
Towards a unified model for
heterogeneous data

Matteo Magnani Danilo Montesi

Dept. of Computer Science
University of Bologna

Via Mura A.Zamboni, 7
40127 Bologna

Italy

Department of Mathematics
and Informatics,

University of Camerino
Via Madonna delle Carceri, 9

Camerino (MC)
Italy

Towards a unified model for heterogeneous data – p. 1

Introduction

� In a growing number of applications the classic
relational model captures only a fraction of
relevant data.
� Biological databases.
� XML data/document repositories.
� The World Wide Web.
� Multimedia data repositories.

� Specialized systems, models, and theories are
available, customized to specific kinds of data.

� It is not unusual to have applications based on
combinations of these systems.

Towards a unified model for heterogeneous data – p. 2

Introduction

� In the (not so far) future, everything about our
life will be stored in a (not very large) database
[2].

Towards a unified model for heterogeneous data – p. 3

Introduction

� The objective is to have a single system storing
heterogeneous data, and providing unified and
homogeneous representation and
manipulation functionalities.

� Existing system are already providing support
for heterogeneous data.

� For instance, many information systems
manipulate mixed XML and relational data.

Towards a unified model for heterogeneous data – p. 4

The case of XML data

First main approach: Adaptation.
� Trees are converted to tables, and vice versa.
� SQL/XML (Oracle, DB2), FOR XML clause

(SQL Server).

Towards a unified model for heterogeneous data – p. 5

Adaptation

� XML-enabled systems readily available.
� Usable if the difference is more on the format

than on the model.

Towards a unified model for heterogeneous data – p. 6

The case of XML data

Second main approach: Rethinking.
� New ad hoc systems.
� Tamino, eXist, Galax.

Towards a unified model for heterogeneous data – p. 7

Rethinking

� It needs time (more suited to academics and
small applications than commercial/critical
systems).

� It promises better results.
� At the end, many functionalities are not

substantially different from those found in
traditional systems→We would like to
identify and change only those features that
are specific to XML.

Towards a unified model for heterogeneous data – p. 8

The case of XML data

Third main approach: Extension.
� New complex types are defined.
� Oracle’s XML Type.

Towards a unified model for heterogeneous data – p. 9

Extension

� Good choice to take care of object
heterogeneity.

� Still constrained to be embedded into
non-flexible relational structures.

� Very useful when the new data is not much
structured.

� Otherwise, we must reimplement database
functionalities inside the objects (=Rethinking).

Towards a unified model for heterogeneous data – p. 10

Some basic considerations (I)

� There are operations which cannot be
described by a simple, general, and compact
model, as they are meaningful only when
applied to particular kinds of data.

� For instance, the extraction of a color
histogram from an image.

� Therefore, a model for heterogeneous data
cannot describe everything, and must hide the
details about elementary pieces of data.

� The level of detail is not absolute, but it
depends on our requirements.

Towards a unified model for heterogeneous data – p. 11

Some basic considerations (II)

� There is a (limited) number of aggregation
patterns for elementary kinds of data.

WEB PAGE

<HEAD>

<TITLE>

ORANGE

RED

YELLOW

Towards a unified model for heterogeneous data – p. 12

Some basic considerations (III)

� There are operations that we can nearly always
perform on collections of data, and that can be
modeled aside from its peculiarities.

� ’Give me all O where P.’
� ’Give me all Web Pages where the Title is

“home page”.’
� ’Give me all Tuples where the Identifier is

’001’.’
� ’Give me all Images where the prevalent color

is Green.’

Towards a unified model for heterogeneous data – p. 13

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

� 3-level architecture of (relational) databases.
� We re-define the logical level.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Collections

O
O

O
O

O

O
O

O

� Collections are sets, multisets, lists of objects.
� For example, relations are sets of tuples.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

� Objects are aggregations of atoms.
� Objects can be tuples, trees, graphs.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

� Atoms hide data heterogeneity.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

� The model instantiates to XQuery Sequences.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

� The model instantiates to Relational Tables.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.

