
Schema Evolution in Data Warehousing

Environments — a schema transformation-based

approach

Hao Fan, Alexandra Poulovassilis

School of Computer Science & Information Systems, Birkbeck College,
University of London, Malet Street, London WC1E 7HX

{hao, ap}@dcs.bbk.ac.uk

Abstract. In heterogeneous data warehousing environments, autono-
mous data sources are integrated into a materialised integrated database.
The schemas of the data sources and the integrated database may be ex-
pressed in different modelling languages. It is possible for either the data
source schemas or the warehouse schema to evolve. This evolution may
include evolution of the schema, or evolution of the modelling language
in which the schema is expressed, or both. In such scenarios, it is impor-
tant for the integration framework to be evolvable, so that the previous
integration effort can be reused as much as possible. This paper describes
how the AutoMed heterogeneous data integration toolkit can be used to
handle the problem of schema evolution in heterogeneous data warehous-
ing environments. This problem has been addressed before for specific
data models, but AutoMed has the ability to cater for multiple data
models, and for changes to the data model.

1 Introduction

With the increasing use of the Internet in distributed applications, data ware-
houses may integrate data from remote, heterogeneous, autonomous data sources.
The heterogeneity of these data sources has two aspects, heterogeneous data
expressed in different data models, called model heterogeneity [10], and hetero-
geneous data within different data schemas expressed in the same data model,
called schema heterogeneity [10, 18]. The common approach to handling model
heterogeneity is to use a single conceptual data model (CDM) for the data trans-
formation/integration. Each data source has a wrapper for translating its schema
and data into the CDM. The warehouse schema is derived from these CDM
schemas by means of view definitions, and is expressed in the same modelling
language as them. With this approach, since they are both high-level conceptual
data models, semantic mismatches may occur between the CDM and a source
data model, and there may be a loss of information between them. Moreover,
if a data source schema changes, it is not straightforward to evolve the view
definitions of the warehouse schema.
Lakshmanan et al [11] argue that a uniform framework for schema integra-

tion and schema evolution is both desirable and possible, and this is our view



2

also. They define a higher-order logic language, SchemaSQL, which handles both
data integration and schema evolution in relational multi-database systems. In
contrast, our approach uses a simple set of schema transformation primitives,
augmented with a functional query language, both of which are uniformly ap-
plicable to multiple data models. Other previous work on schema evolution, e.g.
[1–4], has also presented approaches in terms of just one data model.
AutoMed is a heterogeneous data transformation and integration system

which offers the capability to handle data integration across multiple data mod-
els1. In [7] we discussed how AutoMed metadata can be used to express the
schemas and the cleansing, transformation and integration processes in hetero-
geneous data warehouse environments, supporting both schema heterogeneity
and model heterogeneity. We discussed how this metadata can be used to pop-
ulate and incrementally maintain the warehouse, and any data marts derived
from it, and also to trace the lineage of data in the warehouse or the data marts.
It is clearly advantageous to be able to reuse this kind of metadata if a schema
evolves. In this paper we show how this can be achieved.
Earlier work [16] has shown how the AutoMed framework readily supports

schema evolution in virtual data integration scenarios. In this paper we address
the problem of schema evolution in materialised data integration scenarios, in-
cluding both evolution of a source schema and of the warehouse schema, and also
the impact on any data marts derived from the warehouse. This scenario is more
complex than with virtual data integration, since both schemas and materialised
data may be affected by an evolution.
The outline of the paper is as follows. Section 2 gives an overview of the

AutoMed framework. Section 3 describes how AutoMed transformations can
be used to express a schema evolution if either the schema changes, or the data
model changes, or both. Section 4 describes the actions that are taken in order to
evolve these transformations and the materialised data if the warehouse schema
or a local schema evolves. Section 5 discusses the benefits of our approach and
gives our concluding remarks.

2 Overview of AutoMed

AutoMed supports a low-level hypergraph-based data model (HDM). Higher-
level modelling languages are defined in terms of this HDM. For example, pre-
vious work has shown how relational, ER, OO [15], XML [21], flat-file [5] and
multidimensional [7] data models can be so defined. An HDM schema consists of
a set of nodes, edges and constraints, and each modelling construct of a higher-
level modelling language is specified as some combination of HDM nodes, edges
and constraints. For any modelling languageM specified in this way (via the API
of AutoMed’s Model Definitions Repository [5]), data source wrappers translate
data source schemas expressed inM into their AutoMed representation, without
loss of information. AutoMed also provides a set of primitive schema transforma-
tions that can be applied to schema constructs expressed inM. In particular, for

