally increasing with each

new generation.

Table II summarizes the platform parameters and gives

example values for the implementation described in Section V.

The FFPGA parameter represents the clock frequency of the

FPGA device. This frequency depends on the implementation

and the underlying technology of the device. The SFPGA

parameter represents the size of the FPGA device (in logic

gates). Finally, the BW parameter represents the bandwidth

of the communication between the host processor and the

hardware device.

C. Mapping Scenarios

Although this paper focuses on a specific type of platform,

there is more than one way of mapping the various tasks

of the application to the platform. Table III summarizes five



TABLE II
PLATFORM PARAMETER DESCRIPTION AND EXAMPLE VALUES

Parameter Description Example Values

FF PGA FPGA clk freq 150 MHz
SF PGA FPGA logic capacity 160k logic gates
BW Bandwidth between CPU and FPGA 60 Mbytes/s

different mapping scenarios of VEW generated models on

platforms with one processor and one FPGA. In scenario

S1, the model is implemented entirely in software using only

the processor. This is the baseline implementation, which is

used to compare against other implementations. Apart from

the baseline implementation, we only consider implementation

where the UA task is performed on the FPGA because this

is where most (typically over 90%) of the computation is

performed. Speedups achieved with the UA task performed

in software would therefore be less than 10% and not worth

the extra implementation effort.

In scenario S2, the UA component is implemented on the

FPGA and the remaining components are implemented in

software. In scenario S3, both the UA and PM components

are implemented on the FPGA and the remaining components

are implemented in software. In scenario S4, the UA and

UC components are implemented on the FPGA. Finally, in

scenario S5, the entire model is implemented on FPGA.

TABLE III
IMPLEMENTATION SCENARIOS

Task
Scenario

S1 S2 S3 S4 S5

UA CPU FPGA FPGA FPGA FPGA
PM CPU CPU FPGA CPU FPGA
UC CPU CPU CPU FPGA FPGA

A number of factors affect which scenario is the best. As

an example, there is a tradeoff between the communication

overhead of transferring information between the CPU and

FPGA when the UC and/or PM components are implemented

in software and the area overhead of implementing the UC

and/or PM components on the FPGA. If the UA kernel is

small and UC and PM components are large, a greater number

of the UA kernels can be implemented on the FPGA if

the other components remain in software. Conversely, if the

connection between the CPU and FPGA is slow, the time

needed to transfer the information between the UA and the

other components may become a bottleneck. These tradeoffs

are examined in the following section.

IV. PERFORMANCE EVALUATION

This section describes a framework that estimates the speed

of an implementation given the model parameters, platform

parameters, and mapping scenario of that implementation.

This framework can be used to estimate performance, identify

bottlenecks, choose the best platform (if more than one is

available), and choose the most efficient mapping scenario.

In essence, the framework consists of a generic scheduling of

tasks for each of the mapping scenarios and a corresponding

expression that describes the minimum execution time of the

main loop of the algorithm.

A. Scheduling

Depending on the implementation scenario, the order in

which computational and communication tasks occur must be

scheduled to maximize performance and satisfy data depen-

dencies. Figure 3 shows the task schedules for Scenario S2 to

S5.

Fig. 3. Scheduling of computation and communication tasks for Scenario
S2 to S5

In Scenario S1, the algorithm is implemented entirely

in software and therefore the communication between tasks

happens automatically as the information is stored in system

memory which can be accessed by each task. The compu-

tational tasks are performed sequentially and thus the run-

time is determined by simply multiplying the run-time of the

UA kernel by the population size and then adding the run-

time of the PM and UC tasks. Note that we are assuming a

platform with a single processor, therefore only one agent can

be processed at a time.

In Scenario S2, the UA kernel is implemented in hardware

and thus, for each time step, the physics information (P),

agent information (A), and chemistry information (C) must

be sent from the system memory to the FPGA and then the

updated agent (A) and chemistry budgeting information (CB)

must be sent back to the system memory. Because the physics

and chemistry information are accessed randomly, P and C

must be sent completely before the UA task begins, and CB

must be returned before the UC can begin. On the other hand,

because the agent information is accessed in sequential order,

the transmission of B and D can be synchronized with the UA

task.

The scheduling of Scenario 2 is illustrated in Figure 3(a).

