

UKGPUCC3 – Goodenough College, London – Wed. 14.Dec.11

ahart@cray.com

Alistair Hart†,

Roberto Ansaloni,

Alan Gray, Kevin Stratford (EPCC)

(†Cray Exascale Research Initiative Europe)

mailto:ahart@cray.com

 The Now: the new Cray XK6

 “Accelerating the Way to Better Science”

 The Future: Heterogeneous computing and the Exascale

 Accelerator directives

 Why do we need them?

 What do they look like?
 OpenACC now, OpenMP in the future

 How do we use them?

 How do we port a full application?

 How do they perform?

 Case studies in directive-based optimisation on GPU

 performance vs. and productivity

Contents

2

Cray XK6 supercomputer
 HPCwire readers: “Top 5 New Products or Technologies to Watch”

 Nvidia Fermi 2090 GPU
 20% better performance than 2070

 compute: 448512 cores; 1.151.30 GHz clock

 memory: 6GB; 150178GB/s bandwidth

 Upgradable to Kepler in 2012

 AMD Series 6200 Interlagos CPU (16 cores)

 Cray Gemini interconnect
 high bandwidth/low latency scalability

 HPCwire editors: “Best HPC Interconnect Product or Technology”

 Fully integrated/optimised/supported
 Hardware and full software stack stack (including libraries)

 Also supports Cray Cluster Compatibility Mode for ISV applications

 Fully blendable with Cray XE6 product line
 HPCwire readers: “Best HPC Server Product or Technology”

 Fully upgradeable from Cray XT/XE systems

3

4

ORNL Titan: 200 cabinets of Cray XK6

NCSA Blue Waters: 235 cabinets of Cray XE6 + 30 cabinets of Cray XK6

5

(and they're all Crays)

 Sustained performance milestones every 10 years...

 1000x the performance with 100x the PEs

 Power is a big consideration in an exascale architecture

 Jaguar (ORNL) draws 6MW to deliver 1PF

 The US DoE demands 1EF from only 20MW (and $200M)

 A hybrid system is one way to reach this, e.g.

 105 nodes (up from 104 for Jaguar)

 104 FPUs/node (up from 10 for Jaguar)
 some full-featured cores for serial work

 a lot more cutdown cores for parallel work

 Instruction level parallelism will be needed
 continues the SIMD trend SSE → AVX → ...

 This looks a lot like the current GPU accelerator model

 manycore architecture, split into SIMT threadblocks

 Complicated memory space/hierarchy (internal and PCIe)
 6

 EU FP7 Network: “Exascale computing, software and simulation"

 Consortium has
 Leading European HPC centres

 EPCC, HLRS, CSC, PDC

 Hardware partner

 Cray

 Tools providers

 TUD (Vampir), Allinea (DDT)

 Codesign application owners, specialists

 ABO, JYU, UCL, ECMWF, ECP, DLR

 CRESTA and its two partner projects are the first Exascale
development projects funded by Europe

 Run from Oct. 2011-Sept. 2014

7 29.July.2011

 Why do we need a new GPU programming model?

 Aren’t there enough ways already?

 CUDA (incl. PGI CUDA Fortran)

 OpenCL

 Stream

 hiCUDA ...

 All are quite low-level and closely coupled to the GPU

 User needs to rewrite kernels in specialist language:
 Hard to write and debug

 Hard to optimise for specific GPU

 Hard to port to new accelerator

 Multiple versions of kernels in codebase
 Hard to add new functionality

Accelerator programming

8

9

 If you work hard, you can get good parallel performance

 Ludwig Lattice Boltzmann code rewritten in CUDA

 Reordered all the data structures (structs of arrays)

 Pack halos on the GPU

 Streams to overlap compute, PCIe comms, MPI halo swaps

 10 cabinets of Cray XK6

 936 GPUs (nodes)

 Only 4% deviation from
perfect scaling between
8 and 936 GPUs.

 Application sustaining
40+ Tflop/s

10

0

5

10

15

20

25

30

35

40

45

0 256 512 768 1024

P
e

rf
o

rm
an

ce
 (

Tf
lo

p
/s

)

Nodes

XK6

x86

 Most scientific applications will not have this level of
developer support (Ludwig was special case)

 Directives provide high-level approach

+ Based on original source code (e.g. Fortran, C, C++)
+ Easier to maintain/port/extend code

+ Users with (for instance) OpenMP experience find it a familiar programming model

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...)

+ Compiler handles default scheduling; user can step in with clauses where needed

– Possible performance sacrifice
– Important to quantify this

– Can then tune the compiler

– Small performance sacrifice is an acceptable trade-off for portability and productivity

– Who handcodes in assembler these days?

