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Introduction

� In a growing number of applications the classic
relational model captures only a fraction of
relevant data.
� Biological databases.
� XML data/document repositories.
� The World Wide Web.
� Multimedia data repositories.

� Specialized systems, models, and theories are
available, customized to specific kinds of data.

� It is not unusual to have applications based on
combinations of these systems.
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Introduction

� In the (not so far) future, everything about our
life will be stored in a (not very large) database
[2].
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Introduction

� The objective is to have a single system storing
heterogeneous data, and providing unified and
homogeneous representation and
manipulation functionalities.

� Existing system are already providing support
for heterogeneous data.

� For instance, many information systems
manipulate mixed XML and relational data.
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The case of XML data

First main approach: Adaptation.
� Trees are converted to tables, and vice versa.
� SQL/XML (Oracle, DB2), FOR XML clause

(SQL Server).
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Adaptation

� XML-enabled systems readily available.
� Usable if the difference is more on the format

than on the model.
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The case of XML data

Second main approach: Rethinking.
� New ad hoc systems.
� Tamino, eXist, Galax.
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Rethinking

� It needs time (more suited to academics and
small applications than commercial/critical
systems).

� It promises better results.
� At the end, many functionalities are not

substantially different from those found in
traditional systems→We would like to
identify and change only those features that
are specific to XML.
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The case of XML data

Third main approach: Extension.
� New complex types are defined.
� Oracle’s XML Type.
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Extension

� Good choice to take care of object
heterogeneity.

� Still constrained to be embedded into
non-flexible relational structures.

� Very useful when the new data is not much
structured.

� Otherwise, we must reimplement database
functionalities inside the objects (=Rethinking).
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Some basic considerations (I)

� There are operations which cannot be
described by a simple, general, and compact
model, as they are meaningful only when
applied to particular kinds of data.

� For instance, the extraction of a color
histogram from an image.

� Therefore, a model for heterogeneous data
cannot describe everything, and must hide the
details about elementary pieces of data.

� The level of detail is not absolute, but it
depends on our requirements.
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Some basic considerations (II)

� There is a (limited) number of aggregation
patterns for elementary kinds of data.

WEB PAGE

<HEAD>

<TITLE>

ORANGE

RED

YELLOW
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Some basic considerations (III)

� There are operations that we can nearly always
perform on collections of data, and that can be
modeled aside from its peculiarities.

� ’Give me all O where P.’
� ’Give me all Web Pages where the Title is

“home page”.’
� ’Give me all Tuples where the Identifier is

’001’.’
� ’Give me all Images where the prevalent color

is Green.’
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Overview of the Model
DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

� 3-level architecture of (relational) databases.
� We re-define the logical level.

DATABASE ARCHITECTURE

External Level

Logical Level

Physical Level

LOGICAL LEVEL

External

Intermediate

Internal

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

Atoms

A A

XML/XQuery Data Model

Sequences

Trees

Nodes/Atomic Val.

Relational Data Model

Sets (Relations)

Tuples

Atomic Val.

TAX Data Model

Sets (Collections)

Trees

Nodes

� The model instantiates to TAX Collections.
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� Collections are sets, multisets, lists of objects.
� For example, relations are sets of tuples.
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� Objects are aggregations of atoms.
� Objects can be tuples, trees, graphs.
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� Atoms hide data heterogeneity.
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� The model instantiates to Relational Tables.
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Overview of the Algebra

LOGICAL LEVEL

External

Collections

O
O

O
O

O

O
O

O σ π ε γ ς ∪ −

Algebra

LOGICAL LEVEL

Collections

OO
O

� Ex: σP(C) = {c | c ∈ C ∧ P(c)}
� Based on abstract properties of the parameters.
� P returns true if an object c satisfies some

contraints, false otherwise.
� We want to define the algebra without

specifying P and other object-dependent
parameters.

