
Scribbling Interactions with

a Formal Foundation⋆

Kohei Honda1, Aybek Mukhamedov1, Gary Brown2,
Tzu-Chun Chen1, and Nobuko Yoshida3

1Queen Mary, University of London 2Red Hat, Inc.
3Imperial College London

Abstract. In this paper we discuss our ongoing endeavour to apply no-
tations and algorithms based on the π-calculus and its theories for the
development of large-scale distributed systems. The execution of a large-
scale distributed system consists of many structured conversations (or
sessions) whose protocols can be clearly and accurately specified using
a theory of types for the π-calculus, called session types. The proposed
methodology promotes a formally founded, and highly structured, devel-
opment framework for modelling and building distributed applications,
from high-level models to design and implementation to static check-
ing to runtime validation. At the centre of this methodology is a formal
description language for representing protocols for interactions, called
Scribble. We illustrate the usage and theoretical basis of this language
through use cases from different application domains.

1 Introduction

A fundamental challenge in modern computing is the establishment of an ef-
fective and widely applicable development methodologies for distributed appli-
cations, comparable in its usability to the traditional methodologies for non-
distributed software built on, among others, core UML diagrams and object-
oriented programming languages. Though a middle-to-large-scale application is
almost always distributed nowadays, and in spite of the presence of an acceler-
ating infrastructural support for portable and reliable distributed components
through e.g. clouds, software developers (including architects, designers and pro-
grammers alike) are still lacking well-established development methodologies for
building systems centring on distributed processes and their interactions. For ex-
ample, there is no central computational abstractions (comparable to classes and
objects) for capturing distributed interactions usable throughout development
stages; no UML diagrams are widely in use for modelling distributed applica-
tions; no major programming languages offer high-level, type-safe communica-
tion primitives, leaving treatment of communications to low-level APIs. In short,
we are yet to have a general and tangible framework for developing distributed,
communication-centred software systems.

⋆ This work is partially supported by EPSRC EP/F003757, EP/F002114, EP/G015635
and EP/G015481.

1



We believe that one of the major reasons why it is so hard to even con-
ceive an effective software development framework for distributed systems, is
the lack of a core descriptive framework, with a uniform conceptual and for-
mal foundation and usable throughout development stages. To illustrate this
point, let us briefly examine the descriptive framework in one of the traditional
development methodologies for non-distributed software, underpinned by UML
diagrams and object-oriented programming. In this framework, the description
of computation centres on objects (which belong to classes) and operations on
objects, a representative paradigm of sequential computation. Class Diagram in
UML and all associated core modelling diagrams such as Sequence Diagrams
and State Charts follow this paradigm; and it is supported by many high-level
programming languages, including Java, C++, C♯ and Python.1

Types and logics, two linchpins of theories of computing, play fundamental
and mutually enriching roles in this traditional descriptive framework. Types,
as seen in the now familiar APIs, offer a basic notion of interface of subsystems,
tightly coupled with the central computational dynamics of this paradigm, i.e. in-
voking objects and returning results. This dynamics is embodied in high-level
programming primitives, which in turn enables cheap and compositional static
validation at the compile time [15,29], leading to modular software development.
Types are also a basis of logical specifications. In the widely practiced modelling
framework known as Design-by-Contracts (DbC) [28], assertions elaborate types
with predicates. Assertions are expressive, allowing us to pinpoint practically
any property one wishes to specify [21], though automatic validation is not al-
ways possible. Assertions offer a refined form of modular software development
through compositional behavioural contracts.

In the light of this well-established (and highly successful) engineering frame-
work in the traditional development methodology, a natural question is whether
we can build its analogue in the world of distributed processes, centred on com-
mon high-level abstraction for modelling and programming, and aiding modular
software development on a rigorous theoretical basis.

This paper illustrates our ongoing endeavour to build a core descriptive
framework and the associated development environment for large-scale distributed
systems based on the π-calculus [30], centring on a simple language for describ-
ing interactions, called Scribble. A key insight is that a distributed system can be
naturally and effectively articulated as a collection of possibly overlapping struc-
tured conversations, and that the structures of these conversations, or protocols,
can be clearly and accurately described using a type theory of the π-calculus,
called session types [23, 24, 39]. In Section 2, we discuss how protocols play a
fundamental role for modelling and building distributed applications in diverse
domains. In Section 3, we introduce Scribble. In Section 4, we present larger
description examples in Scribble from real-world use cases. Section 5 outlines
a theoretical basis of Scribble. Section 6 discusses a development framework.
Section 7 concludes with related and future work.

1 Having a different origin, functional languages such as Haskell and ML share a
common paradigm, data belonging to data types and operations on data.

2



2 Background: Modelling Interactions through Protocols

Protocols in Interactional Computing. The idea of protocols becomes im-
portant for general software development when the shape of software becomes
predominantly a collection of numerous distributed processes communicating
with each other. Such interactional computing is increasingly common in prac-
tice, from web services to financial protocols to services in clouds to parallel
algorithms to multicore chips. Processes will be engaged in many interleaving
conversations, each obeying a distinct protocol: the aggregate of overlapping con-
versations make up a whole distributed system. Dividing the design into distinct
conversations promote tractability because the structure of one conversation in
an application are relatively unaffected by other conversations.

A protocol offers an agreement on the ways interactions proceed among two
or more participants. Without such an agreement, it is hard to do meaningful
interactions: participants cannot communicate effectively, since they do not know
when the other parties will send what kind of data and through which channels.
This is why the need to describe protocols have been observed in many different
contexts in the practice of interactional computing, as we illustrate below.

