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Abstract

AutoMed is a heterogeneous data transformation and integration system,

capable of handling virtual, materialized and indeed hybrid data integra-

tion across multiple data models. Queries submitted in a global schema are

transformed and evaluated against a set of data sources, exploiting the func-

tionality of the various components of the AutoMed Global Query Processor

(AQP). Our motivation for this project is to enhance the AQP functional-

ity, adding parallel and distributed query processing, in order to improve its

overall performance.

Keywords: {data integration, BAV, AutoMed, IQL, functional languages,

parallel query processing, distributed query processing}



Chapter 1

Introduction

Heterogeneous data integration can be described as the process of combining

data residing at different data sources and conforming to possibly different

data models, under an integrated schema. As the volume and the need to

share existing data explode, data integration appears with increasing fre-

quency. Integrating heterogeneous data sources under one query interface

is not something new and the scientific community has proposed different

solutions to this problem.

One approach is data warehousing [14], where data from several data sources

are extracted, transformed and loaded into a single database and can be

queried under a single interface. As a result, a data warehouse offers good

query processing performance at the cost of maintaining the warehouse and

returning stale data to user queries.

Another approach, trying to loosen coupling between data, is to provide a

query interface over a mediated schema (virtual database), with the data

residing in the original data sources. Queries are then transformed into spe-

cialized queries over the original databases.

We can consider each of the data sources to be a view over the mediated

schema (LAV approach) or we can express the mediated schema as a view

over the sources (GAV approach). Depending the approach used to de-

fine the views between the mediated and the data source schemas, different

algorithms must be used to rewrite queries over the data sources. A com-

prehensive survey on answering queries using views is presented in [12].

Comparing GAV and LAV from the point of view of query processing, it

is well known that processing queries in LAV approach is a difficult task.

In general, the complexity of query rewriting in LAV is NP-complete, but

2



CHAPTER 1. INTRODUCTION 3

with a relatively small space of rewrites this is not a problem for integration

systems [12]. On the other hand, processing queries in GAV approach is

based on a simple unfolding strategy. This is because the mapping directly

specifies the source query which corresponds to the elements of the mediated

schema.

AutoMed is a heterogeneous data transformation and integration system,

which offers the capability to handle virtual, materialized and indeed hy-

brid data integration across multiple data models. It supports the Both-as-

View (BAV) data integration approach, capturing all the information that

is present in GAV and LAV derivation rules. Queries submitted to a global

schema are transformed and evaluated against a set of data sources, ex-

ploiting the functionality of the various components of the AutoMed Global

Query Processor (AQP). This project enhances the AQP functionality, adding

parallel and distributed query processing.

The rest of this thesis is organized as follows: Chapter 2 is a short intro-

duction to the AutoMed framework, discussing its most important aspects.

Chapter 3 discusses our approach for parallelizing the query evaluation com-

ponents of the AQP. Since AutoMed is implemented using Java, Chapter 4

gives an introduction to Java threads to the extent necessary for this thesis.

Chapter 5 discusses the implementation details for parallelizing the query

processor and Chapter 6 presents a performance evaluation of the new eval-

uator. Chapter 7 presents the design and implementation details for dis-

tributed query processing, and Chapter 8 gives our concluding remarks and

discussion for future work.



Chapter 2

The AutoMed framework

2.1 The AutoMed approach to data integration

In data integration [19], different databases are integrated to form a single

virtual database, conforming to an associated global schema. The two com-

mon data integration approaches are the local as view (LAV) and the global

as view (GAV).

AutoMed1 supports a new approach to data integration [24] called both as

view (BAV). In this approach the integration of schemas is specified as a se-

quence of bidirectional transformation steps incrementally adding, deleting

or renaming constructs, in order to map one schema to another. It can be

shown that GAV and LAV rules can be derived from a BAV pathway [24].

A key advantage of BAV over GAV and LAV approaches is that it readily

supports the dynamic evolution of both local and global schemas.

Another feature of AutoMed is that it is not restricted to one modelling lan-

guage as its Common Data Model (CDM); instead it makes use of a low level

hypergraph data model (HDM) to express constructs of higher level models.

AutoMed supports a functional query language as its intermediate querying

language (IQL), although it would be possible to use any other query lan-

guage, for example SQL or XQuery.

The rest of this chapter discusses the core components of the AutoMed

toolkit. Section 2.2 talks about the hypergraph data model, gives an exam-

ple of mapping a simple relational model into HDM and presents the set of

1The AutoMed project is a research project, jointly run by Birkbeck and Impe-

rial Colleges. Software and documentation are available from the AutoMed website

http://www.doc.ic.ac.uk/automed/.

4



CHAPTER 2. THE AUTOMED FRAMEWORK 5

primitive transformations used to map one schema to another. Section 2.3

introduces the intermediate query language and Section 2.4 the AutoMed

architecture. Finally, Section 2.5 explains how query processing is done.

2.2 The HDM data model

The basis of AutoMed integration toolkit is its low level hypergraph data

model (HDM) [22, 29]. HDM defines a low-level modelling language which is

based on a hypergraph data model, together with a set of constraints. There

are facilities provided which can be used to define constructs of higher level

models in terms of the HDM. An HDM schema consists of some combination

of nodes, edges and constraints.

