Dynamic Ontology Mapping for Interacting
Autonomous Systems

Steven Heeps!, Joe Sventek!, Naranker Dulay?, Alberto Egon Schaeffer Filho?,
Emil Lupu?, Morris Sloman?, Stephen Strowes’

! Department of Computing Science, University of Glasgow
heeps, joe,sds@dcs.gla.ac.uk
2 Department of Computing, Imperial College London
n.dulay,aschaeff,e.c.lupu,m.sloman@imperial.ac.uk

Abstract. With the emergence of mobile and ubiquitous computing en-
vironments, there is a requirement to enable collaborative applications
between these environments. As many of these applications have been
designed to operate in isolation, making them work together is often
complicated by the semantic and ontological differences in the meta-data
describing the data to be shared. Typical approaches to overcoming onto-
logical differences require the presence of a third party administrator, an
approach incompatible with autonomous systems. This paper presents
an approach to automatic ontology mapping suitable for deployment in
autonomous, interacting systems for a class of collaborative application.
The approach facilitates the collaboration of application-level data col-
lections by identifying areas of ontological conflict and using meta-data
values associated with those collections to establish commonality. A mu-
sic sharing application has been developed to facilitate the sharing of
music between peers.

1 Introduction

Recent advances in ubiquitous and mobile computing have dramatically changed
the role of the computer in users’ lives and made mobile computing the new
personal computing and communication paradigm. The overriding motivation is
that computing systems should seamlessly integrate into the life of the user and
interoperate with other systems to offer mobile services as and when desired.
We have previously proposed the concept of a Self-Managed Cell (SMC)
as the fundamental management design pattern for autonomous systems [20];
an SMC is a policy-based architecture that provides autonomic management
capabilities for ubiquitous computing environments [3,6,10,19]. In ubiquitous
environments, SMCs need to collaborate without having a pre-agreed schema,
and it is also desirable that there is agreement and common semantics for appli-
cations and devices. The SMC architecture currently supports integration at the
system and management level where the basics for SMC interaction are handled
in terms of policy, data and event exchanges [17]. Successful SMC integration

at this level provides the mechanisms for services at the application level to
collaborate.

This paper explores the challenge of integration at the application level. Se-
mantic differences between collaborating applications are usually managed by an
administrator who maps the differences or documents a strict ontology to which
systems developers and users adhere. It is likely that ontological and semantic
differences between individual applications will prove a barrier to application
collaboration due to the autonomous nature of the environment.

To explore application level ontology conflict and develop suitable mapping
mechanisms, we have investigated the use of SMCs in the domain of peer-to-
peer music sharing. The ability to see and listen to the music of others became
prominent when Apple Inc. released a version of iTunes that supported the
sharing of music collections on the same sub-network through the DAAP protocol
[1]. This change, from music players as a single-user jukebox application to a
tool for music sharing, brings with it the potential for further study, particularly
with regards to the divergence of meta-data used to describe the tracks within
each player. The following example highlights this problem: Bob and Alice have
streaming access to each other’s music collection. Bob loves “Indie” music, and
searches for this in Alice’s collection. Disappointingly, no matching tracks are
found as Alice has not defined the genre “Indie”, despite having a number of
tracks that Bob would commonly classify as ”Indie”. There is a clear semantic
difference in the way Bob and Alice define their music collections; whilst this
is a standard feature of personal music collections, overcoming these differences
automatically would undoubtedly enhance the users music sharing experience.

The paper is organised as follows: Section 2 describes the automatic ontology
mapping mechanism; Section 3 discusses a prototype implementation in a peer-
to-peer wireless music sharing environment; Section 4 presents related work, with
conclusions and directions for future work presented in Section 5.

2 Automatic Ontology Mapping Mechanism

Seamless collaboration at the application level is difficult. It is unlikely that dis-
covered services and applications will adhere to a common language or naming
structure. It is likely that different devices and applications will originate from
different vendors who use different semantic descriptions. Alternatively, seman-
tics are user-defined and thus subject to great variation [18].

Ontologies are used to solve the semantic difference problem between applica-
tion and application content. Ontologies capture knowledge of a given domain in
a generic yet formal way, so that it can be reused and shared across applications
and users. Ontologies are generally created via a man-made, time-consuming pro-
cess where humans attempt to define all aspects of a system in a very explicit
fashion. Frequently, different ontologies define very similar knowledge. Mapping
between ontologies associates terms defined in one ontology with terms in an-
other. Currently, such mappings are identified manually [15]. This is extremely
resource intensive, not always possible and susceptible to ontology change. Au-

tomatic ontology mapping covers a large number of fields from machine learning
and formal theory to database schema and linguistics. Applications also range
significantly, from academic prototypes to large scale industrial applications [5].
Most systems are fairly complex, resource intensive creations and, as such, are
not deployable in resource-limited, ubiquitous computing environments [11, 13].

