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 The Now: the new Cray XK6 

 “Accelerating the Way to Better Science” 

 The Future: Heterogeneous computing and the Exascale 

 Accelerator directives 

 Why do we need them? 

 What do they look like? 
 OpenACC now, OpenMP in the future 

 How do we use them? 

 How do we port a full application? 

 How do they perform? 

 Case studies in directive-based optimisation on GPU 

 performance vs. and productivity 
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Cray XK6 supercomputer 
 HPCwire  readers: “Top 5 New Products or Technologies to Watch” 

 Nvidia Fermi 2090 GPU 
 20% better performance than 2070 

 compute: 448512 cores; 1.151.30 GHz clock 

 memory: 6GB; 150178GB/s bandwidth 

 Upgradable to Kepler in 2012 

 AMD Series 6200 Interlagos CPU (16 cores) 

 Cray Gemini interconnect 
 high bandwidth/low latency scalability 

 HPCwire editors: “Best HPC Interconnect Product or Technology” 

 Fully integrated/optimised/supported  
 Hardware and full software stack stack (including libraries) 

 Also supports Cray Cluster Compatibility Mode for ISV applications 

 Fully blendable with Cray XE6 product line 
 HPCwire readers: “Best HPC Server Product or Technology” 

 Fully upgradeable from Cray XT/XE systems 
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ORNL Titan: 200 cabinets of Cray XK6 

NCSA Blue Waters: 235 cabinets of Cray XE6 + 30 cabinets of Cray XK6 
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(and they're all Crays) 

 Sustained performance milestones every 10 years... 

 1000x the performance with 100x the PEs 



 Power is a big consideration in an exascale architecture 

 Jaguar  (ORNL) draws 6MW to deliver 1PF 

 The US DoE demands 1EF from only 20MW (and $200M) 

 A hybrid system is one way to reach this, e.g. 

 105 nodes (up from 104 for Jaguar) 

 104 FPUs/node (up from 10 for Jaguar) 
 some full-featured cores for serial work 

 a lot more cutdown cores for parallel work 

 Instruction level parallelism will be needed 
 continues the SIMD trend SSE → AVX → ... 

 This looks a lot like the current GPU accelerator model 

 manycore architecture, split into SIMT threadblocks 

 Complicated memory space/hierarchy (internal and PCIe) 
 6 



 EU FP7 Network: “Exascale computing, software and simulation" 

 Consortium has 
 Leading European HPC centres  

 EPCC, HLRS, CSC, PDC 

 Hardware partner 

 Cray 

 Tools providers 

 TUD (Vampir), Allinea (DDT) 

 Codesign application owners, specialists 

 ABO, JYU, UCL, ECMWF, ECP, DLR 

 CRESTA and its two partner projects are the first Exascale 
development projects funded by Europe 

 Run from Oct. 2011-Sept. 2014 
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 Why do we need a new GPU programming model? 

 Aren’t there enough ways already? 

 CUDA (incl. PGI CUDA Fortran) 

 OpenCL  

 Stream 

 hiCUDA ... 

 All are quite low-level and closely coupled to the GPU 

 User needs to rewrite kernels in specialist language: 
 Hard to write and debug 

 Hard to optimise for specific GPU 

 Hard to port to new accelerator 

 Multiple versions of kernels in codebase 
 Hard to add new functionality 

 

Accelerator programming 
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 If you work hard, you can get good parallel performance 

 Ludwig Lattice Boltzmann code rewritten in CUDA 

 Reordered all the data structures (structs of arrays) 

 Pack halos on the GPU 

 Streams to overlap compute, PCIe comms, MPI halo swaps 



 10 cabinets of Cray XK6 

 936 GPUs (nodes) 

 Only 4% deviation from 
perfect scaling between 
8 and 936 GPUs. 

 Application sustaining 
40+ Tflop/s 
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 Most scientific applications will not have this level of 
developer support (Ludwig was special case) 

 Directives provide high-level approach 

+ Based on original source code (e.g. Fortran, C, C++) 
+ Easier to maintain/port/extend code 

+ Users with (for instance) OpenMP experience find it a familiar programming model 

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...) 

+ Compiler handles default scheduling; user can step in with clauses where needed 

– Possible performance sacrifice 
– Important to quantify this 

– Can then tune the compiler 

– Small performance sacrifice is an acceptable trade-off for portability and productivity 

– Who handcodes in assembler these days? 

 Two relevant performance comparisons: 

 How does the performance compare to CUDA? 

 Can I justify buying a GPU instead of another CPU? 

Directive-based programming 
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 Is there a performance gap relative to explicit low-level 
programming model? Typically 10-15%, sometimes none. 