1 See http://www.doc.ic.ac.uk/automed/



3

every construct ofM there is an add and a delete primitive transformation which
add to/delete from a schema an instance of that construct. For those constructs
ofM which have textual names, there is also a rename primitive transformation.
In AutoMed, schemas are incrementally transformed by applying to them a

sequence of primitive transformations t1, . . . , tr. Each primitive transformation
adds, deletes or renames just one schema construct. Thus, intermediate schemas
may contain constructs of more than one modelling language.
Each add or delete transformation is accompanied by a query specifying the

extent of the new or deleted construct in terms of the rest of the constructs in
the schema. This query is expressed in a functional query language IQL (see Sec-
tion 2.1). Also available are contract and extend transformations which behave
in the same way as add and delete except that they indicate that their accompa-
nying query may only partially construct the extent of the new/removed schema
construct. Moreover, their query may just be the constant Void, indicating that
the extent of the new/removed construct cannot be derived even partially, in
which case the query can be omitted.
We term a sequence of primitive transformations from one schema S1 to

another schema S2 a transformation pathway from S1 to S2, denoted S1 → S2.
All source, intermediate, and integrated schemas, and the pathways between
them, are stored in AutoMed’s Schemas & Transformations Repository [5].
The queries present within transformations that add or delete schema con-

structs mean that each primitive transformation t has an automatically derivable
reverse transformation, t. In particular, each add/extend transformation is re-
versed by a delete/contract transformation with the same arguments, while each
rename transformation is reversed by swapping its two arguments. Thus, Au-
toMed is a both-as-view (BAV) data integration system. As discussed in [17],
BAV subsumes the global-as-view (GAV) and local-as-view (LAV) approaches
[13], since it is possible to extract a definition of each global schema construct as
a view over source schema constructs, and it is also possible to extract definitions
of source schema constructs as views over the global schema. We refer the reader
to [9] for details of AutoMed’s GAV and LAV view generation algorithms.
Figure 1 illustrates the general integration scenario with AutoMed. Each data

source is described by a local schema LSi. Each LSi is first conformed into a
schema CSi (which may or may not be expressed in the same modelling language
as LSi) by means of a transformation pathway Ti. Not all of the information
within a local schema LS i need be transferred into the global schema and this is
asserted by means of contract transformation steps within Ti. Conversely, there
may be information within the global schema which is not semantically derivable
from LSi, and this is asserted by the pathway from CSi to a ‘union-schema’ USi

which consists of the necessary extend transformations2.
All the union schemas US1, . . . , USn are syntactically identical and this is

asserted by creating a sequence of id transformations between each pair US i

and US i+1, of the form id US i : c US i+1 : c for each schema construct c. An
id transformation signifies the semantic equivalence of syntactically identical

2 If there are none, then this pathway is empty and CSi and USi are the same schema



4

constructs in different schemas. The transformation pathways containing these
id transformations are automatically generated by the AutoMed software. An
arbitrary one of the US i (US in Figure 1) can then be selected for further
transformation into the global schema GS (by the pathway Tu in Figure 1). The
extent of each construct c in a union schema USi is equal to the bag-union of
the extent of c in all union schemas US1, . . . , USn. That is, id is interpreted as
bag union by AutoMed’s view generation functionality.

In a virtual data integration scenario, there is no materialised data associated
with any of the schemas apart from the LSi. In a data warehousing scenario,
as illustrated in Figure 1, we assume that CS1, . . . , CSn are fully materialised
and consist of the detailed data of the warehouse. This detailed data is further
augmented with the necessary summary views by the transformations in the
pathway Tu, and we assume that these summary views are materialised in the
database GD. It would also be possible to partially or fully materialise more of
the intermediate schemas in the network, or to not materialise CS1, . . . , CSn and
to fully materialise GS instead. Our techniques in this paper easily generalise to
these alternatives.

LS 1

LD 1

LS 2

LD 2

LS i

LD i

LS n

LD n

CS1 CS2 CSi CSn

CD1

GS

GD

T1 T2 T i Tn

Tu

Local
Schemas and

Databases

Union
Schemas

The Global
Schema and

Database

CD2 CDnCDi

US1 US2 US USn
id

Conformed
Schemas and

Databases

..... .....

idid

Fig. 1. Materialised Data Integration in AutoMed

For the purposes of this paper, we assume that all the LSi and LDi have
been extracted from the original data sources and the data in the LDi has
been cleansed. The data cleansing process can also be expressed using AutoMed
transformations — this is discussed in [7] and we do not consider it further here.
See also that paper for some examples of how AutoMed transformations can
express structural and representational changes to schemas and data.

We also assume here that there are no contract steps in the pathways Ti, i.e.
that all the information in each LSi will be transferred to CS i and hence to USi.
This implies no loss of flexibility as each LSi will be precisely that extract of the



5

original data source schema whose associated data is to be transferred into the
warehouse.

2.1 The IQL query language

IQL is a comprehensions-based functional query language3. Such languages sub-
sume query languages such as SQL and OQL in expressiveness [6]. IQL supports
several primitive operators for manipulating lists. The list append operator, ++,
concatenates two lists together. The distinct operator removes duplicates from
a list and the sort operator sorts a list. The -- operator takes two lists and sub-
tracts each member of the second list from the first e.g. [1,2,3,2,4]--[4,4,2,1] =
[3,2]. The fold operator applies a given function f to each element of a list and
then ‘folds’ a binary operator op into the resulting values. It is defined recursively
as follows, where (x:xs) denotes a list with head x and tail xs:

fold f op e [] = e

fold f op e (x:xs) = (f x) op (fold f op e xs)