To confirm the need for ontology mapping in the music player context, we
analysed the music collections of 17 users comprising 64,704 songs. There were a
total of 6,040 artists and 462 distinct music genres in the libraries studied. The
existence of 462 distinct genres indicates immediately that there are going to be
vast ontological differences between the music of only 17 peers. Apple’s iTunes,
for example, only contains approximately 30 different default genres, indicating
that user-defined genres are very popular. The analysis also highlighted that
approximately one third of all artists had more than one genre associated with
them across the libraries. Table 1 shows six popular Artists from the libraries
studied and the number of unique genres with which they were associated. This
was apparent for all track meta-data, such as Track Size, Length, Album, Format
and Artist.

Table 1. Genres Associated with Artists

Artist Number of Genres
Unique Genres
Miles Davis 3 Alternative and Punk, Jazz , No Genre
Mozart 3 Classical, Classicism, Concerto
Marvin Gaye 4 Dance, Electronica, RandB, No Genre
Bob Dylan 6 Folk, Pop, Rock, Soundtrack, Various, No Genre
The Beatles 7 Alternative Rock, Dance, Electronica, Pop
Rock, Rock and Pop, Rock and Roll, No Genre
Oasis 8 Alternative, Alternative and Punk, Alternative Rock
Brit Pop, Pop, Punk, Rock, No Genre

2.1 The Basic Mechanism

We restrict our considerations to applications that manipulate data that conform
to a common schema - i.e. the application expects to access a data collection
that can be modelled as a relational table; each row of the table corresponds to
one object (e.g. a musical track), and each column corresponds to a metadata
attribute for that type of object (e.g. Genre, Artist); finally, one, additional
column containing the value of the object is included in each row (e.g. the actual
encoding of a musical track).

Using the music player example, the collection of tracks used by a particular
player can be represented as shown in Table 2.

Each user is associated with a “home” collection of objects; in the music
sharing example, it is the collection associated with the users music player;
difficulty can ensue when the application has access to one or more “foreign”

Table 2. An Example Home Collection

Title Artist Composer Genre Album Size(mb)]... Value
Son Jethro Tull Ian Anderson Rock Benefit 2.77 mt000001.mp3
Black Hole Sun SoundGarden |[Chris Cornell Grunge Superunknown 5.02 mt000002.mp3
Exsultate, jubilate[Kiri Te Kanawa Mozart Classical 14.11 mt000003.mp3
Rusty Cage Johnny Cash |Chris Cornell| Country Unchained 1.31 mt000004.mp3
Hush Tool Metal Opiate 1.30 mt000005.mp3
Sleeping The Band Country Rock| Stage Fright 311 mt000006.mp3
Hello Evanescence Gothic Rock Fallen 3.48 mt000007.mp3

collections in addition to the “home” collection. The user is most familiar with
navigation through the “home” collection; in order to effectively access objects
in the “foreign” collections, it is important to map the metadata values that
describe the “foreign” objects into values that have meaning to the user.

In general, the metadata attributes exhibit correlated values within a collec-
tion - i.e. many objects with attribute; = value; also have attribute; = value;.
The degree of correlation between attribute; and attribute; will depend upon:
the attributes chosen, the nature of the collection, and the degree of consistency
in value assignment when objects are added to the collection. For example, most
artists are strongly correlated with a particular genre (e.g. all tracks produced
by Pearl Jam are associated with the Grunge genre), while release dates are only
weakly correlated with a particular genre (e.g. Grunge is correlated with release
dates 1990 and beyond, but not before). Such correlations can be asymmetric
due to the fact that some attributes have broader scope than others; the correla-
tion strength is a measure of the predictive power of one value over the value of
the other (e.g. Pearl Jam strongly predicts Grunge, but Grunge predicts Pearl
Jam, Soundgarden, Alice in Chains, etc.).