Towards a unified model for heterogeneous data – p. 14

Overview of the Algebra

LOGICAL LEVEL

External

Collections

O
O

O
O

O

O
O

O σ π ε γ ς ∪ −

Algebra

LOGICAL LEVEL

Collections

OO
O

� Ex: σP(C) = {c | c ∈ C ∧ P(c)}
� Based on abstract properties of the parameters.
� P returns true if an object c satisfies some

contraints, false otherwise.
� We want to define the algebra without

specifying P and other object-dependent
parameters.

Towards a unified model for heterogeneous data – p. 15

Overview of the Algebra

LOGICAL LEVEL

External

Intermediate

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

σ π ε γ ς ∪ −

Algebra

SP, PF, EF, SF, NM

Object Manipulation

LOGICAL LEVEL

Collections

OO
O

Objects

A A

AA

� A few kinds of parameters are enough to
define the external algebra (SP,PF,EF,SF,NM).

� The intermediate language manipulates the
internal structure of single objects (Ex: XPath).

Towards a unified model for heterogeneous data – p. 15

Overview of the Algebra

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

σ π ε γ ς ∪ −

Algebra

SP, PF, EF, SF, NM

Object Manipulation

=, <,>, contains()

Atom Manipulation

LOGICAL LEVEL

Collections

OO
O

Objects

A A

AA

Atoms

A

� Atomic functionalities depend on the type of
the atoms.

Towards a unified model for heterogeneous data – p. 15

Overview of the Algebra

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

σ π ε γ ς ∪ −

Algebra

SP, PF, EF, SF, NM

Object Manipulation

=, <,>, contains()

Atom Manipulation

LOGICAL LEVEL

Collections

OO
O

Objects

A A

AA

Atoms

A

Relational Algebra
TAX

Nested Relational Algebra

Towards a unified model for heterogeneous data – p. 15

Expected Advantages

� For each layer, development of specific
optimization techniques.
� To manipulate large sets of objects.
� To navigate XML trees.
� To manipulate atoms (images, media, text).

� Easy extension of the system.
� To add support for atomic types.
� To add support for tuples, trees, graphs,

and other aggregation patterns.

Towards a unified model for heterogeneous data – p. 16

Parametric Algebra

� Relational Algebra (RA) works well with
relational data.

� As the relational model is a specific case of
ours, our parametric algebra should reduce to
RA.

� Therefore, we use RA as a starting point to
define our algebra.

� We first generalize its operators, then define
new operators for missing functionalities.

Towards a unified model for heterogeneous data – p. 17

Parametric Algebra

� σ and π are two basic functionalities borrowed
by the relational context.

Towards a unified model for heterogeneous data – p. 18

Parametric Algebra

� σ selects some of the objects in a collection.

Towards a unified model for heterogeneous data – p. 19

Parametric Algebra

� π extracts part of the objects.

Towards a unified model for heterogeneous data – p. 20

Parametric Algebra

� The opposite of projection is embedding (ε).
� Information to construct new data provided as

a parameter of the operator.

Towards a unified model for heterogeneous data – p. 21

Parametric Algebra

� As objects are not supposed to be elementary,
we also need a grouping operator (γ).

Towards a unified model for heterogeneous data – p. 22

Parametric Algebra

� The opposite of a grouping is a splitting (ς).

Towards a unified model for heterogeneous data – p. 23

Parametric Algebra

� Finally, we have binary operators, to combine
two collections.

� ∪, on, −
� Some other operators cannot be defined until

we instantiate objects, as they change their
internal organization.

� We call them presentation operators.

Towards a unified model for heterogeneous data – p. 24

Algebraic Equivalences

� The operators presented in the last few slides
make little assumptions on the internal
organization of objects.

� As a consequence, we can define abstract
equivalences.

