#### Self-Managed Cells and their Federation

Prof. J. Sventek University of Glasgow joe@dcs.gla.ac.uk

In collaboration with M. Sloman, E. Lupu, and N. Dulay of Imperial College London

# Outline

- Healthcare application scenario
- Basic architectural building block SMC
- Body-area network (SMC in the small)
- SMC federation
- Integration into health information systems (SMC) in the large)
- Summary/conclusions

#### 21 June 2007

DEBS 2007 Presentation

# Patient monitoring

- Average age of population in most countries is shifting to higher values (baby boomers)
- Consumption of health care is strongly correlated with age
- Patient recovery from major health events is substantially more successful if this recovery can take place in familiar environs
- Critical care delivery is the most expensive form of health care
- Out-patient monitoring of stable critical care patients should lead to substantially better outcomes while substantially reducing costs.
- Any such system must be integrated into the overall IT infrastructure supporting health care delivery.



- Swallow/inject intelligent sensors and actuators
- Reaction to complex drug regimes
- High  $\rightarrow$  lower risk monitoring
- Mobility for chronically ill
- Greater out-of-hospital patient management
- Mass data & analysis
- Emergency feedback or response

21 June 2007

DEBS 2007 Presentation

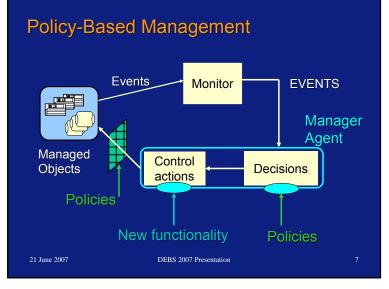
# Autonomic Management

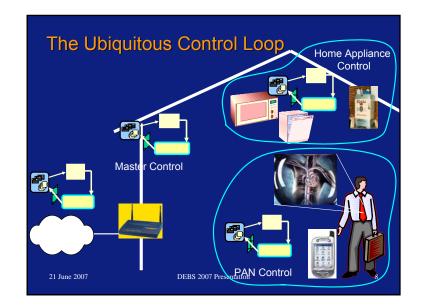
- Autonomic self-organising, self-configuring, self-healing, self-optimising, *adaptive* management
- Remove human from the loop
- "Intelligent" agents, mobile agents, policy, genetic algorithms?

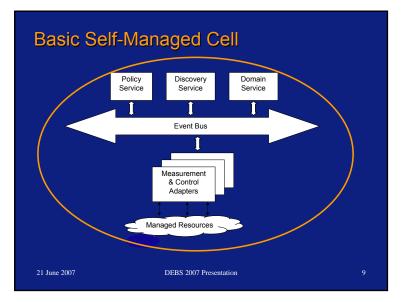


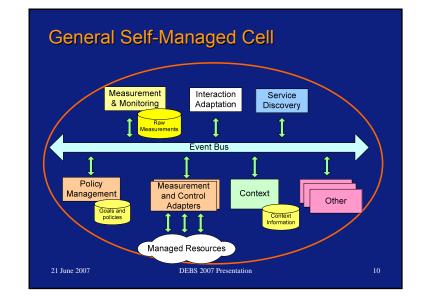


Policy-based control loopsSelf-Managed Cell (SMC) architecture


21 June 2007


DEBS 2007 Presentation


# **Basic Model**

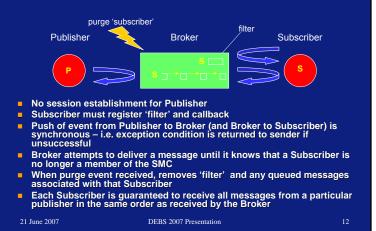

- Patient wears non-invasive sensors as specified by his/her physician (same measurements that would be taken in the critical care unit)
- These sensors are knitted into an autonomic, body-area, distributed system
- Each such autonomic system (a self-managed cell [SMC]) federates with appropriate other SMCs; in particular, each federates with the SMC that represents the IT infrastructure supporting the healthcare delivery system
- The connectivity that enables this federation (in particular, connectivity back to the responsible care giver) must be spectrum and protocol agnostic
- 21 June 2007