For each iteration, C is sent to the hardware device; then A

is sent, processed by UA in hardware, and then returned to

system memory; then the PM is performed on the processor

while CB is returned; and finally the UC is performed and P



(for the next iteration) is sent to the hardware. The run-time

of one iteration of the main loop for implementation Scenario

S2 is described by the following expression.

TLoop = TC + Max{TUA, TA + TA} (1)

+Max{Max{TCB
, TPM} + TUC , TCB

+ TP}

The expression is a summation which includes three maxi-

mum expressions, denoted Max. Intuitively, the first maximum

term represents the time required to send, process, and return

the agent information. The second and third maximum terms

represent the time required to return CB , perform PM and UC,

and return A.

In Scenario S3, both UA and PM are implemented in

hardware which eliminates the necessity of sending the agent

information to and from hardware. This is significant because

in many cases the agent information accounts for most of the

information and, depending on the platform, transferring this

information between system memory and the hardware device

can take longer than processing it. Figure 3(b) illustrates the

scheduling for Scenario S3. The corresponding run-time is

shown in the bottom row of the third column in Table IV.

In Scenario S4, the UA and UC are implemented in hard-

ware and the PM is performed in software. This eliminates

the necessity of sending the environment information to and

from hardware. It is also convenient because the PM, UC, and

sending of the physics information (for the next iteration) can

all be performed concurrently.

Finally, in Scenario 5, everything is implemented in hard-

ware which eliminates all communication apart from sending

the physics information from the system-memory to the hard-

ware device. Also, assuming enough hardware resources are

available to implement the UC and PM tasks, can be performed

concurrently.

B. Performance Evaluation

Given the set model parameters and platform parameters,

the overall speed of different implementation scenarios can be

determined using framework described in Table IV. Rows 1–8

give a breakdown of the time required to perform individual

computional and communication tasks for each implementa-

tion scenario described in III-C. Row 9 gives the time required

to perform one iteration of the algorithm given the scheduling

assumptions made in IV-A.

Rows 1–5 give the time needed to send information between

the CPU and the FPGA for each mapping scenario. In each

case, the time is either the amount of information divided

by the bandwidth of the connection between the CPU and

the FPGA or blank because the communication task is not

necessary for that scenario. Rows 6–8 give the time needed

to process the UA, PM, and UC tasks, respectively. The time

needed for the UA task depends on a number of parameters.

When implemented on the CPU, each agent is updated se-

quentially and therefore the time required is the number of

agents (N) multiplied by the number CPU clock cycles per

agent (CUA−CPU ) divided by the clock frequency of the CPU

(FCPU ). When implemented on the FPGA, agents can be

updated in parallel (if the size of the FPGA is big enough

for multiple UA kernels). The time required is therefore N

divided by the number of kernels that can fit on the remaining

FPGA resources plus the latency of the kernel divided by the

clock frequency of the FPGA. The number of UA kernels that

can fit on the FPGA depends of FPGA size (SFPGA), the

UA kernel size (SUA−FPGA), and the size of the PM and

UC components if they are also implemented on the FPGA.

Finally, the time needed for the PM and UC task is roughly

the number of operations (for the CPU) or the number of clock

cycles (for the FPGA) divided by the clock frequency of that

device.

Estimating the performance of an implementation is

straight-forward. After obtaining the values of the model and

platform parameters and determining which implementation

scenario to use, the performance is determined by evaluating

the corresponding expression in Table IV. Similarly, choos-

ing the fastest implementation scenario involves evaluating

the expression for each scenario and selecting the fastest

one. Choosing the most appropriate platform for a given

ecosystem model involves obtaining the model parameters,

platform parameters (for each available platform), evaluating

the expression for each scenario for each of the platforms, and

finally selecting the fastest overall platform and scenario. An

example showing how the framework can be used is presented

in the following section.

V. EXAMPLE

This section describes the implementation of a typical VEW

generated ecological model on an FPGA-based acceleration

platform. The example model is small-scale VEW generate

model comprising a single agent type (a form of marine

phytoplankton) whose behavior is influenced by the values of

the ambient temperature, light, and nutrient fields (ammonium,

nitrate and silicate) at its current depth. Although VEW models

conventionally incorporate biofeedback to the physical envi-

ronment (chlorophyll in the phytoplankton would normally

affect turbidity and thus the passage of solar energy through

the column), this has been removed for simplicity. Instead,

the physical environment (a set floating point variables in the

model) are pre-computed for the experiment. Despite being

simplified, the model retains the basic structure of large-scale

models.

