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Abstract

Inductive logic programmingis an attractive and ex-
pressiveparadigmfor machinelearning. A drawbackof in-
ductivelogic programsis their demandingcomputational
requirements.We presentan FPGA-basedmulti-processor
architectureaimedat fastexecutionof such programs.The
architecture exploits both coarse-grained parallelism at
the query level, and fine-grainedparallelism in the unifi-
cation algorithm. Instructionsare not required, and the
componentsare customisedfor a hypothesisspacerefer-
ring only to groundunit clausesin thebackgroundknowl-
edge. It also benefitsfrom a distributed memoryhierar-
chy, with a methodfor includingbackgroundknowledgeto
eliminateinstructions. Theeffectivenessof this architec-
ture is demonstratedusinga large organicchemistrydata
set. Theproposedarchitecture is fasterand smaller than
our previousdesignbasedon multiple instructionproces-
sors. A single customisedprocessorat 38MHz can run
9 timesfaster than a Pentium4 processorat 1.8GHz; a
Xilinx XCV2000Edevicecanaccommodate24 processors
runningin parallel.

1 Intr oduction

Inductive logic programming[1] (ILP) is a successful
learningparadigm,with applicationsin a wide rangeof
fields. ILP systemsproducetheoriesin first-orderlogic,
and can also incorporatebackgroundknowledge in this
form. Basedon logic programming,it is highly expres-
sive. However, this expressivenesscanhave a detrimental
impacton performance,andmethodsfor speedingup se-
quentialimplementationsof ILP aredesirable.

This paper describes an architecture for high-
performance execution of inductive logic programs
in the Progol system. Our main achievementsare the
following:

� A hardware datapatharchitecturefor a simple and
commonform of inductive logic programs.

� Exploitation of parallelism at multiple levels. A
multi-processorarchitectureexploits coarse-grained
parallelisminherentin Progol,while individual pro-
cessorsexploit dataparallelismin unification.

� A cachesystemfor parallel logic processors. The
cachesarespecialisedfor theinput data.A two-level
memoryhierarchyis usedwith memoriesat thehigh-
estlevel sharedbetweenprocessors.

� Evaluationof the architectureon a real dataset. We
evaluatethe benefitsof exploiting caching, the ef-
fect of differentlevels of parallelism,andthe conse-
quencesof changingarchitecturalparameters.

Therestof thepaperis organisedasfollows. Section2
introducesthe problemdomain. Section3 discussesthe
typesof parallelismweexploit. Section4 presentsthepro-
cessingelementswe usein ourarchitecture.Section5 dis-
cussesthe cachearchitecture.Section6 presentsthe in-
tendeddesignflow for thearchitecture.Section7 presents
resultsandevaluation.Finally Section8 offerssomecon-
cludingremarks.

2 ProblemDomain

Progol [2] is an instanceof inductive logic program-
ming systems. It producestheoriesin first-order logic
basedondomain-specificbackgroundknowledgeandaset
of positive andnegative examples.Machinelearningsys-
temstendto have a trade-off betweenexpressivenessand
efficiency. Progolandinductivelogic programminglieson
the expressive andcomputationallyexpensive end of the
scale.

Theinput to Progolconsistsof backgroundknowledge,
a setof examples,anduserconstraintson the hypothesis
space.Basedon this, the Progolsystemconstructsa hy-
pothesisspace,andemploys anA � -like searchthroughit.
The searchheuristicis basedon how well the hypothesis
underconsiderationexplainsthegivenexamples.Theout-
put of the systemis a list of the besthypothesisand the
associatedmeasuresof their quality.



active(A) � atm(A,B,c,195,C). (rule1)

active(A) � atm(A,B,c,10,C), (rule2)
atm(A,D,c,22,E),
bond(A,D,B,1).

active(A) � atm(A,B,c,27,C), (rule3)
bond(A,D,E,1),
bond(A,D,B,7).

Figure 1 Exampleof a hypothesisgeneratedfrom the
mutagenesisdataset.

Muchof thecomputationalcomplexity is dueto hypoth-
esistesting.Thehypothesisspaceis potentiallylarge,and
eachhypothesisneedsto be testedagainsteachof theex-
amples. Additionally, in order to minimisethe degreeof
overfitting, cross-foldvalidation is used,which increases
the executiontime further. Executiontime canbe tensof
hourson conventionalsequentialmachines.