 Two relevant performance comparisons:

 How does the performance compare to CUDA?

 Can I justify buying a GPU instead of another CPU?

Directive-based programming

12

 Is there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

 Is the performance gap acceptable? Yes.

 e.g. S3D comp_heat kernel (ORNL application readiness):

13

0.01

0.1

1

10

0 8 16 24 32

Ti
m

e
 (

se
co

n
d

s)

Cores on Host

OpenMP

CUDA Fortran (PGI)

OpenACC (CCE)

 Does accelerated parallel application performance justify
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)?

 For many codes, yes.

14

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

 A common directive programming model for today’s GPUs

 Announced at SC11 conference

 Offers portability between compilers
 Drawn up by: NVIDIA, Cray, PGI, CAPS

 Multiple compilers offer portability, debugging, permanence

 Works for Fortran, C, C++
 Standard available at www.OpenACC-standard.org

 Initially implementations targeted at NVIDIA GPUs

 Current version: 1.0 (November 2011)

 Compiler support:

 Cray CCE: partial now, complete in 2012

 PGI Accelerator: released product in 2012

 CAPS: released product in Q1 2012

15

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

 Modify original source code with directives

 Non-executable statements (comments, pragmas)
 Can be ignored by non-accelerating compiler

 Sentinel: !$acc

 Fortran:
 Usually paired with !$acc end *

 C/C++:
 Structured block {...} avoids need for end directives

 Continuation to extra lines allowed

 CPP macros defined to allow extra conditional compilation

 E.g. around calls to runtime API functions
 _OPENACC == yyyymm (currently 201111)

Accelerator directives

18

! Fortran example
!$acc *
<structured block>
!$acc end *

/* C/C++ example */
#pragma acc *
{structured block}

Execute a loop nest on the GPU

 Compiler does the work:

 Data movement
 allocates/frees GPU memory at

 start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of GPU
 Parallelism Nvidia GPU SMT node

 Gang: a threadblock CPU

 Worker: warp (32 threads) CPU core

 Vector: SIMT group of threads SIMD instructions (SSE, AVX)

 Caching (explicitly use GPU shared memory for reused data)
 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on directives

A first example
!$acc parallel loop !OpenACC
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

read-only write-only

 data region spans two accelerator parallel regions
 One happens to be inside a subroutine call here (which could be in separate source file)

 The present clause uses version of b on GPU without data copy

 Can also call double_me() from outside a data region
 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved

 Similar data region constructs in other directive models
20

SUBROUTINE double_me(b)
 INTEGER :: b(N)
!$acc parallel loop present(b)
 DO i = 1,N
 b(i) = 2*b(i)
 ENDDO
!$acc end parallel loop
 END SUBROUTINE double_me

PROGRAM main
 INTEGER :: a(N)
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_me(a)
!$acc end data
END PROGRAM main

 Data clauses:

 copy, copyin, copyout
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end

 supply list of arrays or array sections (using Fortran ":" notation)

 create
 No copyin/out – useful for shared temporary arrays in loopnests

 private: scalars private by default

 present, present_or_copy*

 Tuning clauses:

 !$acc loop [gang] [worker] [vector]
 Targets specific loop (or loops with collapse clause) at specific level of hardware

 num_gang, num_workers, vector_length
 Tunes the amount of parallelism used (threadblocks, threads/block...)

 seq: loop executed sequentially

 independent: compiler hint (also use CCE !dir$ directives)

Clauses for !$acc parallel loop

21

 Other !$acc parallel loop clauses:

 if(logical)
 Executes on GPU if .TRUE. at runtime, otherwise on CPU

 reduction: as in OpenMP

 cache: specified data held in software-managed data cache
 e.g. explicit blocking to shared memory on Nvidia GPUs

 !$acc update [host|device]

 Copy specified arrays (slices) within data region

 async[(handle)] clause for parallel, update directives
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap

 Operations with same handle will execute sequentially (as in CUDA streams)

 !$acc wait[(handles)]: waits for completion

 Runtime library functions can also be used to test/wait for completion

 host_data, deviceptr
 Exposes GPU memory address in host code (e.g. for interoperability with CUDA)

22

 Preparation: add checksum(s) and high-res timer to code
 Check for correctness very frequently

 Profile code on the host
 Use representative-sized problem, map calltree,

 Ideally resolve profile by loopnest and measure typical loop iteration counts

 First optimise the data movements

 Start in subprograms at bottom of callchain
 Accelerate individual loopnests using parallel regions