Towards a unified model for heterogeneous data – p. 15



Overview of the Algebra

LOGICAL LEVEL

External

Intermediate

Collections

O
O

O
O

O

O
O

O

Objects

A A

A

AA A

σ π ε γ ς ∪ −

Algebra

SP, PF, EF, SF, NM

Object Manipulation

LOGICAL LEVEL

Collections

OO
O

Objects

A A

AA

� A few kinds of parameters are enough to
define the external algebra (SP,PF,EF,SF,NM).

� The intermediate language manipulates the
internal structure of single objects (Ex: XPath).
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Overview of the Algebra
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� Atomic functionalities depend on the type of
the atoms.
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Overview of the Algebra
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Expected Advantages

� For each layer, development of specific
optimization techniques.
� To manipulate large sets of objects.
� To navigate XML trees.
� To manipulate atoms (images, media, text).

� Easy extension of the system.
� To add support for atomic types.
� To add support for tuples, trees, graphs,

and other aggregation patterns.
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Parametric Algebra

� Relational Algebra (RA) works well with
relational data.

� As the relational model is a specific case of
ours, our parametric algebra should reduce to
RA.

� Therefore, we use RA as a starting point to
define our algebra.

� We first generalize its operators, then define
new operators for missing functionalities.
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Parametric Algebra

� σ and π are two basic functionalities borrowed
by the relational context.
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Parametric Algebra

� σ selects some of the objects in a collection.
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Parametric Algebra

� π extracts part of the objects.
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Parametric Algebra

� The opposite of projection is embedding (ε).
� Information to construct new data provided as

a parameter of the operator.
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Parametric Algebra

� As objects are not supposed to be elementary,
we also need a grouping operator (γ).
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Parametric Algebra

� The opposite of a grouping is a splitting (ς).
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Parametric Algebra

� Finally, we have binary operators, to combine
two collections.

� ∪, on, −
� Some other operators cannot be defined until

we instantiate objects, as they change their
internal organization.

� We call them presentation operators.
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Algebraic Equivalences

� The operators presented in the last few slides
make little assumptions on the internal
organization of objects.

� As a consequence, we can define abstract
equivalences.

� We present three examples of equivalences
concerning the selection operator.
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Algebraic Equivalences

� Some equivalences are generalizations of the
relational ones.

� Ex: Pushing selections down into joins.

σP(C1 onP′ C2) = C1 onP′ σP(C2)

if ∀c′ ∈ C1, c′′ ∈ C2 (P(c′ ∪ c′′) = P(c′′)) .

� P is a selection predicate (Ex:
book/author=’Shelley’), C1, C2 are collections.

� The condition specifies that P does not depend
on the objects in C1.
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Algebraic Equivalences

� Some equivalences are relational-like, but
applied to new operators.

� Ex: Inversion of selection and embedding.

σP(εFE(C)) = εFE(σP′(C))

if ∀c ∈ C (P(FE(c)) = P′(c)) .

� FE specifies how to construct new data.
� With XML data, it corresponds to XQuery node

constructors.
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Algebraic Equivalences

� Some equivalences are specific for the new
operators:

� Ex: Pushing selections down into splittings.

σP(ς(C)) = ς(πFP(C))

if ∀c ∈ C (FP(c) = {e | e ∈ c ∧ P({e})}) .

� FP is a projection function, specifying the part
of the objects to be extracted.
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A Concrete Example:
XML/Relational Data

Management
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Objective

� Model for mixed XML/Relational data, as an
instantiation of our abstract model.

� Homogeneous representation.
� The query algebra must support (significant

subsets of) the main user languages.

SQL SQL/XML XQuery Proprietary approaches

Unified Algebra

Relational, XML, mixed data
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Roadmap

� Parametric Algebra→ Algebra for Mixed Data.
� To instantiate it, we must:

� Define objects (the entities composing
objects).

� Define entity manipulation functions (we
will use simple atoms).

� Define application-specific presentation
operators.
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Entities: Data Trees

� An Object is a set of entities called Data Trees.
� A Collection is a set of Data Forests (Objects).
� A Data Forest can represent a Tuple with XML

Trees.
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Entities: Data Trees

1. V = {v1, . . . , vn} is a finite set of vertices.

2. E ⊂ {(vi, vj) | vi, vj ∈ V}.

3. (V, E) is a directed tree.