Consider a collection of N objects, and each object has M metadata at-
tributes associated with it. Let us focus upon two attributes, ¢ and j. In a par-
ticular collection, Attr; takes on values vji...vs,; similarly, Attr; takes on values
Vj1...Vjn. We can then analyze all of the tracks in the collection to yield the
following matrix (Table 3):

Table 3. Pairwise Classification of Objects in a Collection

Attr; JAttr; [Vi1 | V2 [—] Vin
Vil C11 [C2 Cin
Vim Cmi1|Cm2 Cmn
where Cj; is the number of objects in the collection that have Attr; = V;; and
Attr; = Vj. It is informative to consider two limiting cases:

1. Attr; is strongly correlated with Attr;: in this case, if there are Ny, objects
with Attr; = Vi, then most of those objects will have Attr; = Vj; for some
l; note that by definition, N;; > 0.

2. Attr; is not correlated with Attr;: in this case, the N;j objects with Attr; =
Vii are distributed over many different values for Attr;.

We can sum over the pairwise matrix in Table 3 to determine the predictive
power of Attr; for Attr; as well as the predictive power of Attr; for Attr;. One
such formulation is as follows:

m
L mazi{cr}
predictive power, ; = —_—r (1)
" ,; 2 okl

Obviously, the predictive power;; simply requires that we swap k for [and m
for n in Equation (1). Performing this analysis for all pairs of attributes yields
a correlation matrix of the form shown in Table 4. The value in the 3, j*" cell
indicates how strongly correlated values of Attr; are to values of Attr;; obviously,
the diagonal elements have a value of 1. Armed with this correlation information
for the home collection, we now describe a protocol that uses this mechanism to
dynamically map objects from a foreign collection into the home object ontology.

Table 4. Predictive Power

Attry |Attrg [Attrg| ... [Attrpg

Attry | 1.000]0.357 | 0.771 0.467

Attro | 0.953]1.000 | 0.849 0.121
1.000

Attrpr]|0.125]0.294 [0.186 1.000

2.2 The Mapping Protocol

The general protocol is as follows: if one is interested in objects in the foreign
collection with Attr; = Value;, and none exist, then one searches the i*" column
of Table 4 from the home collection for the Attr; with the largest correlation
value (excluding row 4). One can then query for objects corresponding to known
Value;’s, and discover the Value;’s that the foreign collection associates with
those objects. One can then import objects with those particular Value;’s, re-
placing the actual Value; with the value used by the home collection.

Assume that two peers are sitting on a train, each with a personal music
player in the form of a PDA hosting a music streaming service; the two players
have discovered each other, and the policies in the two players permit streaming
of tracks from one player to the other. Once the players have bound together,
the music services on each player can enter into the ontology mapping protocol.
Bob’s music service remotely performs a genre search on Alice’s system for each
value of the genre meta-data attribute defined for Bob’s system; for example,
suppose that one value of the genre attribute is “Grunge”. Unfortunately Alice
does not have any music defined as “Grunge”, so the initial query returns a

negative. The ontology mapping mechanism in Bob’s music player selects a meta-
data attribute strongly correlated with Genre, namely Artist, and queries Alice’s
player with a list of Artists associated with the genre “Grunge”. Alice’s music
service then searches for those Artists in her collection, and returns the most-
prevalent genre value, if any, associated with each artist in her collection. The
protocol has established a Bob-specific mapping from his genre values to those
used by Alice. Bob’s music service can now represent tracks in Alice’s system
using Bob-specific genre values. Besides enabling comfortable navigation over the
other individual’s collection and subsequent streaming, the mapping information
can also be retained for future sharing with each other, or possibly to inform
future negotiations with other peers. The current protocol maps Bob’s genre
value to multiple genre values in Alice’s collection. Another approach would be
to only solicit the Alice genre value for the artist in Bob’s collection with the
largest number of tracks with that particular value, or the largest percentage of
tracks with that particular value. The current approach maximises the number of
tracks mapped to facilitate human navigation; more study is needed to determine
if other approaches yield more usable results.

Table 5. Predictive Power of Music Tracks

Genre|Artist| Name|Album|Year|BitRate|Kind
Genre 1 0.579 | 0.25 0.57 [0.475| 0.646 |[0.885
Artist | 0.818 1 0.623 | 0.861 [0.855| 0.865 [0.921
Name | 0.908 | 0.946 1 0.912]0.905| 0.939 [0.941
Album | 0.857 | 0.893 | 0.275 1 0.793| 0.888 [0.964
Year 0.283 | 0.259 | 0.139 | 0.256 1 0.376 |0.462
BitRate| 0.238 | 0.188 | 0.187 | 0.234 [0.184 1 0.939
Kind 0.18 0.13 | 0.039 | 0.035 [0.064| 0.299 1

The mapping factor (attribute strongly linked to “Genre” in the preceding
example) is determined through analysis of music collections. The application
of Equation (1) to the meta-data from 17 unique iTunes music libraries yielded
Table 5. The mapping factors for music collections indicate, for example, that
there is a close relationship between Artist and Genre (0.818). In other words, if
the Genre is not known then Artist is a good aspect of meta-data to map from,
as is, Name and Album. Kind and Year, however, would not be suitable search
attributes.