Needs for Protocols (1): Global Financial Network. ISO TC68, the Tech-
nical Committee for Global Financial Services in ISO, recognized the need for a
mechanism to register and maintain international financial protocols (FPs) un-
der the auspice of ISO. This has led to the establishment of a working group for
FPs, WG4, which is in charge of drafting the evolving global standard for FPs,
ISO20022 [41], using high-level models for describing message formats based on
UML. The use of high-level models enable flexible engineering, such as compi-
lation to different document format (e.g. XML schemas and ASN.1), semantic
matching of message fields, and model-driven development. [20]

However a message format alone cannot describe an FP in its entirety: the
flows in which asynchronous messages are exchanged is at the heart of the FPs.
In ISO20022, this dynamic aspect of a FP is called its message choreography
(“Every Business Transaction contains its own Message Choreography” [41]). In
spite of its importance, the chair of WG4 observed that the description of the
message choreography through the current technology has severe limitations:

1. It is imprecise: The descriptions of protocols are unclear, ambiguous and
misleading, and legally unusable.

2. It is incomplete: It is impossible to describe the structure and constraints of
FPs in their entirety up to a suitable abstraction level.

3. It is informal: The description cannot be used for formal reasoning about
protocols; for checking their internal consistency; for verifying, either by
hand or by machine, the conformance of endpoint programs against a given
protocol; for code generation; for testing; and for runtime control.

A precise, complete and formal description of message choreography would offer
a vital tool for harnessing and governing global FPs. A long-term goal of WG4
is to identify an effective method for describing message choreography of FPs,
and use it in future versions of ISO20022.

3



Needs for Protocols (2): Operating System for Multicore CPUs. We
turn our eyes to a basic form of systems software, operating systems. Most
commodity computers nowadays are equipped with multi-core processors, which
offer an effective way of harnessing high-density transistor circuits without in-
curring the performance penalties associated with monolithic processors. This
trend is expected to continue in future, where many-core processors, whose nu-
merous cores share a high-bandwidth on-chip interconnect, will become a com-
monplace [5]. As a consequence, computers are increasingly resembling a dis-
tributed system, which cannot be effectively utilised by traditional monolithic
OS kernels built around shared data structures that suffer from performance and
scalability issues in a parallel execution environment.

Barrelfish is a new multi-kernel OS architecture that aims to address the
challenge [4]. It is designed to run on heterogeneous multicore machines and
is structured as a distributed system of cores that communicate via explicit
message passing and share no memory. Early benchmarks on present day multi-
core computers showed that the performance of Barrelfish is comparable to that
of existing commodity operating systems and can scale better to support future
many-core hardware [4]. There are clear parallels between Barrelfish OS and a
distributed system, and in particular, the importance of having unambiguous
specification of communication protocols. However, the current programming
development for Barrelfish only offers description of procedural interface, making
it hard to ensure compatibility at the level of asynchronous message passing
among OS components, a predominant mode in this operating system.

Needs for Protocols (3): Web Services. In web services, applications make
an extensive use of communications among components and services through the
standardised format and transport technologies (e.g. URI, XML and TCP/HTTP),
increasingly combined with other distributed computing technologies such as
clouds, messaging and distributed store. Business transactions using web services
are often termed business protocols because each of them obeys an agreed-upon
conversation structure. Web Services Choreography Description Language (WS-
CDL) [13] was conceived in W3C as a declarative, XML-based domain-specific
language for specifying business protocols. It is also a first standardization effort
done in collaboration with the π-calculus experts from academia.

WS-CDL is notable in that its description captures “global” ordering – a
choreography – of observable behaviour of participants in a channel-based com-
munication. It comprises a rich set of concepts (roles, work units, exceptions,
etc.) and general control constructs (sequencing, parallel, conditionals, recur-
sion) for expressing multi-party interaction. At the same time, as a descriptive
means for protocols, it has several drawbacks: first, although a subset of WS-
CDL has been given a formal semantics using the π-calculus [12], the language
as a whole is not equipped with the notion of projection from a global specifica-
tion to endpoint specifications (which is important for deriving communication
specification for local participants); and it lacks a clear stratification between
specifications and executable programs.

4



Needs for Protocols (4): Large-scale Cyberinfrastructure. The Ocean
Observatories Initiative (OOI) is a large-scale project funded by US National
Science Foundation for implementation of a distributed environmental science
observatory with persistent and interactive capabilities that have a global physi-
cal observatory footprint [14,35]. A key component of the OOI is a comprehensive
cyberinfrastructure (CI), whose design is based on loosely coupled distributed
services and agents, expected to reside throughout the OOI observatories, from
seafloor instruments to on-shore research stations. The CI acts as an integrating
element that links the sub-networks of OOI into a coherent system-of-systems
and uses a large catalogue of communication protocols among distributed in-
struments and stakeholders. These protocols are required to be unambiguously
specified for the implementation and runtime communication monitoring.

Towards a Descriptive Basis for Protocols. The pervasiveness and com-
plexity of interactional computation in modern and future computing high-
light the need for a general and rigorous protocol description framework, usable
throughout the software development life cycle, equipped with a clear, transpar-
ent semantic basis, and offering foundations for modular software development
through computer-aided validation and verification tools. We now illustrate our
recent efforts to develop such a framework, centred on a small description lan-
guage for scribbling protocols.

3 Overview of Scribble

The goal of Scribble is to provide a formal and yet intuitive language and tools for
specifying and reasoning about communication protocols and their implementa-
tions, based upon the theory of multiparty session types [6,24,43]. Figure 1 gives
an overview of this software framework, which we call the Scribble framework.

Fig. 1. Scribble framework overview.

Applications can implement interaction behaviour through the conversation
API, a high-level language-independent message-passing interface, to be real-

5



ized in various high-level programming languages (such as ML, Java, Python,
C♯, C++ and others). Static validation is carried out with the aid of a conversa-
tion API. In place of the conversation API, we can also use language extensions
with intrinsic type checking capability, as studied in [25,26]. The protocol type-
checker inspects the application code and decides whether its communication
behaviour in a conversation follows the prescribed protocol. Dynamic validation
is performed by a monitor that reads in a Scribble protocol specification and in-
spects runtime communication behaviour of an application. The monitor checks
that its interaction follows the behaviour of the corresponding role(s) prescribed
by the protocol. For further discussions, see Section 5.

