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 The Now: the new Cray XK6 

 “Accelerating the Way to Better Science” 

 The Future: Heterogeneous computing and the Exascale 

 Accelerator directives 

 Why do we need them? 

 What do they look like? 
 OpenACC now, OpenMP in the future 

 How do we use them? 

 How do we port a full application? 

 How do they perform? 

 Case studies in directive-based optimisation on GPU 

 performance vs. and productivity 
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Cray XK6 supercomputer 
 HPCwire  readers: “Top 5 New Products or Technologies to Watch” 

 Nvidia Fermi 2090 GPU 
 20% better performance than 2070 

 compute: 448512 cores; 1.151.30 GHz clock 

 memory: 6GB; 150178GB/s bandwidth 

 Upgradable to Kepler in 2012 

 AMD Series 6200 Interlagos CPU (16 cores) 

 Cray Gemini interconnect 
 high bandwidth/low latency scalability 

 HPCwire editors: “Best HPC Interconnect Product or Technology” 

 Fully integrated/optimised/supported  
 Hardware and full software stack stack (including libraries) 

 Also supports Cray Cluster Compatibility Mode for ISV applications 

 Fully blendable with Cray XE6 product line 
 HPCwire readers: “Best HPC Server Product or Technology” 

 Fully upgradeable from Cray XT/XE systems 

 
3 



4 

ORNL Titan: 200 cabinets of Cray XK6 

NCSA Blue Waters: 235 cabinets of Cray XE6 + 30 cabinets of Cray XK6 
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(and they're all Crays) 

 Sustained performance milestones every 10 years... 

 1000x the performance with 100x the PEs 



 Power is a big consideration in an exascale architecture 

 Jaguar  (ORNL) draws 6MW to deliver 1PF 

 The US DoE demands 1EF from only 20MW (and $200M) 

 A hybrid system is one way to reach this, e.g. 

 105 nodes (up from 104 for Jaguar) 

 104 FPUs/node (up from 10 for Jaguar) 
 some full-featured cores for serial work 

 a lot more cutdown cores for parallel work 

 Instruction level parallelism will be needed 
 continues the SIMD trend SSE → AVX → ... 

 This looks a lot like the current GPU accelerator model 

 manycore architecture, split into SIMT threadblocks 

 Complicated memory space/hierarchy (internal and PCIe) 
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 EU FP7 Network: “Exascale computing, software and simulation" 

 Consortium has 
 Leading European HPC centres  

 EPCC, HLRS, CSC, PDC 

 Hardware partner 

 Cray 

 Tools providers 

 TUD (Vampir), Allinea (DDT) 

 Codesign application owners, specialists 

 ABO, JYU, UCL, ECMWF, ECP, DLR 

 CRESTA and its two partner projects are the first Exascale 
development projects funded by Europe 

 Run from Oct. 2011-Sept. 2014 
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 Why do we need a new GPU programming model? 

 Aren’t there enough ways already? 

 CUDA (incl. PGI CUDA Fortran) 

 OpenCL  

 Stream 

 hiCUDA ... 

 All are quite low-level and closely coupled to the GPU 

 User needs to rewrite kernels in specialist language: 
 Hard to write and debug 

 Hard to optimise for specific GPU 

 Hard to port to new accelerator 

 Multiple versions of kernels in codebase 
 Hard to add new functionality 

 

Accelerator programming 
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 If you work hard, you can get good parallel performance 

 Ludwig Lattice Boltzmann code rewritten in CUDA 

 Reordered all the data structures (structs of arrays) 

 Pack halos on the GPU 

 Streams to overlap compute, PCIe comms, MPI halo swaps 



 10 cabinets of Cray XK6 

 936 GPUs (nodes) 

 Only 4% deviation from 
perfect scaling between 
8 and 936 GPUs. 

 Application sustaining 
40+ Tflop/s 
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 Most scientific applications will not have this level of 
developer support (Ludwig was special case) 

 Directives provide high-level approach 

+ Based on original source code (e.g. Fortran, C, C++) 
+ Easier to maintain/port/extend code 

+ Users with (for instance) OpenMP experience find it a familiar programming model 

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...) 

+ Compiler handles default scheduling; user can step in with clauses where needed 

– Possible performance sacrifice 
– Important to quantify this 

– Can then tune the compiler 

– Small performance sacrifice is an acceptable trade-off for portability and productivity 

– Who handcodes in assembler these days? 

 Two relevant performance comparisons: 

 How does the performance compare to CUDA? 

 Can I justify buying a GPU instead of another CPU? 