 Concentrate initially on most computationally expensive

 Add data regions in subprograms

 Minimise data movements, use create clause where possible

 May need to accelerate insignificant loopnests to avoid data copies

 Use available feedback to understand data movement
 Compiler messages: -ra for CCE, -Minfo=accel for PGI

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE

 Nvidia compute profiler: export COMPUTE_PROFILE=1

 CrayPAT performance measurement and analysis tool (Cray PE only)

 Code is probably going quite slowly at this point
23

 Move progressively up callchain, adding data regions
 Aim to further reduce data movements

 No problem nesting data regions: use present clause on inner ones

 May need to port insignificant subprograms to avoid data transfers

 Use update for essential data transfers (e.g. data for halo swaps)

 Now optimise kernel performance (often trial and error)

 Perfect loop nests schedule better than imperfect ones
 e.g. Remove temporary arrays by manually inlining (eliminate array b)

 Or manually privatise arrays and break loopnest (make b(i,j))

24

DO j = 1,N
 DO i = 0,M+1
 b(i) = a(i,j+1) + a(i,j-1)
 ENDDO
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 1,M
 c(i,j) = a(i+1,j+1) + a(i+1,j-1) &
 + a(i-1,j+1) + a(i-1,j-1)
 ENDDO
ENDDO DO j = 1,N

 DO i = 0,M+1
 b(i,j) = a(i,j+1) + a(i,j-1)
 ENDDO
ENDDO
DO j = 1,N
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

 Now look at tweaking the loop scheduling

 Quick wins
 Optimise loop scheduling

 Make sure the right loops are vectorised (for coalesced memory loads)

 And that they are vectorisable

 Choose number of workers per gang (threads/block)

 This number will vary by kernel and by problem size

 Collapsing or blocking of loops may help (though compilers already do that)

 See if caching can be used to reduce data loads from device memory

 Longer term: can loops be migrated up the callchain?
 E.g. Loop over sites, or blocks of sites (“blocking for cache”)

 If so, parallelise (gangs) over these

 Consider overlap of compute and communications using async

 Don’t do this until everything working

 May require application restructuring

25

1. S3D turbulent combustion code

2. Himeno

3. MultiGrid code (NAS & SPEC benchmarks)

Three example applications

26

0

1

2

3

4

5

Kernel A Kernel B Kernel C S3D

Ti
m

e
 (

se
co

n
d

s)

OpenMP (full node)

OpenACC (CCE)

 Parallel 3D Poisson equation solver

 19-point stencil

 MPI or CAF and/or OpenMP

 available from here

 ~600 lines of Fortran

 Fully ported to accelerator using 27 directive pairs

 XL configuration:

 1024 x 512 x 512

 Strong scaling

 More kernel tuning

 No use of async yet

27

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

http://accc.riken.jp/HPC_e/himenobmt_e.html

 NAS Parallel Benchmarks, also SPEC suite

 MG (multigrid) solves Laplacian on 3D grid

 c. 1500 lines of Fortran, many subroutines

 Three main hotspots:
 resid (50% of runtime), psinv (25%), rprj3 (9%)

 Data arrays passed to/from subroutines at every iteration

 GPU 2x faster than CPU (16 cores)

 Fully accelerated using 25 directive pairs (present essential)

 MPI-parallel version: Cray XK6 node faster than

 Further optimisations coming

 Further use of shared memory

 async clause support coming
 CCE already launches kernels and data transfers asynchronously

 More scope for overlap than in Himeno

Example: MultiGrid benchmark

28

 Hybrid multicore has arrived and is here to stay

 Fat nodes are getting fatter

 GPUs have leapt into the top500 and accelerated nodes

 Programming accelerators efficiently is hard

 When done well can give good performance (Ludwig)

 Accelerator directives offer a good alternative

 Attractive (and familiar) programming model

 Open standards for portability

 Use original Fortran, C and C++ codes

 Presented a strategy for porting large codes

 The performance penalty is small

 The portability and productivity bonuses are huge

 Directives play nicely with other programming models

 (so you don’t need to throw away your prize CUDA kernels)

In conclusion...

29

Thank you to those that helped us get to grips with directives:

 Cray Exascale Research Initiative Europe team

 Harvey Richardson, Roberto Ansaloni

 EPCC Exascale Technology Centre team

 Alan Gray...

 Cray PE R&D team

 Luiz DeRose, Suzanne LaCroix, James Beyer, David Oehmke...

 ORNL team

 John Levesque...

 OpenMP subcommittee

For further info, ahart@cray.com

Acknowledgments

mailto:ahart@cray.com