A schema in the HDM is a triple 〈Nodes, Edges, Constraints〉. A query

q over a schema S = 〈Nodes, Edges, Constraints〉 is an expression whose

variables are members of Nodes ∪ Edges. Nodes and Edges define a la-

belled, directed, nested hypergraph. It is nested in the sense that edges

can link any number of both nodes and other edges. Constraints is a set of

boolean-valued queries over S. Nodes are uniquely identified by their names.

Edges and constraints have an optional name associated with them.

Constructs of any higher level modelling language M can be classified as

either extensional constructs or constraint constructs, or both. Extensional

constructs represent sets of data values from some domain. Each such con-

struct in M must be built using the extensional constructs of HDM. The

kinds of extensional constructs are:

• nodal constructs may be present in a model independent of any other

constructs. The scheme of each construct uniquely identifies the con-

struct. An example of a nodal construct in a higher level model, would

be a table in the relational model.

• linking constructs associate constructs with each other and can only

exist when these constructs exist. Linking constructs map into edges

in HDM. A relationship in the ER model would be an example of a

linking construct.

• nodal-linking constructs are nodal constructs that can only exist when

certain other constructs exist, and that are linked to these constructs.

Nodal-linking constructs map into a combination of a node and an
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edge in the HDM. An example of a nodal-linking construct would be

an attribute in a relationship.

Finally, constraint constructs represent restrictions on the extents of the

extentional constructs of M .

After the definition of a modelling language M in terms of the HDM, a set

of primitive transformations is available for transforming schemas defined in

M .

2.2.1 Transformation pathways in AutoMed

As discussed above, each construct of a modelling language M must be

expressed in terms of HDM constructs. Once the constructs of M have been

defined in this manner, mappings between schemas expressed in M can

be described as a pathway of primitive transformation steps, each adding,

deleting or renaming one construct of M . There exist five types of primitive

transformations for transforming schemas:

1. addC(〈〈s〉〉, q) applied to a schema S produces a new schema S′ that

differs from S in having a new C construct identified by the scheme

〈〈s〉〉. The extent of 〈〈s〉〉 is given by the query q on schema S.

2. extendC(〈〈s〉〉, ql, qu) applied to a schema S produces a new schema

S′ that differs from S in having a new C construct identified by the

scheme 〈〈s〉〉. The minimum extent of 〈〈s〉〉 is given by query ql and

the maximum by query qu.

3. delC(〈〈s〉〉, q) applied to a schema S produces a new schema S′ that

differs from S in not having a C construct identified by the scheme

〈〈s〉〉. The extent of 〈〈s〉〉 may be restored by the query q on schema

S′.

4. contractC(〈〈s〉〉, ql, qu) applied to a schema S produces a new schema

S′ that differs from S in not having a C construct identified by the

scheme 〈〈s〉〉. The lower bound query ql and upper bound bound query

qu on schema S′ have the same semantics as for extend.

5. renameC(〈〈s〉〉〈〈s′〉〉) applied to a schema S produces a new schema

S′ that differs from S in not having a C construct identified by the

scheme 〈〈s〉〉 and instead having 〈〈s′〉〉, differing from 〈〈s〉〉 only in its

textual name.
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In addition to the above primitive transformations, AutoMed uses the id

transformation to state the equivelance of two constructs in two different

schemas. Id transformations can be used to define the integration seman-

tics.

Integration semantics define the way data from separate data sources are

combined to form the extent of global schema constructs. The following op-

tions are provided: (i) choose semantics, where values from one data source

are returned; which data source is chosen depends on the ChooseOptimiser

or, if optimization is not done, the choose function of the IQL language; (ii)

append (++) semantics, where all values from all data sources are returned

in order; (iii) intersect semantics where the common data values from the

data sources are returned; and (iv) union semantics where all distinct data

values are returned.

For example in Figure 2.1, if each local schema LS has a construct A which

also appears untransformed in the global schema GS, then a query on A

over the GS would return an append (++) of the extends of A in LS1, LS2

and LS3.

Figure 2.1: Defining integration semantics using id transformation.

2.2.2 A relational model represented in HDM

The following example aims at better understanding the usage of the HDM,

by showing how a simple relational model can be mapped into the hyper-

graph data model. Given the relation course(id, cname,#semesterID),

where #semesterID is a reference to a foreign key, this would mapped
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into a relation construct 〈〈course〉〉, three attribute constructs 〈〈course, id〉〉,

〈〈course, cname〉〉 and 〈〈course, semesterID〉〉, a primary key construct

〈〈course pk, course, 〈〈course, id〉〉〉〉 and a foreign key construct 〈〈course fk,

course, 〈〈course, semesterID〉〉, semester, 〈〈semester, semID〉〉〉〉, assuming

there is also a relation semester(semID).

2.3 The IQL query language

IQL [27, 28] is a typed, functional language. IQL provides a common query

language that queries written in higher level languages can be translated into

and out of. This section first introduces functional programming languages

and then presents the IQL.