The Scribble framework is currently a work in progress. In the following we
present an overview of its underlying protocol specification language, Scribble.

Hello World. We start the overview of Scribble with a customary hello-world
example as a protocol, illustrating its basic structure.

1 import Message;
2

3 protocol GreetWorld {

4 role You, World;
5 greet(Message) from You to World;

6 }

The above protocol definition intuitively says:

The protocol uses Message type defined using the import statement.
Each conversation instance (a run) of the protocol involves two partici-
pants – one taking the role You and the other taking the role World. In
each conversation instance, You sends a single message to World, which
consists of the operation name greet with a value of type Message.

This protocol uses a single interaction (more complex examples will appear
later). A protocol such as GreetWorld gives a global description of interactions
among two or more participants. A session, or conversation, is an instantia-
tion of a protocol that follows the protocol’s rules of engagement. Principals
represent entities, such as corporations and individuals, who are responsible for
performing communication actions in distributed applications. When a principal
participates in a conversation (i.e. becoming its participant), it does so by taking
up specific role(s) stipulated in the underlying protocol.

Transport Characteristics. We assume the following properties of the un-
derlying message transport. This is an important assumption to understand the
semantics of Scribble.

• Asynchrony: send actions are non-blocking.

• Message order preservation: the order of messages from the same participant
to another participant in a single conversation is preserved.

• Reliability: a message is never lost or tampered with during transmission.

6



These properties may be realised by a transport layer possibly combined with
runtime systems at endpoints. They are natural assumptions for many existing
transports, be it in Internet, high-performance LAN or on-chip interconnect.

Main Constructs. The top-level grammar of a Scribble description comprises:

(1) At most one preamble, which consists of one or more import statements:
in the GreetWorld protocol we have just seen, this is Line 1, importing a
message type called Message.

(2) A single protocol definition (Lines 3–6 in the GreetWorld protocol), which
consists of the keyword protocol, the name of the protocol (e.g. GreetWorld),
and the main part – the protocol body – enclosed by curly braces.

The protocol body consists of one or more role declarations followed by inter-
action description. Roles are placeholders for participating endpoints. When a
protocol is instantiated to a concrete conversation, each role, say You, is bound to
a principal, making the latter a participant in that conversation. The behaviour
of this participant should follow that of You prescribed in the protocol. In the
GreetWorld protocol, Line 4 gives role declarations, which specifies that the pro-
tocol description includes two endpoints, You and World. The grammar of the
role declaration is:

role role1, ..., roleN;

where roleNamei is a role name. This is equivalent to:
role role1;
...

role roleN;

All role names should be distinct and the order does not matter.
The interaction description is the main part of the protocol description. There

is at most one such description in a protocol specification. It specifies one or more
interactions, which belong to a syntactic category called interaction sentence.

The grammar of interaction sentences has several forms. Below we describe
a few basic types that appear in the current version of Scribble:

(1) Interaction, of the form:

msgType from role1 to role2;

which defines an interaction signature (often simply interaction), and reads:

A participant playing the role role1 sends a message of type msgType

to a participant playing the role role2 and the latter eventually receives
the message.

Above the message type msgType is imported in an enclosing environment, and
can be a base or a composite type. Base type can be a primitive type common to
many programming languages, such as int, bool, or a user-defined type. In the
current syntax, composite message types are restricted to an operator name ap-
plied to (possibly empty) sequence of base message types: OpName(ValType1, ..,

ValTypeN). Operator names give clarity to interaction signatures, just as object
methods determine its interaction signature in object-oriented programming.

7



(2) Sequencing, of the form:

I1; I2; ...; In

represents an interaction sentence, where if the same role name appears in both
Ii and I(i + k), then the interaction actions of that participant take place under
a temporal order (thus if none of the role names overlap between I1 and In,
then no order is specified). This interpretation is faithful to the asynchronous
semantics of communications (formally treated in [24]). For example, in:

1 order(Goods) from Buyer to Seller;
2 deliver(Shipment) from Seller to Supplier;

3 confirm(Invoice) from Seller to Buyer;

Seller sends an invoice to Buyer (Line 3) only after it receives an order from
Buyer and sends a shipment order to Supplier (Lines 1, 2). Buyer expects an
invoice from Seller after it sends an order to Seller.

(3) Unordered (also called Parallel), of the form:

I1 & I2 & ... In

represents interleaved interactions that may be observed in any order. We write:

msgType from role1 to role2,.., roleK;

for a shorthand of:

msgType from role1 to role2 & .. & msgType from role1 to roleK;

(4) Directed Choice, of the form:

choice from role1 to role2,.., roleK {
msgType1: I1

..
msgTypen: In

}

represents interaction flow branching, where role1 makes a choice msgTypej to
continue interaction following scenario in Ij. For example, in :

1 order(Goods) from Buyer to Seller;

2 choice from Seller to Buyer {
3 accept(Invoice):
4 payment(CardDetails) from Buyer to Seller;

5 decline():
6 end;

7 }

After Buyer sends an order to Seller, Seller makes a choice whether to ac-
cepts it or not. If it decides the former, Seller returns an invoice to Buyer and
subsequently waits for a payment in return from him.

(5) Recursion, of the form:

rec BlockName { I }

where #BlockName appears inside I at least once, signifying a repetition of the
whole block when #BlockName is encountered. For example, in

8



1 rec X {

2 order(Goods) from Buyer to Seller;
3 choice from Seller to Buyer {

4 accept():
5 ..
6 #X;

7 decline():
8 end;

9 }
10 }

Seller can continuously accept orders from Buyer, until it decides to decline
one. When Seller declines an order, the repetition stops.