Other IQL list manipulation operators are defined using fold together with
IQL’s set of built-in operators and its support of lambda abstractions. For ex-
ample, the IQL functions sum and count are equivalent to SQL’s SUM and
COUNT aggregation functions and are defined as

sum xs = fold (id) (+) 0 xs

count xs = fold (lambda x.1) (+) 0 xs

We also have
min xs = fold (id) lesser maxNum xs

max xs = fold (id) greater minNum xs

assuming constants maxNum and minNum and the following functions lesser and
greater:

greater = lambda x.lambda y.if (x > y) then x else y

lesser = lambda x.lambda y.if (x < y) then x else y

The function flatmap applies a list-valued function f to each member of a list
xs and is defined in terms of fold:

flatmap f xs = fold f (++) [] xs

flatmap can in turn be used to define selection, projection and join operators
and, more generally, comprehensions. For example, the following comprehen-
sion iterates through a list of students and returns those students who are not
members of staff:

[x | x <- <<student>>; not (member <<staff>> x)]

and it translates into:
flatmap (lambda x.if (not (member <<staff>> x))

then [x] else []) <<student>>

Grouping operators are also definable in terms of fold. In particular, the opera-
tor group takes as an argument a list of pairs xs and groups them on their first
component, while gc aggFun xs groups a list of pairs xs on their first component
and then applies the aggregation function aggFun to the second component.

3 We refer the reader to [8] for details of IQL.



6

There are several algebraic properties of IQL’s operators that we can use
in order to incrementally compute materialised data and to reason about IQL
expressions, specifically for the purposes of this paper in a schema/data evolu-
tion context (note that the algebraic properties of fold below apply to all the
operators defined in terms of fold):

(a) e ++ [] = [] ++ e = e, e -- [] = e, [] -- e = [],

distinct [] = sort [] = []

for any list-valued expression e. Since Void represents a construct for which
no data is obtainable from a data source, it has the semantics of the empty
list, and thus the above equivalences also hold if Void is substituted for [].

(b) fold f op e [] = fold f op e Void = e, for any f, op, e

(c) fold f op e (b1 ++ b2) = (fold f op e b1) op (fold f op e b2)

for any f, op, e, b1, b2. Thus, we can always incrementally compute the
value of fold-based functions if collections expand.

(d) fold f op e (b1 -- b2) = (fold f op e b1) op’ (fold f op e b2)

provided there is an operator op’ which is the inverse of op i.e. such that
(a op b) op’ b = a for all a,b. For example, if op = + then op’ = -,
and thus we can always incrementally compute the value of aggregation
functions such as count, sum and avg if collections contract. Note that this
is not possible for min and max since lesser and greater have no inverses.
Although IQL is list-based, if the ordering of elements within lists is ignored
then its operators are faithful to the expected bag semantics, and within
AutoMed we generally do assume bag semantics. Under this assumption,
(xs ++ ys) -- ys = xs

for all xs,ys and thus we can incrementally compute the value of flatmap
and all its derivative operators if collections contract4.

2.2 An example

We will use schemas expressed in a simple relational data model and a simple
XML data model to illustrate our techniques. However, we stress that these
techniques are applicable to schemas defined in any data modelling language
that has been specified within AutoMed’s Model Definitions Repository.
In the simple relational model, there are two kinds of schema construct: Rel

and Att. The extent of a Rel construct 〈〈R〉〉 is the projection of the relation R

onto its primary key attributes k1, ..., kn. The extent of each Att construct 〈〈R, a〉〉
where a is an attribute (key or non-key) of R is the projection of relation R onto
k1, ..., kn, a. For example, the schema of table MAtab in Figure 2 consists of a
Rel construct 〈〈MAtab〉〉, and four Att constructs 〈〈MAtab,Dept〉〉, 〈〈MAtab,CID〉〉,
〈〈MAtab,SID〉〉, and 〈〈MAtab,Mark〉〉. We refer the reader to [15] for an encoding
of a richer relational data model, including the modelling of constraints.
In the simple XML data model, there are three kinds of schema construct:

Element, Attribute and NestSet. The extent of an Element construct 〈〈e〉〉 consists

4 The distinct operator can also be used to obtain set semantics, if needed.



7

of all the elements with tag e in the XML document; the extent of each Attribute
construct 〈〈e, a〉〉 consists of all pairs of elements and attributes x, y such that
element x has tag e and has an attribute a with value y; and the extent of each
NestSet construct 〈〈p, c〉〉 consists of all pairs of elements x, y such that element x

has tag p and has a child element y with tag c. We refer the reader to [21] for an
encoding of a richer model for XML data sources, called XMLDSS, which also
captures the ordering of children elements under parent elements and cardinality
constraints. That paper gives an algorithm for generating the XMLDSS schema
of an XML document. That paper also discusses a unique naming scheme for
Element constructs so as to handle instances of the same element tag occurring
at multiple positions in the XMLDSS tree.
Figure 2 illustrates the integration of three data sources LD1 , LD2 , and LD3 ,

which respectively store students’ marks for three departments MA, IS and CS.

LD 1 :

MAC02

SID Mark

MAS01 82

MAS03 88

SID Mark

MAS01 77

MAS02 85

MAC01

MAC03
SID Mark

MAS02 76

MAS03 78

Dept CID SID CName Mark

IS ISC01 ISS01 Math 76

... ... ... ... ...

