Introducing myself

- Heterogeneous data management.
- Imperfect data management.

Dealing with Imperfection in Schema Integration Some preliminary ideas

Matteo Magnani

Nikos Rizopoulos

Dept. of Computer Science University of Bologna Via Mura A.Zamboni, 7 40127 Bologna (Italy) Dept. of Computing 180 Queen's Gate South Kensington Campus Imperial College London SW7 2AZ London (UK)

Outline

Imperfect data: an overview.

Outline

- Imperfect data: an overview.
- Uncertainty in data integration based on semantic schema matching.
 - Semantic Schema Integration.
 - Adding uncertainty.

Imperfect Data: An Overview

A taxonomy of imperfection

To identify the main classes of imperfection, we use the following scenario:

(Complete) Absence

Absence

- All our belief is committed to the known set of alternatives.
- For example: "We do not know the age of John".

Imprecision: Non-specificity

- Imprecision concerns the cardinality of our believes.
- When we believe in a crisp set, imprecision is called non-specificity.
- For example: "John is between 170 and 180 cm. tall".

Imprecision: Vagueness

- If a set representing our belief is not crisp, imprecision is called vagueness.
- For example: "John is not very tall"

Uncertainty

- We have uncertainty when we do not commit all our belief.
- For example, "John should be 27 y.o.".

Туре	Abbr	Example (John's tallness)	
Absence	ABS	Not known.	
Non-Specificity	NS	Between 180 and 190 cm.	
		183 or 187 cm.	
Vagueness	VAG	Not very tall.	
Uncertainty	UN	Perhaps, 183 cm.	

Uncertainty in Schema Integration based on Semantic Schema Matching

with Nikos Rizopoulos

Dealing with Imperfection in Schema Integration - p. 1

= \cap \subset \supset \cup \neq

SEMANTIC RELATIONSHIPS

= \cap \subset \supset \cup \neq

Dealing with uncertainty

Dealing with uncertainty

Dealing with uncertainty

Identify uncertain relationships.

- Identify uncertain relationships.
- Produce uncertain partial integrated schemas.

- Identify uncertain relationships.
- Produce uncertain partial integrated schemas.
- Put together the uncertain partial integrated schemas, to obtain an uncertain integrated schema.

- Identify uncertain relationships.
- Produce uncertain partial integrated schemas.
- Put together the uncertain partial integrated schemas, to obtain an uncertain integrated schema.
- Query the database.

- Dempster–Shafer's theory to represent believes in relationships.

$$\Theta = \{=, \cap, \subset, \supset, \cup, \neq\}$$

- $m(\{=\}) = .4$
- $m(\{\supset\}) = .3$
- $m(\{ \subset \}) = .3$

$$\Theta = \{=, \cap, \subset, \supset, \cup, \neq\}$$

•
$$m(\{\cup, \neq\}) = 1$$

$$\Theta = \{=, \cap, \subset, \supset, \cup, \neq\}$$

•
$$m(\{=\}) = .2$$

•
$$m(\Theta) = .8$$

$$\Theta = \{=, \cap, \subset, \supset, \cup, \neq\}$$

•
$$m(\Theta) = 1$$

- Scalable.
- Experts can be software agents or humans.

 \mathbf{Exp}_1 (Cardinality):

 $\ \, \blacksquare \ \, m(\{\cap,\supset,\cup,\neq\})=1$

Exp₁ (Cardinality): $m(\{\cap, \supset, \cup, \neq\}) = 1$ **Exp**₂ (Thesaurus): $m(\{\supset\}) = .5$ $m(\{=\}) = .2$

•
$$m(\Theta) = .3$$

Exp₁ (Cardinality): $m(\{\cap, \supset, \cup, \neq\}) = 1$ **Exp**₂ (Thesaurus): $m(\{\supset\}) = .5$ $m(\{=\}) = .2$ $m(\Theta) = .3$

Exp $_3$ (Human):

●
$$m(\{=, \supset, \cup\}) = 1$$

Exp₁ (Cardinality): $m(\{\cap, \supset, \cup, \neq\}) = 1$ **Exp**₂ (Thesaurus): $m(\{\supset\}) = .5$ $m(\{=\}) = .2$ $m(\Theta) = .3$

Exp $_3$ (Human):

- $m(\{=, \supset, \cup\}) = 1$
- \oplus (Combination):
 - $m(\{ \supset \}) = \frac{5}{8}$
 - $\ \, {} \quad m(\{\supset,\cup\})=\tfrac{3}{8}$

Unc. partial integrated schemas

Given two objects, some belief is committed to each possible relationship between them.

