(1)
$$F[M=m|C=c] = \frac{F[M=m \land C=c]}{F[C=c]}$$
 (definition of conditional probability)
(2) $F[M=m \land C=c] = F[M=m \land K=m \oplus c]$ ($M=m \land C=c$ and $M=m \land K=m \oplus c$ are equivalent)
 $= F[M=m] \cdot F[k=m \oplus c]$ (K is independent of M , so you can multiply these two)
 $= F[M=m] \cdot 2^{-n}$ (K is randomly chosen)
(3) $F[C=c] = \sum_{m} F[M=m \land C=c]$
 $= \sum_{m} F[M=m] \cdot 2^{-n}$ (by the result obtained in 2)
 $= 1 \cdot 2^{-n}$ ($\sum_{m} F[M=m]=1$)
 $= 2^{-n}$ (that is, each c is equally likely)
(4) $F[M=m|C=c] = \frac{F[M=m \land C=c]}{F[C=c]}$
 $= \frac{F[M=m] \cdot 2^{-n}}{2^{-n}}$ (by the result obtained in 2 and 3)
 $= F[M=m]$