(6) Nested protocol, of the form:

run Protocol(param1,.., paramk, roleInChild1=roleInParent1,.., roleInChildn=
roleInParentn);

represents protocol nesting. When run directive is encountered in the interac-
tion flow of a conversation, a new conversation is instantiated and followed as
prescribed by the nested Protocol. The Protocol may require positional argu-
ments, as well as role keyword arguments, by which the roles in the Protocol

are instantiated with the roles of the enclosing protocol.

Scribble includes other forms of interaction sentences (global escape, delega-
tion, repetition, etc), which we omit for brevity of this presentation, see [37].

4 Scribble Examples

Scribble can be utilised to express communication protocols from a wide range
of application domains. In this section we present two examples, taken from web
services [13] and from multikernel OS [4, 40].

Web services: Travel Agent. Travel Agent is an interaction scenario designed
by the WS-CDL Working Group [13], intended to represent general concepts
common to many applications of web services. It comprises multiple participants
– a client, a travel agent and a number of service providers – and involves complex
branching and repetition in the interaction flow. Figure 2 gives an informal
description of the interaction behaviour among the participants.

We present a specification of Travel Agent protocol in Scribble in two parts
with: ReserveTravel protocol (Figure 3), by which the client enquires about and
reserves travel services with the help of an agent, and PurchaseTravel protocol
(Figure 4) for subsequent service booking interaction. PurchaseTravel is para-
metric in the number of service providers that the agent communicates with in
the preceding ReserveTravel protocol. The specification makes use of recursion to
represent arbitrary repetition of a series of interactions. In ReserveTravel proto-
col, lines 6-13 correspond to steps 1 and 2a in Figure 2, lines 15-21 to steps 2b,
3 and 4a. Line 21 uses a nested protocol, PurchaseTravel, which describes a
successful purchase of travel services by the client (steps 5, 6 and 7 of Figure 2).

9



1. The client interacts with the travel agent to request information about various services.
2. Prices and availability matching the client requests are returned to the client. The client can then perform

one of the following actions:
(a) The client can refine their request for information, possibly selecting more services from the provider

(Repeat step 2). OR
(b) The client may reserve services based on the response, OR
(c) The client may quit the interaction with the travel agent.

3. When a customer makes a reservation, the travel agent then checks the availability of the requested services
with each service provider.

4. Either
(a) All services are available, in which case they are reserved. OR
(b) For those services that are not available, the client is informed.

– Either
i. Given alternative options for those services. OR
ii. Client is advised to restart the search by going back to step 1.

– Go back to step 3.
5. For every relevant reserved service the travel agent takes a payment for the reservation (credit card can be

used as a form of payment)
6. The client is then issued a reservation number to confirm the transaction.
7. Between the reservation and the final date of confirmation, the client may modify the reservation. Modifi-

cations may include cancellation of some services or the addition of extra services.

Fig. 2. Travel Agent protocol: informal description.

1 import TravelAgent.messages.*;

2

3 protocol ReserveTravel {
4 role Client, Agent, Provider[1..num_providers];

5

6 query(Services) from Client to Agent;

7 Services_info from Agent to Client;
8

9 rec X {

10 choice from Client to Agent {
11 more_info():

12 query(Services) from Client to Agent;
13 Services_info from Agent to Client;

14 #X;
15 reserve():
16 query(Services) from Agent to Provider[1..num_providers];

17 Services_info from Provider[1..num_providers] to Agent;
18 choice from Agent to Client {

19 all_available():
20 reserve(Services) from Agent to Provider[1..num_providers];
21 run PurchaseTravel(num_providers);

22 altern_services():
23 Altern_services_info from Agent to Client;

24 #X;
25 restart(): end;

26 }
27 quit(): end;
28 }

29 }
30 }

Fig. 3. Travel Agent: ReserveTravel protocol in Scribble.

10



1 import TravelAgent.messages.*;
2

3 protocol PurchaseTravel(num_providers) {

4 rec X {
5 choice from Client to Agent {

6 cancel():
7 cancel(Services) from Client to Agent;

8 #X;
9 add_services():

10 request(Extra_services) from Client to Agent;

11 Extra_services_response from Agent to Client;
12 #X;

13 book():
14 Payment from Client to Agent;
15 book(Services) from Agent to Provider[1..num_providers];

16 confirm(Services) from Provider[1..num_providers] to Agent;
17 choice from Agent to Client {

18 confirm():
19 Receipt from Agent to Client;

20 timeout_error():
21 Error_details from Agent to Client;
22 }

23 quit(): end;
24 }

25 }
26 }

Fig. 4. Travel Agent: PurchaseTravel protocol in Scribble.

Multikernel OS: Distributed USB Manager. Next we present a protocol
from a distributed USB manager in Barrelfish multi-kernel OS [4,40], consisting
of three primary modules that cooperate via explicit message passing:

– EHCI host controller driver (HCD). The host driver manages interaction
with the host controller hardware and provides a high-level interface for
communicating with the hardware.

– Client device driver. The client driver carries out interaction with a USB
device and exposes services of the device to applications.

– USB manager. The manager is responsible for coordination of the modules
and allocation of resources.

The USB manager has the most complex communication logic among these mod-
ules, performing orchestration of other components. In Figure 5 we informally
describe a USB device Plug Unplug protocol.

Figure 6 presents a specification of Plug Unplug protocol in Scribble. The
interaction has a linear structure and its subtlety lies in the correct interleaving
of control messages (ctrl exe) with data commands (dctrl exe) between the
USB manager and HCD.

11



– Either, a new device is inserted into one of the USB ports:
1. HCD notifies the USB manager that a device is inserted.
2. The manager reads the USB device descriptor (via HCD) that contains the number of configurations,

device protocol, class and other information.
3. The manager reads each configuration reported by the above descriptor, which contain information

about power requirements, interfaces and endpoints. The configurations are read twice: at first, to
determine the total length of data needed to read interface and endpoint descriptors and subsequently
to fetch all interface and endpoint descriptors.