Even though our discussion is dominated by music sharing examples, other
types of data collections are accessed in this way; for example, the collection of
books maintained by a library. Initial results from a study of the meta-data for
multiple book libraries also shows similar disparities across Subject Headings.

3 Experimental Validation

The Self-Managed Cell architecture running a music sharing service has been
implemented as a test platform for our automatic ontology mapping technique.

The music sharing service utilises core SMC services such as the discovery and
policy service.

The SMC has been built to run on a PDA (HP iPAQ hx4700, with a 624MHz
XScale PXA270 processor and 64MB RAM, running Familiar Linux 0.8.4 or
Windows Mobile 5.0). The SMC is written in Java, and uses JamVM 1.4.3 [8] in
a bid to cut down on memory usage. The policy service used is Ponder2 written in
Java 1.4. The music player, built to run as a service on an SMC, is also written
in Java 1.4. The player enables a user to search the music collection of other
discovered music players and stream music found from their search via wifi to
their music player. It uses the DAAP [2] which performs as an HTTP server for
advertising and streaming requested songs to clients. At present the music player
has been successfully tested and functions successfully under J2SE. Currently
attempts are being made to run the player on a PDA under Windows Mobile
5.0 using the Mysaifu JVM [14]. The music player is approximately 4Mb in size
and has a memory footprint of around 15-30mb depending on activity status
i.e. idle, playing, streaming etc. The music service relies upon the mechanism
documented in [17] for establishing the initial peer-to-peer binding between a
pair of music players running as services on SMCs.

The ontology mapping mechanism, as used to enhance collaboration between
peer music libraries, has been fully tested and evaluated. Analysis of collabora-
tions using the 17 peers documented in Section 2 revealed significant use of the
mapping system, with song returns frequently running into the hundreds where
initial collaboration had revealed few or no artists. Genre-to-Artist mapping re-
sults from a peer-to-peer collaboration are shown in Table 6. Only genre searches
where no song results were initially returned are shown.

Table 6. Genre-Artist Mapping

Peer 1 Peer 2 Returns after Mapping
Genre Request|[Genres|[Artists Songs
Blues 2 337 3594
Classic Rock 2 282 2352
Electronica 1 115 587
Folk 2 282 2352
Rock/Pop 2 337 3594
Soul 1 11 109
Top 40 1 40 467

4 Related Work

Automatic Ontology mapping has seen a surge of research interest in recent
years. Formal ontology mapping approaches have modelled ontologies using
graphs, logic and models with mappings being developed from viewing graph,
logic and model convergence [11,13]. Current software systems that automati-
cally generate ontology mappings are ONION [13], MAFRA [4] and IFF [16].
ONION generates mappings using graph transformations. MAFRA combines

different similarity measures, both lexical and structural, to establish the map-
pings. IFF is based on convergence between logical theories [5].

Such ontology mapping mechanisms are unlikely to be suitable for use in our
ubiquitous environment. They have primarily been designed to provide auto-
mated administrative assistance when mapping well defined but conflicting on-
tologies in traditional conflicting environments. They require considerable user
input and tend to focus on the use of a bridging ontology, a resource unlikely
to be available in the ubiquitous world. Furthermore, the mapping mechanisms
would likely struggle in the undefined and uncontrolled ubiquitous world. Most
mechanisms are also not suitably lightweight so as to be deployable on resource
limited devices.

Online music based Information Retrieval mechanisms are also gaining promi-
nence. Last.fm [9], for example, leverages each user’s musical profile to make
personalised recommendations and connect users who share similar tastes. The
downside of such mechanisms is the need for a common software plug-in and a
network connection.

5 Conclusions and Future Work

A novel automated ontology mapping mechanism has been described that sup-
ports application-level integration within ubiquitous systems. The mechanism
facilitates the successful collaboration of data collections by using meta-data
contained within the collections to identify areas of commonality between them.
The commonality identified is then used to automatically generate a common
ontology and map between the areas of conflict. By using the meta-data informa-
tion stored within music tracks, for example, we were able to successfully share
music between peers despite there being no outwardly visible signs or common-
ality for collaboration. The techniques establish the beginnings of a common
ontology and enabled a reference regarding the mapping to be held for future
sharing. The system is suitably lightweight and resource efficient that it is capa-
ble of running in constrained environments such as PDAs and mobile telephones
using our Self-Managed Cell architecture .