Directive-based programming 
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 Is there a performance gap relative to explicit low-level 
programming model? Typically 10-15%, sometimes none. 

 Is the performance gap acceptable? Yes. 

 e.g. S3D comp_heat kernel (ORNL application readiness): 
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 Does accelerated parallel application performance justify 
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)? 

 For many codes, yes.  

14 

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

  (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC



 A common directive programming model for today’s GPUs 

 Announced at SC11 conference 

 Offers portability between compilers 
 Drawn up by: NVIDIA, Cray, PGI, CAPS 

 Multiple compilers offer portability, debugging, permanence 

 Works for Fortran, C, C++ 
 Standard available at www.OpenACC-standard.org 

 Initially implementations targeted at NVIDIA GPUs 

 Current version: 1.0 (November 2011) 

 Compiler support: 

 Cray CCE: partial now, complete in 2012 

 PGI Accelerator: released product in 2012 

 CAPS: released product in Q1 2012 
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 Modify original source code with directives 

 Non-executable statements (comments, pragmas) 
 Can be ignored by non-accelerating compiler 

 Sentinel: !$acc 

 Fortran:  
 Usually paired with !$acc end * 

 C/C++:  
 Structured block {...} avoids need for end directives 

 Continuation to extra lines allowed 

 CPP macros defined to allow extra conditional compilation 

 E.g. around calls to runtime API functions 
 _OPENACC == yyyymm (currently 201111) 

Accelerator directives 
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! Fortran example 
!$acc * 
<structured block> 
!$acc end * 

/* C/C++ example */ 
#pragma acc * 
{structured block} 



Execute a loop nest on the GPU 

 Compiler does the work: 

 Data movement 
 allocates/frees GPU memory at  

 start/end of region 

 moves of data to/from GPU 

 Loop schedule: spreading loop iterations over PEs of GPU 
 Parallelism Nvidia GPU  SMT node 

 Gang:  a threadblock  CPU 

 Worker:  warp (32 threads)  CPU core 

 Vector:   SIMT group of threads SIMD instructions (SSE, AVX) 

 Caching (explicitly use GPU shared memory for reused data) 
 automatic caching (e.g. NVIDIA Fermi) important 

 Tune default behaviour with optional clauses on directives 

 

A first example 
!$acc parallel loop !OpenACC 
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

read-only write-only 



 data region spans two accelerator parallel regions 
 One happens to be inside a subroutine call here (which could be in separate source file) 

 The present clause uses version of b on GPU without data copy 

 Can also call double_me() from outside a data region 
 Replace present with present_or_copy (can be shortened to pcopy) 

 Original calltree structure of program can be preserved 

 Similar data region constructs in other directive models 
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SUBROUTINE double_me(b) 
  INTEGER :: b(N) 
!$acc parallel loop present(b) 
  DO i = 1,N 
   b(i) = 2*b(i) 
  ENDDO 
!$acc end parallel loop 
    END SUBROUTINE double_me 

PROGRAM main 
  INTEGER :: a(N) 
!$acc data copy(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_me(a) 
!$acc end data 
END PROGRAM main 



 Data clauses: 

 copy, copyin, copyout 
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end 

 supply list of arrays or array sections (using Fortran ":" notation) 

 create 
 No copyin/out – useful for shared temporary arrays in loopnests 

 private: scalars private by default 

 present, present_or_copy* 

 Tuning clauses: 

 !$acc loop [gang] [worker] [vector] 
 Targets specific loop (or loops with collapse clause) at specific level of hardware 

 num_gang, num_workers, vector_length 
 Tunes the amount of parallelism used (threadblocks, threads/block...) 

 seq: loop executed sequentially 

 independent: compiler hint (also use CCE !dir$ directives) 

Clauses for !$acc parallel loop 

21 



 Other !$acc parallel loop clauses: 

 if(logical) 
 Executes on GPU if .TRUE. at runtime, otherwise on CPU 

 reduction: as in OpenMP 

 cache: specified data held in software-managed data cache 
 e.g. explicit blocking to shared memory on Nvidia GPUs 

 !$acc update [host|device] 

 Copy specified arrays (slices) within data region  

 async[(handle)] clause for parallel, update directives 
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap 

 Operations with same handle will execute sequentially (as in CUDA streams) 

 !$acc wait[(handles)]: waits for completion 

 Runtime library functions can also be used to test/wait for completion 

 host_data, deviceptr 
 Exposes GPU memory address in host code (e.g. for interoperability with CUDA) 
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 Preparation: add checksum(s) and high-res timer to code 
 Check for correctness very frequently 