CD2 : IStab
Dept CID SID Mark

MA MAC01 MAS01 77

... ... ... ...

CD1 : MAtab

<?XML version='1.0?'>
- <root>
   - <course CID="ISC01" cname="Math">
       <student SID="ISS01" mark="76" />
       <student SID="ISS02" mark="78" />
     </course>
   - <course CID="ISC02" cname="Programming">
       <student SID="ISS01" mark="86" />
       <student SID="ISS02" mark="85" />
     </course>
  </root>

LD 2 : IS

Dept CID SID SName Mark

CS CSC01 CSS01 Jack 95

... ... ... ... ...

CD3 : CStab

Sid SName CSC01 CSC02 CSC03

CSS01 Jack 95 82 75

CSS02 Tom 88 94 81

LD 3 : CSMarks

Dept CID Total Avg

MA MAC01 162 81

MA MAC02 170 85

... ... ...

CS CSC03 156 78

GD : CourseSum

Fig. 2. An example integration

Database LD1 for department MA has one table of students’ marks for each
course, where the relation name is the course ID. Database LD2 for department
IS is an XML file containing information of course IDs, course names, student IDs
and students’ marks. Database LD3 for department CS has one table containing
one row per student, giving the student’s ID, name, and mark for the courses
CSC01, CSC02 and CSC03. CD1, CD2, and CD3 are the materialised conformed
databases for each data source. Finally, the global database GD contains one
table CourseSum(Dept,CID,Total,Avg) which gives the total and average mark
for each course of each department. Note that the virtual union schema US

(not shown) combines all the information from all the conformed schemas and
consists of a virtual table Details(Dept,CID,SID,CName,SName,Mark).
The following transformation pathways express the schema transformation

and integration processes in this example. Due to space limitations, we have not
given the remaining steps for deleting/contracting the constructs in the source
schema of each pathway (note that this ‘growing’ and ‘shrinking’ of schemas is
characteristic of AutoMed schema transformation pathways):



8

T1 : LS1 → CS1

addRel 〈〈MAtab〉〉 [{’MA’,’MAC01’,x}|x←〈〈MAC01〉〉] ++ [{’MA’,’MAC02’,x}|x←〈〈MAC02〉〉]
++[{’MA’,’MAC03’,x}|x←〈〈MAC03〉〉];

addAtt 〈〈MAtab, Dept〉〉 [{k1,k2,k3,k1}|{k1,k2,k3}←〈〈MAtab〉〉];
addAtt 〈〈MAtab, CID〉〉 [{k1,k2,k3,k2}|{k1,k2,k3}←〈〈MAtab〉〉];
addAtt 〈〈MAtab, SID〉〉 [{k1,k2,k3,k3}|{k1,k2,k3}←〈〈MAtab〉〉];
addAtt 〈〈MAtab, Mark〉〉 [{’MA’,’MAC01’,k,x}|{k,x}←〈〈MAC01, Mark〉〉]

++[{’MA’,’MAC02’,k,x}|{k,x}←〈〈MAC02, Mark〉〉]
++[{’MA’,’MAC03’,k,x}|{k,x}←〈〈MAC03, Mark〉〉];

delAtt 〈〈MAC01, Mark〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab, Mark〉〉; k2=’MAC01’];
delAtt 〈〈MAC01, SID〉〉 [{k3,x}|{k1,k2,k3,x}←〈〈MAtab, SID〉〉; k2=’MAC01’];
delRel 〈〈MAC01〉〉 [{k3}|{k1,k2,k3}←〈〈MAtab〉〉; k2=’MAC01’]
...

The removal of the other two tables in LS1 is similar.

T2 : LS2 → CS2

addRel 〈〈IStab〉〉 [{’IS’,x,y}|{c,x}←〈〈course, CID〉〉; {s,y}←〈〈student, SID〉〉];
addAtt 〈〈IStab, Dept〉〉 [{k1,k2,k3,k1}|{k1,k2,k3}←〈〈IStab〉〉];
addAtt 〈〈IStab, CID〉〉 [{k1,k2,k3,k2}|{k1,k2,k3}←〈〈IStab〉〉];
addAtt 〈〈IStab, SID〉〉 [{k1,k2,k3,k3}|{k1,k2,k3}←〈〈IStab〉〉];
addAtt 〈〈IStab, CName〉〉 [{’IS’,x,y,n}|{c1,x}←〈〈course, CID〉〉; {c2,n}←〈〈course, cname〉〉; c1=c2;

{c3,s1}←〈〈course, student〉〉; c3=c2; {s2,y}←〈〈student, SID〉〉; s2=s1];
addAtt 〈〈IStab, Mark〉〉 [{’IS’,x,y,m}|{c1,x}←〈〈course, CID〉〉; {c2,s1}←〈〈course, student〉〉; c1=c2;

{s2,y}←〈〈student, SID〉〉; s2=s1; {s3,m}←〈〈student, mark〉〉; s3=s2];
...