2.3.1 Functional programming languages

Functional programming is so called because a program consists of a series of

function applications, each of which receives input through its argument(s)

and delivers output via its result2.

The key characteristics of functional languages are summed up as follows.

Functional programs do not contain assignment statements, so variables,

once bound to a value, never change. Functional programs contain no side

effects: a function call can only compute its result. This eliminates a major

source of bugs, and also makes the order of execution irrelevant3, since no

side effects can change the value of an expression. This freedom helps make

functional programs easier to analyze and optimize than their imperative

counterparts.

Another fundamental advantage of functional programming is modulariza-

tion. There are two features in functional languages that aid modularization:

the first is the ability to write higher order functions on data structures (e.g.

flatmap on collections4) and the second is lazy evaluation. Lazy evaluation

is the technique of delaying a computation until such time as the result of

the computation is known to be needed [9]. For example, consider the case

where a function f takes as input the output of another function g. This

2In this context, functions are like simple mathematical functions and can be defined

using equations.
3Also known as referential transparency.
4Function flatmap applies a function to each item of a collection and concatenates the

results. For more details see Section 3.3.
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could be implemented by computing the output of function g, storing it in

memory, and then passing it to f . The problem with this approach is that

the result of g may occupy so much memory, that the two functions cannot

be composed. Since with lazy evaluation argument(s) of a function are eval-

uated as needed, we can compose the two functions, with the output from

g being evaluated incrementally only as it is needed by f . This allows us

to incrementally process infinite lists (also called streams) without infinite

loops or size matters interfering in the computation.

For more details on functional languages the reader is referred to [13].

2.3.2 Datatypes, variables & functions

IQL supports integer and float numbers, strings (enclosed in single quotes)

and datetime objects. Integers and floats are primitive Java types whereas

strings and datetime objects are Java String objects. Tuples (i.e. {1, 2, 3}),

lists (i.e. [1, 2, 3]), sets and bags are also supported. The tuple, list, set and

bag constructors can be arbitrarily nested. Throughout the rest of this the-

sis, we assume list semantics, except for where explicitly otherwise stated.

Variables and functions are represented by identifiers starting with a lower-

case character. A number of primitive built-in functions are available, which

can be easily extended, adding new abilities to the language. New, anony-

mous, functions can be defined using lambda abstractions. For example:

lambda {x, y, z} ((∗) ((+) x y) z)

defines a function which takes a triple, adds the first two components and

multiplies by the third one.

IQL also supports variable unification (variables having the same name, are

treated as implicit joins); i.e. the following query evaluates to [{3, 5}]:

[{a, c} | {a, b} ← [{1, 2}, {3, 4}]; {b, c} ← [{4, 5}, {6, 7}]]

2.3.3 Higher level constructs

IQL supports let expressions and list, bag and set comprehensions.

let expressions assign an expression to a variable and this variable can then

be used within other expressions. For example, the query

let f = ((∗) 100 200) in ((+) f f)
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returns 20000 + 20000 = 40000.

Comprehensions are of the form [h | q1; ...qn] where h is an expression termed

the head and q1...qn are qualifiers, with n ≥ 0. A qualifier may be either

a filter or a generator. Generators are of the form p ← e and iterate a

pattern p over a collection-valued expression e. A pattern may be either a

variable or a tuple of patterns. Filters are boolean-valued expressions that

act as filters on the variable instantiations generated by the generators of

the comprehension.

A description of how comprehensions are internally translated into applica-

tions of the flatmap operator, is given in Section 3.3 below.

2.3.4 Abstract representation

IQL queries in AutoMed are represented internally using a full binary di-

rected acyclic graph (DAG). All non-leaf cells can be either apply cells (@)

or lambda cells (λ). An apply cell denotes the left child being applied to the

right one. For example the query (∗) 1 2 is represented as:

@

@

(*) 1

2

Leaf cells may be constants, variables or function names. They may also

be constructors of tuples (Tuple1, Tuple2,...), lists (Cons), bags (BCons)

and sets (SCons). For example, the following tree represents tuple {1, 2}:

@

@

Tuple2 1

2

Lists are represented using the general form (Cons head tail), where head

is the first element and tail is the rest of the list. An empty list is repre-

sented using the Nil constructor. For example, the list [1, 2] is represented

as follows:
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@

@

Cons 1

@

@

Cons 2

Nil

The above internal abstract representations are implemented by the abstract

syntax graph (ASG) class in the AutoMed toolkit. The various components

of the AutoMed handle ASG representations of queries.

More details on the internal representation of IQL queries as an abstract

syntax tree and examples of the Query Processor API can be found in [15].

2.3.5 An IQL example

Consider the schema constructs discussed in Subsection 2.2.2. The following

query:

[{y} | {x, y} ← 〈〈course, cname〉〉]

returns the name of each course and this one:

gc count[{y, x} | {x, y} ← 〈〈course, semesterID〉〉]

first groups on semesterID (gc) and then counts (count) the number of

courses in each semester.

