
Wide-Area SMC Interaction, Implementation and
Emulation

Stephen Strowes∗, Naranker Dulay†, Steven Heeps∗, Sye Loong Keoh†, Emil Lupu†,
Alberto Egon Schaeffer-Filho†, Morris Sloman† and Joe Sventek∗

∗Department of Computing Science, University of Glasgow
{sds,heeps,joe}@dcs.gla.ac.uk

†Department of Computing, Imperial College London
{n.dulay,slk,e.c.lupu,aschaeff,m.sloman}@doc.ic.ac.uk

Abstract— The primary components in a Self Managed Cell
(SMC) – the event bus, the policy management service, and the
discovery service – are required regardless of the scale of the
SMC. However, the behaviour of core services may necessarily
be altered to suit the environment within which an SMC operates.
This paper discusses the design of core services (primarily, the
event bus and discovery service) in wide-area SMCs. Delay-
tolerant networking between SMCs is also discussed, as is the
implementation of core services leading to an emulated network
of SMCs. As the basis for a “healthmap” capable of representing
patient data across a geographic region, the discussion on wide-
area SMCs leads into cursory discussion of geographical imaging
and visualisation systems.

I. I NTRODUCTION

The second demonstrator specified by the AMUSe project
is a “health map”, intended to demonstrate the scalability and
flexibility of the Self Managed Cell (SMC) architecture [1].
With this as our goal, we defined the asthma scenario (whereby
a patient’s asthma inhaler usage is logged at the patient and
carried in a delay-tolerant manner, ultimately to be storedat
the GP surgery), and defined the behaviour of core services at
larger scales [2].

The AMUSe project defines the SMC as a repeating pattern
of management components and multiple managed nodes
intended to manage local-area SMCs and wide-area SMCs
alike. A managed node can be remote, dumb sensor, a remote
“intelligent” devices (including other SMCs), or software
services. The required core services are consistent acrossall
SMCs regardless of environment and scale. All SMCs require
a policy service as the centralised management component, an
event bus for the conveyance of management traffic between
components, and a discovery service to handle the process of
locating other SMCs and group members.

The environments in which we expect these core services
to run, however, can vary widely and so the behaviour of the
services must be altered to suit.

To contrast the mobile personal-area SMC we have previ-
ously focussed on, the wide-area SMCs we envision in [2]
will be required to run on stationary IP-based local-area and
wide-area networks. The notable difference at larger scales
is the behaviour of the discovery service, which varies more
considerably than the behaviour of the event bus at differing
scales.

In a wide-area SMC we are more able to assume permanent
network components which do not appear or disappear fre-
quently (e.g., hosts, printers, databases, etc), which areoften
connected via a wired network infrastructure. We must also
consider that this network environment potentially allowsfor
many more networked components falling under the jurisdic-
tion of one SMC than the localised ZigBee-based personal-
area SMC, owing mainly to the physical characteristics of the
different types of networks.

This paper reviews the design considerations and implemen-
tation experience derived from building a proof-of-concept and
proof-of-existence wide-area SMC and an emulation of a real-
life set of interacting SMCs. We also consider interactions
between mobile and stationary SMCs, and how to transfer
data between SMCs using the principles of delay-tolerant
networking.

While the construction of an actual healthmap was not
achieved due to time constraints, the central issue of core
service scalability has been considered in depth. We believe the
remainder of the healthmap work to pose no major problems
and to be a matter of finding time and resources to build an
implementation.

The remainder of this paper is structured as follows: Section
II discusses the desired behaviour of the core services within
a wide-area SMC. Section III briefly covers the concept of
linking together mobile and stationary SMCs, while Section
IV discusses delay-tolerant networking and how it applies
to our networked SMCs. Section V covers implementation
details, and Section VI the actual experimental setup. The
paper is concluded over Sections VII, VIII and IX which cover
data visualisation for the healthmap, current status, and the
conclusion respectively.

II. CORE SERVICES IN THEWIDE AREA

This section discusses each of the core services separately,
and the requirements placed on each of those in wide-area
environments. The rationale supporting the design of the wide-
area SMC design is detailed more thoroughly in [2].

A. Event Bus

The event bus is required to route management events from
services or devices which are members of an SMC onto any

interested parties within the SMC which have subscribed to
receive events matching certain criteria.

It is essential that the communication of management events
satisfy at most once semantics – i.e. all events are delivered
to each interested component exactly once if the interested
component is still a member of the SMC.