4. The manager switches the device into addressed mode and crosschecks that by reading device descrip-
tor again.

5. The manager assigns a configuration and interfaces to the device, which can be later changed by
device driver.

6. The manager locates appropriate client driver by querying System Knowledge Base (SKB). If a match
is found, SKB returns the server name running the required driver.

7. The manager probes the driver if it accepts the new device or not.
• If the driver accepts the request, it requests the manager to establish a logical connection (pipe)

with the device. The pipe is subsequently controlled by HCD.
• If the driver rejects the request, the manager cleans up its resources.

– OR, a USB device is removed from a port:
1. HCD notifies USB manager the device is removed.
2. The manager cleans up its resources and notifies the client driver.

Fig. 5. Distributed USB PlugUnplug protocol from Barrelfush multi-kernel OS.

1 import PlugUnplug.messages.*;

2

3 protocol PlugUnplug {
4 role HCD, USB_Manager, Driver, SKB;

5

6 choice from HCD to USB_Manager {

7 notify_new_device(port):
8 // step 2

9 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
10 dctrl_done(id) from HCD to USB_Manager;
11 // step 3

12 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
13 dctrl_done(id) from HCD to USB_Manager;

14 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
15 dctrl_done(id) from HCD to USB_Manager;

16 // step 4
17 ctrl_exe(req,dev,id) from USB_Manager to HCD;
18 ctrl_done(id) from HCD to USB_Manager;

19 dctrl_exe(req,buf,sz,addr,id) from USB_Manager to HCD;
20 dctrl_done(id) from HCD to USB_Manager;

21 // step 5
22 ctrl_exe(req,dev,id) from USB_Manager to HCD;
23 ctrl_done(id) from HCD to USB_Manager;

24 // step 6
25 get_addr(dev,buf,id) from USB_Manager to SKB;

26 get_addr_done(id) from SKB to USB_Manager;
27 // step 7

28 probe(dev,class,prot) from USB_Manager to Driver;
29 choice from Driver to USB_Manager {
30 probe_done(ACCEPT,dev):

31 pipe_req(dev,type,dir) from Driver to USB_Manager;
32 pipe_resp(resp,pipe) from USB_Manager to Driver;

33 probe_done(REJECT,dev):
34 // clean-up
35 }

36 notify_device_removal(port):
37 disconnect(dev) from USB_Manager to Driver;

38 }
39 }

Fig. 6. PlugUnplug protocol in Scribble.

12



5 Formal Foundations of Scribble

General Ideas. Scribble is formally based on the π-calculus and its type theory
called session types. Having a general, well-understood theoretical foundation is
important since without such a foundation, we cannot establish clear seman-
tics for protocol descriptions, we cannot rigorously analyse how descriptions
relate to dynamics, and we cannot accurately state and validate properties of a
target system. The π-calculus enjoys full expressiveness for representing interac-
tional behaviours in spite of its tiny syntax: it can mathematically embed a large
class of communication-centred software behaviours, including those of existing
programming languages, without losing precision. For this reason, the study of
session types in the π-calculus, including various validation algorithms, can be
directly applicable to real-world programming languages. Below we informally
outline the correspondence between the theory of session types and Scribble,
including assurance of properties founded on this theory.

Types for Protocols: Session Types. In sequential programming language
such as Java and C, a type mainly stipulates the data type of a variable. In
particular, in typed languages, all variables should first be declared before they
can be used. For example,

int storage = 1;

This program involves stating the type and name of a variable, and telling
program that a field named storage exists, holds numerical data, and has an
initial value of 1.

Extending this view to interactional computing, session types set the rules
for a session (conversation), ensuring safe interactional behaviours for each ses-
sion. The specification starts from a global session type or a global type [24],
which describes the whole conversation scenario. It gives a specification for the
whole protocol from a bird’s eyes by giving the rules of conversations for all par-
ticipants. This global type corresponds to a protocol in Scribble: the Scribble’s
protocol notation was born from the theories of global types studied in [6], which
is the advancement of the theory presented in [24].

A local type represents the type of interactions for each role, played by a
principal in a conversation. It is given by projecting the corresponding global
type onto a specific role. The following example shows that, in a Buyer-Seller-
Broker session s, a Buyer asks Broker for a product, and sends the product’s
name. Broker refers this request to Seller, then Seller replies to the Broker with
the product’s price. Broker refers the price to Buyer after receiving it.

G = Buyer→ Broker : string.

Broker→ Seller : string.

Seller→ Broker : int.

Broker→ Buyer : int.

end.

The local types for Buyer are

〈Broker〉!〈string〉.〈Broker〉?(int),

13



which are the projection from G onto Buyer. This local types indicate that a
Buyer should firstly send a name of type string to Broker, and then wait to
receive a price, which is a variable of type int, sent from Broker.

Similarly, the local type for Seller is given as

〈Broker〉?(string).〈Broker〉!〈int〉,

and the local type for Broker is

〈Buyer〉?(string).〈Seller〉!〈string〉.〈Seller〉?(int).〈Buyer〉!〈int〉.

Through a global type, we can stipulate the whole set of rules of interactional
behaviours participated by all participants; whereas a local type enables the
corresponding endpoint (local program) to know the rules of behaviours for a
specific role in a conversation.

Safety Assurance by Session Types. The typing system of Scribble for multi-
party sessions follows [6], using their global types and projection rules. A well-
designed typing system can ensure error-free conversations among multi-party
sessions [24], by typing each endpoint with the corresponding local type, which
is projected from a stipulated global type. Thus, for a given conversation, we can
assure each of its participants plays its role correctly. This assurance can be done
effectively at the programming/compilation-time: we can derive a typing algo-
rithm from the tying rules, which can (in)validate that a process, corresponding
to an application program at some endpoint, is conforming to a projected local
type. Thus session types provide static type-checking at the programming time.

When all endpoints are type-checked and they start interaction, they satisfy
several significant properties. First, we have a formal theorem which says that

“well-typed processes never exchange wrong values.”

