

UKGPUCC3 – Goodenough College, London – Wed. 14.Dec.11

ahart@cray.com

Alistair Hart†,

Roberto Ansaloni,

Alan Gray, Kevin Stratford (EPCC)

(†Cray Exascale Research Initiative Europe)

mailto:ahart@cray.com

 The Now: the new Cray XK6

 “Accelerating the Way to Better Science”

 The Future: Heterogeneous computing and the Exascale

 Accelerator directives

 Why do we need them?

 What do they look like?
 OpenACC now, OpenMP in the future

 How do we use them?

 How do we port a full application?

 How do they perform?

 Case studies in directive-based optimisation on GPU

 performance vs. and productivity

Contents

2

Cray XK6 supercomputer
 HPCwire readers: “Top 5 New Products or Technologies to Watch”

 Nvidia Fermi 2090 GPU
 20% better performance than 2070

 compute: 448512 cores; 1.151.30 GHz clock

 memory: 6GB; 150178GB/s bandwidth

 Upgradable to Kepler in 2012

 AMD Series 6200 Interlagos CPU (16 cores)

 Cray Gemini interconnect
 high bandwidth/low latency scalability

 HPCwire editors: “Best HPC Interconnect Product or Technology”

 Fully integrated/optimised/supported
 Hardware and full software stack stack (including libraries)

 Also supports Cray Cluster Compatibility Mode for ISV applications

 Fully blendable with Cray XE6 product line
 HPCwire readers: “Best HPC Server Product or Technology”

 Fully upgradeable from Cray XT/XE systems

3

4

ORNL Titan: 200 cabinets of Cray XK6

NCSA Blue Waters: 235 cabinets of Cray XE6 + 30 cabinets of Cray XK6

5

(and they're all Crays)

 Sustained performance milestones every 10 years...

 1000x the performance with 100x the PEs

 Power is a big consideration in an exascale architecture

 Jaguar (ORNL) draws 6MW to deliver 1PF

 The US DoE demands 1EF from only 20MW (and $200M)

 A hybrid system is one way to reach this, e.g.

 105 nodes (up from 104 for Jaguar)

 104 FPUs/node (up from 10 for Jaguar)
 some full-featured cores for serial work

 a lot more cutdown cores for parallel work

 Instruction level parallelism will be needed
 continues the SIMD trend SSE → AVX → ...

 This looks a lot like the current GPU accelerator model

 manycore architecture, split into SIMT threadblocks

 Complicated memory space/hierarchy (internal and PCIe)
 6

 EU FP7 Network: “Exascale computing, software and simulation"

 Consortium has
 Leading European HPC centres

 EPCC, HLRS, CSC, PDC

 Hardware partner

 Cray

 Tools providers

 TUD (Vampir), Allinea (DDT)

 Codesign application owners, specialists

 ABO, JYU, UCL, ECMWF, ECP, DLR

 CRESTA and its two partner projects are the first Exascale
development projects funded by Europe

 Run from Oct. 2011-Sept. 2014

7 29.July.2011

 Why do we need a new GPU programming model?

 Aren’t there enough ways already?

 CUDA (incl. PGI CUDA Fortran)

 OpenCL

 Stream

 hiCUDA ...

 All are quite low-level and closely coupled to the GPU

 User needs to rewrite kernels in specialist language:
 Hard to write and debug

 Hard to optimise for specific GPU

 Hard to port to new accelerator

 Multiple versions of kernels in codebase
 Hard to add new functionality

Accelerator programming

8

9

 If you work hard, you can get good parallel performance

 Ludwig Lattice Boltzmann code rewritten in CUDA

 Reordered all the data structures (structs of arrays)

 Pack halos on the GPU

 Streams to overlap compute, PCIe comms, MPI halo swaps

 10 cabinets of Cray XK6

 936 GPUs (nodes)

 Only 4% deviation from
perfect scaling between
8 and 936 GPUs.

 Application sustaining
40+ Tflop/s

10

0

5

10

15

20

25

30

35

40

45

0 256 512 768 1024

P
e

rf
o

rm
an

ce
 (

Tf
lo

p
/s

)

Nodes

XK6

x86

 Most scientific applications will not have this level of
developer support (Ludwig was special case)

 Directives provide high-level approach

+ Based on original source code (e.g. Fortran, C, C++)
+ Easier to maintain/port/extend code

+ Users with (for instance) OpenMP experience find it a familiar programming model

+ Compiler handles repetitive boilerplate code (cudaMalloc, cudaMemcpy...)

+ Compiler handles default scheduling; user can step in with clauses where needed

– Possible performance sacrifice
– Important to quantify this

– Can then tune the compiler

– Small performance sacrifice is an acceptable trade-off for portability and productivity

– Who handcodes in assembler these days?

 Two relevant performance comparisons:

 How does the performance compare to CUDA?

 Can I justify buying a GPU instead of another CPU?

Directive-based programming

12

 Is there a performance gap relative to explicit low-level
programming model? Typically 10-15%, sometimes none.