Since there may be causal relationships between pairs of
events from the same source, the event bus must also guarantee
that all events from a particular sender are delivered to each
interested receiver in the order sent. Note that this does not say
anything about delivery order between events fromdifferent
sending components, as this would require a model of causality
for the entire SMC.

One additional caveat if we are to consider a wide-area event
bus is scalability in terms of potential throughput; while we
do not expect management traffic in a sensibly constructed
SMC to be onerous, we should design to scale as far as is
reasonable. (i.e., where there is not an equivalent performance
penalty hit in doing so.)

The policy service generates management traffic, but it does
not do so exclusively; for example, the discovery service uses
the event bus to carry membership announcements, which are
certainly also management traffic. Application traffic may be
carried over the event bus, but applications are free to choose
to use whichever communication mechanisms are available to
them, of which the event bus is only one.

Siena is a content-based publish/subscribe event service,
which can be used in a centralised manner with clients
connecting to a central server [3]. Siena also provides scal-
ability by allowing these servers to connect to each other
in a hierarchical fashion, with events then routed over the
hierarchy. The hierarchical structure is fixed, and so thereis
no scope for reordering of events if routing tables at Siena
nodes change. Siena can also use TCP links between nodes,
so events in transit should not be reordered.

The compact event bus designed for smaller wireless envi-
ronments was designed to act as a centralised event forwarding
mechanism based on the Siena algorithms [4], and so utilising
Siena for the wide-area SMC allows for easy integration of the
two, without the need to translate events between two different
(and potentially complex) event description languages.

B. Discovery Service

Each SMC requires a discovery service, which implements
a protocol to initiate communications between the SMC and
a new device or service, and to subsequently grant or deny
group membership and integration of that device into the
cell. On granting a new device membership to the SMC,
the discovery service will fire anewMember event describing
that member (or anewSMC event if the new member is
another SMC). There also exist symmetricpurgeMember and
purgeSMC events.

The discovery service has several purposes constituting
management of group membership: to handle admission of
new nodes into the cell (employing authentication specific
to the application); to handle handle the removal of nodes

which have left the cell (either cleanly by announcing their
departure, or through being physically removed, disconnected,
etc); and to maintain connectivity to nodes while they are part
of the cell. Services within an SMC should be able to use the
discovery service to lookup other services.

The protocol should mask transient disconnections between
components, e.g. a nurse leaving a room for a short while
to tend to another patient before coming back, or a wireless
connection to a desktop PC being temporarily disrupted.

The discovery service for the personal-area SMC is designed
for heavily localised, connectionless, wireless environments
which make the broadcast-based nature of this discovery proto-
col appropriate. In a more traditional networking environment,
periodic broadcasts in this manner are wasteful.

In more traditional networks the behaviour of the software
components must be reversed, such that devices and services
don’t listen for the discovery service but instead locate the
discovery service (possibly by one of a variety of mechanisms:
DNS, multicast, pre-loaded addresses to ping for the existence
of the discovery service), then initiate communication. Thus,
the actual process of locating nodes is altered to suit the
environment.

Note that we can view two distinct phases to any discov-
ery protocol: initial discovery of services and other SMCs,
followed by subsequent restriction of that set of discovered
items (for example: locate a printer, then choose the most
appropriate; wireless sensors must locate the correct patient’s
discovery service and choose the correct one). The latter
phase can be solved by either of the following methods, for
example: the discovery service could restrict the viewableset
of components to a given node, provided some context (e.g.,
a PC configured to identify itself as belonging to a particular
room may choose the printer also in that room); or a “two-
button” mechanism to enable devices to identify each other
amongst others (thus solving the problem faced by the wireless
sensor).

The latter phase here can be deemed as an application or
environment specific characteristic of SMC interactions. We
focus largely on the initial phase. (Although, in both the
personal-area SMC and wide-area SMC we can offer some
scope for service selection: query based with pre-configured
parameters in the printer example, and proximity based for
wireless sensors.)

1) Discovery Services: Service discovery in traditional net-
working environments utilises directory-based mechanisms to
locate service providers. Access to these directories is provided
by protocols such as the lightweight directory-access protocol
(LDAP).

LDAP is a thoroughly documented protocol [5] which
provides access to various directory services (e.g., an X.500
directory). Hosts can bind or unbind from the LDAP server,
and add, remove or modify entries while they are connected.
We could use LDAP to advertise hosts and services. JNDI is an
interface to allow Java components to access various standard
directory services such as LDAP [6], which may prove useful
for interfacing our existing Java components with traditional

network services to offer a discovery service.
Service discovery protocols generally rely on the existence

of a directory service to arrive at what we would consider
a discovery service. These directories may be centralised or
distributed. Some existing service discovery protocols include
Zeroconf, SLP, UPnP, and Jini.