Progol usesthe logic programminglanguageProlog
as its descriptionlanguage. The examples,background
knowledgeandtheconstructedhypothesisall comein this
form. Theexampletestsarequeriesto aPrologprocessor.

Progol and other ILP systemshave found many suc-
cessfulapplicationsin molecularbiology, suchas learn-
ing rulesfor predictionof proteinfolding [3], mutagenesis
[4], and pharmacophorediscovery [5]. The background
knowledgein this domaincommonlyconsistsof long lists
of groundfacts,suchaslists of propertiesof compounds.
We targetour accelerationhardwareto this type of appli-
cationdomain.Thesimpleform of thebackgroundknowl-
edgeenablesusto dowithout thefull generalityof Prolog,
sothatwe canbuild processorsspecialisedfor thehypoth-
esisspace.

The rules generatedby Progol tend to display a high
level of temporaland spatial locality. Testing the rules
takestheform of a nestediterationover partsof theback-
groundknowledge. As an example,considerthe hypoth-
esis in Figure 1 which containssomeof the rules pro-
ducedby Progolwhenlearningto predictmutagenesisin
nitroaromaticcompounds;highly mutagenicversionsof
suchcompoundsarebelievedto becapableof causingcan-
cer.

Rule3 from Figure1 statesthatacompoundA is muta-
genicallyactive if it containsa carbonatomB of type27,
that therearetwo atomsD andE connectedby a bondof
type1, andthatD is connectedto B throughabondof type
7. Therule refersto thepredicatesatm/5andbond/4(here
5 and4 refersto thenumberof arguments,or arity, of atm
andbond), which aredefinedby lists of more than6000

factseach.
Rules,suchasthe onesgivenabove, aretestedagainst

examplessuchasactive(d18)which is partof the input to
Progol.With Prologsemantics,testingwhetherahypothe-
sisholdsfor rule 3 amountsto first iteratingover thefacts
definingatm/5until theconstraintsaremet. Thenfor each
suchatomiterateoverthefactsdefiningbond/4until asuit-
ablebondis found,andfinally iteratingover bond/4again
until the secondbondis found, at which point the search
succeeds.If at onelevel no solutionis found,computation
backtracksbyfindinganalternativesolutionattheprevious
level. If no moresolutionscanbe found, the searchfails.
As onewould expect,the executiontime is dominatedby
theinnermostloop, in our examplethelastcall to bond/4.

In order to speedup the searchthrougha large setof
examples,indexing is used,usuallybasedon the first ar-
gument.For theatm/5andthebond/4predicates,this par-
titions the dataset into disjunct subsetsfor the different
compounds.Notethatfor therule 3 examplethetwo calls
to bond/4referto thesamesuchsubset.

Someotherparallelarchitecturesfor ILP exist. In [6]
Ohwada et. al presentan ILP enginewhere the search
is distributed dynamicallyover several processors.The
performancescaleswell for up to 10 processorson their
benchmarks,whichhaveasmallsetof backgroundknowl-
edge,but a large hypothesisspace. In [7] Skillicorn and
Wangpresenta parallelversionof Progol,with thewhole
datasetpartitionedamongprocessors.Processorsgener-
atehypothesisbasedon theirown subset,while testinghy-
pothesisbasedontheentiresubset.In contrastwefocuson
parallelisinghypothesistesting,while thehypothesisgen-
erationis handledby ahostmachine.They reportlinearor
super-linearspeedupon their benchmarksrunningon 4 or
6 processorshared-memorymachines.

3 Exploiting Parallelism

This sectioncovers two forms of parallelism: query-
level parallelismandunificationparallelism.

Query-level parallelism,a coarseform of parallelism,
is inherentin the Progolalgorithm. At eachnodein the
searchthroughthehypothesisspace,thehypothesisunder
considerationis testedwith respectto eachof the exam-
ples. Theseexampletestscanbe donein parallel,aswas
donein our previous work [8]. The level of exploitable
parallelismis determinedby thenumberof examples.The
achievablespeedupis lessthan the numberof examples,
however, asthe exampletestsrequiredifferentlengthsof
executiontime. Whenthenumberof parallelexampletests
increases,theexecutiontime tendsto bedominatedby the
mosttime-consumingtest.