A. Description of Hardware Implementation

The way the algorithm is mapped to the FPGA hardware

has a significant effect on the performance and resource

requirements of the final implementation. For this example,

the emphasis was placed on performance. The implementation

exploits parallelism at three levels.

First, coarse-grained parallelism is exploited by efficiently

scheduling the high-level computational tasks of the algorithm

as described in Section IV-A.

Second, task-level parallelism is exploited by pipelining

each of the computational tasks. Pipelining divides operations



TABLE IV
PERFORMANCE EVALUATION FRAMEWORK

Task
Scenario

S1 S2 S3 S4 S5

P to UA - IP /BW IP /BW IP /BW IP /BW

A to UA - IA/BW - IA/BW -

C to UA - IC/BW IC/BW - -

A to PM - IA/BW - IA/BW -

CB to UC - ICB
/BW ICB

/BW - -

UA N ·
CUA−CP U

FCP U

N

⌊
SF P GA

SUA

⌋

+ LUA

FF PGA

N

⌊
SF PGA − SPM

SUA

⌋

+ LUA

FF PGA

N

⌊
SF PGA − SUC

SUA

⌋

+ LUA

FF P GA

N

⌊
SFP GA − SPM − SUC

SUA

⌋

+ LUA

FF P GA

PM
CP M−CP U

FCP U

CP M−CPU

FCPU

CP M−F P GA

FF P GA

CP M−CP U

FCP U

CP M−F PGA

FF P GA

UC OUC/FCPU

CUCF PGA

FCP U

CUC−F PGA

FCPU

CUC−F PGA

FF PGA

CUC−F P GA

FF P GA

TLoop
TUA + TPM +

TUC

TC +Max{2∗TA, TUA} +

Max{Max{TCB
, TPM }+

TUC, TCB
+ TP }

TC + Max{TUA, TP } +

Max{TPM , TCB
+ TUC}

Max{2 ∗ TA, TUA} +

Max{TUC , TP , TPM }
TUA + Max{TPM , TUC , TP }

into smaller steps which decreases the critical-path delay

but introduces latency. Pipelining is effective for operations

performed for many iterations because the latency overhead

becomes negligible compared to the overall time required to

perform every iteration. As an example, an unpipelined 32-bit

floating-float multiplier implemented on a Virtex-4 FPGA has

a critical-path delay of 25ns and takes one clock cycle. The

same multiplier with pipelining has critical-path delay of 5.6ns

and a latency of 5 clock cycles. A computation that performs

M iterations requires M*25ns with the unpipelined multiplier

and only (M+5)*5.6ns with the pipelined adder.

Third, data-level parallelism is exploited by identifying

which arithmetic operations within each component can be

performed concurrently. This depends on the data dependen-

cies within the components. Data-level optimizations were

used to accelerate the MC, UC, UA, and PM tasks.

The MC task mixes the chemical values in the water column

that are above the turbocline depth. This involves taking a

sum of the chemical concentrations for each chemical type

in each layer and then dividing each by the number of layers.

Since each chemical value is independent, the summations can

be performed concurrently. In the example model, there are

three chemical types (ammonium, nitrate, and silicate) and

each is summed concurrently. The divisions at the end of the

calculation is performed sequentially to save area (since only

one divider is required instead of three).

The UC task updates the chemical environment to reflect

the usage and/or production of the chemicals by the agents

in the current time-step. More specifically, the task involves a

subtraction (for chemicals used) and an addition (for chemicals

produced) for each chemical type and each water layer. As

with the MC task, the operations for each chemical type are

performed concurrently.

The UA task updates the state of the agents. In terms of

performance, this is the most critical task of the application

because it evaluates a large number of the primitive equations

for each individual agent. In software, these operations are

performed sequentially; in hardware, however, many can be

performed currently. The amount of parallelism depends on

the data dependencies. Figure 4 illustrates how data-level

parallelism is exploited in the example implementation of the

UA task.

Fig. 4. Data-level parallelism in the update agent (UA) task.

The grey blocks in the figure are the primitive equations

and the lines are floating-point values. Each block consists

of a number of floating-point operations (to implement the

equation). Not illustrated in the figure are the pipeline registers

that are inserted between operators to ensure the data values

remain aligned as they flow through the pipeline. The impor-

tant thing to note from the figure is that horizontally adjacent

blocks are computing primitive equations concurrently instead

of sequential (as they would be in software).

