
Proceedings of the 8th IEEE Workshop on Policies for Distributed Systems and Networks, Bologna, Italy, June 2007, 
(invited abstract and keynote). 

Autonomous Pervasive Systems and the Policy Challenges of a Small World! 
 

Emil Lupu1, Naranker Dulay1, Joe Sventek2, Morris Sloman1 
1Department of Computing, Imperial College London 

2Department of Computing Science, University of Glasgow 
{e.c.lupu, n.dulay, m.sloman}@imperial.ac.uk, joe@dcs.gla.ac.uk 

 
 

Abstract 

Pervasive systems are the subject of intensifying 
research efforts and their applications range from 
health monitoring and intelligent homes, to location 
aware services, unmanned vehicles and city-wide 
pervasive infrastructures. Although application-
specific solutions have been proposed, their design has 
often raised additional challenges. This paper 
discusses the use of Autonomous Pervasive Systems as 
a fertile testbed for policy-based adaptation and for 
integrating techniques that span across conventional 
subject boundaries. Additionally, we present the Self-
Managed Cell architectural pattern for realizing 
policy-driven Autonomous Pervasive Systems and 
discuss the design of the Ponder2 policy service.  
 
1. From Distributed to Pervasive Systems  

Policy-based management, including access control 
and security management aspects has, in the past, often 
focused on large-scale systems that constitute an 
enterprise network or span beyond the borders of the 
enterprise [1]. The emphasis on large-scale systems is 
justified because policies can be applied to large sets of 
managed resources in order to configure them 
uniformly and adapt their behaviour to changes in 
business requirements. The scale, complexity and 
distribution of the systems involved presents significant 
challenges and significant progress has been made to 
address them. In such systems, policy-based 
management is often based on centralised specification 
and deployment of policies by system administrators. 
There is little tool support for specifying policies or 
detecting conflicts. Policy-based management is often 
laborious, the benefits obtained are difficult to quantify 
in monetary terms and its deployment requires both 
effective standardisation across equipment vendors and 
significant upfront investment so it has not been widely 
adopted. Policy analysis and refinement techniques 
would provide significant advantages but substantial 
work remains to be done towards practically evaluating 
the first and achieving the latter.  

Pervasive Systems refer to a world where 
computational devices are embedded in the 
environment, can be worn by users or even implanted 
in their bodies. Applications in this area range from 
body sensor networks for health monitoring [2], 
intelligent buildings and home automation [3], 
autonomous vehicles [4], and urban planning [5]; such 
applications require continuous adaptation at local 
device level as well as for collections of devices. The 
need for adaptation is driven not only by requirements 
changes but also by user mobility and context. Such 
devices have limited computational capabilities and 
strict power consumption requirements. Their operation 
must therefore be optimised and must constantly adapt 
in order to minimise resource consumption. Users are 
by and large not technically knowledgeable, and user 
interaction must be minimised in order to avoid 
disturbance. There are no system administrators to 
effect configuration changes or to resolve errors; such 
systems must therefore be autonomous. Policy-based 
approaches are particularly suited to realising 
Autonomous Pervasive Systems as they offer a simple, 
flexible and dynamic technique for implementing 
adaptation and feed-back control. We refer primarily to 
obligation policies in the form of event-condition-
action rules, although other forms discussed in the 
paper are also desirable. However, many existing 
policy-based frameworks have not been conceived for 
this purpose. Their design is dependent on 
infrastructure support such as LDAP directories and 
CIM repositories and their implementation does not 
scale easily down to smaller devices such mobile-
phones, PDAs or sensors. Policy deployment is often 
based on centralised provisioning and decision-making. 
In contrast, pervasive systems rely on collaborations 
between autonomous entities that must use policies in 
extensible architectures that cater for the management 
of resources and services as well as for composition 
and federation of policy spaces across devices.  

Section 2 discusses two application scenarios and 
their requirements. Section 3 presents the Self-
Managed Cell (SMC) architectural pattern and Section 
4 focuses on the design of the SMC’s policy service. 



a 

Section 5 discusses relationships between SMCs whilst 
Section 6 looks at future challenges in this area.   
 