2.4 The AutoMed architecture

The AutoMed toolkit consists of several components, as illustrated in Fig-

ure 2.25. The query processor is responsible for processing queries and will

be discussed in the next section. The schema matching tool can be used

to identify related objects in various data sources and the XML schema

transformation tool can generate transformation pathways from data source

schemas to a global schema. A GUI is also available for interacting with

these components, as well as with the Model Definition Repository (MDR)

and Schema Transformations Repository (STR) components of the AutoMed

metadata repository.

5Adopted from [21].
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Figure 2.2: The AutoMed architecture.

2.4.1 The AutoMed Metadata Repository

The AutoMed metadata repository [6] forms a platform for other compo-

nents of the AutoMed to be implemented upon. The current implementation

uses a RDBMS to provide persistent storage for data modelling language

descriptions in the HDM, database schemas and transformation pathways

between schemas.

The AutoMed repository has two main logical components that can be ac-

cessed via the AutoMed API. The Model Definitions Repository (MDR) is

used to describe how a data modelling language is represented as combi-

nations of nodes, hedges and constraints in the HDM. It is used to config-

ure AutoMed so that it can handle a particular data modelling language.

The Schema Transformation Repository (STR) is used to define schemas

in terms of the data modelling concepts in MDR. It is also used to specify

transformations between these schemas. AutoMed users will need to update

this repository using the AutoMed API as new databases are added to the

AutoMed repository, or these databases evolve [23]. The MDR and STR

may be held in the same persistent storage, or separately.
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2.5 Query processing in AutoMed

2.5.1 The AutoMed Query Processor

The AutoMed Query Processor (AQP) consists of several components and

is used to evaluate queries submitted to a global schema against a set of

data sources. Figure 2.36 illustrates the AQP architecture. The AQP in-

Figure 2.3: AutoMed Query Processor.

stance that will be used during the query process, can be configured using

the QueryProcessorConfiguration component (see below).

An IQL query is first reformulated, according to the transformation path-

ways stored in the AutoMed repository, using the QueryReformulator com-

ponent. The reformulated query, which now contains only data source

constructs, is then optimized by the QueryOptimiser component. The

QueryAnnotator component inserts AutoMed wrapper objects within the

optimized query. The QueryEvaluator component is finally used to evalu-

ate the annotated query. The rest of this section discusses the major aspects

of the AQP, to the level of detail needed for this thesis.

2.5.2 Query Processor Configuration

The QueryProcessorConfiguration component allows the user to set a

number of parameters that configure the internal mechanisms of the AQP.

For example, the user can choose whether the GQP will perform query

optimization or not, or choose which implementation will be used for each

component, as each of the components of Figure 2.3 may have multiple

6Taken from [15].
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implementations. For a detailed presentation of the existing options, see

Section 3.4 of [15].

2.5.3 Query reformulation

QueryReformulator component is capable of reformulating queries submit-

ted to a global virtual schema, using GAV, LAV or BAV reformulation.

When using GAV reformulation the query processor uses only those por-

tions of BAV pathways that define virtual schema constructs in terms of

data source constructs (delete, contract and rename transformations).

When using LAV, the query processor uses only the portions of BAV path-

ways that define data source constructs in terms of virtual schema constructs

(add, extend and rename transformations). In BAV reformulation it uses

all the available information contained in BAV pathways.

2.5.4 Logical optimization

After the reformulation of the initial query into a new one, which only con-

tains data source schema constructs, the QueryOptimiser component per-

forms various optimizations at the logical level. This process has two goals:

first, to simplify the query by performing algebraic optimizations, and sec-

ond, to build the largest possible subqueries that can be pushed down to

the local data sources (see [15] for more details of query optimization in

AutoMed).

2.5.5 Query annotation

After the reformulation and optimization of the query, wrapper objects, re-

sponsible for evaluating IQL queries, are inserted within the query. The

QueryAnnotator component traverses the tree representation of the query

and identifies the largest possible subquery that can be pushed down to the

data sources. The ability of a wrapper to identify queries which it is capable

of evaluating relies on a parser associated with each wrapper.

2.5.6 Query evaluation

After the query has been annotated, the evaluation process takes place.

Evaluation is performed by a QueryEvaluationProvider instance.

Evaluating a query expressed in a functional language consists of performing
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reductions on reducible expressions until no more reductions are applicable.

It is then in the so called normal form. The order in which these reductions

are performed makes no difference to the results of the query.

The QueryEvaluator component

When a QueryEvaluator component is instantiated, it is passed a Query

ProcessorConfiguration instance. As a result, it has access to a Function

Table instance which contains the set of IQL built-in functions that are to

be used for the evaluation.

Regarding reducing expressions the QueryEvaluator component always re-

duces the leftmost outermost reducible expression first; this is known as

normal-order reduction. In normal-order reduction, function arguments are

not evaluated unless they are actually needed for the function to return a

result.

The QueryEvaluator component contains methods for full evaluation (re-

duction to normal form) and partial evaluation (reduction to weak-head

normal form). For furhter details on normal form and weak-head normal

form see [16].

The query evaluation flow

The entry point for evaluation is the evaluate(...) method. This calls the

weakHNF(...) method, which, starting from the root of the subtree passed

to it as parameter, goes to the tip of the spine, passing over aplly (@) cells,

until it finds a special, or a function, or a lambda cell. The following tree

represents a spine to which arguments (A1-An) are attached, with x being

a special, or a function, or a lambda cell.