Zeroconf aims to offer easy setup for IP networks. Vari-
ous implementations exist, such as Apple’s “Bonjour”, and
Linux’s “Avahi”. Zeroconf is based on mDNS, multicast-
DNS, whereby end hosts store their own list of DNS records
describing services they offer. Lookups are performed by
multicasting to a known address and awaiting responses from
matching hosts. This suggests that Zeroconf cannot scale with
the network, since each host receives all lookup packets sent
over the network.

The Service Location Protocol (SLP) is defined by the
IETF for use over IP based network environments [7]. Di-
rectory agents (DAs) in an SLP environment hold the services
registered by service agents (SAs) for other entities to use;
an SA attempts to locate a DA by multicasting to a known
address on joining the network, and DAs periodically multicast
a heartbeat packet to inform the rest of the network of its
presence. The protocol can work in the presence of a DA or
without. If no DA is present, nodes multicast service requests
and SAs respond directly. Multiple DAs can connect to each
other in order to allow this setup to scale. SLP is supported
by various forms of Linux and MacOSX, and open C and
Java implementations are available for download [8]. Its use
of IP multicast may make SLP unsuitable in some network
situations.

Universal Plug and Play (UPnP) is the output of the UPnP
Forum and uses a discovery protocol based on the Simple
Service Discovery Protocol (SSDP) [9]. UPnP uses non-
standard HTTP over UDP across either multicast addresses
or unicast links. Services announce their presence by sending
an ANNOUNCE message, and can query the network for a
resource with an OPTIONS message [10]. Beyond discovery,
the UPnP protocol tackles additional functionality, such as
control & management, event notification, NAT traversal,
amongst others. UPnP is a complex piece of software aiming
to solve a larger problem set than just service discovery.

JINI is an open network architecture for the construction
of distributed systems. JINI services locate the directory
service by requiring that new services or devices multicast
a presence announcement to a known address. On receiving
this announcement, the directory service communicates with
the new device using remote method invocation (RMI), passing
objects to the new device to allow it tojoin with the directory
service, and to performlookup operations. This requirement
forces application to use Java’s RMI, which may not suit all
SMC settings.

Our requirements suggest that we need little more than a di-
rectory service, perhaps with some additional code to provide
exactly the semantics we require; sufficient generality such as
to not restrict the SMC platform to a specific programming
language or operating system suggest that either SLP or an

LDAP server are appropriate for our purposes.
For the implementation of these services, we chose SLP

due to the simplicity of the multicast mechanism on which it
is based and the availability of source code.

C. Policy Service

Policies provide the means of specifying the adaptation
strategy for autonomic management [11]. There are two dis-
tinct types of policy: authorisation policies, which specify
what resources the components assigned to a role can access,
and obligation policies (event-condition-action rules) which
specify how components/services react to events and interact
with other components/services.

When a device is discovered and granted membership of
an SMC the appropriate policies, based on device type, are
deployed to it. This is triggered by anewMember event
generated by the discovery service. Policies can be added,
removed, enabled and disabled to change the behaviour of cell
components at runtime. Policies also govern the behaviour of
the discovery service and the policy service itself, enabling
these to be tailored to specific situations.

One key advantage offered by the policy service is the
ability to load ‘missions’ from one SMC onto another; a
mission is a task which that SMC will carry out even while
disconnected from the parent or peer SMC which loaded the
mission. Thus, we are capable of automatically configuring an
SMC to perform a task (e.g., take readings over a period of
time) while it is mobile.

III. B RIDGING THE GAP

Bridging the gap between the mobile environment, with
ZigBee-based SMCs, and stationary SMCs on an Ethernet
network would simply require a gateway to transfer/translate
messages between the two environments. Given the differing
behaviours of the two realms, message translation may be an
important aspect of the gateway’s behaviour.

Using Figure 1 as a reference, the gateway uses one or
more ZigBee transceivers to periodically broadcast the SMC
ID of the stationary network to which it is attached; this
SMC could be a hospital ward, or a hospital building for
example. To accommodate ZigBee-based SMCs, the gateway
performs membership admittance as per a mobile discovery
service and then advertises the mobile SMC in the SLP DA.
It monitors continued group membership via received unicasts
from mobile SMCs.