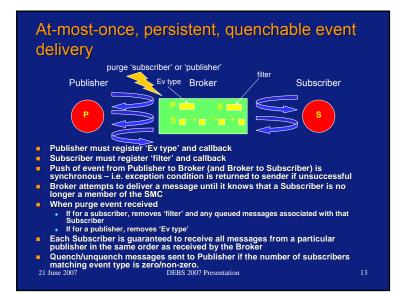
DEBS 2007 Presentation











# **Body-area Architecture**

- Event bus is publish/subscribe using a broker
- The broker is content-based
- A discovery/membership service is concerned with keeping track of which devices and services are "in" a self-managed cell
- Each device has a unique identifier (e.g. 802.\* MAC address of one of the communication interfaces)

DEBS 2007 Presentation

### At-most-once, persistent event delivery





# How to incorporate a sensor/mote into this structure?



## Authentication

21 June 2007

- performed SMC wide (device/service is a member of the SMC)
- integrity/confidentiality are required in health-care scenarios

DEBS 2007 Presentation

 access control – component-specific, done through policies (authorization policies)

# Discovery/Membership

- Detect new devices within communication range
- Vette device for membership
  - obtain device profile
- perform any required authentication
- Generate new cell member event
- Determine when device leaves cell
  - Generate cell member left event
- Discovery protocol DOES NOT use the event system to discover and negotiate with devices; the discovery service DOES use the event service to announce the addition/removal of a member

| DEBS 2007 Presentation | 16                     |
|------------------------|------------------------|
|                        | DEBS 2007 Presentation |

#### Where do the new device/service events go?

- The system must be primed with obligation policies that listen for these events
- Upon receipt of one of these events, the action enters the device/service into appropriate domain[s]
- A particular obligation policy will be interested only in particular types of devices or services; new device/service events may trigger several such obligation policies
  - if can specify event type and filter expression upon subscription, then only the particular obligation policy that is interested in that particular device/service type will be notified
  - if cannot specify filter expression to event bus, than all such policies will be invoked; only those for which the condition is true will perform actions

| 21 June 2007 | DEBS 2007 Presenta |
|--------------|--------------------|
|              |                    |

## **Discovery protocol**

- Cell is centred around event bus broker
- Device that contains the broker broadcasts its identity message at frequency ω<sub>B</sub> (the identity message has the form "id; type[; extra]")
- Other devices respond to broker identity message with unicast device identity message
- Broker device and other device carry on vetting protocol (obtain profile[; authenticate])

#### 21 June 2007

DEBS 2007 Presentation

#### 18

## Discovery protocol (cont)

- After other device knows that it has been granted membership, it unicasts its identity message at frequency ω<sub>n</sub>
- If broker device misses n<sub>D</sub> successive device identity messages, it declares the device to have forfeited its membership in the cell
- If the other device misses n<sub>B</sub> successive broker device identity messages, it infers that it is no longer a member of that cell

DEBS 2007 Presentation

- Stability of system requires n<sub>B</sub> ω<sub>B</sub> = n<sub>D</sub> ω<sub>D</sub>
- Currently exploring ramifications of  $\omega_{\rm B} \neq \omega_{\rm D}$

## Communication primitives required

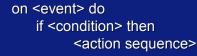
- Event bus is only used for communications between cell management elements
- Basic communication primitives are required to implement the event bus communications, required protocols, and general communication between application components

DEBS 2007 Presentation

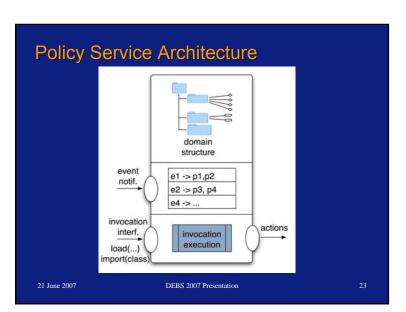
- broadcast, asynchronous messaging
- multicast, asynchronous messaging
- unicast, asynchronous messaging
- remote method invocation
- reliable, flow-controlled streams

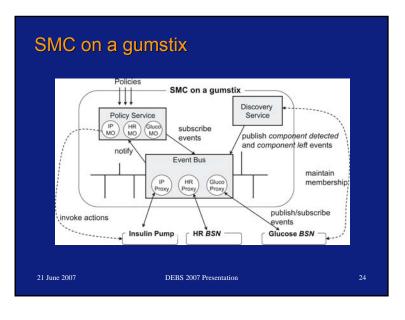
# What about services?