T3 : LS3 → CS3

addRel 〈〈CStab〉〉 [{’CS’,x,y}|x←[’CSC01’,’CSC02’,’CSC03’]; y←〈〈CSMarks〉〉];
addAtt 〈〈CStab, Dept〉〉 [{k1,k2,k3,k1}|{k1,k2,k3}←〈〈CStab〉〉];
addAtt 〈〈CStab, CID〉〉 [{k1,k2,k3,k2}|{k1,k2,k3}←〈〈CStab〉〉];
addAtt 〈〈CStab, SID〉〉 [{k1,k2,k3,k3}|{k1,k2,k3}←〈〈CStab〉〉];
addAtt 〈〈CStab, SName〉〉 [{’CS’,x,k,s}|x←[’CSC01’,’CSC02’,’CSC03’]; {k,s}←〈〈CSMarks, SName〉〉];
addAtt 〈〈CStab, Mark〉〉 [{’CS’,’CSC01’,k,x}|{k,x}←〈〈CSMarks, CSC01〉〉]

++[{’CS’,’CSC02’,k,x}|{k,x}←〈〈CSMarks, CSC02〉〉]
++[{’CS’,’CSC03’,k,x}|{k,x}←〈〈CSMarks, CSC03〉〉];

...

Tu : US → GS

addRel 〈〈CourseSum〉〉 distinct [{k1,k3}|{k1,k2,k3}←〈〈Details〉〉];
addAtt 〈〈CourseSum, Dept〉〉 [{k1,k2,k1}|{k1,k2}←〈〈CourseSum〉〉];
addAtt 〈〈CourseSum, CID〉〉 [{k1,k2,k2}|{k1,k2}←〈〈CourseSum〉〉];
addAtt 〈〈CourseSum, Total〉〉 [{x,y,z}|{{x,y},z}←

(gc sum [{{k1,k3},x}|{k1,k2,k3,x}←〈〈Details, Mark〉〉])];
addAtt 〈〈CourseSum, Avg〉〉 [{x,y,z}|{{x,y},z}←

(gc avg [{{k1,k3},x}|{k1,k2,k3,x}←〈〈Details, Mark〉〉])];
...

3 Expressing Schema and Data Model Evolution

In a heterogeneous data warehousing environment, it is possible for either a
data source schema or the integrated database schema to evolve. This schema
evolution may be a change in the schema, or a change in the data model in
which the schema is expressed, or both. AutoMed transformations can be used
to express the schema evolution in all three cases:

(a) Consider first a schema S expressed in a modelling languageM. We can ex-
press the evolution of S to Snew, also expressed inM, as a series of primitive
transformations that rename, add, extend, delete or contract constructs ofM.
For example, suppose that the relational schema LS1 in the above example



9

evolves so its three tables become a single table with an extra column for
the course ID. This evolution is captured by a pathway which is identical to
the pathway LS1 → CS1 given above.
This kind of transformation that captures well-known equivalences between
schemas can be defined in AutoMed by means of a parametrised transforma-
tion template which is schema- and data-independent. When invoked with
specific schema constructs and their extents, a template generates the appro-
priate sequence of primitive transformations within the Schemas & Trans-
formations Repository — see [5] for details.

(b) Consider now a schema S expressed in a modelling languageM which evolves
into an equivalent schema Snew expressed in a modelling languageMnew. We
can express this translation by a series of add steps that define the constructs
of Snew inMnew in terms of the constructs of S inM. At this stage, we have
an intermediate schema that contains the constructs of both S and Snew.
We then specify a series of delete steps that remove the constructs ofM (the
queries within these transformations indicate that these are now redundant
constructs since they can be derived from the new constructs).
For example, suppose that XML schema LS2 in the above example evolves
into an equivalent relational schema consisting of single table with one col-
umn per attribute of LS2. This evolution is captured by a pathway which is
identical to the pathway LS2 → CS2 given above.
Again, such generic inter-model translations between one data model and
another can be defined in AutoMed by means of transformation templates.

(c) Considering finally to an evolution which is both a change in the schema
and in the data model, this can be expressed by a combination of (a) and
(b) above: either (a) followed by (b), or (b) followed by (a), or indeed by
interleaving the two processes.

4 Handling Schema Evolution

In this section we consider how the general integration network illustrated in
Figure 1 is evolvable in the face of evolution of a local schema or the warehouse
schema. We have seen in the previous section how AutoMed transformations can
be used to express the schema evolution if either the schema or the data model
changes, or both. We can therefore treat schema and data model change in a
uniform way for the purposes of handling schema evolution: both are expressed
as a sequence of AutoMed primitive transformations, in the first case staying
within the original data model, and in the second case transforming the original
schema in the original data model into a new schema in a new data model.
In this section we describe the actions that are taken in order to evolve the

integration network of Figure 1 if the global schema GS evolves (Section 4.1) or
if a local schema LSi evolves (Section 4.2). Given an evolution pathway from a
schema S to a schema Snew, in both cases each successive primitive transforma-
tion within the pathway S → Snew is treated one at a time. Thus, we describe
in sections 4.1 and 4.2 the actions that are taken if S → Snew consists of just



10

one primitive transformation. If S → Snew is a composite transformation, then
it is handled as a sequence of primitive transformations. Our discussion below
assumes that the primitive transformation being handled is adding, removing
or renaming a construct of S that has an underlying data extent. We do not
discuss the addition or removal of constraints here as these do not impact on
the materialised data, and we make the assumption that any constraints in the
pathway S → Snew have been verified as being valid.