The gateway translates messages between formats suitable
for the larger-scale and smaller-scale services, as appropriate.

A gateway can also become an SLP DA, thus directly
handling the membership of mobile SMCs and visibility of
mobile SMCs to the rest of the wide-area SMC. This DA can
share the responsibility of the discovery service with another
agent located in the PC marked “SMC Core”. Likewise, the
gateway can join a distributed Siena system to help with event
handling to and from mobile entities.

Fig. 1. Bridge between traditional Ethernet network and ZigBee network,
over which SMC services will be able to communicate.

IV. D ELAY-TOLERANT NETWORKING

Given our mix of mobile components based on battery-
powered wireless technologies and mains-powered wired com-
ponents, we can obviously draw borders between a fixed
network infrastructure and mobile networked regions, with
transient links connecting the two. It is apparent then that
mechanisms may be required to ease the data transfer between
the two different networks.

Delay-tolerant networking (DTN) suits our SMC architec-
ture given the mobile nature of (some) cells within most
potential environments. A DTN defines regions which nodes
inhabit; inter-region routing takes place between nodes onthe
border of two regions, and intra-region routing is attempted
once a “bundle” of data has arrived at its target region, [12].
DTN region labelling is application-specific, but it is easyto
imagine two extremes: one, where each SMC is a region, and
the other where all SMCs inhabit one large shared region, and
varying levels of fragmentation in-between.

Delay-tolerant networking within the context of interacting
SMCs provides some nice, if subtle, behaviour: the DTN layer
can react to the very same management events that the rest of
an SMC reacts to. For example, the DTN layer does not need
to probe for new connections. Instead, it will accept anewSMC
event and react to it – if thenewSMC belongs to a region which
the DTN layer is configured to connect to, then a connection
can be established, triggering the transmission of previously
stored data in direct response to thisnewSMC event. Likewise,
purgeSMC events close connections, clear up state, and ensure
that undelivered data is retained for later delivery.

The demo application discussed in Section VI sends data via
the DTN, and forgets about that data once acknowledged by
the next node. The DTN implementation uses what is referred
to as custody transfer [12] for data transfer; data is passedto a
custodian who acknowledges receipt, who then forwards to the
next potential custodian or final destination. Custody transfers
fit this scenario if we choose to place trust in the NHS nodes;
other scenarios with untrusted custodians may require different
behaviour of the DTN layer.

Data must be stored on non-volatile storage until the next
node has acknowledged receipt. The next node will be the final
destination if the data is being sent intra-region, otherwise the
DTN node will send the data onto the next region should a
link into that region exist.

It is worth noting that, while long-distance wireless com-
munication technologies may be used by certain types of
mobile SMC (for example, GPRS) which would lessen the
need for such mechanisms, these technologies do not guarantee
network connectivity. That is, even in scenarios where such
technologies were to be included in mobile components, there
still exist periods of time where a delay-tolerant mechanism
between regions is beneficial.

V. I MPLEMENTATION DETAILS OF CORE SERVICES

Implementation of the wide-area SMC involved tying to-
gether a number of largely unrelated codebases. For example,
code which was capable of using the underlying SLP libraries
is also required to use the Siena libraries to generatenewSMC,
newMember, purgeMember and purgeSMC events. Likewise,
code is required to translate Siena events into a form which
Ponder2 can understand.

Each of the primary components implements the Manage-
dObject interface to allow control via the Ponder2 policy
service, and is initiated by the policy service using its XML
markup to define commands. This offers the possibility of
reconfiguring components via the policy service at runtime.

This section details the implementation-specific decisions
for each of the core SMC components.

A. Event Bus

The implementation of the compact event bus we built for
smaller environments (e.g., PDAs) was based on the freely
available Siena codebase, but event types in the compact event
bus do not exactly match those from Siena codebase.

It is ideal for the purposes of integration if events adhere
to the same type descriptions in all mechanisms purporting
to be an event bus, thus allowing an easier transfer of events
between environments without translation. It would not take
much effort to re-engineer the smaller event bus to use the
Siena types, thus leading to easier communication between
the two systems.

The wide-area SMC uses the Siena codebase without mod-
ification. A Managed Object component controlled by the
policy service instantiates the event bus, and allows the policy
service to subscribe to events. This Managed Object is also
responsible for translating events to and from the XML format
Ponder2 requires.

