
Using Schema Transformation Pathways for
Incremental View Maintenance

Hao Fan

School of Computer Science & Information Systems, Birkbeck College,
University of London, Malet Street, London WC1E 7HX

hao@dcs.bbk.ac.uk

Abstract. With the increasing amount and diversity of information available on
the Internet, there has been a huge growth in information systems that need to
integrate data from distributed, heterogeneous data sources. Incrementally main-
taining the integrated data is one of the problems being addressed in data ware-
housing research. This paper presents an incremental view maintenance approach
based on schema transformation pathways. Our approach is not limited to one
specific data model or query language, and would be useful in any data transfor-
mation/integration framework based on sequences of primitive schema transfor-
mations.

1 Introduction

Data warehouses collect data from distributed, autonomous and heterogeneous data
sources into a central repository to enable analysis and mining of the integrated infor-
mation. When data sources change, the data warehouse, in particular the materialised
views in the data warehouse, must be updated also. This is the problem of view main-
tenance in data warehouses. In contrast to operational database systems handling day-
to-day operations of an organisation and dealing with small changes to the databases,
data warehouses support queries by non-technical users based on long-term, statistical
information integrated from a variety of data sources, and do not require the most up to
date operational version of all the data. Thus, data warehouses are normally refreshed
periodically and updates to the primary data sources do not have to be propagated to the
data warehouse immediately.

AutoMed1 is a heterogeneous data transformation and integration system which of-
fers the capability to handle data integration across multiple data models. In the Au-
toMed approach, the integration of schemas is specified as a sequence of primitive
schema transformation steps, which incrementally add, delete or rename schema con-
structs, thereby transforming each source schema into the target schema. We term the
sequence of primitive transformations steps defined for transforming a schema S1 into
a schema S2 a transformation pathway from S1 to S2.

In previous work (see [7]), we discussed how AutoMed metadata can be used to ex-
press the schemas and the cleansing, transformation and integration processes in hetero-
geneous data warehousing environments. In this paper, we will describe how AutoMed
metadata can be used for maintaining the warehouse data.

1 See http://www.doc.ic.ac.uk/automed/

Materialised warehouse views need to be maintained either when the data of a data
source changes, or if there is an evolution of a data source schema. In previous work (see
[8]), we showed that AutoMed transformation pathways can be used to handle schema
evolutions in a data warehouse. In this paper, we will focus on refreshing materialised
warehouse views at the data level.

Materialised views can be refreshed by recomputing from scratch or, on the other
hand, by only computing the changes to the views rather than all the view data, which
is termed incremental view maintenance (IVM). Incrementally refreshing a view can be
significantly cheaper than fully recomputing the view, especially if the size of the view
is large compared to the size of the change.

The problem of view maintenance at the data level has been widely discussed in
the literature. Dong and Gupta et al give good surveys of this problem [6, 10]. Colby
et al, Griffin et al and Quass present propagation formulae based on relational algebra
operations for incrementally maintaining views with duplicates and aggregations [5, 9,
16]. Zhuge et al consider the IVM problem for a single-source data warehouses and de-
fines the ECA algorithm [20]. The IVM approaches for a multi-source data warehouse
include the Strobe algorithm [21], and the SWEEP and Nested SWEEP algorithms [1].
The view maintenance approach discussed by Gupta and Quass et al is to make views
self-maintainable, which means that materialised views can be refreshed by only using
the content of the views and the updates to the data sources, and not requiring to ac-
cess the data in any underlying data source [11, 17]. Such a view maintenance approach
usually needs auxiliary materialised views to store additional information.

Our IVM approach presented in this paper is based on AutoMed schema transfor-
mation pathways, which is not limited to one specific data model or query language, and
would be useful in any data transformation/integration framework based on sequences
of primitive schema transformations.

The outline of this paper is as follows. Section 2 gives an overview of AutoMed, as
well as a data integration example. Section 3 presents our IVM formulae and algorithms
using AutoMed schema transformations. Section 4 gives our concluding remarks and
directions of further work.