� We present three examples of equivalences
concerning the selection operator.

Towards a unified model for heterogeneous data – p. 25

Algebraic Equivalences

� Some equivalences are generalizations of the
relational ones.

� Ex: Pushing selections down into joins.

σP(C1 onP′ C2) = C1 onP′ σP(C2)

if ∀c′ ∈ C1, c′′ ∈ C2 (P(c′ ∪ c′′) = P(c′′)) .

� P is a selection predicate (Ex:
book/author=’Shelley’), C1, C2 are collections.

� The condition specifies that P does not depend
on the objects in C1.

Towards a unified model for heterogeneous data – p. 26

Algebraic Equivalences

� Some equivalences are relational-like, but
applied to new operators.

� Ex: Inversion of selection and embedding.

σP(εFE(C)) = εFE(σP′(C))

if ∀c ∈ C (P(FE(c)) = P′(c)) .

� FE specifies how to construct new data.
� With XML data, it corresponds to XQuery node

constructors.

Towards a unified model for heterogeneous data – p. 27

Algebraic Equivalences

� Some equivalences are specific for the new
operators:

� Ex: Pushing selections down into splittings.

σP(ς(C)) = ς(πFP(C))

if ∀c ∈ C (FP(c) = {e | e ∈ c ∧ P({e})}) .

� FP is a projection function, specifying the part
of the objects to be extracted.

Towards a unified model for heterogeneous data – p. 28

A Concrete Example:
XML/Relational Data

Management

Towards a unified model for heterogeneous data – p. 29

Objective

� Model for mixed XML/Relational data, as an
instantiation of our abstract model.

� Homogeneous representation.
� The query algebra must support (significant

subsets of) the main user languages.

SQL SQL/XML XQuery Proprietary approaches

Unified Algebra

Relational, XML, mixed data

Towards a unified model for heterogeneous data – p. 30

Roadmap

� Parametric Algebra→ Algebra for Mixed Data.
� To instantiate it, we must:

� Define objects (the entities composing
objects).

� Define entity manipulation functions (we
will use simple atoms).

� Define application-specific presentation
operators.

Towards a unified model for heterogeneous data – p. 31

Entities: Data Trees

� An Object is a set of entities called Data Trees.
� A Collection is a set of Data Forests (Objects).
� A Data Forest can represent a Tuple with XML

Trees.

Towards a unified model for heterogeneous data – p. 32

Entities: Data Trees

1. V = {v1, . . . , vn} is a finite set of vertices.

2. E ⊂ {(vi, vj) | vi, vj ∈ V}.

3. (V, E) is a directed tree.

4. � is a possibly empty partial order on V.

5. λ : V → (L ∪ {null}), where L is a set of labels.

6. τ : V → T, where T is a set of types.

7. ∀v ∈ V

(

δ(v) =

⊕(c(v)) if outdegree(v) ≥ 1

δ′(v) o.w.

)

– ⊕ is a parametric concatenation operator, c(v) is the set of v’s
children, and δ′ is a content function defined on leaf nodes.

Towards a unified model for heterogeneous data – p. 33

Objects (Examples)

� Relational Tuple:

ID Name Surname

03RA4 Claudio Arrau

Towards a unified model for heterogeneous data – p. 34

Objects (Examples)

� XML Tree:

book

author title

Manzoni I promessi sposi

Towards a unified model for heterogeneous data – p. 34

Objects (Examples)

� Mixed Data:

XData

book

author title

Hugo Notre-Dame de Paris

Id

013

Cl

HUG453

Towards a unified model for heterogeneous data – p. 34

Predicates and Functions

� The parametric definition of our algebraic
operators allows us to choose many languages
to manipulate data forests.

� We need to define Object Manipulation
Functions (SP, PF, EF, SF, NM).