4.1 Evolution of the global schema

Suppose the global schema GS evolves by means of a primitive transformation
t into GSnew. This is expressed by the step t being appended to the pathway
Tu of Figure 1. The new global schema is GSnew and its associated extension is
GDnew. GS is now an intermediate schema in the extended pathway Tu; t and
it no longer has an extension associated with it. t may be a rename, add, extend,
delete or contract transformation. The following actions are taken in each case:

1. If t is rename c c′, then there is nothing further to do. GS is semantically
equivalent to GSnew and GDnew is identical to GD except that the extent
of c in GD is now the extent of c′ in GDnew.

2. If t is add c q, then there is nothing further to do at the schema level. GS is
semantically equivalent to GSnew. However, the new construct c in GDnew

must now be populated, and this is achieved by evaluating the query q over
GD .

3. If t is extend c, then the new construct c in GDnew is populated by an empty
extent. This new construct may subsequently be populated by an expansion
in a data source (see Section 4.2).

4. If t is delete c q or contract c, then the extent of c must be removed from GD

in order to createGDnew (it is assumed that this a legal deletion/contraction,
e.g if we wanted to delete/contract a table from a relational schema, then
first the constraints and then the columns would be deleted/contracted and
lastly the table itself; such syntactic correctness of transformation pathways
is automatically verified by AutoMed). It may now be possible to simplify
the transformation network, in that if Tu contains a matching transformation
add c q or extend c, then both this and the new transformation t can be
removed from the pathway US → GSnew. This is purely an optimization —
it does not change the meaning of a pathway, nor its effect on view generation
and query/data translation. We refer the reader to [19] for details of the
algorithms that simplify AutoMed transformation pathways.

In cases 2 and 3 above, the new construct c will automatically be prop-
agated into the schema DMS of any data mart derived from GS . To prevent
this, a transformation contract c can be prefixed to the pathway GS → DMS .
Alternatively, the new construct c can be propagated to DMS if so desired, and
materialised there. In cases 1 and 4 above, the change in GS and GD may
impact on the data marts derived from GS , and we discuss this in Section 4.3.



11

4.2 Evolution of a local schema

Suppose a local schema LSi evolves by means of a primitive transformation t

into LSnew
i . As discussed in Section 2, there is automatically available a reverse

transformation t from LSnew
i to LS i and hence a pathway t;Ti from LSnew

i to
CS i. The new local schema is LS

new
i and its associated extension is LDnew

i .
LSi is now just an intermediate schema in the extended pathway t;Ti and it no
longer has an associated extension.

tmay be a rename, add, delete, extend or contract transformation. In 1–5 below
we see what further actions are taken in each case for evolving the integration
network and the downstream materialised data as necessary.
We first introduce some necessary terminology: If p is a pathway S → S ′ and

c is a construct in S, we denote by descendants(c, p) the constructs of S ′ which
are directly or indirectly dependent on c, either because c itself appears in S ′

or because a construct c′ of S′ is created by a transformation add c′ q within p

where the query q directly or indirectly references c. The set descendants(c, p)
can be straight-forwardly computed by traversing p and inspecting the query
associated with each add transformation within in.

1. If t is rename c c′, then schema LSnew
i is semantically equivalent to LS i. The

new transformation pathway T new
i : LSnew

i →CS i is t;Ti = rename c’ c;Ti.
The new local database LDnew

i is identical to LD i except that the extent of
c in LD i is now the extent of c′ in LDnew

i .
2. If t is add c q, then LS i has evolved to contain a new construct c whose
extent is equivalent to the expression q over the other constructs of LS i.
The new transformation pathway T new

i :LSnew
i →CS i is t;Ti = delete c q;Ti.

3. If t is delete c q, this means that LS i has evolved to not include a construct
c whose extent is derivable from the expression q over the other constructs
of LS i, and the new local database LD

new
i no longer contains an extent for

c. The new transformation pathway T new
i :LSnew

i →CS i is t;Ti = add c q;Ti.

In the above three cases, schema LSnew
i is semantically equivalent to LS i,

and nothing further needs to be done to any of the transformation pathways,
schemas or databases CD1, . . . , CDn and GD. This may not be the case if t is
a contract or extend transformation, which we consider next.

4. If t is extend c, then there will be a new construct available from LS new
i

that was not available before. That is, LSi has evolved to contain the new
construct c whose extent is not derivable from the other constructs of LSi .
If we left the transformation pathway Ti as it is, this would result in a
pathway T new

i = contract c;Ti from LSnew
i to CSi , which would immediately

drop the new construct c from the integration network. That is, T new
i is

consistent but it does not utilize the new data.

However, recall that we said earlier that we assume no contract steps in the
pathways from local schemas to their union schemas, and that all the data in
LS i should be available to the integration network. In order to achieve this, there
are four cases to consider:



12

(a) c appears in USi and has the same semantics as the newly added c in LSnew
i .