 Is the performance gap acceptable? Yes. 

 e.g. S3D comp_heat kernel (ORNL application readiness): 
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 Does accelerated parallel application performance justify 
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)? 

 For many codes, yes.  
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 A common directive programming model for today’s GPUs 

 Announced at SC11 conference 

 Offers portability between compilers 
 Drawn up by: NVIDIA, Cray, PGI, CAPS 

 Multiple compilers offer portability, debugging, permanence 

 Works for Fortran, C, C++ 
 Standard available at www.OpenACC-standard.org 

 Initially implementations targeted at NVIDIA GPUs 

 Current version: 1.0 (November 2011) 

 Compiler support: 

 Cray CCE: partial now, complete in 2012 

 PGI Accelerator: released product in 2012 

 CAPS: released product in Q1 2012 
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 Modify original source code with directives 

 Non-executable statements (comments, pragmas) 
 Can be ignored by non-accelerating compiler 

 Sentinel: !$acc 

 Fortran:  
 Usually paired with !$acc end * 

 C/C++:  
 Structured block {...} avoids need for end directives 

 Continuation to extra lines allowed 

 CPP macros defined to allow extra conditional compilation 

 E.g. around calls to runtime API functions 
 _OPENACC == yyyymm (currently 201111) 

Accelerator directives 
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! Fortran example 
!$acc * 
<structured block> 
!$acc end * 

/* C/C++ example */ 
#pragma acc * 
{structured block} 



Execute a loop nest on the GPU 

 Compiler does the work: 

 Data movement 
 allocates/frees GPU memory at  

 start/end of region 

 moves of data to/from GPU 

 Loop schedule: spreading loop iterations over PEs of GPU 
 Parallelism Nvidia GPU  SMT node 

 Gang:  a threadblock  CPU 

 Worker:  warp (32 threads)  CPU core 

 Vector:   SIMT group of threads SIMD instructions (SSE, AVX) 

 Caching (explicitly use GPU shared memory for reused data) 
 automatic caching (e.g. NVIDIA Fermi) important 

 Tune default behaviour with optional clauses on directives 

 

A first example 
!$acc parallel loop !OpenACC 
DO j = 1,M 
  DO i = 2,N-1 
    c(i,j) = a(i,j) + b(i,j) 
  ENDDO 
ENDDO 
!$acc end parallel loop 

read-only write-only 



 data region spans two accelerator parallel regions 
 One happens to be inside a subroutine call here (which could be in separate source file) 

 The present clause uses version of b on GPU without data copy 

 Can also call double_me() from outside a data region 
 Replace present with present_or_copy (can be shortened to pcopy) 

 Original calltree structure of program can be preserved 

 Similar data region constructs in other directive models 
20 

SUBROUTINE double_me(b) 
  INTEGER :: b(N) 
!$acc parallel loop present(b) 
  DO i = 1,N 
   b(i) = 2*b(i) 
  ENDDO 
!$acc end parallel loop 
    END SUBROUTINE double_me 

PROGRAM main 
  INTEGER :: a(N) 
!$acc data copy(a) 
!$acc parallel loop 
  DO i = 1,N 
   a(i) = i 
  ENDDO 
!$acc end parallel loop 
  CALL double_me(a) 
!$acc end data 
END PROGRAM main 



 Data clauses: 

 copy, copyin, copyout 
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end 

 supply list of arrays or array sections (using Fortran ":" notation) 

 create 
 No copyin/out – useful for shared temporary arrays in loopnests 

 private: scalars private by default 

 present, present_or_copy* 

 Tuning clauses: 

 !$acc loop [gang] [worker] [vector] 
 Targets specific loop (or loops with collapse clause) at specific level of hardware 

 num_gang, num_workers, vector_length 
 Tunes the amount of parallelism used (threadblocks, threads/block...) 

 seq: loop executed sequentially 

 independent: compiler hint (also use CCE !dir$ directives) 

Clauses for !$acc parallel loop 

21 



 Other !$acc parallel loop clauses: 

 if(logical) 
 Executes on GPU if .TRUE. at runtime, otherwise on CPU 

 reduction: as in OpenMP 

 cache: specified data held in software-managed data cache 
 e.g. explicit blocking to shared memory on Nvidia GPUs 

 !$acc update [host|device] 

 Copy specified arrays (slices) within data region  

 async[(handle)] clause for parallel, update directives 
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap 

 Operations with same handle will execute sequentially (as in CUDA streams) 

 !$acc wait[(handles)]: waits for completion 

 Runtime library functions can also be used to test/wait for completion 

 host_data, deviceptr 
 Exposes GPU memory address in host code (e.g. for interoperability with CUDA) 
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 Preparation: add checksum(s) and high-res timer to code 
 Check for correctness very frequently 