2. Examples and scenarios 

2.1 Healthcare Monitoring 

The AMUSE project [6] considers the case of a body 
area network of physiological sensors and actuators 
monitoring the health of a patient. Conditions that 
require long-term maintenance such as diabetes or 
episodic manifestation such as cardiac arrhythmia are 
good candidates for this type of monitoring. Sensors 
include cardiac monitoring, oxygen saturation as well 
as general temperature sensors and accelerometers and 
are based on the BSN platform [7] (Figure 1). These 
sensors have low-power 16-bit processors, 64 KB 
RAM, 256KB Flash memory, 6 analogue channels for 
sensors and use IEEE 802.15.4 radio. They may need 
to survive for long periods of time without battery 
replacement so communication must be reduced and 
sensor data must be processed on the node itself. This 
requires use of configurable thresholds and dynamic 
configuration of the actions taken when thresholds are 
crossed. A simple policy interpreter has therefore been 
designed and implemented for this platform [8].  

A Gumstix device [9] hosts the management 
services presented in Section 3 and provides overall 
management for the body area network. This body area 
network needs to adapt continuously to varying 
conditions including: sensor failure or addition of new 
sensors, changes in user activities e.g. running, which 
affect cardiac thresholds and changes in the patient’s 
condition e.g., abnormal heart rate. Additionally, the 
body area network needs to interact with other devices 
or collections of devices such as the medical equipment 
brought by a nurse during a home visit or at doctor’s 
clinic. These interactions go beyond simple service 
invocations and comprise exchanges of notifications, 
policies and goals. For example, the nurse may load 
new policies on anomaly reporting or goals for 
maintaining heart rate below specific thresholds. 
 
2.2 Autonomous Unmanned Vehicles 

Autonomous unmanned vehicles exhibit similar 
characteristics in terms of coordinating activities e.g., 
movement and navigation based on multiple sensor 
inputs. They are typically used in situations where it is 
difficult or dangerous for humans to enter such as 
disaster sites, or areas containing explosives or 
chemicals. Typically, unmanned vehicles are self-
propelled and include sensors for obstacle detection, 
video cameras and specialised sensors eg. to detect 
radiation or chemicals. Although a combination of 
planning mechanisms are typically used to control 

vehicle motion, policies are often used to manage the 
system configuration and to control the planning tasks 
themselves; for example to determine when plans have 
to be aborted or when new plans should be loaded.  

 
Figure 1 EKG Sensor board and BSN node with 
temperature and accelerometer 

Autonomous vehicles rarely work in isolation but 
collaborate and aggregate into fleets that pursue a 
common goal such as to investigate a particular area. In 
addition to direct interactios this requires collaboration, 
and exchange of high-level goals between vehicles.  

 
3. The Self-Managed Cell (SMC)  

These scenarios share a similar structure: 
heterogeneous resources are grouped in autonomous 
domains that require adaptation and implement a feed-
back control loop; in our case based on policies. Such 
autonomous domains, called Self-Managed Cells 
collaborate with each other and may compose into 
larger SMCs. However, this structure occurs at 
different levels of scale e.g. body-area networks, 
vehicles, rooms, buildings or large-scale distributed 
applications. Thus, a SMC is an architectural pattern 
that can be instantiated in different environments. It 
must therefore comprise services that may have 
different implementations in different SMC 
instantiations. Additionally, the set of services must be 
extensible to meet the management requirements of the 
application domain. As most management systems are 
event-driven, we assume that SMCs comprise a set of 
services that interact using a common publish/subscribe 
event bus (Figure 2). The event bus de-couples the 
services and permits the addition of new services 
without disrupting the behaviour of existing ones.  

The SMC’s core services are: the event service, the 
policy service and the discovery service as they are 
required to discover new devices and to implement a 
policy-driven feed-back control loop for adaptation. 
Further services can be added dynamically and may 
include context services that gather environment data 
such as location and local conditions, planning services 
that control motion and determine how to achieve goals 
or provisioning services for resource allocation. 
Similarly, authentication, trust or audit services can be 
introduced for security needs. The event bus allows 



a 

services to respond independently to the same 
notifications with different actions and could be used 
for application as well as management data. We have 
developed a simple publish-subscribe event bus that 
provides at most once persistent event delivery for 
body area networks and use other implementations 
such as XMLBlaster or Elvin in larger environments.  