@

@

@

@

x A1

An−2

An−1

An

If the cell is a special cell (e.g. a generator) or a built-in function cell,
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Figure 2.4: Query evaluation flowchart.

weakHNF calls the reduce_buitin(...) method to evaluate the function

or the special cell accordingly. If it is a lambda cell, weakHNF calls the re-

duce_lambda() method to evaluate the lambda expression.

When the evaluate method eventually returns, the whole tree is fully evalu-

ated. weakHNF method does not guarantee this, so the arguments of the spine

should be again checked by evaluate after weakHNF returns; if they include

a function or a constructor the method weakHNF is called again. Through

these iterative calls to weakHNF, eventually the whole tree representing the

query is fully evaluated.



Chapter 3

A parallel approach to IQL

query evaluation

3.1 Introduction

The current implementation of the QueryEvaluator component takes a se-

rial approach to query evaluation. For example, suppose we have the simple

IQL query:

〈〈...〉〉 intersect 〈〈...〉〉

which intersects two schemes (naming details make no difference for this

example). This query is internally translated into calls to a number of built-

in functions, but we will focus on the intersect function. Intersect is

a binary function which evaluates its arguments and outputs the common

elements. The current implementation of the QueryEvaluator evaluates the

first argument (which includes a call to a Wrapper object for retrieving the

data), then evaluates the second argument (which, in our case, is also a call

to a Wrapper object) and finally the intersect function applies its own

logic.

However, the arguments of the intersect function could be evaluated in

parallel, speeding up the whole process. The benefits of parallel execution

are more obvious when instead of having simple operations as the arguments

of a function, these contain nested functions further down.

17
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3.2 Parallelizing the query processor

A first question to ask when it comes to parallelizing the AutoMed Query

Processor is what should be parallelized? Is it enough to parallelize the

QueryEvaluator component or should other components of the AQP also

be parallelized? We argue that QueryReformulator, QueryAnnotator and

QueryOptimiser components all perform operations that, if parallelized, will

not significantly speed-up query processing. The only component that will

offer a notable performance speed-up if it is parallelized is the QueryEvaluator

component and more precisely the evaluation of functions with more than

one argument.

The goal of this parallelization is of dual nature: first, we expect to obtain

a speed-up due to parallelism itself; second, after integrating parallelization

with incremental query processing1, a drop in the time in which the first

result is presented to the user may be achieved.

3.3 The IQL built-in functions

This section presents the IQL built-in functions, focusing on their potential

for parallelization (see [15] for a detailed list of IQL functions).

While reading this section, the reader should have in mind that only func-

tions with arity greater than one will be parallelized.

• Arithmetic functions: this group contains functions like Add, Divide,

Multiply and so on. One could argue that the simplicity of these

functions does not justify their parallelization. However consider the

following IQL query: gc count[...] + gc count[...]. It is clear that it

may be beneficial to evaluate the two arguments of the + function in

parallel, using two threads. Our implementation gives the ability to

the user to select if arithmetic functions are to be parallelized via a

“threading level mechanism” (discussed in Section 3.5).

• Collections functions: this group contains functions whose arguments

are collections, like Append, Average, Choose, Count, Flatmap, Fold,

Foldl, Foldr, Intersect, Map, Max, Min, Member, Union, Monus, Group

1This is an on going effort for incrementally returning results as soon as they are

available and not waiting until the complete result has been constructed. This work is

being done independently of this thesis.
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and Sum. The general approach to parallelizing these functions is to

create as many threads as the collection-valued arguments and then

evaluate each such argument using a separate thread. (Therefore, only

functions that have more than one collection-valued argument will be

parallelized.)

• Comparison functions: this group contains the comparison functions,

like Less and Equals, with parallelization of them being straight for-

ward, as with the arithmetic functions.

• Date functions: this group contains the two functions getMonth and

now. The first function returns the current month and is of arity

one (thus no parallelization); and the second one, returns a date time

representation and is of arity zero (also no parallelization).

• Internal functions: this group includes functions Comprehension and

CallToWrapper. CallToWrapper is responsible for submitting a query

to a data source for evaluation. This function is not parallelized be-

cause we cannot intervene in the internal query processing of the data

source.

A comprehension is internally translated by the built-in function Com-

prehension according to following equivelances, for subsequent eval-

uation:

[e | p← s;Q] =⇒ flatmap (lambda p [e | Q]) s

[e | e′;Q] =⇒ if e′ [e | Q] [ ]

[e |] =⇒ [e]

The if function takes three arguments and returns the second if the

first is true, otherwise the third. The flatmap function, when it oper-

ates on lists, is defined as follows:

flatmap f [ ] = [ ]

flatmap f (Cons x xs) = (f x) + + (flatmap f xs)

Serial execution of comprehensions follows the above translation. In

the first step, a comprehension is translated into a combination of the

flatmap and lambda functions. Due to this translation, when a com-

prehension is evaluated, a nested-loops evaluation strategy is adopted

over the collections in its generators.
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In parallel execution, we instead evaluate all generators of a compre-

hension expression in parallel, and then translate into the flatmap/

lambda representation and proceed with the evaluation as with serial

execution. As a result we have a performance speed-up in comprehen-

sion evaluation, as shown by the experimental results (see Chapter 6).