 Profile code on the host 
 Use representative-sized problem, map calltree,  

 Ideally resolve profile by loopnest and measure typical loop iteration counts 

 First optimise the data movements 

 Start in subprograms at bottom of callchain 
 Accelerate individual loopnests using parallel regions 

 Concentrate initially on most computationally expensive 

 Add data regions in subprograms 

 Minimise data movements, use create clause where possible 

 May need to accelerate insignificant loopnests to avoid data copies 

 Use available feedback to understand data movement 
 Compiler messages: -ra for CCE, -Minfo=accel for PGI 

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE 

 Nvidia compute profiler: export COMPUTE_PROFILE=1 

 CrayPAT performance measurement and analysis tool (Cray PE only) 

 Code is probably going quite slowly at this point 
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 Move progressively up callchain, adding data regions 
 Aim to further reduce data movements 

 No problem nesting data regions: use present clause on inner ones 

 May need to port insignificant subprograms to avoid data transfers 

 Use update for essential data transfers (e.g. data for halo swaps) 

 Now optimise kernel performance (often trial and error) 

 Perfect loop nests schedule better than imperfect ones 
 e.g. Remove temporary arrays by manually inlining (eliminate array b) 

 Or manually privatise arrays and break loopnest (make b(i,j)) 
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DO j = 1,N 
 DO i = 0,M+1 
  b(i) = a(i,j+1) + a(i,j-1) 
 ENDDO 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 

DO j = 1,N 
 DO i = 1,M 
  c(i,j) = a(i+1,j+1) + a(i+1,j-1) & 
         + a(i-1,j+1) + a(i-1,j-1) 
 ENDDO 
ENDDO DO j = 1,N 

 DO i = 0,M+1 
  b(i,j) = a(i,j+1) + a(i,j-1) 
 ENDDO 
ENDDO 
DO j = 1,N 
 DO i = 1,M 
  c(i,j) = b(i+1) + b(i-1) 
 ENDDO 
ENDDO 



 Now look at tweaking the loop scheduling 

 Quick wins 
 Optimise loop scheduling 

 Make sure the right loops are vectorised (for coalesced memory loads) 

 And that they are vectorisable 

 Choose number of workers per gang (threads/block) 

 This number will vary by kernel and by problem size 

 Collapsing or blocking of loops may help (though compilers already do that) 

 See if caching can be used to reduce data loads from device memory 

 Longer term: can loops be migrated up the callchain? 
 E.g. Loop over sites, or blocks of sites (“blocking for cache”) 

 If so, parallelise (gangs) over these 

 Consider overlap of compute and communications using async 

 Don’t do this until everything working 

 May require application restructuring 
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1. S3D turbulent combustion code 

2. Himeno 

3. MultiGrid code (NAS & SPEC benchmarks) 

Three example applications  
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 Parallel 3D Poisson equation solver 

 19-point stencil 

 MPI or CAF and/or OpenMP 

 available from here  

 ~600 lines of Fortran 

 Fully ported to accelerator using 27 directive pairs 

 XL configuration:  

 1024 x 512 x 512 

 Strong scaling 

 More kernel tuning 

 No use of async yet 
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 NAS Parallel Benchmarks, also SPEC suite 

 MG (multigrid) solves Laplacian on 3D grid 

 c. 1500 lines of Fortran, many subroutines 

 Three main hotspots:  
 resid (50% of runtime), psinv (25%), rprj3 (9%) 

 Data arrays passed to/from subroutines at every iteration 

 GPU 2x faster than CPU (16 cores) 

 Fully accelerated using 25 directive pairs (present essential) 

 MPI-parallel version: Cray XK6 node faster than  

 Further optimisations coming 

 Further use of shared memory 

 async clause support coming 
 CCE already launches kernels and data transfers asynchronously 

 More scope for overlap than in Himeno 

Example: MultiGrid benchmark 
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 Hybrid multicore has arrived and is here to stay 

 Fat nodes are getting fatter 

 GPUs have leapt into the top500 and accelerated nodes 

 Programming accelerators efficiently is hard 

 When done well can give good performance (Ludwig) 

 Accelerator directives offer a good alternative 

 Attractive (and familiar) programming model 

 Open standards for portability 

 Use original Fortran, C and C++ codes 

 Presented a strategy for porting large codes 

 The performance penalty is small 

 The portability and productivity bonuses are huge 

 Directives play nicely with other programming models 

 (so you don’t need to throw away your prize CUDA kernels) 

In conclusion... 
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