Exploiting this typeof parallelismrequiresanumberof
processorsto run in parallel. It is thereforecostly to ex-
ploit in termsof resources,but the benefitcan be great.
Memorycontentionis anissuewhenthereis a largenum-
berof processors,astheremight bemoreprocessorsthan
memorybanks.An efficientmemoryhierarchyis therefore
neededin orderto getthefull benefitof all theprocessors.
Individual piecesof the backgrounddata,uponwhich the
individual processorsoperate,often refer to only oneex-
ample.Whenthis is thecaseeachprocessorwill only refer
to asmallwell-definedsubsetof thedata,somethingwhich
canbeexploitedby thememoryhierarchy.

Parallelismcanalsobeexploitedat a finer level, in the
unification. During a unificationtwo literals andtheir ar-
gumentsarematched.In parallelunification,severalargu-
mentsareunifiedin parallel.Thespeedupattainablein this
way is boundedby thearity of thepredicatebeingunified:
for instancetwo 5-arypredicatescanbeunifiedatmostfive
timesasfastby usingparallelunification.

Thesimpledatastructureswe considerleadto simpler
unification than in a more generalProlog setting,where
theargumentscanbenestedstructures.Whenall thedata
in the backgroundknowledgeare in the form of simple
ground(non-variable)terms,unification can be achieved
in a singlestep,involving eithera registerassignmentor a
comparison.

In order to take advantageof unification parallelism,
severalargumentsmustbefetchedin parallel,thusrequir-
ing a higher memorybandwidththan sequentialunifica-
tion. Assuming � argumentsare unified in parallel, the
bandwidthcanincreaseby a factorsmallerthan � . For se-
quentialunification,thememorybusmustbewideenough
to accommodatethe widestargument. With � arguments
fetchedin parallel,thebusmustbewideenoughto contain
all the arguments,but someof thesemay be smallerthan
the widestargument. The increasein resourceusagefor
unificationhardwareis proportionalto thenumberof argu-
mentsfetchedsimultaneously, aseachargumentneedsits
own setof resources.

If only oneword canbefetchedfrom memoryin a sin-
glecycle,parallelunificationrequireseithermemorybanks
that canbe accessedin parallel,or that the argumentsare
packedinto memorywords.

4 HypothesisEvaluation Hardware

Our proposedarchitectureis basedon hypothesiseval-
uators.Thesearespecialisedunificationprocessorsunify-
ing the literals in the hypothesisunderconsiderationwith
theappropriatesectionof thebackgroundknowledge.The
processorsconsistof hypothesisdata registers,a back-
ground memory, a unifier unit, and an variable register

BACKGROUND DATA

HYPOTHESIS
�

DATA
REGISTERS
�HYPOTHESIS DATA

ARGUMENT DATA

ADDRESS
�

RESULT

REQUEST

DATA

DATAADDRESSDATA

RESULT

ADDRESS

DATA

UNIFIER
	

CONTROL



VARIABLE
REGISTER
�

FILE
CACHE



CACHE



CONTROL



EXTERNAL
�
MEMORY
CONTROL



DATAADDRESS

REQUEST

DATADATA

Figure2 Architectureof ahypothesisevaluationproces-
sor.

file. Thesecomponentsarecustomisedfor the particular
hypothesisspaceunderconsideration.Thearchitectureof
asingleprocessoris shown in Figure2.

Thehypothesisdataregistersspecifythetypesof literals
occurringin thecurrenthypothesis.For eachargumentof
theseliterals, thereis a registercontainingits type anda
registercontainingits data(constantor variablenumber).
The numberof hypothesisdataregistersis limited by the
numberof literalsthatcanoccurin thehypothesis,aswell
asthemaximalarity of literalsin thehypothesis.Thewidth
of the registersis dictatedby the datain the background
knowledge.

The backgroundmemory gives accessto the back-
groundknowledge. This memoryis organisedin a two-
level hierarchy, with a small on-chip cacheand a large
sharedoff-chip memory. Issuesregardingthememoryar-
chitectureis discussedfurtherin Section5.