B. Discovery Service

The discovery service, as a mechanism contacted by ser-
vices and devices rather than one which actively seeks new
devices is naturally designed as a directory service for lookups,
as discussed in Section II.

SLP provides a simple mechanism for locating such direc-
tory services. SLP entities use a known IP multicast addressto
query DAs without the UAs or SAs requiring prior knowledge
of the DAs; this allows for DAs to be added to a local-area
network, boosting scalability while not interfering with the
operation of the other agents. The use of multicast, however,

suggests that SLP works within multicast regions, but not
across regions.

There are two potential solutions to this problem:
• UAs and SAs can be pre-configured to know the location

of certain specific DAs, thus using unicast links to operate
across multicast regions. In this situation, the SLP entities
operate like a traditional directory service.

• Multicast regions can be explicitly connected by a net-
work engineer, after which normal SLP functionality can
come into play.

DAs store service advertisements, such as services local
to an SMC like the event bus, and global services such
as the discovery service itself. Thus, within an SMC there
exists at least one directory within which all local services
are registered. Other directories can be added transparently to
allow scaling, should an SMC require it.

SLP scopes are used to restrict the visibility of SMC
components. Each SMC is a member of two scopes,SM-
CDiscoveryZone, and a scope name derived from that SMC’s
ID and type (e.g.,Hospital:0013A90F201C). Only discovery
services advertise themselves within the discovery zone (and
thus globally visible to all other discovery services), with all
other services contained within the SMC-specific scope (only
visible locally).

This is suitable for SMCs located within the same LAN,
assuming multicast is available. For example, we have often
discussed a hospital SMC consisting various wards, offices,
beds, etc.

To cross multicast regions SLP nodes can be made aware
of other directory services at configuration time (and, in some
implementations, runtime). Unicast links can be used to talk
to these other directory services, allowing access in a much
more traditional directory-lookup manner.

The SLP Managed Object is configured with names or types
of other SMCs which it should attempt to connect to; when
one of those is spotted within theSMCDiscoveryZone, the
Managed Object creates a new TCP connection to exchange
information required to initiate policy-level interactions not
otherwise stored in the advertisement, prior to the generation
of a newSMC event within each SMC (see Section V-C).

While the personal-area discovery service worked on the
principle of periodic broadcasts and unicasts to ensure that
stale membership data did not linger, SLP advertisements are
tagged with a lifetime which can be used to achieve the same
effect, provided services are willing to re-advertise themselves
periodically. Thus, services can fail (or be removed without
notification) and related state will eventually be removed.

C. Policy Service

Ponder2 is used as the policy service as before, but we’re
now using Alberto’s code?? to form interactions between the
SMCs. This opens up the possibility of loading missions, etc,
onto child SMCs.

Appropriate Managed Objects for the event bus and the
discovery service have been built to allow policy control of
these components.

D. Delay-Tolerant Networking

While a DTN implementation is available [13], it would
have been time consuming to engineer Java code to reliably
interact with the DTN libraries. Instead, an entirely custom
implementation in Java was built which obeyed the semantics
we required of the asthma scenario, but which will not
interoperate with other DTN implementations.

Data in transit is serialised and stored in non-volatile
storage. Each bundle of data passing through a DTN net-
work is uniquely identified by the destination region plus a
unique identifier maintained at the current node. Thus, a node
forwarding data from multiple nodes can deliver data in the
order it was received, and no mechanism for globally unique
identifiers is required.

Our DTN implementation obeys custody transfer semantics;
that is, that as data is moved upstream the next intermediate
node acknowledges custody of data in transfer, thus allowing
the previous node (the original source or another intermediate)
to immediately free up space.

Nodes are addressed as region:regionid; in the ZigBee
realm, this would translate toPatient SMC ID:Device ID, and
in the wide-area may translate toNHS:gp0001.nhs.sco.uk.

E. Tying SMCs together

Based on the descriptions provided in the preceding sec-
tions, the following sequence of events takes place to pair two
SMCs, as depicted in Figure 2:

1) The DiscoveryService Managed Object of an SMC peri-
odically queries the DiscoveryScope SLP scope for other
SMCs with which communication might be initiated;
SMCs can be set up to either connect to other SMCs
by type, or by a specific name. On location of a valid
SMC, the initiating discovery service Managed Object
will open a TCP connection over which any additional
information required to initiate policy-level interaction
will be exchanged (for example, Ponder2 requires an
object ID (OID) in the remote policy service to initiate
any kind of interaction).