That is, if a process is expecting an integer, it will get an integer; and if it expects
a string, it will receive a string. Secondly, inside each session (conversation), there
is what is often called linearity:

“an output is never shared by more than one inputs, and vice versa.”

Finally, we can assure that the interactions through a well-typed conversation
follow the initially stipulated protocol:

“interactions inside a session among well-typed processes under a global
type, never violate the scenarios given in that type.”

This property can be further strengthened under certain conditions that inter-
actions can always proceed in a session, so that they inevitably complete one of
the scenarios given in a protocol, assuring an important liveness property. Here
by a liveness property we mean a property demanding a process can surely do
a good thing. In contrast, the preceding three properties are about safety since
each says that a process never does a stipulated bad thing.

14



The type-based static checking (including projection) and properties ensured
by the typing algorithm give a basis of diverse engineering practice and theories
centring on session types. As has been studied in [8], a logical method, which
elaborates session types with assertions (just as Design-by-Contract elaborates
procedural types with logical formulae), can be built on this basis, which uses
precisely the same framework except that it is lifted to logical elaboration of
session types. Further, a series of studies show how we can consistently and
effectively incorporate session types in the semantics and pragmatics of existing
programming languages [19, 25, 26].

6 Development Framework

6.1 General Concepts

Project for Development Environment of Distributed Applications.
For Scribble to be useful for development, it should be complemented with as-
sociated software tools including programming languages, integrated into a de-
velopment environment. The present authors, in conversation and collaboration
with academic and industry colleagues, started the design and implementation
of core development tools centring on Scribble in late 2009, complemented by
other activities. Our aim is to reach a simple and effective tool chain for the
development of distributed applications which can effectively interface with ex-
isting artifacts and tools such as UML and Java. We are still in an early stage
of design assessment and prototyping: below we illustrate some of its key ideas.

Modelling with Protocols. The requirement capture phase of the software
development life cycle leads to the identification of significant scenarios, or use
cases, associated with the target system’s usage. For interactional systems, many
of such use cases may as well be conversational — in the sense that they represent
interactions among more than one actor. A use case can then be elaborated
into one or more scenarios-as-conversations, each of which will obey a certain
protocol: just as an object referred to in a use case scenario belongs to a class.

There are two functions which a tool can provide for this modelling stage:
to edit protocols (with grammatical checks) and to validate their semantic
consistency or conformance to other documents. To share protocols with other
developers one can also publish protocols. One can also project a protocol with
multiple participants to each endpoint (role), to produce a local protocol using
the algorithm coming from the underlying theory (see Section 5). This gives a
model of conversations from the local viewpoint.

Programming with Protocols. Protocols produced at the modelling stage
may be refined into more concrete protocols at the design stage, so that they
are eventually usable for implementation. A programmer may also need new
protocols just for implementation purposes, as well as using already published
protocols. She will then edit a program, which uses typed sessions for com-
munications among programs, for example through a Scribble-aware API for

15



communications. She can then statically check conformance of her program
to stipulated protocols. Protocol descriptions can also be used to test programs,
where interactions are checked against protocols.

At runtime, each endpoint application is executed through a runtime which
links the high-level communication operations for sessions to the underlying
messaging infrastructure [25,26]. Multiple such endpoints will converse with each
other over multiple conversations, where each endpoint participates in a session
taking some role, as specified in the underlying protocol. Communications can be
monitored to prevent a conversation from violating a protocol, at each endpoint
and/or globally. If some anomaly is detected, a monitor will notify this fact to an
entity (a virtual agent) in charge of policy enforcement. The protocol documents
also form basic part of the design document of the system.

6.2 Concrete Design

Project for Scribble-based Development Environment. Scribble and asso-
ciated tools are being developed by an open source project hosted at [37], with
multiple academic and industry participants. Its purpose is to provide a collab-
orative environment to support the development of the language Scribble and
associated tools. One of the exciting aspects of the project is the collaboration
between academia and industry. Within the project, we are aiming to harness the
best of these two worlds: leverage the academic results to develop cutting edge
capabilities, while providing the stable software development life cycle required
to deliver a higher quality and better supported product for use in industry.

Our current design of a tool chain focuses on Eclipse. To enable extensibil-
ity in this environment, we leverage the OSGi standard. The tooling includes
an Eclipse-based context sensitive editor for Scribble. Since Eclipse is based on
the OSGi framework, various Scribble-related functions become automatically
available in the editor as OSGi modules become available. Extensibility also
facilitates incorporation of new research ideas into existing tool functionalities.

Protocols are parsed by a parser generated by the ANTLR parser generator,
producing an internal representation (a Java object model) through the abstract
syntax tree. It is this representation which is used and acted upon by various
validation modules, discussed next.

Static Validation and Other Algorithms. One of the fruits of the industry-
academia collaboration in the Scribble project is the use of the latest research
results on validation and other algorithms that are provably correct to give the
required results. Each validation module is responsible for processing a Scribble

protocol object model to output whether it is valid or not (with respect to a
specific criteria). Validations can be arbitrarily chained, and are usually set up
so that they are triggered automatically as a protocol description is created
or updated in the editor. A new validation function can be added simply by
installing an OSGi module implementing the appropriate interface. The main
validation functions include:

16



1. Syntactic consistency (parsability)
2. Semantic consistency of session types (including linearity guarantee, which

avoids a race condition in a conversation [24])
3. Conformance checking of a local protocol against a global one [31].

The conformance checking noted above is also used for local protocols extracted
from an implementation of an endpoint in an already existing program, writ-
ten in e.g. BPEL. These validations, together with other functions such as the
projection of a global protocol to local protocols (using the latest algorithm
from [43]), can be lifted to logical specifications following [8]. Another form of
validation is dynamic validation through monitors, using an efficient internal
representation of protocols. The design and implementation of these and other
validation modules are under way, with a stable release planned in late 2011.