Towards a unified model for heterogeneous data – p. 35

P&F: Tree Selection Expressions

� Used to select the root nodes of data trees.
� x ∈ Σ is a tree selection expression (TSE).
� (φ, φ) is a TSE if φ is a TSE.

� φ is a TSE if φ is a TSE.

Input:

A

B C

D B A

F

D

B C

F:

A

B C

D B A

F

D

B C Trees with root F

Towards a unified model for heterogeneous data – p. 36

P&F: Node Markers

Input:

A

B C

D B A

F

D

B C

F:

A

B C

D B A

F

D

B C Trees with root F

F/∗:

A

B C

D B A

F

D

B C Children where root is not F

A//B:

A

B C

D B A

F

D

B C B descendants of A

Towards a unified model for heterogeneous data – p. 37

P&F: Projection Functions

Input:

A

B C

D B A

F

D

B C

−A/∗:

A

D B A

F

D

B C Deletes children of A

+A//B:

B

D B B Extracts B descendants of A

Towards a unified model for heterogeneous data – p. 38

P&F: Embedding Functions

Input:
A

B C

D

<N1> (∗):
A

B C

D

N1

New node N1 with * (all) children

<N2> ():
A

B C

D N2

New node N2 with no children

Towards a unified model for heterogeneous data – p. 39

Presentation Operators

� To complete the algebra instantiated by the
predicates and functions just defined, we still
need presentation operators.

� Looking at the definition of data trees, we can
identify two missing operators, used to change
order and labels.

� Renaming (ρ), changes node and column
names.

� Ordering (ω), changes the relative order of
nodes.

Towards a unified model for heterogeneous data – p. 40

SQL/XML

� Conservative extension of SQL, augmented
with functions that build XML data [3].

� We focus on a subset of SQL/XML that
includes the two basic functionalities of the
language:
� XMLELEMENT()
� XMLAGG()

Towards a unified model for heterogeneous data – p. 41

SQL/XML (Example)

SELECT XMLELEMENT(NAME "dep",
XMLELEMENT(NAME "name",dep),
XMLAGG(XMLELEMENT(NAME "emp",id))
) AS result

FROM EMP
GROUP BY dep

ρresult←$2(π+$2(π−$2/dep/∗(ε
<$2>(<dep>($3,$0))(

π−$3/name/∗(ε
<$3>(<name>(+dep))(γdep(π−$0/∗(ε

<$0>($1)(

π−$1/emp/∗(ε
<$1>(<emp>(+id))(EMP)))))))))))

Towards a unified model for heterogeneous data – p. 42

SQL/XML (Example)

EMP

Id

011

Name

Tom

Dep

PR

Id

013

Name

John

Dep

PR

Towards a unified model for heterogeneous data – p. 43

SQL/XML (Example)

π−$1/emp/∗(ε
<$1>(<emp>(+id))(.))

Id

011

Name

Tom

Dep

PR

$1

emp

011

Id

013

Name

John

Dep

PR

$1

emp

013

Towards a unified model for heterogeneous data – p. 43

SQL/XML (Example)

γdep(π−$0/∗(ε
<$0>($1)(.)))

Id

011

Name

Tom

Dep

PR

$0

emp

011

Id

013

Name

John

$0

emp

013

Towards a unified model for heterogeneous data – p. 43

SQL/XML (Example)

π−$3/name/∗(ε
<$3>(<name>(+dep))(.))

Id

011

Name

Tom

Dep

PR

$0

emp

011

$3

name

PR

Id

013

Name

John

$0

emp

013

Towards a unified model for heterogeneous data – p. 43

SQL/XML (Example)

π−$2/dep/∗(ε
<$2>(<dep>($3,$0))(.))

Id

011

Name

Tom

Dep

PR

$2

dep

name

PR

emp

011

emp

013
Id

013

Name

John

Towards a unified model for heterogeneous data – p. 43

SQL/XML (Example)

ρresult←$2(π+$2(.))

result

dep

name

PR

emp

011

emp

013

Towards a unified model for heterogeneous data – p. 43

Conclusion

� Data modeling: making it both generic and
easily specializable is one of the main
challenges.