The current prototype uses exact string match during the mapping protocol.
Given the anarchy that exists within some distributed collections we will inves-
tigate similarity matches between attribute values in an attempt to understand
if this provides improved matching results. Likewise, future work will investigate
enhancements to the quality of the mapping mechanism, particularly in relation
to ranking results based on the probability a user will like them and will define
how the mapping factors are regenerated over time.

6 Acknowledgements

The authors wish to thank the UK Engineering and Physical Sciences Research
Council for their support through grants GR/S68040/01, GR/S68033/01 and
GR/N15986/01.

References

1. Apple. ipod and itunes. http://www.apple.com/itunes, 2007.

C. Boot. Digital audio access protocol. http://daap.source forge.net/, 2007.

3. N. Dulay, S. Heeps, E. Lupu, R. Mathur, O. Sharma, M. Sloman, and J. Sventek.
Amuse: Autonomic management of ubiquitous e-health systems. In Proceedings of
the UK e-Science Al | Hands Meeting, UK, 2005.

4. Y. Kalfoglou and M. Schorlemmer. IF-map: an ontology mapping method based on
information flow theory. Journal on Data Semantics, pages 98127, 2003.

5. Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the art. The
Knowledge Engineering Review, 18(1):131, 2003.

6. S. L. Keoh, K. Twidle, N. Pryce, A. E. Schaeffer-Filho, E. Lupu, N. Dulay, M.
Sloman, S. Heeps, S. Strowes, J. Sventek, and E. Katsiri. Forthcomming: Policy-
based management for body-sensor networks. In 4th International Work- shop on
Wearable and Implantable Body Sensor Networks, 2007.

7. L. C. Y. Kong, C. L. Wang, and F. C. M. Lau. Ontology mapping in per- vasive
computing environment. In International Conference on Embedded and Ubiquitous
Computing, pages 10141023, 2004.

8. R. Lougher. Jamvm. http://jamvm.sourceforge.net/, 2007.

9. Last.fm. http://www.last.fm, 2007.

10. E. Lupu, N. Dulay, M. Sloman J. Sventek, S. Heeps, S. Strowes, K. Twidle, L
Keoh, and A. E. SchaefferFilho. Amuse: autonomic management of ubiquitous sys-
tems for e-health. Special Issues of the Journal of Concurrency and Computation:
Practice and Experience, 2006.

11. A. Maedche, B. Motik, N. Silva, and R. Volz. A mapping framework for dis- trib-
uted ontologies. In 13th International Conference on Knowledge Engineering and
Knowledge Management, 2002.

12. Microsoft. Zune. http://www.zune.net, 2007.

13. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for ar- ticula-
tion of ontology interdependencies. In 7th International Conference on Extending
Database Technology, 2000.

14. Mysaifu. Mysaifu. http://sourceforge.jp/projects/mysaifuj vin/, 2007.

15. N. F. Nay and M. A. Musen. Prompt: Algorithm and tool for automated ontology
merging and alignment. In AAAI, 2000.

16. M. Romn, C. Hess, R. Cerqueira, A. Ranganathan, R. Campbell, and K. Nahrst-
edt. Gaia:a middleware infrastructure to enable active spaces. IEEE Pervasive Com-
puting, pages 7483, 2002.

17. A. Schaeffer-Filho, E. Lupu, N. Dulay, S. Keoh, K. Twidle, M. Sloman, S. Heeps, S.
Strowes, and J. Sventek. Supporting interactions between self-managed cells. Sub-
mitted to International Conference on Self-Adaptive and Self-Organizing Systems,
2007.

18. S.Heeps, N.Dulay, E.Lupu, A. E. Schaeffer-Filho, M.Sloman, S.Strowes, and
J.Sventek. The autonomic management of ubiquitous systems meets the seman-
tic web. In The Second International Workshop on Semantic Web Technology For
Ubiquitous and Mobile Applications, 2006.

19. S. Strowes, N. Badr, N. Dulay, S. Heeps, E. Lupu, M. Sloman, and J. Sventek. An
event service supporting autonomic management of ubiquitous systems for e-health.
In 5th International Workshop on Distributed Event-Based Systems, 2006.

20. J. Sventek, N. Badr, N. Dulay, S. Heeps, E. Lupu, and M. Sloman. Self-managed
cells and their federation. In CAiSE Workshops, volume 2, pages 97107, 2005.

o