The unifier unit operateson datafrom the hypothesis
dataregisters,backgroundmemoryandfrom the variable
registerfile. Theargumentsof literalsfoundin thehypoth-
esisdataregisterscan be of four different types: output
variable,input variable,void variable,andconstant.The
operationof theunifier is determinedby thetypeof thear-
gumentin thehypothesis,foundat compile-time,andcan
takeoneof thefollowing forms:

1. Outputvariablesarevariableswhich areunboundat
thetimethey areused.An outputvariableis boundby
writing theargumentfrom backgroundmemoryto the
registerassociatedwith thevariable.This unification
alwayssucceeds.

2. Input variablesare variablewhich are boundat the
time they areused. Their valuecanbe found in the
appropriateregisterin thevariableregisterfile. Unifi-
cationsucceedsif theargumentfrom theregisterfile



is equalto theargumentfrom backgroundmemory.

3. Void variablesarevariablesoccurringonly oncein a
clause.Thevalueof avoidvariablewill notbeneeded
againandsincetheit is unboundit matchesanything.
No actionneedsto betakenandunificationsucceeds.

4. For constantsfoundin thehypothesis,unificationsuc-
ceedsif the constantis equalto the argumentfrom
backgroundmemory.

As describedabove, the unification of the arguments
canbedonein sequenceor in parallel.Theunifiermatches
data,or writes datato a register. In the sequentialcase
this is doneoneafter theother. In theparallelcasethis is
donein parallelfor anumberof arguments,whichrequires
parallelaccessto bothhypothesismemoryandthevariable
registerfile.

Following Prologsemantics,the processorperformsa
failure-driven loop over the backgroundknowledge. The
hypothesismemory containsdata for eachliteral in the
body of the hypothesis. The processorfirst attemptsa
matchfor the first literal in the hypothesis.If this search
fails thenthehypothesisdoesnotexplain theexample,and
thecomputationends.If matchingdataarefound,thepro-
cessormoveson to the next literal in the hypothesisand
pushesthenext addressto bereadfrom datamemoryon a
smallstack.Thevariablebindingsfrom thefirst literal are
foundin thevariableregisterfile. If thesecondliteral suc-
ceeds,the processorcontinueswith the third literal in the
samemanner, andsoon until thereareno moreliterals in
thehypothesis.If a literal fails,whennomatchingdatacan
befound,executionbacktracksto thepreviousliteral. Data
arereadfrom theaddressthatis poppedfrom thestackand
areattemptedunifiedwith thepreviousliteral.

As anexample,considerthecall of thefirst instanceof
bond/4from rule 3 in Figure1 . The typesof the four ar-
gumentsarerespectively: input variable,outputvariable,
void variable,andconstant.Whenthe literal is called,the
first variableis alreadyinstantiatedandits valueis found
in thefirst variableregister. Datamemorynow passesdata
from the appropriatesectionof backgroundknowledge,
suchasbond(110,20,28,2). Theunifiercomparesthefirst
variableregisterwith the first argumentfrom background
memory. It thenwritesthevalue20 to thesecondvariable
register. It ignoresthethird argument.Finally it compares
thefourthargumentwith theconstantfoundin thehypoth-
esisdataregisters.If the two comparisonsaresuccessful,
thecall succeedsandtheunifiermoveson to thenext bond
literal. At this time theboundvalueof theoutputvariable
is foundin thevariableregisterfile.

In orderto exploit query-level parallelism,we propose
an architecture(Figure3) containinga numberof proces-
sors operatingin parallel. Each processorhas its own
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Figure 3 Architectureof a multi-processorsystemcon-
taining eight processors(labelled P) and four external
memorybanks,accessedby RAM controllerssharedby
two processors.The main control block links the Progol
systemto the individual processors.To avoid the main
control unit becominga bottleneck,it canbe arrangedto
bea treeof controllers.

cache,but it mayhave to shareexternalmemory, depend-
ingonthenumberof processorsandthenumberof external
memoryblocks. The architecturehasa singlemain con-
troller which interfacesto the main Progol host system.
The controller receives hypothesisdata from the Progol
systemon the hostmachineandpassesit on to the indi-
vidual processors.The processorsreadbackgrounddata
fromtheexternalmemoryonewordatatime. WhereRAM
blocks are sharedby more than one processor, accessis
controlledusingasemaphorein theRAM controlunit.