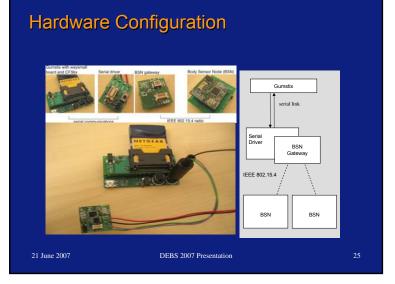
- Devices are discovered by the discovery service.
- When a device becomes part of the cell, it generates events announcing active services that it provides/hosts
- While a member of the cell, each device generates an event whenever another service that it provides/hosts becomes active or if such a service is deactivated

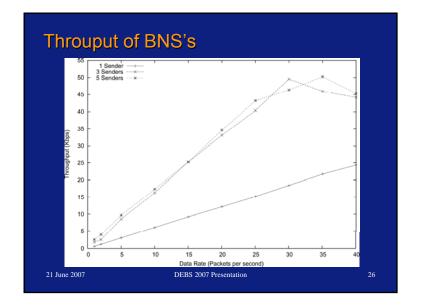

| 21 June 2007 | DEBS 2007 Presentation |  |
|--------------|------------------------|--|
| 21 June 2007 | DEBS 2007 Presentation |  |
|              |                        |  |




#### two types of policies

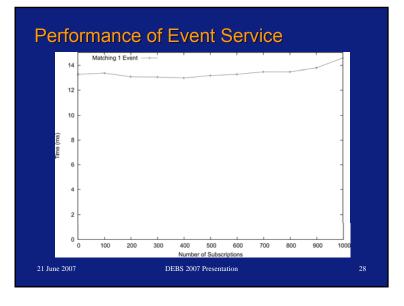

- authorisation policies define what actions are permitted under given circumstances
- obligation policies define what actions to carry out when specific events occur if certain conditions are fulfilled (ECA rules)
- The general format of an obligation policy follows that of traditional ECAs:


DEBS 2007 Presentation



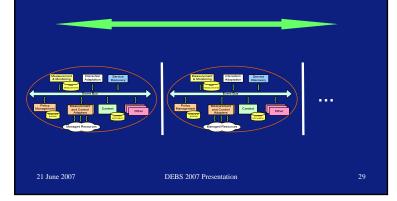

21 June 2007









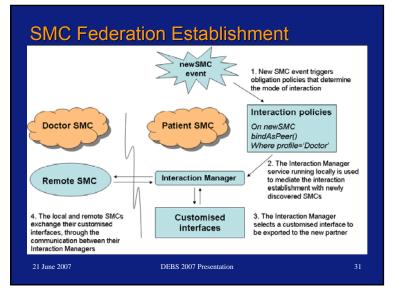


# Performance of the Policy Service

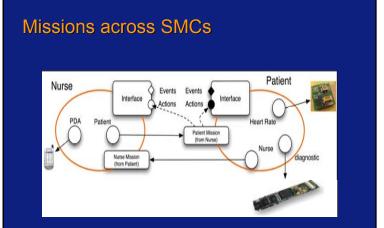
|        | Task                                                                                               | Time (ms) |
|--------|----------------------------------------------------------------------------------------------------|-----------|
| 1      | Executing a policy (no condition, empty action)                                                    | 13.6      |
| 2      | Executing a policy (no condition, an action to issue a command to BSN via IEEE 802.15.4)           | 48.2      |
| 3      | Executing a policy (a condition, an action to publish a new event)                                 | 136       |
| 4      | Executing a policy (a condition, an action to create a managed object upon discovery of a new BSN) | 168       |
| 21 Jur | the 2007 DEBS 2007 Presentation                                                                    | 27        |



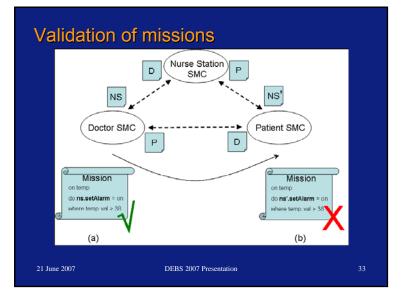
# **Federated SMCs**

Peer SMCs (peer devices, peer networks, SLAs...)





