Robotics

Lecture 6: Advanced Sensing: Place Recognition
and Occupancy Mapping

See course website
http://www.doc.ic.ac.uk/“ajd/Robotics/ for up to

date information.

Andrew Davison
Department of Computing
Imperial College London

Review: Probabilistic Motion and Sensing Practical 3

The preliminaries for Monte Carlo Localisation:

® Updating a probability distribution, using particles, to represent
motion uncertainty. We want to see the particles spreading out in a
realistic manner to represent uncertainty over a square trajectory,
and hear about how you found the right parameter settings to
achieve this.

® Waypoint-based navigation.

® Sonar sensor investigation.

Motion Prediction

a3
® We know that uncertainty grows during blind motion.

® So when the robot makes a movement, the particle distribution
needs to shift its mean position but also spread out.

® We achieve this by passing the state part of each particle through a
function which has a deterministic component and a random
component.

Motion Prediction

During a straight-line period of motion of distance D:

Xnew x+ (D + e)cosf
Ynew = y—|—(D—|—e)sm9
Onew 0+ f

During a pure rotation of angle angle a:

Xnew X
Ynew = y
O new 0+a+g
Here e, f and g are zero mean noise terms — i.e. random numbers

sampled from with a Gaussian distribution.

The spreading out comes from sampling a different set of random
numbers for each particle.

Review: Probabilistic Motion and Sensing Practical 3

® Although your robot may have been very precise in the square
experiment we did in week 2, it is best to be conservative with the
uncertainty values you use in a probabilistic filter such as MCL.
Especially because the robots are now driving on variable carpet,
odometry precision is likely to be less and you should make sure your
particles spread out enough to represent this.

® This goes for the sonar sensor too: in a real navigation setting, there
may be more variation (e.g. in how it responds to different surfaces,
angles, etc.) than in your controlled experiments.

Global Localisation (‘Kidnapped Robot’) with Sonar

® In MCL, global localisation can be attempted by initialising a large
number of particles randomly spread through the environment, and
then running the filter normally. However, this requires many
particles (computationally expensive) and it may take many
movements and measurements to find the right location.

® We would expect better performance with more informative sensing:
e.g. a ring of sonar sensors all making measurements at the same

time rather than just g @
uE
O ® (P C%
©)

Slo
S O

One Depth Measurement and Resampling

® After a measurement (e.g. sonar depth = 20cm), the weights of
particles consistent with it will increase.

® Movement and further measurements are needed to lock down
position, and ambiguities may still arise.

G@S
&©

®
@@

Using a Compass and Sonar Together

® Ambiguity is much reduced with extra measurements, such as from
a compass.

® e.g. sonar depth = 20cm, compass bearing = 45°.

GAGUEGING
@,
@

0 G

Global Localisation Via Recognition

An alternative relocalisation technique involves making a lot of
measurements at a number of chosen locations and learning their
characteristics.

This can be done without a prior map but needs training.
The robot can only recognise the locations it has learned.

For instance: at each location, spin the robot and take a regularly
spaced set of sonar measurements (e.g. one per degree).

Measuring to Learn a Location

® First the robot must be placed in each target location to learn its
appearance.

® The raw measurements are stored to describe the location: a place
descriptor, or signature.

cm A M

200 r

100

Depth Measurement

0 90 180 270 Degrees

Robot Angle

Place Recognition

® Afterwards, the robot is placed in one of the locations and it must
take a set of measurements then decide which it is in.

® |t must see which saved signature matches best to the new
measurements by checking each in turn.

O™

Location 1 Location 2

M Dtaw

Location 3 Location 4

T

Location 5 Location 6

Place Recognition

® Two histograms can be compared with a correlation test, measuring
the sum of squared differences. Difference Dy between new
measurement histogram H,, (/) and saved signature histogram H (/)
is:

D= (Hn(i) = Hi(i))* .

i

® The saved location with lowest Dy is the most likely candidate, but
we should also check that Dy is below a threshold in case the robot
is in none of the known locations.

Estimating Orientation

® |f the test histogram and that from one of the saved locations can
be brought into close agreement by only a shift, the robot is in the
same place but rotated.