5 Caching

Adding a cacheto the hypothesisevaluationprocessor
hastwo effects. Firstly it shortensthe executiontime, as
accesstime to externalmemoryis longerthanthat to on-
chip memory. Secondlyit enablesmoreprocessorsto run
in parallel,asthe numberof accessesto externalmemory
drops.

The effectivenessof the cachedependson the amount
of temporalandspatiallocality in thebackgrounddata.A
hypothesistestconsistsof calling thehypothesisbody lit-
eralsin turn. Body literalsreferringto differentpredicates
alsoreferto differentpartsof thedata.Theentrypoint into
the datafor a particularliteral is determinedby its index,



typically its first argument. The call to the literal iterates
overall thedatawith thesameindex. Spatiallocality is en-
suredby groupingthedataaccordingto theindex. A literal
is likely to becalledseveraltimes.If acall fails,execution
backtracks;if an alternative solutionis found for a previ-
ousbodyliteral, thefailedliteral is calledagain.Temporal
locality is availablewherethe literal is calledagainwith
thesameindex.

Asanillustrationof thebehaviourof thecache,consider
rule2 in Figure1. Thishastwo callsto atm/5, followedby
a call to bond/4. All thebody literalsusethesameindex.
Dataarefirst fetchedfrom the sectionof the atm-datare-
ferredto by theindex A. Dataarefetcheduntil amatching
atomis found. At this point thecacheis partially filled up
with atm-data.Whena matchis found,atm is calledagain
with differentarguments.Sincethis call usesthesamein-
dex andthereforethesamedata,the initial fetchescanbe
madefrom thecacheratherthanfrom theexternalmemory.
If the secondatm-call finds a match,bond is called. The
literal bond refersto differentdatathanthe two previous
calls,andthebehaviour of thememorysystemdependson
whetherthereis a separatecachefor bondor not. In the
first casethe bond-cachewill fill up. If thereis a failure,
oneof theatm-callsis likely to provideanalternativesolu-
tion. Whenbond is re-enteredit canstill usetheold con-
tentsof thecache,sincetheindex hasnotchanged.If there
is onecache,bondwill overwritethevalueof theatm-data.
Uponbacktracking,atm is likely to missthecache,andre-
enteringbondmayalsocausesomemisses.Sincethecall
to bond forms the inner loop, the cachewill endup with
theconstantlyre-usedbond-data.

The size of the cachecan be predictedfrom the na-
ture of the backgroundknowledge. Assumingmost time
is spenton the inner loop wherethesamedataarerepeat-
edly reused,the cacheshouldbe large enoughto contain
all datareferredto by thesameindex. For themutagenesis
dataset,both thebond/4andatm/5predicatesaredefined
by some6000clauseseach,but nomorethan44entriesare
referredto by a singleindex. Thedataentriesthemselves
require23 and58 bits respectively, with a 32-bit floating
pointnumberin atm/5.

The block placementstrategy also needsto be ad-
dressed.A directly mappedcachecanbe usedwhenall
the backgrounddataareaccessedby a processorin con-
secutive memorywords,or whencachesizeis dictatedby
the maximumnumberof entriesaccessedby a processor.
This hasthe advantageof reducedhardwareusagecom-
paredwith associative caches.A directmappedcachewill
result in someconflict missesas calls to differentpredi-
catesoverwritedatawhich may be neededlater, asin the
exampleabove. Associatingeachpredicatewhich canbe
called in a hypothesiswith a separatecachereducesthe

conflict misses;indeedit can eliminatethem entirely, if
eachcall to thesamepredicateusesthesameindex.