2 Overview of AutoMed

AutoMed supports a low-level hypergraph-based data model (HDM). Higher-level mod-
elling languages are defined in terms of this HDM. For example, previous work has
shown how relational, ER, OO [13], XML [18], flat-file [3] and multidimensional [7]
data models can be so defined. An HDM schema consists of a set of nodes, edges
and constraints, and each modelling construct of a higher-level modelling language is
specified as some combination of HDM nodes, edges and constraints. For any mod-
elling language M specified in this way, via the API of AutoMed’s Model Definitions
Repository [3], AutoMed provides a set of primitive schema transformations that can
be applied to schema constructs expressed in M. In particular, for every construct of
M there is an add and a delete primitive transformation which add to/delete from a
schema an instance of that construct. For those constructs of M which have textual
names, there is also a rename primitive transformation.

In AutoMed, schemas are incrementally transformed by applying to them a se-
quence of primitive transformations t1, . . . , tr. Each primitive transformation adds,
deletes or renames just one schema construct, expressed in some modelling language.
Thus, the intermediate (and indeed the target) schemas may contain constructs of more
than one modelling language.

Each add or delete transformation is accompanied by a query specifying the extent
of the new or deleted construct in terms of the rest of the constructs in the schema. This
query is expressed in a functional query language IQL2. The queries within add and
delete transformations are used by AutoMed’s Global Query Processor to evaluate an
IQL query over a global schema in the case of a virtual data integration scenario. In the
case that the global schema is materialised, AutoMed’s Query Evaluator can be used
directly on the materialised data.

2.1 Simple IQL

In order to illustrate our IVM algorithm, we use a subset of IQL, Simple IQL (SIQL), as
the query language in this paper. More complex IQL queries can be encoded as a series
of transformations with SIQL queries on intermediate schema constructs. We stress
that although illustrated within a particular query language syntax, our IVM algorithms
could also be applied to schema transformation pathways involving queries expressed
in other query languages supporting operations on set, bag and list collections.

Supposing D, D1 . . . , Dn denote bags of the appropriate type (base collections),
SIQL supports the following queries: group D groups a bag of pairs D on their first
component. distinct D removes duplicates from a bag. f D applies an aggregation
function f (which may be max, min, count, sum or avg) to a bag. gc f D groups
a bag D of pairs on their first component and applies an aggregation function f to the
second component. ++ is the bag union operator and −− is the bag monus operator
[2]. SIQL comprehensions are of three forms: [x|x1 ← D1; . . . ;xn ← Dn;C1; ...;Ck],
[x|x ← D1; member D2 y], and [x|x ← D1; not(member D2 y)]. Here, each x1,
..., xn is either a single variable or a tuple of variables. x is either a single variable or
value, or a tuple of variables or values, and must include all of variables appearing in
x1, ..., xn. Each C1, ..., Ck is a condition not referring to any base collection. Also, each
variable appearing in x and C1, ..., Ck must also appear in some xi, and the variables in
y must appear in x. Finally, a query of the form map (λx.e) D applies to each element
of a collection D an anonymous function defined by a lambda abstraction λx.e and
returns the resulting collection.

Comprehension syntax can express the common algebraic operations on collection
types such as sets, bags and lists [4] and such operations can be readily expressed
in SIQL. In particular, let us consider selection (σ), projection(π), join (./), and ag-
gregation (α) (union (

⋃
) and difference (−) are directly supported in SIQL via the

++ and −− operators). The general form of a Select-Project-Join (SPJ) expression is

2 IQL is a comprehensions-based functional query language. Such languages subsume query
languages such as SQL and OQL in expressiveness [4]. We refer the reader to [12, 15] for
details of IQL and references to work on comprehension-based functional query languages.

πA(σC(D1 .// Dn)) and this can be expressed as follows in comprehension syn-
tax: [A|x1 ← D1; . . . ;xn ← Dn;C]. However, since in general the tuple of variables A
may not contain all the variables appearing in x1, ...,xn (as is required in SIQL), we
can use the following two transformation steps to express a general SPJ expression in
SIQL, where x includes all of the variables appearing in x1,xn:

v1 = [x|x1 ← D1; . . . ;xn ← Dn;C]
v = map (λx.A) v1

The algebraic operator α applies an aggregation function to a collection and this func-
tionality is captured by the gc operator in SIQL. E.g., supposing the scheme of a col-
lection D is D(A1,A2,A3), an expression αA2,f(A3)(D) is expressed in SIQL as:

v1 = map (λ{x1,x2,x3}.{x2,x3}) D
v = gc f v1

2.2 An Example Data Integration

In this paper, we will use schemas expressed in a simple relational data model to illus-
trate our techniques. However, we stress that these techniques are applicable to schemas
defined in any data modelling language having been specified within AutoMed’s Model
Definitions Repository, including modelling languages for semi-structured data [3, 18].