# **Federation Essentials**

- Architecture traditional flat, one-dimensional architecture vs. hierarchical, multi-tiered architecture
- Ontology federates must possess an agreed vocabulary of common terms and their meanings
- Security and privacy as the level of integration increases between autonomous managed resources, protecting the security and privacy of these resources also increases; it is critical not to assume that every federate has access to all distributed resources; there may be a natural precedence among federates
- Negotiation given the potentially ephemeral nature of these federations, negotiation protocols between SMC's to create these federations are essential


| 21 | June | 2007 |  |  |
|----|------|------|--|--|
|    |      |      |  |  |

DEBS 2007 Presentation





21 June 2007 DEBS 2007 Presentation



# Wide-area SMC implementation

- Body-area content-based event bus modelled after Siena formats and features, without broker network; therefore, event bus implementation in the wide area is simply Siena
- The discovery service is a combination of Service Location Protocol (SLP) and active registration within directory services (e.g. LDAP)
- Ponder2 (the implementation in the body-area system) was designed for use at all levels of scale

DEBS 2007 Presentation

# SMCs in the large

- As we saw earlier, the basic features of an SMC are an event bus, a discovery service, and a policy service
- The implementation environment for the bodyarea distributed system is particularly simple
- How does one translate these concepts to a wide-area context?
- How does one exploit the ephemeral federation of mobile SMCs with fixed SMCs?

DEBS 2007 Presentation

# Communication of information over ephemeral federations

- The federation mechanism permits two SMCs to interact subject to the defined interaction policies
- The usual reason for federation is to transmit information from mobile, constrained environments for storage and analysis in less-constrained, fixed environments.
- As indicated earlier, different applications will require different interaction styles to meet their needs
- In addition to the urgent delivery of critical events, we have explored more relaxed forms of data transfer using delay tolerant networking techniques

21 June 2007

DEBS 2007 Presentation

9

# **DTN** scenario

- Track the use of asthma inhalers across a geographically-distributed population
- Patient is equipped with an inhaler that simply counts the number of uses
- Inhaler contains the battery, storage space, networking capabilities, and processing power required of an SMC.
- Goal is to monitor inhaler usage and gather statistics on seasonal and geographical variation in inhaler usage

#### 21 June 2007

21 June 2007

DEBS 2007 Presentation

# **Specifics**

- Prior to use, an inhaler is loaded with enough patient-specific information to allow for data collection to take place
- Inhaler count data, together with identifying and location information, finds its way to the patients general practitioner's surgery (doctor's office)
- Statistical queries can be made of the distributed asthma data within the wireline environment
- The count data for a patient should be uploaded whenever the inhaler SMC is able to federate with other SMCs that are part of the NHS fabric

#### 21 June 2007

DEBS 2007 Presentation

38

## **SMCs** involved

- Inhaler (many, mobile)
- Ambulance (fewer, mobile)
- Doctor's surgery (even fewer, fixed)

DEBS 2007 Presentation

Hospital (small number, fixed)

# DTN

- Whenever the inhaler can federate with an instance of one of the other three SMC types, it issues a custody transfer request for a bundle containing its data
- The SMC that accepts the custody transfer associates its current location with the bundle and then forwards it onto the final destination (doctor's office/surgery)
- If the transfer has been to an ambulance, then it will eventually transfer custody of the now augmented packet to the next hospital with which it can federate
- Once received by a fixed SMC, the data will be transferred to its final destination.

| 21 June 2007 | DEBS 2007 Presentation |
|--------------|------------------------|
|              |                        |

# Conclusions

- Prototype implementation has demonstrated that the SMC pattern can be applied to e-Health applications
- Event bus provides sufficient performance, modularity, and scale to adequately address e-Health management traffic
- ECA policy-based management provides a simple and effective strategy for encoding the necessary adaptation strategy for e-Health applications
- The SMC concept can be extended to larger scale environments
- The federation techniques that were developed for mobile SMCs also work when federating with larger scale, fixed environments

| 21 June 2007 | DEBS 2007 Presentation |
|--------------|------------------------|
|              |                        |

# **Future Work**

- Security and trust in body area networks
- Negotiation protocols required for peer SMC's to federate (Glasgow PhD dissertation)
- Augmentation of the basic system with Al inference engines (e.g. support vector machines)

### For more information http://www.dcs.gla.ac.uk/amuse/

| 21 | June | 2007 |  |
|----|------|------|--|
|    |      |      |  |

DEBS 2007 Presentation

12