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NEMO 

• Widely-used European ocean model 

• Fortran90 and MPI 

• Highly portable 

• Memory-bandwidth 

bound 

• ~20 years of 

development 

http://www.nemo-ocean.eu/ 
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Accelerator Directives - 

Motivation 

• CUDA & OpenCL are C based 

• NEMO core is ~100K lines of Fortran90 

• Performance 

– GPUs have ~10x peak memory bandwidth 

of a CPU 

– Maintain single code base but add option 

to use GPU if available 

• Portability 

– not every computer has a GPU attached 

 



Accelerator ‘Directives’ - Options 

Approach Notes 
Fortran 

support 

PGI Accelerator 

Directives 

Currently NVIDIA specific, basis 

for OpenAcc 
Yes 

HMPP 

Workbench 

Can generate CUDA and OpenCL 

code, will support Intel MIC in 

2012. 

Yes 

PGI CUDA 

Fortran 
NVIDIA specific Yes 

OpenCL Portable, open standard No 

CUDA C 
Widely used, mature and low-level 

but NVIDIA specific 
No 
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Porting a Routine I 

• Mark-up region to accelerate 

– (Move region into a separate ‘codelet’) 

• (In-line any routine calls in region) 

• Make all loops explicit  

– no array(:,:,jk) notation permitted 

• Mark-up the loops to parallelize 

• Permute loops for memory coalescing 

– Want consecutive threads to work on 

consecutive memory addresses 



DO jn = 1, kjpt                                          

 

 zdit(1,:,:)=0.e0_wp 

 

 DO jk = 1, jpkm1 

  DO jj = 1, jpjm1 

   DO ji = 1, jpim1 

    zdit(ji,jj,jk) = (ptb(ji+1,jj,jk,jn) – 

                      ptb(ji,jj,jk,jn) )*umask(ji,jj,jk) 

    END DO 

   END DO 

  END DO 

END DO 

 

Code Example 



DO jn = 1, kjpt                                          

 

 zdit(1,:,:)=0.e0_wp 

 

 DO jk = 1, jpkm1 

  DO jj = 1, jpjm1 

   DO ji = 1, jpim1 

    zdit(ji,jj,jk) = (ptb(ji+1,jj,jk,jn) – 

                      ptb(ji,jj,jk,jn) )*umask(ji,jj,jk) 

    END DO 

   END DO 

  END DO 

END DO 

 

Code Example 



 

!$hmpp parallel 

 DO jk = 1, jpkm1 

!$hmpp parallel 

  DO jj = 1, jpjm1 

   zdit(1,jj,jk)=0.e0 

  END DO 

 END DO 

 



DO jn = 1, kjpt                                          

 

 zdit(1,:,:)=0.e0_wp 

 

 DO jk = 1, jpkm1 

  DO jj = 1, jpjm1 

   DO ji = 1, jpim1 

    zdit(ji,jj,jk) = (ptb(ji+1,jj,jk,jn) – 

                      ptb(ji,jj,jk,jn) )*umask(ji,jj,jk) 

    END DO 

   END DO 

  END DO 

END DO 

 

Code Example 



!$hmppcg permute jj,ji,jk 

DO jk = 1, jpkm1 

!$hmpp parallel 

 DO jj = 1, jpjm1 

!$hmpp parallel 

  DO ji = 1, jpim1 

   zdit(ji,jj,jk,1) = (ptb(ji+1,jj,jk,1) – 

                      ptb(ji,jj,jk,1) )*umask(ji,jj,jk) 

   zdit(ji,jj,jk,2) = (ptb(ji+1,jj,jk,2) – 

                      ptb(ji,jj,jk,2) )*umask(ji,jj,jk) 

  END DO 

 END DO 

END DO 

 

Loop over jn 

pushed inside 

& unrolled 



• Analyse data transfers & work to reduce: 

– Keep constant arrays on the device 

– Asynchronous data transfer & kernel 

execution 

– For halo swaps, transfer halo regions only 

– Overlap transfers of halos to/from GPU with 

halo packing/unpacking on host 

– #include halo pack/unpack code as can’t 

call subroutines on GPU 

 

Porting a Routine II 



Code Example II 

    END DO 

  END DO 

END DO 
  

 

 

CALL halo_swap( zwi(:,:,:,1))   

CALL halo_swap( zwi(:,:,:,2))  
 

DO jk = 1, jpk, 1 

  DO jj = 1, jpj, 1 

    DO ji = 1, jpi, 1 

kernel2 (doesn’t 

change zwi) 

kernel3 



Code Example II 

!$hmpp <traadv_tvd> kernel1 waitstore, 

args[zhaloswi] 

CALL unpack_halos(zhaloswi, zwi, 1) 

CALL unpack_halos(zhaloswi, zwi, 2) 
  

CALL halo_swap( zwi(:,:,:,1))   

CALL halo_swap( zwi(:,:,:,2))  
 

CALL pack_halos(zhaloswi, zwi, 1) 

CALL pack_halos(zhaloswi, zwi, 2) 

!$hmpp <traadv_tvd> kernel3 advancedload, 

args[zhaloswi], asynchronous 

 



How many extra lines of code? 

traldf_iso traadv_tvd trazdf_imp ldf_slp
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Porting a Routine III 

Contain 

halo swaps 



Example – Tracer Advection 

• Originally ~400 lines; GPU version 

~1000 lines! 

• One child routine (80 lines)  

– Contains one halo swap => splits routine 

into two codelets 

– Called twice => in-lined twice 

• Six separate codelets 

– Six lots of routine interface descriptions 

• 16 halo swaps, all for 3D arrays  
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Results - Hardware 

• ‘cseht’ & ‘SiD’ machines at Daresbury 

• Quad-core Intel Nehalem processor 

• E5540 @ 2.53GHz 

• NVIDIA S1070 server 

• contains four M1060 cards 

• ‘Tesla’ 

• NVIDIA M2050 

• ‘Fermi’ 



Optimising data transport 
- transfer halo regions only 

Nehalem Tesla (whole arrays) Tesla sm_20, Fermi sm_13, Fermi
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Kernel Timings 



Comparison with OMP 
(ORCA2, traldf_iso compute only) 

Sub-optimal 

scaling due to 

problem size and 

memory bandwidth 



Integration with NEMO 
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Conclusions 

• Successfully ported four routines to GPU 

using HMPP Workbench 

• No speed-up for the sea-ice routine 

• Basic porting is fairly straightforward 

– Have to in-line subroutines  

– MPI calls must be on host 

– Can also end up restructuring for performance 

• Must work hard to reduce data transfers 

• Fragile code 



Future Prospects I 

• hmpp currently the most 

mature directives option 

– Also supports asynchronous 

data transfers 

– Soon to support Intel MIC 

• OpenACC announced at 

SC11 

– Based on PGI’s model 

– PGI, nvidia, Cray & CAPS 

– Initial spec. quite basic 

 



• GPUDirect & multi-GPU codes 

– Share pinned memory with Infiniband 

interconnect 

– DMA between GPUs 

– Avoids doing a copy in system memory for 

MPI calls 

• Move the GPU onto the motherboard 

– Nvidia’s Denver, AMD’s Fusion, Intel’s MIC 

– A single memory address space? 

Future Prospects II 
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Extras... 

 



Scaling of OMP version 

of lim_rhg 