Cachearchitecturestypically have multiple levels. We
consideronly one level of off-chip RAM in addition to
the embeddedRAMs. Thesememoriescanbe organised
into a two-level hierarchy, with level oneon-chipandlevel
two off-chip. Alternatively, several levelsof cachecanbe
built from the on-chipRAMs. With eachprocessorhav-
ing its own cache,addingasecond-level cachereducesthe
numberof processorswhich canbe put on the chip. The
speedupgainedby addingthesecondlevel musttherefore
offset the effect of this lost parallelism. In the two-level
cache,the first level containsthe entireactive set for the
inner loop. A secondlevel betweenthis andthe external
memorycanreducethe numberof conflict missesoccur-
ring in a hypothesislike the exampleabove, wherea call
to atmafterfailurein bondwill find its own dataoverwrit-
ten. In orderto guaranteethattheatm-dataarefoundin the
second-levelcacheat thetimeof backtracking,thesecond-
level cacheneedsto betwiceaslargeasthefirst level. This
increasesmemoryusageby a factorof three,but doesnot
reduceaccesstime to the first level. The speedupgained
by reducingconflict misseswill notbesignificant,asmost
time is spenton theinnerloop which hasall its datain the
first-level cacheafteraninitial streakof cold-startmisses.

The accessesto the external memory can be either
demand-driven or basedon prefetching. The demand-
driven approachreducesthe numberof accessesto ex-
ternalmemory, asonly what is neededis fetched. Since
thedataaccessesarepredominantlysequential,wholesec-
tions of datacanbe prefetched.This is especiallyattrac-
tivefor externalRAM optimisedfor burstaccess.With the
dual-portedembeddedRAMs foundonsomeFPGAchips,
thecachecontrollercanwrite datafrom externalmemory
while theprocessorusestheexistingdata.

6 Compilation Flow

Therearethreestagesin thecompilationflow.

Data preprocessing. In order to optimise the data and
gatherinformationto guidehardwarecompilation,we
performthefollowing steps:

1. Groupdataaccordingto their predicate.

2. For eachpredicate,groupdataaccordingto the
first argument.

3. Determinethe maximum requiredsize of the
cache,by finding the largestnumberof clauses
with thesamefirst argument.

4. Map constantsto numericalvaluesanddo bit-
width analysis.



5. Define a packing schemefor each predicate
basedon thebit-widthsof its arguments.

6. Generatean indexing table for eachpredicate,
mappingall the possiblefirst argumentsto the
offsetinto thedatafor thatpredicate.

We currentlyhavetoolsto estimatethecachesize,do
bit-width analysis,datapacking,andproducethe in-
dex table.

To illustrate datapreprocessing,considerthe back-
groundknowledgein the mutagenesisdataset con-
sistingof 12000factsdefiningthepredicatesatmand
bond. After sorting the backgroundknowledgethe
numberof occurrencesof every predicateis found,
andthemaximum(44)dictatesthedepthof thecache.
Constantvalues,e.g.c andh aremappedto numerical
values. After this mapping,we determinethe maxi-
mumnumberof bits requiredfor eachargument.For
the bondpredicate,this is 8, 6, 6, and3 bits respec-
tively. Giventhedepthof thecacheandthewidth of
theembeddedRAMs, we find thatall argumentscan
fit in a singleword. Whenthe packed dataareout-
put,eachfirst occurrenceof theindexing argumentis
recordedin theindex table.

Compilation. Basedon informationfrom thepreprocess-
ing stageandusersuppliedinformation, the proces-
sorsaregenerated.Progolrequirestheuserto specify
theelementsfrom whichhypothesiscanbegenerated,
and the maximum length of hypothesisedclauses.
Fromthesewe find the parametersfor the controlof
theunifierunit andthenumberof registersin thevari-
able register file and hypothesisdatamemory. Al-
though it is hard to estimatethe size of the placed
androuteddesignbeforecompilation,we candeter-
mineanupperlimit imposedby thecaches.Thetotal
numberof processorsmustbe small enoughfor the
combinedsize of the cachesnot to exceedthe total
availableembeddedmemory.

Run time. At run time, Progol generateshypothesisto
test. Eachhypothesisis encodedand passedto the
maincontrollerwhich in turn passesit on to theindi-
vidualprocessors.

7 Results

Wehavetesteddifferentversionsof theproposedarchi-
tecture. Our evaluationimplementationshave a variable
numberof processors.The architecturesaredesignedus-
ing the Handel-Chardwaredescriptionlanguage,andare

simulatedusingtheDK Handel-Csimulator. Fromthis the
cyclecountsfor our benchmarksarefound.