2) Provided both SMCs agree to continue, each discov-
ery service independently generates a “newSMC” event
which carries all the appropriate information: remote
SMC name, type, DTN region, policy OID.

3) The event bus delivers this event to subscribers; one such
subscriber must be the policy service.

4) The policy service in the SMC which did not initi-
ate contact will then initiate the high-level connection
with the initiator using the information carried in the
“newSMC” event.

This final stage, incurring actual policy-level interactions
between SMCs, uses the work we presented in [14].

VI. EXPERIMENTAL SETUP & PROOF OFEXISTENCE

The asthma scenario [2] was designed as a useful example
within the e-health context to demonstrate SMC interactions
and the scalability of the SMC management pattern. In sum-
mary, the asthma scenario calls for asthma inhaler usage to

Fig. 2. Setting up policy-level interactions.

be logged at the patient, and periodically transferred to that
patient’s GP surgery. Data is transferred in a delay-tolerant
manner, and is tagged with both timestamp and location1, to
be later accessed by a healthmap application.

Figure 3 shows the hierarchy designed to run across 49
virtual machines. Each virtual machine is a Xen guest domain,
running kernel version 2.6.11 and configured with 180MB
RAM. Each SMC is using the same wide-area SMC codebase,
though a real-life implementation would utilise the personal-
area SMCs previously developed and methods for interfacing
the two realms (Section III). The SMCs configured and
connected to each other as follows:

• 3 hospitals, connected to each other.
• 3 GP surgeries for each hospital (totalling 9)
• 2 home gateways per GP surgery (totalling 18)
• 1 patient per home gateway (totalling 18)
• 1 ambulance, configured to belong to one of the hospitals.

Thus, the 49 SMCs form a hierarchy, with multiple mobile
SMCs interacting with stationary SMCs.

Patients disappear and reappear regularly, to simulate the
roaming ability of the mobile SMC. Note that all patients may
come into range of the single ambulance inhabiting this world,
or their parent ‘home’ node. In real life, a patient might come
into range of any other node listed here.

A. Description

The “NHS” region is the fixed network infrastructure in
the simulation; all nodes within this region are assumed to be
stationary points which do not move, and do not disappear.
Indeed, in a real situation, the only nodes within the NHS
likely to change regularly are the home gateways.

1Location can either be an accurate location, via GPS, or a location later
appended by the GP surgery based on the postal code region in which the
surgery operates. Datasets mapping postal codes onto geographic coordinates
are freely downloadable (e.g.,http://www.npemap.org.uk/data/,
available as of 07/Aug/2007).

Data is transferred via the DTN from the
PATIENT MOBILE region into the NHS region, where
it is routed to the appropriate GP surgery; the data to be
shipped into the NHS region is tagged not only with the target
region, but also with the target host. We may assume that
the patient’s SMC is loaded with the hostname and region to
send data to when it is loaded with a particular mission.

The simulation runs by instantiating a new “patient” SMC at
a certain time. Days run 24 minutes long, so in each 24 minute
cycle, a patient SMC will be destroyed after 8 minutes, and
restarted after 18 minutes (similar to a fairly normal commute-
work-commute cycle). For the duration of the simulation, a
separate process generates the false inhaler data; this ensures
that data is present for the DTN layer to transfer when the
SMC is restarted, in much the same way that data would be
available when the SMC came into range of to another SMC.

During the ‘hours’ in which the patient is roaming the
controlling script may randomly bring the patient back into
existence for a short time, but this time configured to connect
to the ambulance in the environment. The random chance is
approximately 0.2%. This allows for data to be transferred to
the NHSMOBILE region by the DTN, prior to the patient
“disappearing” again. The ambulance, while technically a
mobile unit, does not appear and disappear from the simulation
in this fashion, but stays in place to demonstrate the DTN
routing appropriately between regions.

In reality, a patient SMC would be configured to talk to
home, or the surgery, or the ambulance, etc, in some order of
preference, rather than the reconfiguration which is required
here. Generally, the patient SMC would only be in wireless
range of one of these entities.

Data is stored at the GP surgery in a database; for
simplicity, each GP surgery node runs a mysql database,
which the application code accessed via JDBC. Data is
stored in the form(uid, patientId, timestamp,
arbitraryData). We assume there must exist other tables

Fig. 3. Simulated SMCs mapped onto DTN regions.

holding other data about the patient, in particular one indexed
by patientId and holding personal data, e.g.,(patientId,
foreNames, surName, DOB, address, ...).