In our simple relational model, there are two kinds of schema construct: Rel and
Att. The extent of a Rel construct 〈〈R〉〉 is the projection of relation R onto its primary
key attributes k1, ..., kn. The extent of each Att construct 〈〈R, a〉〉 where a is a non-key
attribute of R is the projection of R onto k1, ..., kn, a. We refer the reader to [13] for an
encoding of a richer relational data model, including the modelling of constraints.

Suppose that MAtab(CID, SID, Mark) and IStab(CID, SID, Mark) are two source
relations for a data warehouse respectively storing students’ marks for two departments
MA and IS, in which CID and SID are the course and student IDs. Suppose also that a
relation Course(Dept,CID,Avg) is in the data warehouse which gives the average mark
for each course of each department.

The following transformation pathway expresses the schema transformation and
integration processes in this example. Due to space limitations, we have not given
the steps for removing the source relation constructs (note that this ‘growing’ and
‘shrinking’ of schemas is characteristic of AutoMed schema transformation pathways).
Schema constructs 〈〈Details〉〉 and 〈〈Details, Mark〉〉 are temporary ones which are cre-
ated for integrating the source data and then deleted after the global relation is created.
addRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
addAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
addRel 〈〈Course〉〉 distinct [{k,k1}|{k,k1,k2}←〈〈Details〉〉];
addAtt 〈〈Course, Avg〉〉 [{x,y,z}|{{x,y},z}←(gc avg

[{{k,k1},x}|{k,k1,k2,x}←〈〈Details, Mark〉〉])];
delAtt 〈〈Details, Mark〉〉 [{’MA’,k1,k2,x}|{k1,k2,x}←〈〈MAtab, Mark〉〉]

++[{’IS’,k1,k2,x}|{k1,k2,x}←〈〈IStab, Mark〉〉];
delRel 〈〈Details〉〉 [{’MA’,k1,k2}|{k1,k2}←〈〈MAtab〉〉]

++[{’IS’,k1,k2}|{k1,k2}←〈〈IStab〉〉];
...

Note that some of the queries appearing in the above transformation steps are not
SIQL but general IQL queries. In such cases, for the purposes of IVM, we decompose
a general IQL query into a sequence of SIQL queries by means of a depth-first tra-
versal of the IQL query tree. For example, the IQL query [{x,y,z}|{{x,y},z} ←
(gc avg [{{k,k1},x}| {k,k1,k2,x}← 〈〈Details, Mark〉〉])] is decomposed into fol-
lowing sequence of SIQL queries, where v1 and v2 are virtual intermediate views:

v1 = map (λ{k,k1,k2,x}.{{k1,k2},x}) 〈〈Details, Mark〉〉
v2 = gc avg v1
v = map (λ{{x,y},z}.{x,y,z}) v2

From now on, we assume that all queries in transformation steps are SIQL queries.

3 IVM with AutoMed Schema Transformations

Our IVM algorithms use the individual steps of a transformation pathway to compute
the changes to each intermediate construct in the pathway, and finally obtain the changes
to the view created by the transformation pathway in a stepwise fashion. Since no con-
struct in a global schema is contributed by delete and contract transformations, we
ignore these transformations in our IVM algorithms. In addition, computing changes
based on a transformation rename(O′, O) is simple — the changes to O are the same
as the changes to O′. Thus, we only consider add transformations here.

We can express a single add transformation step as an expression v=q(D), in
which v is the schema construct created by the transformation and q is the SIQL query
over the data source D. In order to incrementally maintain the global schema data, we
develop a set of IVM formulae for each SIQL query, and apply these IVM formulae on
each transformation step to compute the changes to the construct created by the step.
By following all the steps in the transformation pathway, we compute the intermediate
changes step by step, finally ending up with the final changes to the global schema data.