The cachehasa latency of two cycles and cacheac-
cessis not pipelined. The externalmemoryis estimated
to havea latency of six cycles,includingaccessarbitration
for sharedoff-chip RAMs. Accessesto externalmemory
from differentprocessorsarepipelined,so the maximum
throughputis onedatawordpercycle.

We usethe mutagenesisdatasetfor benchmarking.In
testingthe effect of caching,we usethe nine final rules
generatedby Progol(1692queries),while theotherresults
arebasedon rule 3 from Figure1 only (188queries).Six
of theninerulescontainasinglebodyliteral, onerulecon-
tainstwo body literals,while the last two rules(including
rule3) containthreebodyliterals.

We target the RC1000 platform with a Xilinx
XCV2000E chip. Tools from Xilinx estimatethe clock
speedand area usage. For benchmarkingwe use an
architecturewithout hypothesisdatamemoryclocked at
38MHz. A single-processorarchitecturewith hypothesis
datamemoryandsequentialunificationcanbeclockedat
34MHz, andrequires1000slicesout of a total of 19200.
TheXCV2000Echip canaccommodate24 processors,us-
ing 46 out of 160available4Kb BlockRAMs.

7.1 Singleprocessorcaching

The effect of addinga cachedependson the rules in
the nine-rulebenchmark.The shorterrulesbenefitlittle,
sincethereis lesstemporallocality. In anuncachedsingle-
processorarchitecturetheexternalmemoryutilisation lies
between0.16and0.19.With a five cycle penaltyon cache
misses,the utilisation of the externalRAM decreasesby
a factorof ten for rule 3. For rules2 and4 the utilisation
decreasesby a factorof two, while the restareone-literal
ruleswhichshow no improvement.

Thecostof missesalsoaffectsthespeedupthatcanbe
attainedby usinga cache.Figure4 shows thespeedupfor
thenineruleswherethecacheaccesscostis onecycleand
thecachemisscostis upto 30cycles.Thethick line shows
the combinedeffect for the nine rules,while the top line
shows theeffect for rule 3.

The above discussionindicatesthat the overall perfor-
manceof the systemdependson the type of generated
hypothesis. Short rules result in low cacheperformance
which in turn limits theamountof query-level parallelism
which canbeextracted,asmemoryaccessbecomesa bot-
tleneck. The rules we use, however, are the final rules
producedby Progol. During thehypothesissearchwe ex-
pectthatlongerruleswill dominate,becausesuchrulesare
abundantin the hypothesisspace.Furthertestingon run-
timedatais neededto confirmthis expectation.
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Figure 4 Speedupof cachedarchitectureover an un-
cachedversion.Thex-axisshows thecostof cachemisses
in cycles,while they-axisshows thespeedup.Thedotted
linesdisplayresultsfor individual rulesin our benchmark,
while thethick solid line shows theaggregateresult.

The limited sizeof our benchmarkhasto be noted. It
coversa single hypothesis,but we expect similar results
to hold for a larger set of hypothesis.The full hypothe-
sis spaceconsistsof rules of different lengths. Someof
theserulescontainonly a single literal in the body. For
theserulescachingwill have little effect, aseachpieceof
datais only usedonce.At thesametime theshorterrules
take shortertime, asthereis only onepassover the data.
Cachingwill have strongereffect on ruleswherethereare
repeatedcallsto thesamepredicate,asmostof thememory
accessesfrom thesecondinstancewill becachehits.

7.2 Query parallelism

We carry out hardware simulationsfor architectures
containingup to 64 processors.All processorssharea sin-
gle externalmemorybank. The resultsareshown in Fig-
ure5 with thespeeduprelative to a single-processorarchi-
tecture. This shows a goodspeedupinitially, which then
dropsoff somewhat. At 32 processorsthe speedupis 17
while at 64 processorsthespeedupis 19. This simulation
providessimilar resultsto ourpreviouswork, whichshows
diminishingreturnsof addingprocessorssincelong com-
putationsdominate.All processorsarededicatedto a sin-
gle hypothesisat a time,andthequeriesvary in thelength
of time they run for. Therefore,asthe numberof proces-
sorsapproachesthenumberof examplesto betested,some
processorswill beidle while themoredemandingexample
testsarecarriedout onotherprocessors.
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Figure 5 The effect of coarse-level parallelism on
speedup. The x-axis shows the numberof processors,
while the y-axis shows the speeduprelative to a 1-
processorarchitecturewith parallelunification. Both par-
allel andsequentialunificationarchitecturesareshown.