Since c cannot be derived from the original LS i, there must be a transfor-
mation extend c, in CSi → USi.
We remove from T new

i the new contract c step and this matching extend c

step. This propagates c into CSi, and we populate its extent in the materi-
alised database CDi by replicating its extent from LDnew

i .
(b) c does not appear in USi but it can be derived from USi by means of some

transformation T .
In this case, we remove from T new

i the first contract c step, so that c is now
present in CSi and in USi. We populate the extent of c in CDi by replicating
its extent from LDnew

i .
To repair the other pathways Tj : LSj → CSj and schemas USj for j 6= i,
we append T to the end of each Tj . As a result, the new construct c now
appears in all the union schemas. To add the extent of this new construct to
each materialised database CDj for j 6= i, we compute it from the extents
of the other constructs in CSj using the queries within successive add steps
in T .
We finally append the necessary new id steps between pairs of union schemas
to assert the semantic equivalence of the construct c within them.

(c) c does not appear in USi and cannot be derived from USi.
In this case, we again remove from T new

i the first contract c step so that c is
now present in schema CSi.
To repair the other pathways Tj : LSj → CSj and schemas USj for j 6= i, we
append an extend c step to the end of each Tj . As a result, the new construct
c now appears in all the conformed schemas CS1, . . . , CSn.
The construct c may need further translation into the data model of the
union schemas and this is done by appending the necessary sequence, T , of
add/delete/rename steps to all the pathways LS1 → CS1, . . . , LSn → CSn.
We compute the extent of c within the database CDi from its extent within
LDnew

i using the queries within successive add steps in T .
We finally append the necessary new id steps between pairs of union schemas
to assert the semantic equivalence of the new construct(s) within them.

(d) c appears in USi but has different semantics to the newly added c in LSnew
i .

In this case, we rename c in LSnew
i to a new construct c′. The situation

reverts to adding a new construct c′ to LSnew
i , and one of (a)-(c) above

applies.

We note that determining whether c can or cannot be derived from the
existing constructs of the union schemas in (a)–(d) above requires domain or
expert human knowledge. Thereafter, the remaining actions are fully automatic.
In cases (a) and (b), there is new data added to one or more of the con-

formed databases which needs to be propagated to GD. This is done by com-
puting descendants(c, Tu) and using the algebraic equivalences of Section 2.1 to
propagate changes in the extent of c to each of its descendant constructs gc in
GS. Using these equivalences, we can in most cases incrementally recompute the
extent of gc. If at any stage in Tu there is a transformation add c′ q where no
equivalence can be applied, then we have to recompute the whole extent of c′.



13

In cases (b) and (c), there is a new schema construct c appearing in the USi.
This construct will automatically appear in the schema GS. If this is not desired,
a transformation contract c can be prefixed to Tu.

5. If t is contract c, then the construct c in LS i will no longer be available
from LSnew

i . That is, LS i has evolved so as to not include a construct c

whose extent is not derivable from the other constructs of LS i. The new
local database LDnew

i no longer contains an extent for c.

The new transformation pathway T new
i :LSnew

i →CS i is t;Ti = extend c;Ti.
Since the extent of c is now Void, the materialised data in CDi and GD must
be modified so as to remove any data derived from the old extent of c.

In order to repair CDi, we compute descendants(c, LSi→CSi). For each
construct uc in descendants(c, LSi→CSi), we compute its new extent and
replace its old extent in CDi by the new extent. Again, the algebraic prop-
erties of IQL queries discussed in Section 2.1 can be used to propagate the
new Void extent of construct c in LSnew

i to each of its descendant constructs
uc in CSi. Using these equivalences, we can in most cases incrementally
recompute the extent of uc as we traverse the pathway Ti.

In order to repair GD, we similarly propagate changes in the extent of each
uc along the pathway Tu.

Finally, it may also be necessary to amend the transformation pathways
if there are one or more constructs in GD which now will always have an
empty extent as a result of this contraction of LSi. For any construct uc

in US whose extent has become empty, we examine all pathways T1, . . . ,
Tn. If all these pathways contain an extend uc transformation, or if using
the equivalences of Section 2.1 we can deduce from them that the extent
of uc will always be empty, then we can suffix a contract gc step to Tu for
every gc in descendants(uc, Tu), and then handle this case as paragraph 4
in Section 4.1.

4.3 Evolution of downstream data marts

We have discussed how evolutions to the global schema or to a source schema
are handled. One remaining question is how to handle the impact of a change to
the data warehouse schema, and possibly its data, on any data marts that have
been derived from it.

In [7] we discuss how it is possible to express the derivation of a data marts
from a data warehouse by means of an AutoMed transformation pathway. Such
a pathway GS → DMS expresses the relationship of a data mart schema DMS

to the warehouse schema GS. As such, this scenario can be regarded as a special
case of the general integration scenario of Figure 1, where GS now plays the role
of the single source schema, databases CD1, . . . , CDn and GD collectively play
the role of the data associated with this source schema and DMS plays the role
of the global schema. Therefore, the same techniques as discussed in sections 4.1
and 4.2 can be applied.