 Is the performance gap acceptable? Yes.

 e.g. S3D comp_heat kernel (ORNL application readiness):

13

0.01

0.1

1

10

0 8 16 24 32

Ti
m

e
 (

se
co

n
d

s)

Cores on Host

OpenMP

CUDA Fortran (PGI)

OpenACC (CCE)

 Does accelerated parallel application performance justify
buying a GPU (Cray XK6) rather than another CPU (Cray XE6)?

 For many codes, yes.

14

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

 A common directive programming model for today’s GPUs

 Announced at SC11 conference

 Offers portability between compilers
 Drawn up by: NVIDIA, Cray, PGI, CAPS

 Multiple compilers offer portability, debugging, permanence

 Works for Fortran, C, C++
 Standard available at www.OpenACC-standard.org

 Initially implementations targeted at NVIDIA GPUs

 Current version: 1.0 (November 2011)

 Compiler support:

 Cray CCE: partial now, complete in 2012

 PGI Accelerator: released product in 2012

 CAPS: released product in Q1 2012

15

http://www.openacc-standard.org/
http://www.openacc-standard.org/
http://www.openacc-standard.org/

 Modify original source code with directives

 Non-executable statements (comments, pragmas)
 Can be ignored by non-accelerating compiler

 Sentinel: !$acc

 Fortran:
 Usually paired with !$acc end *

 C/C++:
 Structured block {...} avoids need for end directives

 Continuation to extra lines allowed

 CPP macros defined to allow extra conditional compilation

 E.g. around calls to runtime API functions
 _OPENACC == yyyymm (currently 201111)

Accelerator directives

18

! Fortran example
!$acc *
<structured block>
!$acc end *

/* C/C++ example */
#pragma acc *
{structured block}

Execute a loop nest on the GPU

 Compiler does the work:

 Data movement
 allocates/frees GPU memory at

 start/end of region

 moves of data to/from GPU

 Loop schedule: spreading loop iterations over PEs of GPU
 Parallelism Nvidia GPU SMT node

 Gang: a threadblock CPU

 Worker: warp (32 threads) CPU core

 Vector: SIMT group of threads SIMD instructions (SSE, AVX)

 Caching (explicitly use GPU shared memory for reused data)
 automatic caching (e.g. NVIDIA Fermi) important

 Tune default behaviour with optional clauses on directives

A first example
!$acc parallel loop !OpenACC
DO j = 1,M
 DO i = 2,N-1
 c(i,j) = a(i,j) + b(i,j)
 ENDDO
ENDDO
!$acc end parallel loop

read-only write-only

 data region spans two accelerator parallel regions
 One happens to be inside a subroutine call here (which could be in separate source file)

 The present clause uses version of b on GPU without data copy

 Can also call double_me() from outside a data region
 Replace present with present_or_copy (can be shortened to pcopy)

 Original calltree structure of program can be preserved

 Similar data region constructs in other directive models
20

SUBROUTINE double_me(b)
 INTEGER :: b(N)
!$acc parallel loop present(b)
 DO i = 1,N
 b(i) = 2*b(i)
 ENDDO
!$acc end parallel loop
 END SUBROUTINE double_me

PROGRAM main
 INTEGER :: a(N)
!$acc data copy(a)
!$acc parallel loop
 DO i = 1,N
 a(i) = i
 ENDDO
!$acc end parallel loop
 CALL double_me(a)
!$acc end data
END PROGRAM main

 Data clauses:

 copy, copyin, copyout
 copy moves data "in" to GPU at start of region and/or "out" to CPU at end

 supply list of arrays or array sections (using Fortran ":" notation)

 create
 No copyin/out – useful for shared temporary arrays in loopnests

 private: scalars private by default

 present, present_or_copy*

 Tuning clauses:

 !$acc loop [gang] [worker] [vector]
 Targets specific loop (or loops with collapse clause) at specific level of hardware

 num_gang, num_workers, vector_length
 Tunes the amount of parallelism used (threadblocks, threads/block...)

 seq: loop executed sequentially

 independent: compiler hint (also use CCE !dir$ directives)

Clauses for !$acc parallel loop

21

 Other !$acc parallel loop clauses:

 if(logical)
 Executes on GPU if .TRUE. at runtime, otherwise on CPU

 reduction: as in OpenMP

 cache: specified data held in software-managed data cache
 e.g. explicit blocking to shared memory on Nvidia GPUs

 !$acc update [host|device]

 Copy specified arrays (slices) within data region

 async[(handle)] clause for parallel, update directives
 Launch accelerator region/data transfer asynchronously: allows CPU/GPU overlap

 Operations with same handle will execute sequentially (as in CUDA streams)

 !$acc wait[(handles)]: waits for completion

 Runtime library functions can also be used to test/wait for completion

 host_data, deviceptr
 Exposes GPU memory address in host code (e.g. for interoperability with CUDA)

22

 Preparation: add checksum(s) and high-res timer to code
 Check for correctness very frequently

 Profile code on the host
 Use representative-sized problem, map calltree,

 Ideally resolve profile by loopnest and measure typical loop iteration counts

 First optimise the data movements

 Start in subprograms at bottom of callchain
 Accelerate individual loopnests using parallel regions