3.1 IVM Formulae for SIQL Queries

We use MC/OC to denote a collection of data items inserted into/deleted from a collec-
tion C. There might be many possible expressions for MC and OC but not all are equally
desirable. For example, we could simply let OC = C and MC =MCnew, but this is
equivalent to recomputing the view from scratch [16]. In order to avoidsuch definitions,
we use the concept of minimality [9] to ensure that no unnecessary data are produced.
Minimality Conditions Any changes (MC/OC) to a data collection C, including the
data source and the view, must satisfy the following minimality conditions:

(i) OC ⊆ C: We only delete tuples that are in C;
(ii) MC ∩ OC = Ø: We do not delete a tuple and then reinsert it.

We now give the IVM formulae for each SIQL query, in which v denotes the
view, D denotes the data sources, Mv/Ov and MD/OD denote the collections inserted
into/deleted from v and D, and Dnew denotes the source collect D after the update. We
observe that these formulae guarantee that the above minimality conditions are satisfied
of Mv and Ov provided they are satisfied by MD and OD.

v Mv Ov
distinct D distinct [x|x ←MD; distinct [x|x ← OD;

not(member v x)] not(member Dnew x)]

map λe1.e2 D map λe1.e2 MD map λe1.e2 OD
let r1 = max MD; r2 = max OD

max D

8<:max MD, if (v < r1);
ø, if (v ≥ r1)&(v 6= r2);
max Dnew, if (v > r1)&(v = r2).

8<: v, if (v < r1);
ø, if (v ≥ r1)&(v 6= r2);
v, if (v > r1)&(v = r2).

let r1 = min MD; r2 = min OD

min D

8<:min MD, if (v > r1);
ø, if (v ≤ r1)&(v 6= r2);
min Dnew, if (v < r1)&(v = r2).

8<:v, if (v > r1);
ø, if (v ≤ r1)&(v 6= r2);
v, if (v < r1)&(v = r2).

count D v+ (count MD)− (count OD) v
sum D v+ (sum MD)− (sum OD) v
avg D avg Dnew v

Table 1. IVM formulae for distinct, map, and aggregate functions

v Mv Ov
D1 ++ D2 (MD1−− OD2) ++ (MD2−− OD1) (OD1−− MD2) ++ (OD2−− MD1)
D1−− D2 ((MD1−− MD2) ++ (OD2−− OD1)) ((OD1−− OD2) ++ (MD2−− MD1))

−−(D2−− D1) ∩ v

Table 2. IVM formulae for bag union and monus

1. IVM formulae for distinct, map, and aggregate functions;
Table 1 illustrates the IVM formulae for these functions. We can see that the IVM

formulae for distinct/max/min/avg function require accessing the post-update data
source and using the view data; the formulae for count/sum function need to use the
view data; and the formulae for map function only use the updates to the data source.

2. IVM formulae for grouping functions such as group D and gc f D;
Grouping functions group a bag of pairs D on their first component, and may apply

an aggregate function f to the second component. For the IVM of a view defined by a
grouping function, we firstly find the data items in D, which are in the same groups of
the updates, i.e. have the same first component with the updates. Then this smaller data
collection can be used to compute the changes to the view, so as to save time and space
overheads. For example, the IVM formulae for v = gc f D are as follows:

Mv = gc f [{x, y}|{x, y} ← Dnew;member [p|{p, q} ← (MD ++ OD)] x]
Ov = [{x, y}|{x, y} ← v;member [p|{p, q} ← (MD ++ OD)] x]

The IVM formulae for grouping functions require accessing the updated data source
and using the view data.

3. IVM formulae for bag union and monus;
Table 2 illustrates IVM formulae for bag union and monus (see [9]), in which ∩ is

an intersection operator with the following semantics: D1∩D2 = D1−−(D1−−D2) =
D2−− (D2−−D1). The IVM formulae for bag union only use the changes to the data
sources, while the formulae for bag monus have to use the view data and require an

Algorithm IVM4Comp()
Begin:

tempV iew = D1new;
Mv =MD1;
Ov = OD1;
for i = 2 to n, do

if (MDi or ODi is not empty)
tempV iew = tempV iew .//c(i−1) D

new
(i−1);

Ov = (Ov ./ci Di
new −− Ov ./ciMDi) ++ Ov ./ci ODi

++(tempV iew ./ci ODi−− Mv ./ci ODi);
Mv = (Mv ./ci Di

new−− Mv ./ciMDi) ++ tempV iew ./ciMDi;
else

Mv =Mv ./ci Di
new;

Ov = Ov ./ci Di
new;

return Mv and Ov;
End

Fig. 1. The IVM4Comp Algorithm

auxiliary view D2−−D1. This auxiliary view is similarly incrementally maintained by
using the IVM formulae for bag monus with D1−− D2.