 
Figure 2 The SMC Architectural Pattern 

The discovery service is used to discover nearby 
components that are capable of becoming members of 
the SMC or interacting with it. This includes sensors, 
services and other SMCs when they come into 
communication range. It interrogates new devices to 
establish a profile describing the services they offer and 
then publishes an event describing the addition of the 
new device on the event bus. The discovery service 
also maintains the SMC membership in order to detect 
failure or permanent departure of any components. 
 
4. Ponder2: A policy service for SMCs 

Ponder2 is a policy service for the SMC. Although 
based our experience with Ponder, its design and 
implementation are specifically aimed at Autonomous 
Pervasive Systems. Ponder2 has been implemented for 
J2SE, J2ME and in a basic form for the BSN sensors 
(see http://ponder2.net for the J2SE implementation). 

Ponder2 focuses on the ability to interact with a 
running system that contains managed objects 
representing devices such as sensors, actuators, 
services and other SMCs. Managed objects act as 
adapter objects to the SMC’s resources to provide a 
uniform view for policy enforcement and hide device 
specific protocols or interfaces. Managed objects 
provide a set of commands that can be invoked from 
Ponder2 and objects can be grouped into hierarchical 
domains for applying a common policy. Domains are 
managed objects themselves, thus making it possible to 
assign or remove objects from domains and to modify 
the domain structure through policies. For example, 
policies are used to decide which managed objects 
should be created when new devices are discovered, 

where they should be placed and which missions 
(Section 5) should be loaded on discovered SMCs.  

 On startup, the policy service only knows about the 
calling convention for executing commands on 
managed objects. Any code necessary for creating 
managed objects must be dynamically loaded by 
importing factories for each managed object type. 
Ponder2 has therefore few requirements from the 
environment in which it runs and can be extended to 
perform more complex tasks or to handle additional 
devices by adding new managed objects.  Commands 
on managed objects are encoded in XML. Although 
compromises performance it facilitates interoperability 
with other systems that can interact with the policy 
service by generating the required XML. However, 
writing XML is laborious for humans and a higher-
level language will soon be released.  

Ponder2 caters for two policy types: authorisation 
policies that define which actions are permitted under 
given circumstances and obligation policies that define 
which actions should be performed in response to 
events if specific conditions are fulfilled (event 
condition action rules). We focus here on obligations as 
authorisations are detailed in [11]. Policies are 
themselves managed objects. Thus, it is possible to 
define new policy types by designing new factories and 
only factories for the policy types used need to be 
loaded. Obligation polices are created by invoking the 
appropriate factory with the event, condition, and 
actions as parameters. Actions include the specification 
of the target objects or domains to which they apply.  
Events are received from the event bus and an event 
factory is used as an adapter to the event bus in order to 
issue subscriptions for the event types required and 
transform received notifications into internal events 
that are used to trigger policies. When an event 
notification is received, all the policies triggered by that 
event are evaluated.  

Ponder2 services federate and interact with each 
other by exchanging XML commands that can be 
nested. It is thus possible to invoke operations create 
policies, event subscriptions and raise event 
notifications that trigger policies in remote Ponder2 
services. However, such interactions are subject to the 
authorisation policies as detailed in [11]. This provides 
the ability to support interactions across SMCs as 
described in the next section.  

 
5. Relationships between SMCs 

There are broadly two types of relationships between 
SMCs: peer-to-peer relationships occur between 
neighbouring SMCs for example between a patient 
body area network and the nurse SMC during a home 
visit or between two unmanned vehicles, and 



a 

composition relationships occur when a managed 
resource within an SMC is itself an SMC with its own 
resources, for example a patient body area network that 
contains a diagnostic device relying on its own sensors, 
or a fleet of unmanned vehicles formed to achieve a 
particular objective. Whilst peer-to-peer relationships 
occur frequently as SMCs interact with neighbouring 
components, composition relationships enable grouping 
SMCs into larger autonomous structures and scaling 
SMC management to complex environments. 