 Profile code on the host 
 Use representative-sized problem, map calltree,  

 Ideally resolve profile by loopnest and measure typical loop iteration counts 

 First optimise the data movements 

 Start in subprograms at bottom of callchain 
 Accelerate individual loopnests using parallel regions 

 Concentrate initially on most computationally expensive 

 Add data regions in subprograms 

 Minimise data movements, use create clause where possible 

 May need to accelerate insignificant loopnests to avoid data copies 

 Use available feedback to understand data movement 
 Compiler messages: -ra for CCE, -Minfo=accel for PGI 

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE 

 Nvidia compute profiler: export COMPUTE_PROFILE=1 

 CrayPAT performance measurement and analysis tool (Cray PE only) 

 Code is probably going quite slowly at this point 
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 Move progressively up callchain, adding data regions 
 Aim to further reduce data movements 

 No problem nesting data regions: use present clause on inner ones 

 May need to port insignificant subprograms to avoid data transfers 

 Use update for essential data transfers (e.g. data for halo swaps) 

 Now optimise kernel performance (often trial and error) 

 Perfect loop nests schedule better than imperfect ones 
 e.g. Remove temporary arrays by manually inlining (eliminate array b) 

 Or manually privatise arrays and break loopnest (make b(i,j)) 
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DO j = 1,N 
 DO i = 0,M+1 
  b(i) = a(i,j+1) + a(i,j-1) 
 ENDDO 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 1,M 
  c(i,j) = a(i+1,j+1) + a(i+1,j-1) & 
         + a(i-1,j+1) + a(i-1,j-1) 
 ENDDO 
ENDDO DO j = 1,N 

 DO i = 0,M+1 
  b(i,j) = a(i,j+1) + a(i,j-1) 
 ENDDO 
ENDDO 
DO j = 1,N 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 



 Now look at tweaking the loop scheduling 

 Quick wins 
 Optimise loop scheduling 

 Make sure the right loops are vectorised (for coalesced memory loads) 

 And that they are vectorisable 

 Choose number of workers per gang (threads/block) 

 This number will vary by kernel and by problem size 

 Collapsing or blocking of loops may help (though compilers already do that) 

 See if caching can be used to reduce data loads from device memory 

 Longer term: can loops be migrated up the callchain? 
 E.g. Loop over sites, or blocks of sites (“blocking for cache”) 

 If so, parallelise (gangs) over these 

 Consider overlap of compute and communications using async 

 Don’t do this until everything working 

 May require application restructuring 
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1. S3D turbulent combustion code 

2. Himeno 

3. MultiGrid code (NAS & SPEC benchmarks) 

Three example applications  

26 

0 

1 

2 

3 

4 

5 

Kernel A Kernel B Kernel C S3D 

Ti
m

e
 (

se
co

n
d

s)
 

OpenMP (full node) 

OpenACC (CCE) 



 Parallel 3D Poisson equation solver 

 19-point stencil 

 MPI or CAF and/or OpenMP 

 available from here  

 ~600 lines of Fortran 

 Fully ported to accelerator using 27 directive pairs 

 XL configuration:  

 1024 x 512 x 512 

 Strong scaling 

 More kernel tuning 

 No use of async yet 
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 NAS Parallel Benchmarks, also SPEC suite 

 MG (multigrid) solves Laplacian on 3D grid 

 c. 1500 lines of Fortran, many subroutines 

 Three main hotspots:  
 resid (50% of runtime), psinv (25%), rprj3 (9%) 

 Data arrays passed to/from subroutines at every iteration 

 GPU 2x faster than CPU (16 cores) 

 Fully accelerated using 25 directive pairs (present essential) 

 MPI-parallel version: Cray XK6 node faster than  

 Further optimisations coming 

 Further use of shared memory 

 async clause support coming 
 CCE already launches kernels and data transfers asynchronously 

 More scope for overlap than in Himeno 

Example: MultiGrid benchmark 
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 Hybrid multicore has arrived and is here to stay 

 Fat nodes are getting fatter 

 GPUs have leapt into the top500 and accelerated nodes 

 Programming accelerators efficiently is hard 

 When done well can give good performance (Ludwig) 

 Accelerator directives offer a good alternative 

 Attractive (and familiar) programming model 

 Open standards for portability 

 Use original Fortran, C and C++ codes 

 Presented a strategy for porting large codes 

 The performance penalty is small 

 The portability and productivity bonuses are huge 

 Directives play nicely with other programming models 

 (so you don’t need to throw away your prize CUDA kernels) 

In conclusion... 
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