® The amount of shift to get the best agreement is a measurement of
the rotation.

cm

a
3

n

5]

5]
N
3
8

3
8

3
8
Depth MEasurement

Depth Measurement

0
0 90 180 270 egrees 0 90 180 270 Degrees

Robot Angle Robot Angle

Depth Measurement Histogram

® Optionally (to save the computational cost of always trying every
shift), we can build a signature which is invariant to robot rotation,
such as a histogram of occurences of certain depth measurements.

® Matching tests can then be carried out on this directly.

® Once the correct location has been found, the shifting procedure to
find the robot’s orientation need only be carried out for that one

location.

Frequency of Measurement

A

0 100 200 cm

Depth

Probabilistic Occupancy Grid Mapping

® The second method we will look at today is a probabilistic algorithm
for mapping in the case that a robot's localisation is known. The
goal is to infer which parts of the environment around a robot are
navigable free-space, and which parts contain obstacles.

® In Occupancy Mapping, rather than building a parametric map of
the positions of walls we use a regular grid representation.

® Occupancy grids accumulate the uncertain information from sensors
like sonar to solidify towards precise maps.

Occupancy Grid Map Representation

We define an area on the ground we would like to map, and choose
a square grid cell size.

For each cell i, we store and update a probability of occupancy
P(0;) that it is occupied by an obstacle.

P(E;) is the corresponding probability that the cell is empty, where
P(O))+ P(E;) =1.

We initialise the occupancy probabilities for unexplored space to a
constant prior value; for instance 0.5

Occupancy maps are often visualised with a greyscale value for each
cell: from black for P(O;) = 1 to white for P(O;) = 0; intermediate
values are shades of grey.

Update after Sonar Measurement

I
1
i
|
Il

For each cell we want to update the probability of occupancy to take
account of a new sonar measurement Z.

Suppose that the sonar reports a depth Z = d. This provides
evidence that cells around distance d in front of the robot are more
likely to be occupied. But also, that cells in front of the robot at
depths less than d are more likely to be empty.

A sonar beam is not a perfect ray but has a width (e.g. 10-15° as it
spreads out and we can take account of this as shown.

For each cell, we must test if it lies within the beam given the
robot's position. We do not learn anything about cells beyond the
beam width or beyond the measured depth.

Bayesian Update of Occupancy

0

|
|
|
1
|
|

i

Technically, for each cell, we apply Bayes rule to get a posterior
probability for each cell.

_ P(Z]01)P(0))
P(0i|Z) = P2
As in MCL, we could avoid calculating P(Z) by also calculating P(E;|Z)
and normalising since we know P(0;|Z) + P(E;j|Z) = 1.
_ P(ZIE)P(E)
P(Ei|Z) = ~P2)

Log Odds Representation

If we take the ratio of the two Bayes rule expressions on the previous slide:

(&) = (7ae)* (5@
P(A

We can use the odds notation: o(A) =)

=

0o(0;1Z) = (ii?g’;) x 0(0;)

Taking logs:
Ino(0;|Z) = In (ig'@’;) +1no(0))

So in this form, for each cell we store In o(O;) and update it additively.
Cells with probability 0.5 of occupancy will have log odds 0; positive log
odds means probability > 0.5; negative log odds means probability < 0.5.
Also we normally cap log odds at certain positive and negative limits.

Likelihood Model of Sensor

We need models for the likelihood function which models sensor
performance. We can consider directly the ratio of likelihoods we
need to update log odds.

Log odds update U = In 'i(élé;)): for each cell P(Z|0;) is the
probability of obtaining the sensor value we did given that the cell is
occupied; P(Z|E;) is the probability of obtaining that value given
that the cell is empty.

For cells within the sonar beam but closer than the measured depth

Z =d: ';(é“g)) is less than 1; we can choose a constant negative

value for U.

For cells within the sonar at around the measured depth Z = d:
';(é“gf)) is greater than 1; we can choose a constant positive value for

U.

Note that we are somewhat oversimplifying in occupancy grids in
assuming the the probabilities of occupancy for each cell are
independent.

Occupancy Grid Mapping

Over time and robot motion, measurements accumulate and the
occupancy map converges towards white and black indicating
definite knowledge.

Sonar occupancy mapping example at
http://www.youtube.com/watch?v=aEeS8hDnnYg

An occupancy map's probability values must be thresholded if a
decision is to be made about where the robot can actually drive.

Large scale occupancy maps are very memory intensive; and subject
to drift due to localisation uncertainty. We will look at methods to
resolve this next week.

http://www.youtube.com/watch?v=aEeS8hDnnYg