Both relationships types have similar requirements 
in terms of types of interactions between the SMCs 
involved. In both peer-to-peer and composition 
relationships each SMC must be able to send 
commands to the other SMC to be executed. For 
example, the nurse SMC may query a patient SMC for 
heart rate logs since the last visit or a patient SMC may 
request a house control SMC to raise the ambient 
temperature. In both peer-to-peer and composition 
relationships each SMC must be able to subscribe to 
event notifications from the other SMC, and notify the 
other SMC of event occurrences of interest to which it 
has subscribed. For example, a patient monitoring 
SMC needs to notify a nurse SMC of variations in 
monitored values during the visit and the nurse SMC 
must be able to subscribe to them. And finally, in both 
peer-to-peer and composition relationships, each SMC 
must be able to load policies into the other SMC to 
direct it to behave in a particular way. For example, the 
nurse may program the patient SMC to start an 
intensive electrocardiograph whenever the patient’s 
physical activity increases or an unmanned vehicle may 
require the vehicle behind to stop whenever its 
breaking lights are on. Loading policies into a remote 
SMC is in essence a constrained form of programming, 
and used in conjunction with event notifications 
enables an SMC to distribute its feed-back control loop 
by requesting remote SMCs to react in a specific way 
to events that the source SMC raises.  

Although there are similarities in the interaction 
types needed for peer-to-peer and composition 
relationships there are also significant differences. 
Typically, in compositions parent SMCs will be given 
access to the resources and be permitted to subscribe to 
most events in the inner SMCs. For example, a 
diagnostic device in a body-area network SMC will 
allow the SMC to load new decision algorithms and 
new policies into it. Composition also implies that 
contained SMCs cease to advertise themselves 
independently and rely on the containing SMC to bind 
them with other devices. This allows the containing 
SMC to hide the complexity of the composed structure 
and selectively expose its internal functionality 
according to requirements. For example, a patient SMC 

would expose its sensors to doctors, but hide them from 
other patients. 

Both peer-to-peer and composition relationships are 
based on common principles: a SMC must retain 
autonomy i.e., be able to deny operations that 
compromise its integrity, a SMC must encapsulate its 
own resources and export through customised 
interfaces only selected services and resources and 
must retain the ability to mediate interactions between 
its resources and external SMCs through proxies that 
can filter the commands received.  

 

Figure 3 Mission Distribution 

To facilitate the establishment of both peer-to-peer and 
composition relationships we introduce the concept of 
a mission as a means of grouping the duties of a remote 
SMC specified in terms of the policies it must enforce. 
Thus, a mission is a group of obligation policies 
specified in terms of the interfaces of two or more 
interacting SMCs. These interfaces specify the events 
SMCs are making available to the mission policies, the 
notifications that mission policies can publish in the 
SMCs and the commands SMCs will accept from the 
mission policies. Missions can be nested and a mission 
may contain other missions that need to be loaded on 
another SMC. For example, a doctor may load a 
mission in a nurse station that specifies policies for the 
nurse station to report to the doctor as well as the 
mission to be loaded by the nurse station in the patient 
SMC (Figure 3).  

This distribution occurs frequently in fleets of 
unmanned vehicles where missions can be distributed 
from a commanding vehicle to all others and can be 
used to establish subgroups of autonomous vehicles. 
 
6. Future Challenges 

The concepts described above are only a first step 
towards realising autonomous pervasive systems – 
numerous challenges remain to be addressed. Although 
flexible, missions defined as sets of policies are not 
sufficient to capture complex interactions between 
multiple SMCs and higher-level abstractions are 
required. Just as the SMC is an architectural pattern for 
providing autonomy to a group of devices, relationship 
patterns that capture interactions and coordination 
between multiple SMCs need to be introduced. SMC 



a 

adaptation currently relies on simple obligation policies 
and does not assume that reasoning procedures are 
used. However, numerous scenarios are better 
implemented through SMCs exchanging goals and 
planning their actions to maintain or achieve the 
received goals. Results from other communities 
including multi-agent systems and robotics are 
applicable and their integration with policy-based 
management techniques must be investigated. 
Reasoning procedures could also be used to implement 
conflict detection, policy analysis and policy 
refinement [12] for small devices. These are required as 
policies exchanged between SMCs may often conflict 
in attempting to achieve different goals. On one side 
achieving this requires scaling down reasoning 
procedures to small devices, on the other hand this also 
requires understanding of how the complexity and 
performance of such procedures varies with the 
characteristics of the problem domain. As devices vary 
greatly in size and capabilities so the reasoning and 
analysis techniques must also be able to scale down as 
well as up to larger environments.   