4. � is a possibly empty partial order on V.

5. λ : V → (L ∪ {null}), where L is a set of labels.

6. τ : V → T, where T is a set of types.

7. ∀v ∈ V

(

δ(v) =







⊕(c(v)) if outdegree(v) ≥ 1

δ′(v) o.w.

)

– ⊕ is a parametric concatenation operator, c(v) is the set of v’s
children, and δ′ is a content function defined on leaf nodes.
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Objects (Examples)

� Relational Tuple:

ID Name Surname

03RA4 Claudio Arrau

Towards a unified model for heterogeneous data – p. 34



Objects (Examples)

� XML Tree:

book

author title

Manzoni I promessi sposi
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Objects (Examples)

� Mixed Data:

XData

book

author title

Hugo Notre-Dame de Paris

Id

013

Cl

HUG453
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Predicates and Functions

� The parametric definition of our algebraic
operators allows us to choose many languages
to manipulate data forests.

� We need to define Object Manipulation
Functions (SP, PF, EF, SF, NM).
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P&F: Tree Selection Expressions

� Used to select the root nodes of data trees.
� x ∈ Σ is a tree selection expression (TSE).
� (φ, φ) is a TSE if φ is a TSE.

� φ is a TSE if φ is a TSE.

Input:

A

B C

D B A

F

D

B C

F:

A

B C

D B A

F

D

B C Trees with root F
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P&F: Node Markers

Input:

A

B C

D B A

F

D

B C

F:

A

B C

D B A

F

D

B C Trees with root F

F/∗:

A

B C

D B A

F

D

B C Children where root is not F

A//B:

A

B C

D B A

F

D

B C B descendants of A
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P&F: Projection Functions

Input:

A

B C

D B A

F

D

B C

−A/∗:

A

D B A

F

D

B C Deletes children of A

+A//B:

B

D B B Extracts B descendants of A
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P&F: Embedding Functions

Input:
A

B C

D

<N1> (∗):
A

B C

D

N1

New node N1 with * (all) children

<N2> ():
A

B C

D N2

New node N2 with no children
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Presentation Operators

� To complete the algebra instantiated by the
predicates and functions just defined, we still
need presentation operators.

� Looking at the definition of data trees, we can
identify two missing operators, used to change
order and labels.

� Renaming (ρ), changes node and column
names.

� Ordering (ω), changes the relative order of
nodes.
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SQL/XML

� Conservative extension of SQL, augmented
with functions that build XML data [3].

� We focus on a subset of SQL/XML that
includes the two basic functionalities of the
language:
� XMLELEMENT()
� XMLAGG()
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SQL/XML (Example)

SELECT XMLELEMENT(NAME "dep",
XMLELEMENT(NAME "name",dep),
XMLAGG(XMLELEMENT(NAME "emp",id))
) AS result

FROM EMP
GROUP BY dep

ρresult←$2(π+$2(π−$2/dep/∗(ε
<$2>(<dep>($3,$0))(

π−$3/name/∗(ε
<$3>(<name>(+dep))(γdep(π−$0/∗(ε

<$0>($1)(

π−$1/emp/∗(ε
<$1>(<emp>(+id))(EMP)))))))))))
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SQL/XML (Example)

EMP

Id

011

Name

Tom

Dep

PR

Id

013

Name

John

Dep

PR
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SQL/XML (Example)

π−$1/emp/∗(ε
<$1>(<emp>(+id))(.))

Id

011

Name

Tom

Dep

PR

$1

emp

011

Id

013

Name

John

Dep

PR

$1

emp

013

Towards a unified model for heterogeneous data – p. 43



SQL/XML (Example)

γdep(π−$0/∗(ε
<$0>($1)(.)))

Id

011

Name

Tom

Dep

PR

$0

emp

011

Id

013

Name

John

$0

emp

013
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SQL/XML (Example)

π−$3/name/∗(ε
<$3>(<name>(+dep))(.))

