(1) $P[M=m \mid C=c]=\frac{P[M=m \wedge C=c]}{P[C=c]}$ (definition of conditional probability)
(2) $P[M=m \wedge C=c]=P[M=m \wedge K=m \oplus c](M=m \wedge C=c$ and $M=m \wedge K=m \oplus c$ are equivalent $)$

$$
\begin{aligned}
& =P[M=m] \cdot P[k=m \oplus c](K \text { is independent of } M, \text { so you can multiply these two }) \\
& =P[M=m] \cdot 2^{-n} \quad(K \text { is randomly chosen })
\end{aligned}
$$

(3) $P[C=c]=\sum_{m} P[M=m \wedge C=c]$

$$
\begin{aligned}
& =\sum_{m} P[M=m] \cdot 2^{-n} \quad(\text { by the result obtained in } 2) \\
& =1 \cdot 2^{-n} \quad\left(\sum_{m} P[M=m]=1\right) \\
& =2^{-n}(\text { that is, each } c \text { is equally likely })
\end{aligned}
$$

(4) $P[M=m \mid C=c]=\frac{P[M=m \wedge C=c]}{P[C=c]}$

$$
\begin{aligned}
& =\frac{P[M=m] \cdot 2^{-n}}{2^{-n}}(\text { by the result obtained in } 2 \text { and } 3) \\
& =P[M=m]
\end{aligned}
$$