4. IVM formulae for comprehension [x|x1 ← D1; . . . ;xn ← Dn; C1; C2; ...; Ck];
For ease of discussion, we use the join operator ./ to express this comprehension.

In particular, (D1 ./c D2) = [{x, y}|x ← D1; y ← D2; c] where c = C1; ...; Ck.
More generally, (D1 ./c1,c2 D2 ./c3/cn Dn) = [x|x1 ← D1; . . . ; xn ←
Dn; c1; c2; ...; cn] in which ci is the conjunction of those predicates from C1, ..., Ck

which contain variables appearing in xi but without any variable appearing in xj , j > i.
We firstly give the IVM formulae of a view v = D1 ./c D2 as follows. These IVM

formulae can be derived from the propagation rules described in [9, 5].
Mv = (MD1 ./c Dnew

2 −− MD1 ./cMD2) ++ Dnew
1 ./cMD2

Ov = (OD1 ./c Dnew
2 −− OD1 ./cMD2) ++ OD1 ./c OD2

++(Dnew
1 ./c OD2−− MD1 ./c OD2)

Then, the IVM algorithm, IVM4Comp, for incrementally maintaining the view v =
(D1 ./c1,c2 D2 ./c3/cn Dn) is given in Figure 1. This IVM algorithm for the
comprehension needs to access all the post-update data sources.

The IVM4Comp algorithm is similar to the IVM algorithms discussed in [21] and
[1], i.e. the Strobe and SWEEP algorithms, in the context of maintaining a multi-source
data warehouse. Both the Strobe and the SWEEP algorithm perform an IVM procedure
for each update to a data source so as to ensure the data warehouse is consistent with
the updated data source. For both algorithms, the cost of the messaging between the
data warehouse and the data sources for each update is O(n) where n is the number
of data sources. However, in practice, warehouse data are normally long-term and just
refreshed periodically. Our IVM4Comp algorithm is able to handle a batch of updates
and is specifically designed for a periodic view maintenance policy. The message cost
of our algorithm for a batch of updates to any of the data sources is O(n).

5. IVM formulae for member and not member functions;
For ease of discussion, we use ∧ and Z to denote expressions with member and

not member functions, i.e. D1∧D2 = [x|x ← D1;member D2 x] and D1ZD2 =
[x|x ← D1;not (member D2 x)]. The IVM formulae for these two functions are
given below, in which the function countNum a D returns the number of occurrences
of the data item a in D, i.e. countNum a D = count [x|x ← D;x=a]. We can
see that all post-update data sources are required in the IVM formulae.
v = [x|x← D1;member D2 x]
let r1 = [x|x ←MD2; (countNum x MD2) = (countNum x D2new)]

r2 = OD2 Z D2new

Mv = (MD1 ∧ D2new−− MD1 ∧ r1]) ++ D1new ∧ r1

Ov = (OD1 ∧ D2new −− OD1 ∧ r1) ++ (D1new ∧ r2−− MD1 ∧ r2) ++ OD1 ∧ r2
v = [x|x← D1;not(member D2 x)]
let r1 = [x|x ←MD2; (countNum x MD2) = (countNum x D2new)]

r2 = OD2 Z D2new

Mv = (MD1 Z D2new−− MD1 ∧ r2) ++ D1new ∧ r2

Ov = (OD1 Z D2new −− OD1 ∧ r2) ++ (D1new ∧ r1−− MD1 ∧ r1) ++ OD1 ∧ r1

3.2 IVM for Schema Transformation Pathways

Having defined the IVM formulae for each SIQL query, the update to a construct
created by a single add transformation step is obtained by applying the appropriate
formulae to the step’s query. Our IVM procedure for a single transformation step is
IVM4AStep(cd, ts) and its output is the change to the construct created by step ts
based on the changes cd to ts’s data sources. After obtaining the change to all the con-
structs created by a transformation pathway, the view created by the transformation
pathway is incrementally maintained.