� Parametric logical level that generalizes the
main existing logical models.

� Application of the model to XML and
Relational data.

� Some missing features:
� Constraints.
� Mapping to physical level.

Towards a unified model for heterogeneous data – p. 44

Towards a unified model for
heterogeneous data

Matteo Magnani Danilo Montesi

Dept. of Computer Science
University of Bologna

Via Mura A.Zamboni, 7
40127 Bologna

Italy

Department of Mathematics
and Informatics,

University of Camerino
Via Madonna delle Carceri, 9

Camerino (MC)
Italy

Towards a unified model for heterogeneous data – p. 45

Additional Slides

� A step-by-step XQuery example.
� An example using Oracle XMLType.
� Other XQuery examples.

� Input and Path Expressions.
� FLWR Expressions.
� Constructors.
� A Complex Example.

� Grammars.
� A Subset of SQL/XML.
� A Subset of XQuery.

Towards a unified model for heterogeneous data – p. 46

XQuery

� W3C proposal for an XML query language [1].
� We focus on a subset of XQuery that includes:

� Simple path expressions.
� For-Let-Where-Return expressions.
� Constructors.
� Arbitrarily nested sub-queries.

Towards a unified model for heterogeneous data – p. 47

XQuery (Example)

for $b in collection(’books’)
let $c := $b//chapter
where $b/title = ’XQuery’
return $c/title

γ(π+$c,$b(π+$c;$b;$c/∗/title(σ$b/∗/title=′XQuery′(

ε
<$c>($b)

(π+$b;$b/∗//chapter(ε
<$b>(∗)(

ς(IN′books′([])))))))))

Towards a unified model for heterogeneous data – p. 48

XQuery (Example)

IN′books′([])

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

book

title

SQL/XML

chap.

title

Basics

chap.

title

XMLAGG

Towards a unified model for heterogeneous data – p. 49

XQuery (Example)

ε
<$b>(∗)(ς(.))

$b

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

$b

book

title

SQL/XML

chap.

title

Basics

chap.

title

XMLAGG

Towards a unified model for heterogeneous data – p. 49

XQuery (Example)

ε
<$c>($b)

(π+$b;$b/∗//chapter(.))

$b

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

chap.

title

Basics

chap.

title

XMLAGG

$c

$b

book

title

SQL/XML

chap.

title

Basics

chap.

title

XMLAGG

chap.

title

Basics

chap.

title

XMLAGG

$c

Towards a unified model for heterogeneous data – p. 49

XQuery (Example)

σ$b/∗/title=′XQuery′(.)

$b

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

chap.

title

Basics

chap.

title

XMLAGG

$c

Towards a unified model for heterogeneous data – p. 49

XQuery (Example)

γ(π+$c,$b(π+$c;$b;$c/∗/title(.)))

title

Basics

title

XMLAGG

Towards a unified model for heterogeneous data – p. 49

XMLType

Consider the following Oracle10g SQL statements:

create table DEPS_AND_EMPS(XDATA
sys.XMLTYPE);

create table DEP_INFO(Name VARCHAR2(10),
Info VARCHAR2(80));

Towards a unified model for heterogeneous data – p. 50

XMLType

select D.XDATA.extract(’/dep/name’)
.getClobVal()

from DEPS_AND_EMPS D
where D.XDATA.extract(’/dep/id/text()’)

.getStringVal() = ’0001’;

πXDATA/dep/name(σXDATA/dep/id/∗=′0001′(D))

Towards a unified model for heterogeneous data – p. 51

XMLType

select D.XDATA, I.Info
from DEPS_AND_EMPS D, DEP_INFO I
where D.XDATA.extract(’/dep/name/text()’)

.getStringVal() = I.Name;