14

5 Concluding Remarks

In this paper we have described how the AutoMed heterogeneous data integra-
tion toolkit can be used to handle the problem of schema evolution in hetero-
geneous data warehousing environments so that the previous transformation,
integration and data materialisation effort can be reused. Our algorithms are
mainly automatic, except for the aspects that require domain or expert human
knowledge regarding the semantics of new schema constructs.
We have shown how AutoMed transformations can be used to express schema

evolution within the same data model, or a change in the data model, or both,
whereas other schema evolution literature has focussed on just one data model.
Schema evolution within the relational data model has been discussed in pre-
vious work such as [11, 12, 18]. The approach in [18] uses a first-order schema
in which all values in a schema of interest to a user are modelled as data, and
other schemas can be expressed as a query over this first-order schema. The
approach in [12] uses the notation of a flat scheme, and gives four operators
Unite, Fold, Unfold and Split to perform relational schema evolution us-
ing the SchemaSQL language. In contrast, with AutoMed the process of schema
evolution is expressed using a simple set of primitive schema transformations
augmented with a functional query language, both of which are applicable to
multiple data models.
Our approach is complementary to work on mapping composition, e.g. [20,

14], in that in our case the new mappings are a composition of the original
transformation pathway and the transformation pathway which expresses the
schema evolution. Thus, the new mappings are, by definition, correct. There are
two aspects to our approach: (i) handling the transformation pathways and (ii)
handling the queries within them. In this paper we have in particular assumed
that the queries are expressed in IQL. However, the AutoMed toolkit allows any
query language syntax to be used within primitive transformations, and therefore
this aspect of our approach could be extended to other query languages.
Materialised data warehouse views need to be maintained when the data

sources change, and much previous work has addressed this problem at the data
level. However, as we have discussed in this paper, materialised data warehouse
views may also need to be modified if there is an evolution of a data source
schema. Incremental maintenance of schema-restructuring views within the re-
lational data model is discussed in [10], whereas our approach can handle this
problem in a heterogeneous data warehousing environment with multiple data
models and changes in data models. Our previous work [7] has discussed how
AutoMed transformation pathways can also be used for incrementally maintain-
ing materialised views at the data level. For future work, we are implementing
our approach and evaluating it in the context of biological data warehousing.

References

1. J. Andany, M. Léonard, and C. Palisser. Management of schema evolution in
databases. In Proc. VLDB’91, pages 161–170. Morgan Kaufmann, 1991.



15

2. Z. Bellahsene. View mechanism for schema evolution in object-oriented DBMS. In
Proc. BNCOD’96, LNCS 1094. Springer, 1996.

3. B. Benatallah. A unified framework for supporting dynamic schema evolution in
object databases. In Proc. ER’99, LNCS 1728. Springer, 1999.

4. M. Blaschka, C. Sapia, and G. Höfling. On schema evolution in multidimensional
databases. In Proc. DaWaK’99, LNCS 1767. Springer, 1999.

5. M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. Au-
toMed: A BAV data integration system for heterogeneous data sources. In Proc.

CAiSE’04, 2004.
6. P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.
7. H. Fan and A. Poulovassilis. Using AutoMed metadata in data warehousing envi-

ronments. In Proc. DOLAP’03, pages 86–93. ACM Press, 2003.
8. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrat-

ing data in the AutoMed toolkit. Technical Report 20, Automed Project, 2003.
9. E. Jasper, N. Tong, P. McBrien, and A. Poulovassilis. View generation and optimi-

sation in the AutoMed data integration framework. In Proc. 6th Baltic Conference

on Databases and Information Systems, 2004.
10. A. Koeller and E. A. Rundensteiner. Incremental maintenance of schema-

restructuring views. In Proc. EDBT’02, LNCS 2287. Springer, 2002.
11. L. V. S. Lakshmanan, F. Sadri, and I. N. Subramanian. On the logical foundations

of schema integration and evolution in heterogeneous database systems. In Proc.

DOOD’93, LNCS 760. Springer, 1993.
12. L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On efficiently implement-

ing SchemaSQL on an SQL database system. In Proc. VLDB’99, pages 471–482.
Morgan Kaufmann, 1999.

13. M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, 2002.
14. Jayant Madhavan and Alon Y. Halevy. Composing mappings among data sources.

In Proc. VLDB’03. Morgan Kaufmann, 2003.
15. P. McBrien and A. Poulovassilis. A uniform approach to inter-model transforma-

tions. In Proc. CAiSE’99, LNCS 1626, pages 333–348. Springer, 1999.
16. P. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database

architectures, a schema transformation approach. In Proc. CAiSE’02, LNCS 2348,
pages 484–499. Springer, 2002.

17. P. McBrien and A. Poulovassilis. Data integration by bi-directional schema trans-
formation rules. In Proc. ICDE’03, pages 227–238, 2003.

18. Renée J. Miller. Using schematically heterogeneous structures. In Proc. ACM

SIGMOD’98, pages 189–200. ACM Press, 1998.
19. N. Tong. Database schema transformation optimisation techniques for the Au-

toMed system. In Proc. BNCOD’03, LNCS 2712. Springer, 2003.
20. Yannis Velegrakis, Rene J. Miller, and Lucian Popa. Mapping adaptation under

evolving schemas. In Proc. VLDB’03. Morgan Kaufmann, 2003.
21. L. Zamboulis. XML data integration by graph restrucring. In Proc. BNCOD’04,

LNCS 3112. Springer, 2004.