However, as discussed above, the post-update data sources and the view itself are
required by some IVM formulae. In a general transformation pathway, some interme-
diate constructs might be virtual. If a required data collection is unavailable, i.e. not
materialised, the IVM4AStep procedure cannot be applied.

Thus, in order to apply the IVM4AStep procedure along a transformation pathway,
we have to precheck each add transformation in the pathway. If a virtual data collection
is required by the IVM formula for a transforation step, we must firstly recover this data
collection and store it in the data warehouse. This precheck only needs to be performed
once for each transformation pathway in a data warehouse, unless the transformation
pathway evolves due to the evolution of a data source schema. This materialisation
increases the storage overhead of the data warehouse, but does not increase the message
cost of the IVM process since these materialised constructs are also maintainable by
using the IVM process along the transformation pathway.

Alternatively, we can use AutoMed’s Global Query Processor (GQP) to evaluate the
extent of a virtual construct during the IVM process so as to avoid increasing persistent
storage overheads. However, since it is based on post-update data sources, AutoMed’s
GQP can only recover a post-update view. If a view is used in an IVM formula, this
means the view is before the update, which cannot be recovered by AutoMed’s GQP.

We now give an example of prechecking a transformation pathway. In Section
2.2, the transformation pathway generating the construct 〈〈Course, Avg〉〉 in the global

schema can be expressed as the following sequence of view definitions, where the in-
termediate constructs v1, . . ., v4 and 〈〈Details,Mark〉〉 are virtual:

v1 = [{’IS’,k1,k2,x}|{k1,k2,x}← 〈〈IStab, Mark〉〉]
v2 = [{’MA’,k1,k2,x}|{k1,k2,x}← 〈〈MAtab, Mark〉〉]
〈〈Details, Mark〉〉 = v1 ++ v2
v3 = map (λ{k,k1,k2,x}.{{k,k1},x}) 〈〈Details, Mark〉〉
v4 = gc avg v3
〈〈Course, Avg〉〉 = map (λ{{x,y},z}.{x,y,z}) v4

In order to incrementally maintain 〈〈Course, Avg〉〉, the intermediate views v3 and
v4 must be materialised (based on the IVM formulae for grouping functions). For ex-
ample, supposes that an update to the data sources is a tuple inserted into 〈〈IStab, Mark〉〉,
M〈〈IStab, Mark〉〉 = {’ISC01’,’ISS05’,80}. Following on the transformation
pathway, we obtain the changes to the intermediate views as follows:

Mv1 = {’IS’,’ISC01’,’ISS05’,80}
M〈〈Details, Mark〉〉 = {’IS’,’ISC01’,’ISS05’,80}
Mv3 = {’IS’,’ISC01’,80}
Since the extents of v3 and v4 are recovered, changes to v4 can be obtained by

using the IVM formulae for grouping functions, and then be used to compute changes
to 〈〈Course, Avg〉〉 by using the IVM formulae for map.

However, the post-update extent of v3 can be recovered by AutoMed’s GQP, and
using the inverse query of map (λ{{x,y},z}.{x,y,z}) v4, the pre-update extent
of v4 can also be recovered as v4 = map (λ{x,y,z}.{{x,y},z}) 〈〈Course, Avg〉〉.
Thus, in practice, no intermediate view needs to be materialised for incrementally main-
taining 〈〈Course, Avg〉〉 along the pathway. In the future, we will investigate these avoid-
able materializations more generally, so as to apply them in our IVM algorithms.

4 Concluding Remarks

AutoMed schema transformation pathways can be used to express data transformation
and integration processes in heterogeneous data warehousing environments. This paper
has discussed techniques for incremental view maintenance along such pathways and
thus addresses the general IVM problem for heterogeneous data warehouses. We have
developed a set of IVM formulae. Based on these formulae, our algorithms perform an
IVM process along a schema transformation pathway. We are currently implementing
the algorithms as part of a broader bioinformatics data warehousing project (BIOMAP).