7.3 Unification parallelism

Wehavebenchmarkedarchitecturescontainingbothse-
quentialandparallelunificationprocessors.Parallelunifi-
cationis onaverage3.6timesfasterin termsof thenumber
of cycles. Eachunification is speededup by a factor at
mostequalto its arity. In our benchmark,thebondpredi-
catedominatestherun time. This predicatehasanarity of
four.

Note that for this predicateall the data for a single
clausecouldfit into onememoryword,sounificationcould
bedonein onecycle ratherthanfour. For otherprograms
the datamay not be so compact. Either wider dataor a
higherarity canresultin theclauserequiringseveralmem-
ory words,sotheeffectof parallelunificationis smaller.

7.4 Comparison with software

Our architecturecomparesfavourably with software
runningon a microprocessors.A Pentium4 1.8GHzcom-
puterrunningour benchmark,usingProgol’s built-in Pro-
log evaluator, completesour benchmarkin 0.095seconds.
At 38MHz a one-processorimplementationwith parallel
unificationcompletesthebenchmarkin 0.0102seconds,9
timesfaster. A 32-processorimplementationcancomplete
it 160 timesfasterthanthe Pentium,if it runsat 38MHz.
This benchmarkis a subsetof a full run of the mutagen-
esisproblem. The exact run-timefor this dependson the
search-spaceparameters,andis measuredin hours.



7.5 Comparisonwith instruction processor

The architecturepresentedin this paperis basedon a
direct datapathimplementation.In a previous implemen-
tation [8], we adoptan instructionprocessorapproachto
speedup Progol. A single instructionprocessortakes13
million cycles to completeour benchmark. Our current
architecturetakes390 000 cycles (33 times fewer) using
parallelunificationand1.4 million cycles(9 timesfewer)
using sequentialunification. The clock speedsare simi-
lar, 35MHzand38MHzrespectively. Ourcurrentsizeesti-
matesindicatethatasingleprocessorwith sequentialunifi-
cationrequiresaroundaquarterof thespaceof theinstruc-
tion processor.

Thedatapatharchitecturebenefitsfrom usinga simpler
unification. This resultsin lower hardwareusage,which
canbeexploitedby having moreparallelprocessors.Also,
the datapatharchitecturedoesnot needthe control struc-
turesof the instructionprocessor. Theseresultin a higher
memoryusage.An advantageof the instructionprocessor
is that it canhandlea wider rangeof data,asit is not con-
strainedto ahypothesisspacereferringonly to groundunit
clausesin thebackgroundknowledge.

8 Conclusionsand Future Work

We have demonstratedan architecturecapableof exe-
cuting inductive logic programsat high speed.Thearchi-
tectureperformswell bothwhencomparedwith inductive
logic programmingsoftware executingon a modernmi-
croprocessor, andwith anearlierarchitecture[8] basedon
multiple instructionprocessorstargetingthesameproblem
domain.To recapitulatethemainpoints:

� The architectureis basedon a direct mappingof the
datapath.This hasa greatspeedadvantageover in-
structionprocessorsystems,andis alsoshown to have
goodresourceutilisation.

� Parallelismis exploited at several levels. This leads
to amulti-processorarchitecturewith goodspeedups.
Preprocessingtheinputdataenablesusto exploit uni-
ficationparallelismin all theprocessors,for auniform
speedup.

� By usinga cachesystem,we reduceaccesstime to
memory, and more importantly we reducememory
contentionsharply. This allows more processorsto
run effectively in parallel.Thesizesof thecachesare
foundby analysisof theinputdata.

Currentandfuturework consistsof thefollowing. First,
improve theinterfacebetweenthemaincontrollerandthe

processors– thecurrentinterfacecanresultin longconnec-
tions anda large fanoutwhenmany processorsareused.
This problemcanbe overcomeby pipelining the connec-
tionsanddecomposingthemaincontrollerinto a treenet-
work of controllers. Second,explore strategiesfor paral-
lelising communicationbetweenthe cacheandthe exter-
nal memory. Third, evaluateour architectureusinga wide
rangeof Progolapplications.
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