Finally, the PM task manages the size and number of agents.

Specifically, it splits agents that are too large and merges

agents that are too small. To achieve this, the task requires

short lists of the largest and smallest agents. In software, these

lists are generated using Quicksort (an O(nlog(n)) process)

after the UA task has updated the agents. On the FPGA,

however, this type of sorting would be too slow because the

clock frequency is much lower. As a solution, the sorted lists

are generated in hardware using an O(n) sorting technique

which employs comparators for each list entry to determine (in

parallel) where to insert items in a single clock cycle. This is



expensive in terms of area because it requires comparators for

each list entry, however, it significantly speeds up the sorting

part of the PM task which improves overall performance.

B. Tools and Libraries

The hardware version of each task of the model is im-

plemented using the VHDL hardware description language.

Higher level hardware description languages, such as Sys-

temC and HandleC could also have been used, however, the

lower level description provides more control over the final

implementation which makes it easier to investigate low-

level optimizations later on. VHDL is used instead of Verilog

mainly because of the available VHDL floating-point libraries.

VEW generated models use double precision floating-point

variables to represent all physics, chemistry, and agent state in-

formation. Although the literature suggests that future FPGAs

will have hard floating-point arithmetic macro blocks, floating-

point arithmetic in current FPGA must still be implemented

using the programmable fine-grained resources of the FPGA.

The example model employs floating-point addition, subtrac-

tion, multiplication, division, exponential (ex), and power (xk)

operations. These operations are implemented using the pub-

licly available VHDL floating-point library described in [13].

The hardware part of the implementation was synthesized

using the Synplify Pro CAD tool [14] and the software part

of the implementation, which is written in C, was compiled

using gcc with optimizations turned on. Finally, the inter-

face between the hardware and software, which uses the

HyperTransport bus on the RCHTX board, was implemented

using Handle-C libraries and the compiler provided by Celox-

ica [12].

C. Model Parameters

In order to validate the evaluation framework described in

Section IV, the plankton model was implemented five ways;

one implementation for each scenario presented in Table III.

The model parameter values for the example model are

listed in the last column of Table I. The model simulates a 2

year period of plankton life in half hour time steps (D=35040).

The simulation has an initial population (N) of 4k; however,

the value varies during the simulation and increases to a

maximum of approximately 8k in this example. Each agent

is represented using 11 floating-point values (IA=44 bytes).

The chemistry information (IC ) and chemistry budgeting

information (ICB
) each require 12k bytes to store 6 different

floating-point chemistry values for each of the 500 layers

in the column of water. Similarly, the physics information

(IP ) requires 6k bytes for the depth, temperature, and solar

irradiance information for each layer. The size of the UA, UC,

and PM components when implemented on the Xilinx Virtex-

4 FPGA is 95k, 11k and 30k gates, respectively. The UA

kernel is large because it incorporates a significant number of

floating-point arithmetic operations (52 adders, 34 multipliers,

and 22 dividers) and the PM component is large because it uses

the expensive insertion sort technique. In terms of FPGA cycle

count, the UA kernel is fully pipelined and therefore requires

only one clock cycle per agent. This pipelining, however, gives

the UA kernel a latency of 156 clock cycles. The UC and

PM components require 1.5k and 23k FPGA clock cycles,

respectively. For the PM, this is an average but it depends on

the number of agents, which varies throughout the simulation.

Finally, the UA, UC, and PM tasks require approximately 2k,

49k, and 100k CPU clock cycles respectively. These values

were estimated by averaging the run-time of each task over

the entire simulation (in software) and dividing by the clock

frequency of the CPU.

D. Platform Parameters

The platform consists of a HP Proliant DL145 G3 Server

with a 1GHz AMD Opteron 2200 series CPU and a Celoxica

RCHTX-XV4 acceleration board. The acceleration board fea-

tures a Virtex-4 FPGA with 152k logic cells and 288 18kb

block RAMs which connects to host processor through a

HyperTransport bus with a bandwidth of 60M bytes/s. The

maximum FPGA clock frequency for the example implemen-

tation (determined by the synthesis tool) is 150 MHz. These

platform parameters values are summarized in the last column

of Table II.