Bel: = \cap \subset \supset \cup \neq

Unc. partial integrated schemas

- Given two objects, some belief is committed to each possible relationship between them.
- From each possible relationship we can obtain a partial integrated schema.

Bel: = \cap \subset \supset \cup \neq \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow PI(=) PI(\cap) PI(\subset) PI(\supset) PI(\cup) PI(\neq)

Unc. partial integrated schemas

- Given two objects, some belief is committed to each possible relationship between them.
- From each possible relationship we can obtain a partial integrated schema.
- The belief committed to each partial integrated schema is the same previously committed to the corresponding possible relationship.

Uncertain relationship (Student-UG):

•
$$m(\{\supset\}) = \frac{5}{8}$$

•
$$m(\{\supset,\cup\}) = \frac{3}{8}$$

Uncertain partial integrated schema:

•
$$m({\operatorname{PI}(\supset)}) = \frac{5}{8}$$

•
$$m({\operatorname{PI}(\supset), \operatorname{PI}(\cup)}) = \frac{3}{8}$$

Main idea: take all possible combinations of uncertain partial integrated schemas.

$$= (A,B), \neq (A,B)$$

 $= (B, C), \neq (B, C)$

Some issues:

Compact representation.

Dependencies.

Uncertain relationship (Student–UG):

•
$$m(\{\supset\}) = \frac{5}{8}, m(\{\supset,\cup\}) = \frac{3}{8}$$

Uncertain relationship (res-res):

•
$$m(\{=\}) = \frac{1}{3}, m(\{\neq\}) = \frac{2}{3}$$

Uncertain partial integrated schema:

- $m(\{\mathsf{PI}(\supset)\} \times \{\mathsf{PI}(=)\}) = \frac{5}{24}$
- $m(\{\mathsf{PI}(\supset),\mathsf{PI}(\cup)\}\times\{\mathsf{PI}(=)\})=\frac{3}{24}$
- $m(\{\mathsf{PI}(\supset)\} \times \{\mathsf{PI}(\neq)\}) = \frac{5}{12}$
- $m(\{\mathsf{PI}(\supset),\mathsf{PI}(\cup)\} \times \{\mathsf{PI}(\neq)\}) = \frac{3}{12}$

- $= (A, B), \neq (A, B)$
- $= (B,C), \neq (B,C)$
- $= (A, C), \neq (A, C)$

- $= (A, B), \neq (A, B)$
- $= (B,C), \neq (B,C)$
- $= (A, C), \neq (A, C)$

A, B	B, C	A, C	Allowed
=	=	=	
=		\neq	
=	\neq		
\neq			
\neq		\neq	
=	\neq	\neq	
\neq	\neq		
\neq	\neq	\neq	

- $= (A, B), \neq (A, B)$
- $= (B,C), \neq (B,C)$
- $= (A, C), \neq (A, C)$

A, B	B, C	A, C	Allowed
=	=	=	Y
=	=	\neq	Ν
=	\neq	=	Ν
\neq	_	_	Ν
\neq	=	\neq	Y
=	\neq	\neq	Y
\neq	\neq	=	Y
\neq	\neq	\neq	Y

Querying the database

- No idea...
- It should not be very difficult to define the semantics of a query.
- Efficiency problems.
 - Cardinality reduction.
 - Compact query plans.

Concluding remarks

- Uncertainty is one of many possible types of imperfection/ignorance.
- We start our investigation from a method of schema integration based on semantic schema matching.
- In real cases of data integration, it can be difficult to identify certain semantic relationships.
- We have presented some preliminary ideas on how to extend this method to deal with uncertainty.

Discussion

Dealing with Imperfection in Schema Integration

Some preliminary ideas

Matteo Magnani

Nikos Rizopoulos

Dept. of Computer Science University of Bologna Via Mura A.Zamboni, 7 40127 Bologna (Italy) Dept. of Computing 180 Queen's Gate South Kensington Campus Imperial College London SW7 2AZ London (UK)