Finally, programming support for Scribble for existing languages comes from
two sources: APIs and language extensions. In both cases, a type checker, which
validate type correctness of programs against local protocols, plays a key role.
Three implementations covering both approaches are under way, based on the
latest research on session-based programming and runtime [25, 26].

7 Related Work and Conclusion

In this section we discuss some of the related work, with an emphasis on theo-
retical studies related to Scribble, and conclude with further topics.

Process Algebra. Process algebras, such as ACP [3], CSP [22] and π-calculus
[30], present a semantic framework where interactional behaviour of software
systems can be captured on a rigorous mathematical basis through a small set
of operators for constructing processes. The fruits from the studies on these
and other models of concurrency form an essential engineering foundation of
Scribble. For example, behavioural equivalences such as bisimulations, a linchpin
of theories of process algebras, offer the mathematical basis of key engineering
activities such as optimisations, security, correctness of compiler, correctness of
runtime, and various semi-automatic verifications.

Session Types and Other Description Frameworks. Session types [23,39]
have been studied over the last decade as a typed foundation for structured
communication-centred programming using various programming languages and
process calculi. The original binary session types have been generalised to multi-
party session types [24], in order to guarantee stronger conformance to stipulated
session structures when a protocol involves more than two parties. Theories of
multiparty session types [6, 24] give the foundations of Scribble, together with
their semantic basis given by the π-calculus. Validation and other algorithms
from their studies are used as the core elements of its tool chain.

Since [24], the theory of multiparty session types has been extended in dif-
ferent directions, including a theory which ensures the progress property for

17



interleaved multiparty sessions [6] (which also gave the formal basis of the Scrib-

ble’s syntax); generalised type structures which allow communication optimisa-
tion through permutation [31]; and a static analysis for communication buffer
overflows [16]. The existing notations for describing protocols include message
sequence charts [9,27] and UML sequence diagrams [34] (the latter when method
calls are replaced by asynchronous signals). These notations are different in that
they are not based on the abstraction of protocols as type signatures. Protocol
descriptions from a different viewpoint are studied in [18], where one stipulates
possible communication events among endpoints using a logic of commitment.
WS-CDL [13] (discussed in Section 2) is one of the first expressive languages
which allow description of interactions from a global viewpoint. WS-CDL is also
a basis of the preceding validation tool by one of the authors (G.B.), pi4soa [36],
on whose experience the design of the Scribble-based development environment is
being carried out. In comparison with these descriptive languages, the multiparty
generalisation of session types offer, for the first time, a framework of protocol
descriptions where they are formally captured as type signature, together with
a notion of type conformance through formal projection to endpoints.

Recently the theory of multiparty session types has been applied in different
contexts, including protocol optimisation for distributed objects [38]; integrity
of session interactions [7, 10]; type-safe asynchronous event programming [25];
safe and efficient parallel programming [32, 43]; multicore programming [44];
and medical guidelines [33]. Many of these studies are inspired by and/or inspire
our industrial collaborations.

Communication-Centred Programming Languages and Scribble. Occam-
Pi [42] is a highly efficient systems-level concurrent programming language cen-
tring on synchronous communication channels, based on CSP and the π-calculus.
Hewitt’s Actor Model [1] is an influential programming model centring on asyn-
chronous unordered message passing. Erlang [2] is a communication-centred pro-
gramming language with emphasis on reliability based on actors. Scribble differs
from these languages in that it is a protocol description language rather than
a programming language, with formal foundations coming from the π-calculus
and session types, intended to be used across multiple programming languages
through different stages of software development.

Further Topics. To realise the full potential of the proposed approach in gen-
eral and Scribble in particular, the incorporation of several recent advances of
the theory of session types into the description language would be relevant.
First, Scribble can be extended to the type-safe multiparty session exceptions
recently developed in [11], in order to handle system failure and fault-tolerance
in a larger class of distributed protocols, preserving type safety. The incorpora-
tion of the parametrised dependent type theory from [43] enables us to directly
express more complex communication topologies. More recently, we studied a
dynamic multirole session type in [17] where an arbitrary number of partici-
pants can dynamically join and leave an active session under a given role. This
solved an open problem in the theory of multiparty session types, providing a

18



new framework to handle common distributed communication patterns such as
publisher-subscriber or P2P and chat protocols within the theory. The notion
of the role with dynamic join capabilities in [17] was motivated by Scribble and
protocol descriptions in it, demonstrating an interaction between practice cen-
tring on Scribble and academia brings a new theory which can be used to enrich
type structures of Scribble. Another significant extension of the theory of multi-
party session types, again motivated by a dialogue with practice, is our recent
work [8] on an assertion framework built on session types. The incorporation
of the assertion-based framework will enrich the expressiveness of Scribble as
a tool for description by enabling the specification of fine-grained constraints.
The framework generalises the traditional Design-by-Contract, offering a refined
modular development framework for distributed communicating processes based
on multiparty behavioural contracts.

Acknowledgements. We thank Raymond Hu, Matthew Rawlings and Munin-
dar Singh for their comments. The Scribble project has been enriched by an
extensive dialogue with academic and industry colleagues, including, but not
limited to, Matthew Arrott, Matthew Rawlings, Steve Ross-Talbot and Olivier
Pernet. The first author acknowledges a fruitful discussion with another industry
colleague, Antony Alappatt. We thank all of them, and record that this series
of a dialogue between practice and theories was made possible by the initiative
and leadership of late Robin Milner, who is also the originator of many of the
key theoretical foundations on which Scribble is based. For this reason, we dedi-
cate this paper to him, and hope that our work from now on in this domain will
contribute to the enrichment of both practice and theories of computing through
their deep and honest dialogue, as Robin envisioned in his address in Edinburgh
in 1986 and encouraged us in the early days of this endeavour.

References

1. G. Agha. Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA, 1986.

2. J. Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf, 2007.

3. J. Baeton and W. Wejland. Process Algebra. Cambridge University Press, 1990.

4. A. Baumann et al. The multikernel: a new os architecture for scalable multicore
systems. In SOSP, pages 29–44. ACM, 2009.