“arbitraryData” is ignored in the simulation, but it could be
used to store the current geographical location logged at the
same time as inhaler usage if we assume the patient is also
carrying a GPS receiver as part of their SMC. Otherwise, given
that GP surgeries operate within certain postal code regions,
we can map usage statistics onto a specific location. This
method, would reduce cost of such a device, but provides
a more coarsely-grained representation of inhaler usage. (In
particular, while it may show longer-term trends such as
greater total inhaler usage per person near to a city, it may not
be able to accurately display city centre inhaler usage during
rush hour, for example.)

B. Running the SMC

Each SMC is represented by a virtual machine. To configure
each VM including its SMC, we requires three independent
configuration files:

1) One config file for the Xen VM itself, configuring its
filesystem, IP address, and volume of RAM.

2) One script to start up the SMC. This script ensures that
the environment is sane, restarts running daemons (such
as slpd, and rmiregistry for the policy service), clears
up stale data (e.g., DTN data, if starting afresh), and
kick starts the policy service. These scripts are named
“start hospital.sh”, “startpatienthome.sh”, etc, though
the only variation between these scripts is in the naming
of SLP scopes. Patient SMCs run this script through
another script which handles the regular appearance and
disappearance of the SMC while still generating data
for the SMC next time it is started. Most configuration
details come from the configuration passed to the policy
service.

3) The policy service reads in ./resource/boot.xml. This file
starts up and configures core services, and defines key
characteristics of the SMC, such as the SMC ID, type
(profile, in Ponder2 parlance), DTN settings such as re-

gion, which regions are valid for upstream transmission,
etc.

Once booted, each virtual machine represents an SMC,
and is capable of connecting to other SMCs via the SLP
mechanisms and interacting with those SMCs.

For the purposes of emulation, SMCs are similar enough
that each of the VM configs, startup scripts, and boot.xml files
were batch generated, with a symlink created from boot.xml
to the configuration appropriate for the host.

VII. V ISUALISATION OF DATA

The purpose of data generation and collection in the en-
vironment we have considered is to facilitate visualisation of
stored data. This section covers briefly some of the software
platforms available which may be capable of handling such
visualisation tasks.

The healthmap we envision is not intended for the visual-
isation of real-time data, but rather for the analysis of data
gathered over time. Given that SMCs must be instructed to
collect data according to certain variables (e.g., characteristics
to monitor, frequency of reading, etc) in advance of any actual
visualisation, we expect the healthmap to be flexible withinthe
dataset available to it. In particular, transferring data across
a DTN may result in the situation where timestamped data
arrives out of order, so the visualisation much be redrawn.
We do not view this as an interactive application capable of
“pushing” missions out to patient SMCs.

There are various visualisation tools (commonly, Geo-
graphic Information System, or GIS) available for use, each
of which allows some level of configuration to allow the
customised display of various datasets.

Quantum GIS is an open-source, 2-dimensional GIS [15],
capable of generating custom overlays for the visualisation of
datasets. However, the software does not come bundled with
geographic data while other applications do.

Google Earth is a commonly used GIS available free for
use on multiple platforms. Unfortunately, to use Google Earth
as a GIS platform requires purchase of the “Pro” version, at
a cost of $400 per annum.

Fig. 4. UK map displaying postal code regions.

NASA World Wind (and the recently released World Wind
Java SDK) is a strikingly similar project to Google Earth, in
that it provides a 3-dimensional globe which can be zoomed,
rotated, spun, etc. World Wind provides an open platform from
which all manner of visualisation tools can be constructed.
The new Java SDK should allow for an open, cross-platform
approach.

Perhaps the easiest to integrate software currently available
is the NASA World Wind Java SDK [16], released May
2007.The Java SDK would offer the easiest, most malleable
method of building a custom visualisation system. Figure 4
demonstrates a basic overlay of postal code regions mapped
onto their geographic coordinates using NASA World Wind;
a visualisation using the Java SDK would likely be easier to
build, but would appear similar to the image shown here.

VIII. C URRENT STATUS

Each of the various core SMC components as described in
this document have been built and tested. The delay-tolerant
networking code has also been built and tested. Each of these
components has been used within the context of the network
emulation we constructed across multiple virtual machines.

The simulated network did not run to the full 49 VMs,
but instead ran to 33, given the time constraints placed on
generating the simulation. There is no reason why 49 SMCs
would pose any problems, given the working status of the
simulation at 33.