πXDATA,Info(D onXDATA/dep/name/∗=Name/∗ I)

Towards a unified model for heterogeneous data – p. 52

Input and Path Expressions

doc(’bib.xml’)//author/surname
π+∗//author/surname(IN′bib.xml′([]))

Towards a unified model for heterogeneous data – p. 53

FLWR Expressions

for $b in collection(’books’)
let $a := $b//author
where $b/title/* = ’Moby Dick’
return $a
γ(π+$a,$b(π+$a;$b;$a/∗(σ$b/∗/title/∗=′Moby Dick′(

ε
<$a>($b)

(π+$b;$b/∗//author(

ε
<$b>(∗)(ς(IN′books′([])))))))))

Towards a unified model for heterogeneous data – p. 54

Constructors

<greetings>
Hello <planet>World</planet>
</greetings>
ε−

<greetings>(′Hello ′,$0)(ε
<$0>(∗)(ε

<planet>(′World′)([])))

Towards a unified model for heterogeneous data – p. 55

A More Complex Example

for $a in collection(’Authors’)
return
<author>
$a/name
{for $b in collection(’Books’)
where $b/author/* = $a/id/*
return $b/title}
{for $j in collection(’Journals’)
where $j/author/* = $a/id/*
return $j/title}
</author>

Towards a unified model for heterogeneous data – p. 56

A More Complex Example

γ(π+$a(ε−
<author>(′←↩ $a/name←↩ ′,$0,′←↩ ′,$1,′←↩′)(ε

<$1>($a,$0)
((B3) =

on (
γ$a,$0(π+$j(π+$j;$0;$a;$j/∗/title(σ$j/∗/author/∗=$a/∗/id/∗(ε

<$j>($a,$0,$0)
(

ς$a,$0(IN′Journals′(ε
<$0>($a)

((B2) =on

(γ$a(π+$b(π+$b;$a;$b/∗/title(σ$b/∗/author/∗=$a/∗/id/∗(

ε
<$b>($a)

(ς$a(IN′Books′(ε
<$a>(∗)(ς(IN′Authors′([]))))))))))))))))))))))))

Towards a unified model for heterogeneous data – p. 57

Grammar of a SQL/XML Subset I

CompilationUnit ::= SelectStatement ";"
TableColumn ::= Name ("." Name)?
Name ::= (<S_IDENTIFIER> | <S_QUOTED_ID>)
TableReference ::= Name
SelectStatement ::= "SELECT" SelectList

FromClause (WhereClause)? (GroupByClause)?
SelectList ::= ("*" | SelectItem

("," SelectItem)*)
SelectItem ::= (SQLPrimaryExpression |

XMLElement|XMLAgg)(As)?
As ::= "AS" <S_IDENTIFIER>
FromClause ::= "FROM" TableReference

("," TableReference)*
WhereClause ::= "WHERE" SQLExpression

Towards a unified model for heterogeneous data – p. 58

Grammar of a SQL/XML Subset II

GroupByClause ::= "GROUP" "BY" TableColumn
("," TableColumn)*

SQLExpression ::= SQLComparisonExpr
("AND" SQLComparisonExpr)*

SQLComparisonExpr::= SQLPrimaryExpr
<Relop> SQLPrimaryExpr

SQLPrimaryExpr ::= (TableColumn | <S_NUMBER> |
<S_CHAR_LITERAL>)

XMLElement ::= "XMLELEMENT(NAME" <S_QUOTED_ID>
"," ElementContent ("," ElementContent)* ")"

ElementContent ::= (Name | XMLElement | XMLAgg
| <S_CHAR_LITERAL>)

XMLAgg ::= "XMLAGG(" XMLElement (","
XMLElement)* ")"

Towards a unified model for heterogeneous data – p. 59

Grammar of an XQuery Subset I

Expr ::= InputExpr | FLWORExpr | Literal
| Constructor

InputExpr ::= (InputFunctionCall | VarRef)
(PathExpr)?