• Logical functions: this is the group of logical functions of IQL. Al-

though some of these functions, like And and Or, are appropriate for

parallelization, we have not parallelized them. Suppose we have the

following logical expression:

(x and (y or z))

Suppose also that we have parallel execution of these functions. If, let’s

say the thread executing x ends, evaluating to false, before threads

executing y and z end, then they should stop executing as the whole

expression will evaluate to false. This would require to have access to

these two threads, something that is not provided by the ThreadPool

Executor class we are using.

• Other functions: this group contains several general-purpose func-

tions. All functions in this group are of arity one and thus they are

not parallelized.

• String functions: this group contains string associated functions. Ex-

cept those that are of arity one, the rest are parallelized.

• TypeConversion functions: this is a collection of functions which al-

low converting between different AutoMed types (List2Bag, Set2Bag

and more). None of these functions is parallelized as all are of arity

one.

3.4 Parallel functional languages in practice

When it comes to parallelizing a functional language, it may be sometimes

necessary to diverge from the purely lazy functional model. Indeed, in [11]

the author argues that parallel functional languages should be strict2. Lazy

2In strict evaluation, arguments of a function are evaluated before it is called. In

contrast, in lazy evaluation, arguments of a function are passed to the function unevaluated

and the function itself determines when they are to be evaluated.
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evaluation is sequential; in contrast, parallel programs arrange computation

on multiple processors and thus require some eager evaluation. For example,

consider our parallelization of comprehensions. Arguments of the Flatmap

function are evaluated before the calls to the functions themselves. This

is eager evaluation, improving performance in parallel execution, at the ex-

pense of laziness.

Tuning the parallel performance of such programs may also require some

code restructuring. In [20] the authors introduce a clustering technique for

the parallelization of functions with collection-valued arguments. A naive

approach would fully evaluate each collection argument of the function in

parallel, yielding very fine task granularity. Clustering improves task granu-

larity by introducing fewer tasks, each operating on a subset of the collection.

For example, consider the Flatmap function defined in Section 3.3, which

applies a function f to each element of a collection. Using a different thread

to apply f to each item of the collection would delay query evaluation, due

to the cost of managing the different threads and is an example of fine task

granularity3. Using a clustering technique Flatmap would use a different

thread for multiple items of the collection.

We have adopted an intermediate approach: parallelizing the evaluation of

comprehension generators as described in Section 3.3; but then not further

parallelizing the application of the flatmap function (since they have one

collection-valued argument).

3.5 Implicit and explicit programming models

The basic problem in a parallel program is that, in addition to specifying

what value the program should compute, it is necessary to know how the

machine should organize the computation. One approach is to rely on the

run-time system to manage the parallel execution without any programmer

input (implicit approach). Another is to delegate most management tasks

to the runtime system, but allow the programmer the opportunity to give

advice on a few critical aspects (explicit approach).

The Glasgow Parallel Haskell (GpH)4 [30] language follows an intermedi-

ate approach between purely implicit and purely explicit approaches. The

runtime system manages most of the parallel execution, only requiring the

programmer to indicate those values that might be useful to be parallelized.

3The current implementation evaluates Flatmap function serially.
4See http://www.cee.hw.ac.uk/~dsg/gph/ for more information on GpH.
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GpH uses Haskell5 [17] as its computational language. Parallelism is intro-

duced by the par combinator, which takes two arguments that are to be

evaluated in parallel. The expression p ’par’ e indicates that p could be

evaluated by a new thread, with the parent thread continuing evaluation of

e. Operator seq indicates that two expressions must be evaluated serially.

Consider for example the parallel computation of Fibonacci numbers. If n

is greater than 1, then a new thread is created to compute pfib(n-1) and

the parent thread continues to evaluate pfib(n-2). The following is a code

snippet illustrating the usage of par and seq combinators:

pfib n

| n <= 1 = 1

| otherwise = n1 ’par’ n2 ’seq’ n1+n2+1

where

n1 = pfib(n-1)

n2 = pfib(n-2)

Our approach is a combination of the explicit and implicit approaches, like

in GpH. We do not have special IQL syntax to indicate which arguments

should be parallelized. Instead, we annotate cells of the DAG that represent

built-in functions or roots of comprehensions with a threading level. There

are a number of predefined threading levels and each level contains a different

set of IQL built-in functions. The user then can choose between these levels,

for example, when requests a query to be evaluated. Suppose we have the

following IQL query:

[ {x, y} |{x} ← 〈〈scheme1〉〉; {y} ← 〈〈scheme2〉〉 ]

After reformulation and optimization this query will contain, among other

functions, a call to Comprehension function. The user can choose the thread-

ing level that the evaluator operates, and thus if the Comprehension function

is to be evaluated in parallel or not. For more details, see Chapter 5.

5Reference [31] is a comprehensive survey for parallel and distributed functional lan-

guages that are using Haskell as their computational language.