This paper has ignored trust and security aspects but 
this is not for their lack of importance. Medical 
scenarios raise particularly difficult challenges as the 
need for security, integrity and privacy often conflicts 
with medical requirements. Who can access the 
medical data in a patient’s SMC in an emergency? How 
serious must the emergency be before access is 
granted? Security in pervasive systems tends to be fluid 
and context dependent requiring decisions based on 
imprecise measures of trust and risk. Policies need to 
focus more on how the tradeoffs are addressed rather 
than simply traditional authorisation rules. 
 
7. Conclusions 

The SMC pattern is being used in a several application 
domains. Although our focus so far has been on SMCs 
for health monitoring, we are also working on its use 
for autonomous unmanned vehicles, mobile ad-hoc 
networks and larger distributed systems such as virtual 
organisations. Its design combines the flexibility of an 
asynchronous event bus with a policy-based service to 
implement adaptation and feedback control.   

Ponder2 preserves some of the core Ponder concepts 
yet differs significantly from the original design. Core 
abstractions have been reduced to a minimum to enable 
use on devices with varying capabilities. Dynamically 
loadable factories provide the ability to extend the 
policy service to perform complex functions and to 
interact with heterogeneous resources. By using the 
Managed Object abstraction uniformly across SMC 
resources and core SMC concepts such as domains, 
events and policies we obtain a self-managed system 

where policies can be used for managing other policies, 
domains and events but also a system that promotes 
separation of concerns between different management 
aspects: discovery of new devices, classification and 
domain assignment, policy enforcement.  

Realising autonomous pervasive systems requires 
revisiting techniques developed for larger systems, 
simplifying their design and emphasising their 
complementary functions. The mobility and dynamics 
encountered in pervasive systems, combined with the 
lack of infrastructure and administrative support 
requires designing systems that address tradeoffs in a 
practical way rather than striving for more expressive 
solutions. Realising autonomous pervasive systems will 
require combining techniques from multiple subject 
areas such as AI, network and systems management, 
security and multi-agent systems and integrating these 
techniques on small scale devices as well as in larger 
systems.  

Acknowledgements 

We gratefully acknowledge the contribution of K. 
Twidle, S.-L. Keoh, S. Strowes, S. Heeps and A. E. 
Schaeffer-Filho to the development of the concepts and 
implementations described in this paper. This work was 
financially supported by the UK EPSRC 
(GR/S68040/01 and GR/S68033/01) and the CEC 
(TrustCoM project 1945). 
 
References 

[1] Proc. 4th-7th IEEE Int. Work. on Policies for Distributed 
Systems and Networks. IEEE CS Press 

[2] G.Z.Yang (Ed.), Body Sensor Networks, Springer-
Verlag, March 2006. 

[3] Proc. 4th Int. Conf. On Smart Homes and Health 
Telematics, Belfast 2006.  

[4] Proc. Systems Engineering for Autonomous Systems 
Defence Technology Centre Conf., Edinburgh, 2006. 

[5] http://www.cityware.org.uk/ 
[6] AMUSE Project http://www.dcs.gla.ac.uk/amuse/ 
[7] http://www.doc.ic.ac.uk/vip/ubimon/bsn_node/ 
[8] Keoh, SL et al. Policy-based Management for Body-

Sensor Networks. 4th IEEE Conf. on Wearable and 
Implantable Body Sensor Network, AAchen, 2007 

[9] http://www.gumstix.com/ 
[10] Damianou, N et al. The Ponder Policy Specification 

Language. Policy Workshop, Jan. 2001, Bristol, 
Springer-Verlag, LNCS 1995. 

[11] Russello, G et al. Authorisation and Conflict Resolution 
for Hierarchical Domains. IEEE Workshop on Policies 
for Dist. Sys. and Networks, Bologna, 2007 

[12] Bandara, A. et al. Policy Refinement for DiffServ 
Quality of Service Management. IEEE eTrans. on 
Network and Service Management. 3(2):2-13,  2006  

 