InputFunctionCall ::= ("doc(" | "collection(")
<StringLiteral> ")"

VarRef ::= <VarName>
PathExpr ::= (ChildStep | DescendantStep)

(ChildStep | DescendantStep)*
ChildStep ::= "/" NameTest
DescendantStep ::= "//" NameTest
NameTest ::= <QName> | "*"
FLWRExpr ::= (ForClause | LetClause)+

(WhereClause)? "return" Expr
Towards a unified model for heterogeneous data – p. 60

Grammar of an XQuery Subset II

ForClause ::= "for" <VarName> "in" Expr
LetClause ::= "let" <VarName> ":=" Expr
WhereClause ::= "where" Expr <CompOp> Expr
Constructor ::= "<" <TagQName> ("/>" |

(">" ElementContent*
"<" <TagQName> ">"))

ElementContent ::= <ElementContentChar> |
Constructor | EnclosedExpr

Literal ::= NumericLiteral | <StringLiteral>
NumericLiteral ::= <IntegerLiteral> |

<DecimalLiteral> |
<DoubleLiteral>

EnclosedExpr ::= "{" Expr "}"

Towards a unified model for heterogeneous data – p. 61

References
[1] Scott Boag, Don Chamberlin, Mary F.

Fernández, Daniela Florescu, Jonathan Ro-
bie, and Jérôme Siméon. XQuery 1.0: An
XML query language (working draft, nov
12, 2003). Technical report, W3C, 2003.
http://www.w3.org/TR/xquery/.

[2] Jim Gemmel, Gordon Bell, Roger Lueder,
Steven Drucker, and Curtis Wong. MyLifeBits:
Fulfilling the memex vision. In Multimedia’02,
pages 235–238, Juan-les-Pins, France, December
2002. ACM.

[3] Jim Melton. SQL - part 14: SQL/XML. Technical
report, ISO/ANSI, 2003.

61-1

	Introduction
	Introduction
	Introduction
	The case of XML data
	Adaptation
	The case of XML data
	Rethinking
	The case of XML data
	Extension
	Some basic considerations (I)
	Some basic considerations (II)
	Some basic considerations (III)
	Overview of the Model
	Overview of the Model
	Overview of the Model
	Overview of the Model
	Overview of the Model
	Overview of the Model
	Overview of the Model

	Overview of the Algebra
	Overview of the Algebra
	Overview of the Algebra
	Overview of the Algebra

	Expected Advantages
	Parametric Algebra
	Parametric Algebra
	Parametric Algebra
	Parametric Algebra
	Parametric Algebra
	Parametric Algebra
	Parametric Algebra
	Parametric Algebra
	Algebraic Equivalences
	Algebraic Equivalences
	Algebraic Equivalences
	Algebraic Equivalences
	Objective
	Roadmap
	Entities: Data Trees
	Entities: Data Trees
	Objects (Examples)
	Objects (Examples)
	Objects (Examples)

	Predicates and Functions
	P&F: Tree Selection Expressions
	P&F: Node Markers
	P&F: Projection Functions
	P&F: Embedding Functions
	Presentation Operators
	SQL/XML
	SQL/XML (Example)
	SQL/XML (Example)
	SQL/XML (Example)
	SQL/XML (Example)
	SQL/XML (Example)
	SQL/XML (Example)
	SQL/XML (Example)

	Conclusion
	Additional Slides
	XQuery
	XQuery (Example)
	XQuery (Example)
	XQuery (Example)
	XQuery (Example)
	XQuery (Example)
	XQuery (Example)

	XMLType
	XMLType
	XMLType
	Input and Path Expressions
	FLWR Expressions
	Constructors
	A More Complex Example
	A More Complex Example
	Grammar of a SQL/XML Subset I
	Grammar of a SQL/XML Subset II
	Grammar of an XQuery Subset I
	Grammar of an XQuery Subset II