Id

011

Name

Tom

Dep

PR

$0

emp

011

$3

name

PR

Id

013

Name

John

$0

emp

013
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SQL/XML (Example)

π−$2/dep/∗(ε
<$2>(<dep>($3,$0))(.))

Id

011

Name

Tom

Dep

PR

$2

dep

name

PR

emp

011

emp

013
Id

013

Name

John
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SQL/XML (Example)

ρresult←$2(π+$2(.))

result

dep

name

PR

emp

011

emp

013
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Conclusion

� Data modeling: making it both generic and
easily specializable is one of the main
challenges.

� Parametric logical level that generalizes the
main existing logical models.

� Application of the model to XML and
Relational data.

� Some missing features:
� Constraints.
� Mapping to physical level.
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Additional Slides

� A step-by-step XQuery example.
� An example using Oracle XMLType.
� Other XQuery examples.

� Input and Path Expressions.
� FLWR Expressions.
� Constructors.
� A Complex Example.

� Grammars.
� A Subset of SQL/XML.
� A Subset of XQuery.
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XQuery

� W3C proposal for an XML query language [1].
� We focus on a subset of XQuery that includes:

� Simple path expressions.
� For-Let-Where-Return expressions.
� Constructors.
� Arbitrarily nested sub-queries.
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XQuery (Example)

for $b in collection(’books’)
let $c := $b//chapter
where $b/title = ’XQuery’
return $c/title

γ(π+$c,$b(π+$c;$b;$c/∗/title(σ$b/∗/title=′XQuery′(

ε
<$c>($b)

(π+$b;$b/∗//chapter(ε
<$b>(∗)(

ς(IN′books′([ ])))))))))
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XQuery (Example)

IN′books′([ ])

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

book

title

SQL/XML

chap.

title

Basics

chap.

title

XMLAGG
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XQuery (Example)

ε
<$b>(∗)(ς(.))

$b

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

$b

book

title

SQL/XML

chap.

title

Basics

chap.

title

XMLAGG
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XQuery (Example)

ε
<$c>($b)

(π+$b;$b/∗//chapter(.))

$b

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

chap.

title

Basics

chap.

title

XMLAGG

$c

$b

book

title

SQL/XML

chap.

title

Basics

chap.

title

XMLAGG

chap.

title

Basics

chap.

title

XMLAGG

$c
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XQuery (Example)

σ$b/∗/title=′XQuery′(.)

$b

book

title

XQuery

chap.

title

Basics

chap.

title

FLWOR

chap.

title

Basics

chap.

title

XMLAGG

$c
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XQuery (Example)

γ(π+$c,$b(π+$c;$b;$c/∗/title(.)))

title

Basics

title

XMLAGG
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XMLType

Consider the following Oracle10g SQL statements:

create table DEPS_AND_EMPS(XDATA
sys.XMLTYPE);

create table DEP_INFO(Name VARCHAR2(10),
Info VARCHAR2(80));
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XMLType

select D.XDATA.extract(’/dep/name’)
.getClobVal()

from DEPS_AND_EMPS D
where D.XDATA.extract(’/dep/id/text()’)

.getStringVal() = ’0001’;

πXDATA/dep/name(σXDATA/dep/id/∗=′0001′(D))
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XMLType

select D.XDATA, I.Info
from DEPS_AND_EMPS D, DEP_INFO I
where D.XDATA.extract(’/dep/name/text()’)

.getStringVal() = I.Name;

πXDATA,Info(D onXDATA/dep/name/∗=Name/∗ I)
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Input and Path Expressions

doc(’bib.xml’)//author/surname
π+∗//author/surname(IN′bib.xml′([ ]))

Towards a unified model for heterogeneous data – p. 53



FLWR Expressions

for $b in collection(’books’)
let $a := $b//author
where $b/title/* = ’Moby Dick’
return $a
γ(π+$a,$b(π+$a;$b;$a/∗(σ$b/∗/title/∗=′Moby Dick′(

ε
<$a>($b)

(π+$b;$b/∗//author(

ε
<$b>(∗)(ς(IN′books′([ ])))))))))
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Constructors