Chapter 4

Introduction to Java Threads

In this chapter we give a short introduction to Java Threads and more gen-

eral topics concerning threaded programming to the extent necessary for

this thesis. Section 4.1 explains what is a thread, benefits and problems

that could appear. Section 4.2 discusses thread support in Java and Sec-

tion 4.3 explains how to create and manage threads in Java. Section 4.4

discusses race conditions and synchronization issues, finishing with dead-

locks and starvation phenomena (Section 4.5). Then follows a reference to

thread performance, and more specific about how stack and heap size can

affect performance (Section 4.6.1), as well as the role that the underlying

Operating System and Java Virtual Machine play (Section 4.6.2). In Sec-

tion 4.6.3 there is a comparison between thread pools and thread spawning

on demand.

4.1 What is a thread, benefits and problems

A thread is an application task that is executed by a host computer. For

example suppose that one wrote a program that performed two separate

tasks: one calculated the factorial of a number and one calculated the root

of that number. These are two separate tasks, so they could be written as

two separate threads executing in parallel. Roughly speaking threads are a

series of instructions that can be executed in parallel at multiple processors

or at the same processor through time slicing.

Threads exist within a process and share memory space with their parent,

so they all have access to class member variables (shared variables that are

defined as members of a class and not being local to methods), whereas each

23



CHAPTER 4. INTRODUCTION TO JAVA THREADS 24

thread has its own program counter and stack. Multiple threads may run

concurrently within the same process.

Threads provide light, efficient way for concurrent programming. When a

single-threaded process blocks, the whole program hangs; when a thread

blocks (i.e. on I/O), another can run. As a result, threads are an excel-

lent choice for multitasking applications (Web servers, file servers). Less

operating system (OS) resources are used up, i.e. memory, buffers, ker-

nel data structures, and creating/destroying a thread is much cheaper than

creating/destroying a process. On the other hand, threads increase program-

ming complexity, for example non-deterministic behavior in terms of CPU

scheduling (over multiple executions threads may be executed in different

order), need to be synchronized, usually difficult to debug. There are also

portability issues due to different implementations.

4.2 Java thread support

Upon the release of Java in 1995, Sun promoted the language as being among

other things, robust, safe, architecture-neutral, portable, object-oriented,

simple and threaded [10]. Although the two last seemed contradictory, it

turns out that the Java threading system is simple, at least relative to other

threading systems. In early versions of Java, this simplicity came with some

trade-offs; some of the advanced features that are found in other threading

systems were not available in Java. Java 2 Standard Edition changed this:

a large number of thread-related classes (under the java.util.concurrent

package) make the task of writing multithreaded programs much easier.

Classes that support lock-free, thread-safe programming on single variables

(java.util.concurrent.atomic package) are available, a framework for

locking and waiting for conditions that is distinct from built-in synchro-

nization and monitors (java.util.concurrent.locks package) and utility

classes commonly useful in concurrent programming, are also available. This

collection of classes has been introduced with JDK 1.5: for previous releases,

third party classes that provide the same or similar functionality must be

used.
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4.3 Thread creation and management

Java threads can be created in two different ways: by extending the Thread

class1 or by implementing the Runnable interface2. Each class extending

the Thread class must overload the run() method, adding its own logic;

eventually when the new class is instantiated and the thread is created, it

begins its execution from this method. The run() method can be thought as

the main() method of a standalone Java application: the main() method is

where the thread starts its execution. Below follows an example of creating

a thread using the first method, adopted by [26]. In this example a new

listener is associated with a start button and a new random character is

generated whenever the associated event occurs.

public class RandomCharacterGenerator extends Thread{

...

public void run(){

for(;;){

nextCharacter();

try{ Thread.sleep(getPauseTime()); }

catch(InterruptedException ie){ return; }

}

}

}

public class SwingTypeTester{

...

private void InitComponents(){

...

startButton.addActionListener(new ActionListener(){

...

producer = new RandomCharacterGenerator();

producer.start();

...

});

}

...

}

Using the Runnable interface the programmer can separate the implementa-

tion of a task from the thread used to run the task. For example instead of

1By extending a class, the new one inherits the behavior and methods of the base class.
2An interface forms a contract between the class and the outside world.
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using the Thread class, RandomCharacterGenerator could implement the

Runnable interface and change the way in which the thread is constructed.

public class RandomCharacterGenerator implements Runnable{

...

public void run(){

for(;;){

nextCharacter();

try{ Thread.sleep(getPauseTime()); }

catch(InterruptedException ie){ return; }

}

}

}

public class SwingTypeTester{

...

startButton.addActionListener(new ActionListener(){

...

producer = new RandomCharacterGenerator();

Thread t = new Thread(producer);

t.start();

...

});

...

}

Choosing between the two alternatives depends on whether the new class

should inherit behavior from the Thread class or from other classes. The

Thread class also provides a collection of methods that are not available by

the Runnable interface.

A thread is considered to exist once it has been instantiated. Although

it does not start its execution unless the start() method is invoked, other

threads can interact with it. When the start() method returns, two threads

are executing in parallel; the original thread (which has just returned from

the start() method) and the newly started (which is executing the code in

its run() method). When a thread finishes executing the run() method it

exits and it is considered to be dead and ready for garbage collection.