E. Performance

Table V evaluates the performance of the example imple-

mentation using the framework described in Section IV and

the example model and platform parameters. Rows 1–8 give

the time required for each task. Row 9 gives the estimated time

required to execute one iteration of the simulation and Row 10

gives the corresponding speedup relative to the software im-

plementation. Note that these estimates are based on functional

simulations and clock frequencies obtained from the place and

route tool. We expect the speedups of the final implementation

to match these simulated speedups nearly exactly because we

account for every clock cycle except for a very small number

of handshaking cycles between host CPU and the FPGA.

TABLE V
EXAMPLE EVALUATION

Task
Scenario

1 2 3 4 5

P to UA - 1k 1k 1k 1k
A to UA - 44k - 44k -
C to UA - 1k 1k - -
A to PM - 44k - 44k -
CB to UC - 512 512 - -
UA 75k 410 410 410 410
PM 625 625 1533 625 1533
UC 306 306 306 100 100

TLoop (ns) 7.6k 9.1k 3.5k 8.9k 1.9k

Speedup 1.0 0.8 21.3 0.9 39.1

A number of useful results are reported in the table. First,

the table shows that mapping scenario S5 produces greatest

speedup, which is 39.1 times faster than the software imple-

mentation. In this scenario, everything is implemented on the

FPGA and only the physics information needs to be sent to

the FPGA for each iteration (time step). Second, the table

shows that mapping scenario S2 and S4 actually reduces the



performance of the model slightly compared to the software

implementation. This slowdown occurs because of the time it

takes to send the agent information to and from the FPGA is

greater than the time it takes of update the agents. Scenario

S3 provides the second greatest speedup (21.3 times faster)

because it avoids sending the agent information to and from

the FPGA because both tasks that use the agent information

(UA and PM) are implemented on the FPGA. Scenario S3

is slower than Scenario S5 due to time needed to send and

process the chemistry information.

In general, the results suggest that significant speedups can

be achieved as long as the communication bottleneck that

occurs when communication of the agent information takes

longer than the agent update processing can be avoided. The

most affective way of avoiding this bottleneck is to implement

the particle management (PM) component on the FPGA so

as to eliminate the need to transfer the agent information

altogether. Another approach is to reduce the amount of

agent information by reducing P and/or IB/D . One way of

reducing IB/D is to use the technique described in [15] which

minimizes the wordlengths of data variables based on the

amount of precisions that is required. The communication

bottleneck could also be alleviated by using a platform with a

higher bandwidth between the CPU and the FPGA.

Using the evaluation framework to extrapolate from the

example results shows that further speedups could be achieved

using a larger FPGA. Using the model parameters for the

example implementation and the platform parameters for a

Virtex-5 FPGA with 330K logic gates produces an estimated

speedup of 69X. Some of the speedup is provided by the

faster clock frequency (180 Mhz) that can be achieved using

the newer FPGA, however, most of the added performance

is provided by extra logic resources which allows three UA

kernels to be implemented instead of only one.
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VII. CONCLUSIONS AND FUTURE WORK

Agent-based modelling involves updating the state of each

agent in each time step of a simulation and this yields signif-

icant amounts of parallelism. By exploiting this parallelism at

various levels, an example model implemented on a commer-

cial FPGA-based acceleration platform achieved a speedup of

39.1X at 150 MHz compared to a software implementation at

1.0 GHz.

The other main contribution of this paper is a framework

that can be used to determine potential speedup for specific

ecosystem models and acceleration platforms. The framework

is also useful for understanding where performance can be

gained or lost. In this paper, the framework was used to

determine the best way to implement an example plankton

model on an RCHTX acceleration platform so as to avoid

communication bottlenecks. Further analysis using the frame-

work also shows that greater speedups would be possible using

either larger or multiple FPGA(s).

This paper proposes an infrastructure that allows oceanogra-

phers to automatically implement their models on FPGA-based

acceleration platforms. The next step is to develop a CAD

tool that analyzes results from the performance evaluation

framework and then generates the appropriate HDL code,

similar to that of the example implementation described in this

paper, which could be synthesized and finally implemented on

the acceleration platform.

Other future work includes a comparison of ecological

modeling on other platform types. Specifically, the platforms

with GPUs are promising because, like graphics, ecological

modeling involves a large amount of floating point operations

on mostly streaming data. Similarly platforms with multiple

CPUs, FPGAs, or GPUs might also promising. As an example,

multi-CPU platforms could be used to update multiple agents

in parallel and would not require any special hardware to be

designed.
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