<greetings>
Hello <planet>World</planet>
</greetings>
ε−

<greetings>(′Hello ′,$0)(ε
<$0>(∗)(ε

<planet>(′World′)([ ])))
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A More Complex Example

for $a in collection(’Authors’)
return
<author>
$a/name
{for $b in collection(’Books’)
where $b/author/* = $a/id/*
return $b/title}
{for $j in collection(’Journals’)
where $j/author/* = $a/id/*
return $j/title}
</author>
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A More Complex Example

γ(π+$a(ε−
<author>(′←↩ $a/name←↩ ′,$0,′←↩ ′,$1,′←↩′)(ε

<$1>($a,$0)
((B3) =

on (
γ$a,$0(π+$j(π+$j;$0;$a;$j/∗/title(σ$j/∗/author/∗=$a/∗/id/∗(ε

<$j>($a,$0,$0)
(

ς$a,$0(IN′Journals′(ε
<$0>($a)

((B2) =on

(γ$a(π+$b(π+$b;$a;$b/∗/title(σ$b/∗/author/∗=$a/∗/id/∗(

ε
<$b>($a)

(ς$a(IN′Books′(ε
<$a>(∗)(ς(IN′Authors′([ ]))))))))))))))))))))))))
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Grammar of a SQL/XML Subset I

CompilationUnit ::= SelectStatement ";"
TableColumn ::= Name ( "." Name )?
Name ::= ( <S_IDENTIFIER> | <S_QUOTED_ID> )
TableReference ::= Name
SelectStatement ::= "SELECT" SelectList

FromClause ( WhereClause )? ( GroupByClause )?
SelectList ::= ("*" | SelectItem

("," SelectItem )* )
SelectItem ::= (SQLPrimaryExpression |

XMLElement|XMLAgg)(As)?
As ::= "AS" <S_IDENTIFIER>
FromClause ::= "FROM" TableReference

( "," TableReference )*
WhereClause ::= "WHERE" SQLExpression
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Grammar of a SQL/XML Subset II

GroupByClause ::= "GROUP" "BY" TableColumn
( "," TableColumn )*

SQLExpression ::= SQLComparisonExpr
( "AND" SQLComparisonExpr )*

SQLComparisonExpr::= SQLPrimaryExpr
<Relop> SQLPrimaryExpr

SQLPrimaryExpr ::= (TableColumn | <S_NUMBER> |
<S_CHAR_LITERAL>)

XMLElement ::= "XMLELEMENT(NAME" <S_QUOTED_ID>
"," ElementContent ("," ElementContent)* ")"

ElementContent ::= (Name | XMLElement | XMLAgg
| <S_CHAR_LITERAL>)

XMLAgg ::= "XMLAGG(" XMLElement ( ","
XMLElement )* ")"
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Grammar of an XQuery Subset I

Expr ::= InputExpr | FLWORExpr | Literal
| Constructor

InputExpr ::= (InputFunctionCall | VarRef)
(PathExpr)?

InputFunctionCall ::= ("doc(" | "collection(")
<StringLiteral> ")"

VarRef ::= <VarName>
PathExpr ::= ( ChildStep | DescendantStep )

( ChildStep | DescendantStep )*
ChildStep ::= "/" NameTest
DescendantStep ::= "//" NameTest
NameTest ::= <QName> | "*"
FLWRExpr ::= (ForClause | LetClause)+

(WhereClause)? "return" Expr
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Grammar of an XQuery Subset II

ForClause ::= "for" <VarName> "in" Expr
LetClause ::= "let" <VarName> ":=" Expr
WhereClause ::= "where" Expr <CompOp> Expr
Constructor ::= "<" <TagQName> ("/>" |

(">" ElementContent*
"<" <TagQName> ">"))

ElementContent ::= <ElementContentChar> |
Constructor | EnclosedExpr

Literal ::= NumericLiteral | <StringLiteral>
NumericLiteral ::= <IntegerLiteral> |

<DecimalLiteral> |
<DoubleLiteral>

EnclosedExpr ::= "{" Expr "}"
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