Efficient sparse matrixvector products on Fermi GPUs

István Reguly Mike Giles

Oxford e-Research Centre Pázmány Péter Catholic University, Hungary

<u>sparse Matrix-Vector</u> multiplication

- Bandwidth-limited operation
- Plethora of storage formats to improve GPU performance
 - ELLPACK, Hybrid (Bell & Garland)
 - Blocking approaches
- Most widely used format is CSR
- Conversion or preprocessing is expensive

NVIDIA Fermi

- Introduction of I6k/48k LI and 768k L2 cache
- Global fetch operations load 128 byte cache lines
- 384 lines in LI cache
- Cache reuse
- Cache trashing is expensive

Compressed Sparse Row


```
int i = blockldx.x*blockSize + threadIdx.x;
float rowSum = 0;
int rowPtr = rowPtrs[i];
for (int j = 0; j<rowPtrs[i+1]-rowPtr; j+=1) {
    rowSum += values[rowPtr+j] * x[colldxs[rowPtr+j]];
}
y[i] = rowSum;
```

No coalescingBad caching

Matrix structure matters

- Average number of non-zeros per row
- Std. deviation of the number of non-zeros per row
- Similar column indices in consecutive rows
- I5 matrices from the University of Florida Sparse Matrix Collection
- Against cuSPARSE 4.0
- NVIDA Tesla C2070

Avg 221

Std. Dev.

3

nz = 14148858

Structural problem

nz = 3105536

Web connectivity

Avg 3.1 Std. Dev.

25.3

Friday, December 16, 11

Avg 6.9 Std. Dev. 0.25

nz = 8814880

Atmospheric modeling

Thread cooperation

coop=4

Coalesced accessGood caching

• Warp divergence

Number of cooperating threads

coop	1	2	4	8	16	32
L1 hit rate $(\%)$	19.56	27.3	30.12	69.5	74.3	78.57
Divergence (%)	8	12.8	7.2	9.9	5.3	6.7

Number of rows processed After fixing coop

Friday, December 16, 11

Number of threads in a block After fixing coop

The fixed rule

Optimal parameters depend on matrix
Auto-tuning, exhaustive search...
General-purpose library
"No" overhead is tolerated
Constant time method

The fixed rule

- blockSize = 128
- COOP next bigger 2ⁿ to the square root of the average row length
- gridSize and repeat: at least 1500 blocks

Instruction throughput ~ non-zeros processed per second

Bandwidth estimation

- Minimal, effective bandwidth
- On caching architectures "effective" bandwidth is not the worst case
 - 128 byte cache lines
- Number of cache lines touched by blocks
 - No sharing between blocks
 - Infinite cache size

Bandwidth of the fixed rule

Dynamic run-time tuning

- Iterative algorithms
 - Conjugate Gradient Method
 - Newton-Raphson Method
- Same pointers, same size
 - Assume it has the same structure
 - Tune parameters

Dynamic run-time tuning

Blind search on a non-convex domain
Bad choices adversely impact performance
No statistical data
Empirical algorithm
From 84% to 98% in 7 iterations

Tuning on matrix FI

Average performance of 15 matrices

Improvement over cuSPARSE Single precision: I.9 times and 2.1 times

Improvement over cuSPARSE Double precision: 1.25 and 1.35 times

Finite Element Method

 Numerical method for solving PDEs over complicated domains

> $-\nabla \cdot (\kappa \nabla u) = f \text{ in } \Omega,$ $u = 0 \text{ on } \partial \Omega.$

$$K\bar{u}=\bar{l},$$

$$K_{ij} = \int_{\Omega} \kappa \nabla \phi_i \cdot \nabla \phi_j \, dV, \, \forall i, j = 1, 2, \dots, N_v,$$

$$ar{l}_i = \int\limits_{\Omega} f \cdot \phi_i, \; orall i, j = 1, 2, \dots, N_v.$$

The FEM matrix

Global Matrix Assembly Compressed Sparse Row (CSR)

ELLPACK

Column indices				
1st row	0	1	5	0
2nd row	1	3	6	7
3rd row	0	1	3	0
4th row	3	4	5	7

Values					
0.3	1.4	0.5	0		
1.1	3.7	0.6	7.1		
1.0	0.1	3.2	0		
8.3	1.4	4.5	2.7		

Local Matrix Assembly (LMA)

$$\bar{y} = \mathcal{A}^T(K_e(\mathcal{A}\bar{x})),$$

LM ₁	(1,1)	(1,2)	(2,1)	(2,2)
LM ₂	(1,1)	(1,2)	(2,1)	(2,2)
LM3	(1,1)	(1,2)	<mark>(2,1)</mark>	(2,2)
LM ₄	(1,1)	(1,2)	(2,1)	(2,2)
LM5	(1,1)	(1,2)	(2,1)	(2,2)

Local Matrix Approach

Iterative solution performance 4 million rows

Friday, December 16, 11

Conclusions

- An understanding of caching on Fermi
- Fixed rule, run-time tuning
- 1.3 2.1 times speedup over cuSPARSE
- Help of problems-specific knowledge in FEM, improving performance 2 times
- Closed the performance gap between CSR and ELLPACK/Hybrid formats

Thank you for your attention!

Questions?