Having successfully run this emulated SMC infrastructure,
the simulation of data generation for the purposes of display on

a healthmap is close to complete. Additional work is required
to retrieve data from databases and draw data onto a map
surface to demonstrate a simple healthmap application.

Worth serious consideration is a more efficient method of
storing of data across GP surgeries, in particular one designed
with NHS concerns in mind.

Further, the real-world equivalent of this network would see
mobile units using a more lightweight codebase to the wide-
area SMC codebase they are using here; each node in the
simulation uses the same codebase on the assumption that the
core services are the same no matter the size of the SMC, and
that the building of a gateway between the mobile realm and
the stationary realm is an achievable task.

IX. CONCLUSION

We have built SMCs suitable for wide-area environments
which behave differently to the body-area SMCs previously
explored for monitoring patient state. These wide-area SMCs
expect the presence of IP-based networks.

To bridge the two very different worlds, we have considered
delay-tolerant networking for data transfer, and how the be-
haviour of the two discovery services can be mapped to avoid
problems. The event bus is designed such that events crossing
the boundaries can still be forwarded in either realm, and the
same policy service is used in all SMCs.

Thus, we have constructed SMCs to operate in two very dif-
ferent environments which should be able to interoperate with
each other, autonomously forging connections and managing
themselves.

Our work leads nicely into the concept of a “healthmap”,
which would be capable of building visualisations of data
stored at GP surgeries.

REFERENCES

[1] E. Lupu, M. Sloman, N. Dulay, and J. Sventek, “AMUSE:
Autonomic Management of Ubiquitous Systems for e-Health,”
http://www.dcs.gla.ac.uk/˜joe/auxiliary/files/amuse-CfS-final.pdf, last
accessed 07/Aug/2007.

[2] S. Strowes, “Health Map Scenario: Asthma,”
http://www.dcs.gla.ac.uk/˜sds/papers/sdshealthmap07.pdf, University
of Glasgow, Tech. Rep., Febuary 2007.

[3] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design andEvaluation
of a Wide-Area Event Notification Service,”ACM Transactions on
Computer Systems, vol. 19, no. 3, pp. 332–383, Aug. 2001.

[4] S. Strowes, N. Badr, S. Heeps, E. Lupu, and M. Sloman, “An Event
Service Supporting Autonomic Management of Ubiquitous Systems for
e-Health,” ICDCS Workshops, pp. 22 – 27, 2006.

[5] O. Foundation, “Lightweight Directory Access Protocol(LDAP): Tech-
nical Specification Road Map,” http://tools.ietf.org/rfc/rfc4510.txt, June
2006.

[6] “Core Java: Java Naming and Directory Interface (JNDI),” http://java.
sun.com/products/jndi/, accessed 07/Aug/2007.

[7] E. Guttman, C. Perkins, J. Veizades, and M. Day, “ServiceLocation
Protocol, Version 2,” http://tools.ietf.org/rfc/rfc2608.txt, June 1999.

[8] “OpenSLP,” http://www.openslp.org/, accessed 07/Aug/2007.
[9] Y. Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, “Simple Service

Discovery Protocol/1.0,” Oct 1999, expired Apr 2000. http://tools.ietf.
org/id/draft-cai-ssdp-v1-03.txt, accessed 08/11/2006.

[10] S. Helal, “Standards for service discovery and delivery,” PERVASIVE
Computing, vol. 1, no. 3, pp. 95 – 100, July – Sept 2002.

[11] N. Damianou, N. Dulay, E. Lupu, and M. Sloman, “The ponder policy
specification language,” inPOLICY ’01: Proceedings of the Interna-
tional Workshop on Policies for Distributed Systems and Networks.
London, UK: Springer-Verlag, 2001, pp. 18–38.

[12] F. Warthman, “Delay-Tolerant Networks (DTNs); A Tutorial,” May
2003.

[13] “Delay Tolerant Networking Research Group,” http://dtnrg.org/, accessed
07/Aug/2007.

[14] A. E. Schaeffer-Filho, E. Lupu, N. Dulay, S. L. Keoh, K. Twidle,
S. Heeps, S. Strowes, and J. Sventek, “Towards Supporting Interactions
Between Self-Managed Cells,”1st Internation Conference on Self-
Adaptive and Self-Organizing Systems (SASO), vol. 0, pp. 224 – 236,
July 2007.

[15] “Quantum gis website,” http://qgis.org/, accessed 7th Aug, 2007.
[16] “Nasa world wind: Java sdk,” http://worldwind.arc.nasa.gov/java/, ac-

cessed 7th Aug, 2007.