5. A. Baumann, S. Peter, A. Schüpbach, A. Singhania, T. Roscoe, P. Barham, and
R. Isaacs. Your computer is already a distributed system. why isn’t your os? In
HotOS’09: Proceedings of the 12th conference on Hot topics in operating systems,
pages 12–12, Berkeley, CA, USA, 2009. USENIX Association.

6. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In
CONCUR, volume 5201 of LNCS, pages 418–433. Springer, 2008.

7. K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. Leifer. Cryptographic
protocol synthesis and verification for multiparty sessions. In CSF, pages 124–140,
2009.

19



8. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In CONCUR’10, volume 6269 of LNCS,
pages 162–176. Springer, 2010.

9. M. Broy, I. H. Krüger, and M. Meisinger. A formal model of services. ACM Trans.

Softw. Eng. Methodol., 16(1):5, 2007.
10. S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk. Session Types for

Access and Information Flow Control. In CONCUR’10, volume 6269 of LNCS,
pages 237–252. Springer, 2010.

11. S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty session. In
FSTTCS’10, 2010. To appear. http://www.di.unito.it/~capecchi/mpe.pdf.

12. M. Carbone, K. Honda, and N. Yoshida. Structured Communication-Centred Pro-
gramming for Web Services. In ESOP’07, volume 4421 of LNCS, pages 2–17.
Springer, 2007.

13. W3C Web Services Choreography Description Language. http://www.w3.org/

2002/ws/chor/.
14. A. Chave, M. Arrott, C. Farcas, E. Farcas, I. Krueger, M. Meisinger, J. Orcutt,

F. Vernon, C. Peach, O. Schofield, and J. Kleinert. Cyberinfrastructure for the US
Ocean Observatories Initiative. In Proc. IEEE OCEANS’09. IEEE, 2009.

15. L. Damas and R. Milner. Principal type-schemes for functional programs. In
POPL, pages 207–212, 1982.

16. P.-M. Deniélou and N. Yoshida. Buffered communication analysis in distributed
multiparty sessions. In CONCUR’10, volume 6269 of LNCS, pages 343–357.
Springer, 2010. Full version, Prototype at http://www.doc.ic.ac.uk/~pmalo/

multianalysis.
17. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL’11.

ACM, 2011. To appear. http://www.doc.ic.ac.uk/~malo/dynamic.
18. N. Desai, A. K. Chopra, M. Arrott, B. Specht, and M. P. Singh. Engineering foreign

exchange processes via commitment protocols. In IEEE SCC, pages 514–521, 2007.
19. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session

Types for Object-Oriented Languages. In ECOOP’06, volume 4067 of LNCS,
pages 328–352, 2006.

20. D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.
Wiley, January 2003.

21. T. Hoare. An axiomatic basis of computer programming. CACM, 12, 1969.
22. T. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
23. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-

ciplines for structured communication-based programming. In ESOP’98, volume
1381 of LNCS, pages 22–138. Springer, 1998.

24. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In POPL’08, pages 273–284. ACM, 2008.

25. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, and K. Honda. Type-safe eventful
sessions in Java. In ECOOP, volume 6183 of LNCS, pages 329–353. Springer-
Verlag, 2010.

26. R. Hu, N. Yoshida, and K. Honda. Session-Based Distributed Programming in
Java. In ECOOP’08, volume 5142 of LNCS, pages 516–541. Springer, 2008.

27. International Telecommunication Union. Recommendation Z.120: Message se-
quence chart, 1996.

28. B. Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, 1992.
29. R. Milner. Theory of type polymorphism in programming languages. In TCS,

1982.

20



30. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, Parts I and
II. Info.& Comp., 100(1), 1992.

31. D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in partially
commutative asynchronous sessions. In ESOP’09, number 5502 in LNCS. Springer,
2009.

32. N. Ng. High performance parallel design based on session programming. Masters
thesis, Department of Computing, Imperial College London, 2010. http://www.

doc.ic.ac.uk/~cn06/individual-project/.
33. L. Nielsen, N. Yoshida, and K. Honda. Multiparty symmetric sumtypes. Technical

Report 8, Department of Computing, Imperial College London, 2009. To appear
in Express’10. Apims Project at: http://www.thelas.dk/index.php/apims.

34. OMG. Unified Modelling Language, Version 2.0, 2004.
35. Ocean Observatories Initiative (OOI). http://www.oceanleadership.org/

programs-and-partnerships/ocean-observing/ooi/.
36. pi4soa homepage. http://pi4soa.sourceforge.net/.
37. Scribble development tool site. http://www.jboss.org/scribble.
38. K. C. Sivaramakrishnan, K. Nagaraj, L. Ziarek, and P. Eugster. Efficient session

type guided distributed interaction. In Coordination’10, volume 6116 of LNCS,
pages 152–167. Springer, 2010.

39. K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its
Typing System. In PARLE’94, volume 817 of LNCS, pages 398–413, 1994.

40. A. Trivedi. Hotplug in a multikernel operating system. Master’s thesis, ETH
Zurich, 2009.

41. UNIFI. International Organization for Standardization ISO 20022 UNIversal Fi-
nancial Industry message scheme. http://www.iso20022.org, 2002.

42. P. Welch and F. Barnes. Communicating Mobile Processes: introducing occam-pi.
In 25 Years of CSP, volume 3525 of LNCS, pages 175–210. Springer, 2005.

43. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty
session types. In FoSSaCs’10, volume 6014 of Lecture Notes in Computer Science,
pages 128–145. Springer, 2010.

44. N. Yoshida, V. T. Vasconcelos, H. Paulino, and K. Honda. Session-based compila-
tion framework for multicore programming. In FMCO’08, volume 5751 of LNCS,
pages 226–246. Springer, 2009.

21