One of the advantages of AutoMed is that its schema transformation pathways can
be readily evolved as the data warehouse evolves [8]. In this paper we have shown how
to perform IVM along such evolvable pathways.

Although this paper has used IQL as the query language in which transformations
are specified, our algorithms are not limited to one specific data model or query lan-
guage, and could be applied to other query languages involving common algebraic op-
erations such as selection, projection, join, aggregation, union and difference.

Finally, since our algorithms consider in turn each transformation step in a transfor-
mation pathway in order to compute data changes in a stepwise fashion, they are useful
not only in data warehousing environments, but also in any data transformation and
integration framework based on sequences of primitive schema transformations. For

example, Zamboulis and Poulovassilis present an approach for integrating heteroge-
neous XML documents using the AutoMed toolkit [18, 19]. A schema is automatically
extracted for each XML document and transformation pathways are applied to these
schemas. McBrien and Poulovassilis also discusses how AutoMed can be applied in
peer-to-peer data integration settings [14]. Thus, the IVM approach we have discussed
in this paper is readily applicable in peer-to-peer and semi-structured data integration
environments.

References
1. D. Agrawal, A. E. Abbadi, A. K. Singh, and T. Yurek. Efficient view maintenance at data

warehouses. In Proc. ACM SIGMOD’97, pages 417–427. ACM Press, 1997.
2. J. Albert. Algebraic properties of bag data types. In Proc. VLDB’91, pages 211–219, 1991.
3. M. Boyd, S. Kittivoravitkul, and C. Lazanitis. AutoMed: A BAV data integration system for

heterogeneous data sources. In Proc. CAiSE’04, LNCS 3084, 2004.
4. P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.
5. L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for deferred

view maintenance. In Proc. ACM SIGMOD’96, pages 469–480, 1996.
6. G. Dong. Incremental maintenance of recursive views: A survey. In Materialized Views:

Techniques, Implementations, and Applications, pages 159–162. The MIT Press, 1999.
7. H. Fan and A. Poulovassilis. Using AutoMed metadata in data warehousing environments.

In Proc. DOLAP’03, pages 86–93. ACM Press, 2003.
8. H. Fan and A. Poulovassilis. Schema evolution in data warehousing environments — a

schema transformation-based approach. In Proc. ER’04, LNCS, pages 639–653, 2004.
9. T. Griffin and L. Libkin. Incremental maintenance of views with duplicates. In Proc. ACM

SIGMOD’95, pages 328–339. ACM Press, 1995.
10. A. Gupta and I. S. Mumick. Maintenance polices. In Materialized Views: Techniques, Im-

plementations, and Applications, pages 9–11. The MIT Press, 1999.
11. Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumick. Data integration using self-

maintainable views. In Extending Database Technology, pages 140–144, 1996.
12. E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrating data in

the AutoMed toolkit. Technical Report 20, Automed Project, 2003.
13. P. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In

Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.
14. P. McBrien and A. Poulovassilis. Defining peer-to-peer data integration using both as view

rules. In Proc. DBISP2P, Berlin, Germany, September 7-8, LNCS. Springer, 2003.
15. A. Poulovassilis. A Tutorial on the IQL Query Language. Technical Report 28, Automed

Project, 2004.
16. D. Quass. Maintenance expressions for views with aggregation. In Proc VIEW’96, pages

110–118, 1996.
17. D. Quass, A. Gupta, I.S. Mumick, and J. Widom. Making views self-maintainable for data

warehousing. In Proc. PDIS’96, pages 158–169, 1996.
18. L. Zamboulis. XML data integration by graph restrucring. In Proc. BNCOD’04, volume

3112 of LNCS, pages 57–71. Springer-Verlag, 2004.
19. L. Zamboulis and A. Poulovassilis. Using AutoMed for XML data transformation and inte-

gration. In Proc. DIWeb’04, pages 58–69, 2004.
20. Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a warehousing

environment. In Proc. ACM SIGMOD’95, pages 316–327, 1995.
21. Yue Zhuge, Hector Garcia-Molina, and Janet L. Wiener. Consistency algorithms for multi-

source warehouse view maintenance. Distributed and Parallel Databases, 6(1):7–40, 1998.