 Concentrate initially on most computationally expensive

 Add data regions in subprograms

 Minimise data movements, use create clause where possible

 May need to accelerate insignificant loopnests to avoid data copies

 Use available feedback to understand data movement
 Compiler messages: -ra for CCE, -Minfo=accel for PGI

 Runtime commentary: export CRAY_ACC_DEBUG=[1,2,3] for CCE

 Nvidia compute profiler: export COMPUTE_PROFILE=1

 CrayPAT performance measurement and analysis tool (Cray PE only)

 Code is probably going quite slowly at this point
23

 Move progressively up callchain, adding data regions
 Aim to further reduce data movements

 No problem nesting data regions: use present clause on inner ones

 May need to port insignificant subprograms to avoid data transfers

 Use update for essential data transfers (e.g. data for halo swaps)

 Now optimise kernel performance (often trial and error)

 Perfect loop nests schedule better than imperfect ones
 e.g. Remove temporary arrays by manually inlining (eliminate array b)

 Or manually privatise arrays and break loopnest (make b(i,j))

24

DO j = 1,N
 DO i = 0,M+1
 b(i) = a(i,j+1) + a(i,j-1)
 ENDDO
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

DO j = 1,N
 DO i = 1,M
 c(i,j) = a(i+1,j+1) + a(i+1,j-1) &
 + a(i-1,j+1) + a(i-1,j-1)
 ENDDO
ENDDO DO j = 1,N

 DO i = 0,M+1
 b(i,j) = a(i,j+1) + a(i,j-1)
 ENDDO
ENDDO
DO j = 1,N
 DO i = 1,M
 c(i,j) = b(i+1) + b(i-1)
 ENDDO
ENDDO

 Now look at tweaking the loop scheduling

 Quick wins
 Optimise loop scheduling

 Make sure the right loops are vectorised (for coalesced memory loads)

 And that they are vectorisable

 Choose number of workers per gang (threads/block)

 This number will vary by kernel and by problem size

 Collapsing or blocking of loops may help (though compilers already do that)

 See if caching can be used to reduce data loads from device memory

 Longer term: can loops be migrated up the callchain?
 E.g. Loop over sites, or blocks of sites (“blocking for cache”)

 If so, parallelise (gangs) over these

 Consider overlap of compute and communications using async

 Don’t do this until everything working

 May require application restructuring

25

1. S3D turbulent combustion code

2. Himeno

3. MultiGrid code (NAS & SPEC benchmarks)

Three example applications

26

0

1

2

3

4

5

Kernel A Kernel B Kernel C S3D

Ti
m

e
 (

se
co

n
d

s)

OpenMP (full node)

OpenACC (CCE)

 Parallel 3D Poisson equation solver

 19-point stencil

 MPI or CAF and/or OpenMP

 available from here

 ~600 lines of Fortran

 Fully ported to accelerator using 27 directive pairs

 XL configuration:

 1024 x 512 x 512

 Strong scaling

 More kernel tuning

 No use of async yet

27

0.0

1.0

2.0

3.0

4.0

5.0

0 32 64 96 128

Pe
rf

o
rm

an
ce

 (
TF

lo
p

/s
)

Number of nodes

Himeno Benchmark - XL configuration
MPI/OMP MPI/ACC CAF/ACC

http://accc.riken.jp/HPC_e/himenobmt_e.html

 NAS Parallel Benchmarks, also SPEC suite

 MG (multigrid) solves Laplacian on 3D grid

 c. 1500 lines of Fortran, many subroutines

 Three main hotspots:
 resid (50% of runtime), psinv (25%), rprj3 (9%)

 Data arrays passed to/from subroutines at every iteration

 GPU 2x faster than CPU (16 cores)

 Fully accelerated using 25 directive pairs (present essential)

 MPI-parallel version: Cray XK6 node faster than

 Further optimisations coming

 Further use of shared memory

 async clause support coming
 CCE already launches kernels and data transfers asynchronously

 More scope for overlap than in Himeno

Example: MultiGrid benchmark

28

 Hybrid multicore has arrived and is here to stay

 Fat nodes are getting fatter

 GPUs have leapt into the top500 and accelerated nodes

 Programming accelerators efficiently is hard

 When done well can give good performance (Ludwig)

 Accelerator directives offer a good alternative

 Attractive (and familiar) programming model

 Open standards for portability

 Use original Fortran, C and C++ codes

 Presented a strategy for porting large codes

 The performance penalty is small

 The portability and productivity bonuses are huge

 Directives play nicely with other programming models

 (so you don’t need to throw away your prize CUDA kernels)

In conclusion...

29

Thank you to those that helped us get to grips with directives:

 Cray Exascale Research Initiative Europe team

 Harvey Richardson, Roberto Ansaloni

 EPCC Exascale Technology Centre team

 Alan Gray...

 Cray PE R&D team

 Luiz DeRose, Suzanne LaCroix, James Beyer, David Oehmke...

 ORNL team

 John Levesque...

 OpenMP subcommittee

For further info, ahart@cray.com

Acknowledgments

mailto:ahart@cray.com