There are more functions that allow a programmer to manage a thread,

like sleep(), wait() and yield(). The first two suspend a thread untill

it is notified by another one (they differ in the way they release thread’s

locks) and yield() removes the thread from the executing queue giving
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the chance for other threads to be executed. For more details the reader is

referred to [25]. Figure 4.1 shows the lifecycle of a thread.

Figure 4.1: Thread’s lifecycle.

4.4 Data synchronization and race conditions

As discussed in Section 4.1, threads share memory space with their parent,

so they all have access to class member variables (shared variables that are

defined as members of a class and not being local to methods). Sharing data

between threads can be problematic due to what is known as a race con-

dition. A race condition occurs every time more than one thread is trying

to access shared variables and special programming techniques need to be

used in order to ensure the right behavior of the program, and Java pro-

vides certain mechanisms that deal with this problem. The synchronized

keyword is provided and is very similar to a mutex lock. The concept of

synchronization is simple: when a method is declared to be synchronized, a

thread that wants to execute the method must acquire a lock on the object

containing the method. This can be done if and only if there is no other

thread that holds a lock to that object. The acquisition and release of a lock

is guranteed to be a mutual process by the JVM. Choosing to lock the whole

method instead the block of code where the racing condition occurs is known

as coarse-grained synchronization and can reduce the parallelization degree

of a program. For example, assume there is a class defining two vectors and

a method that among other things adds elements to these vectors. Instead

of defining the whole method as synchronized and preventing concurrently
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execution of non mutual exclusive operations, one could only synchronize

access to shared objects.

pubic class Example {

...

Vector x;

Vector y;

private methodX(void){

...

synchronized(x){ x.put(...); }

synchronized(y){ y.put(...); }

}

}

Java also provides the volatile keyword to solve problems relating with

the scope of a lock3 and explicitly locking through the Lock interface.

4.5 Deadlocks and starvation phenomena

A deadlock occurs whenever two threads are waiting for a lock to be freed

and the programming logic is such that the lock is never freed. Deadlocks

between threads is one of the hardest problems to solve in any threaded

program and is the responsibility of programmer to prevent them, as JVM

does not take any action preventing such phenomena. A naive way to solve

the problem would be: When a lock is held on an object never call a method

that needs other locks on the same object, something that in reality is im-

practical as, for example, many useful Java classes are synchronized and one

will want to use them from synchronized methods. another way would be

to lock some higher-order object that is related to many lower-order objects

we need to use, something that often leads to coarse-grained locking.

Whenever multiple threads compete for a resource, there is the danger of

starvation, where the thread never gets the resource. The operating system

and its approach to thread management can assist in avoiding or encourag-

ing this problem. There are different preventing techniques. At the CPU

3There are cases where a lock is grabbed and never released, i.e. by synchronizing the

run() method, causing deadlock phenomena.
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level, all multi-threaded operating systems must allocate CPU cycles fairly

and efficiently. Scheduling algorithms must schedule thread usage of the

CPU. Each one has strengths and weaknesses, including the potential for

starvation.

4.6 Thread performance

There are a lot of factors that might affect the performance of a multi-

threaded program, like the stack or heap size, the underlying operating

system, the JVM itself, synchronization issues and so on. Although these

factors may affect performance, there are cases where developers believing

that synchronization is inherently expensive, write complex code which is

difficult to maintain and more prone to bugs than the simpler, synchronized,

version. The rest of this section discusses some of the more crucial factors

affecting performance.

4.6.1 Stack and heap size

The memory stack is where a thread stores its local variables, the program

counter which indicates which statement in the method is currently execut-

ing and other internal information. All these together determine the size of

the stack. The size is platform dependent; the space needed to store the

local variables differs across various platforms, although the local variables

must have the same size, and furthermore the various internal information

is dependent on the Java implementation. The size of the stack impacts

Java’s memory usage, causing stack overflows or out-of-memory errors and

when one is scaling to large number of threads (in the thousands) there is

a significant waste of memory usage due to the quite large default stack

size. The programmer can specify the stack size using the particular class

constructor, but this can lead to unportable programs. Instead, one could

specify the stack size for all threads passing the command line argument

-Xss to the JVM. Java also provides a stack associated API [25].

Heap is a portion in memory where dynamically created objects are stored.

The size of the heap can affect performance. As the heap gets full, the

garbage collector is called, and this can cause performance related prob-

lems. The amount of heap size can be controlled via the -Xms and -Xmx

command options.
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To optimize the memory allocation, each thread has a dedicated area of the

heap, known as TLH (thread local heap), and that thread can allocate from

its local heap area. This technique works well for small objects and number

of threads, but when the number of threads increases, the thread local heap

can consume a significant amount of the heap, causing frequent calls to the

garbage collector. For an introduction on how memory management can

affect performance the reader is referred to [2] and [1].

4.6.2 Underlying OS and JVM

Java is inherently multi-threaded and because of this the underlying OS can

significantly affect performance. Different operating systems show different

performance for thread creation and synchronization, while faster chips af-

fect execution time as well. Different supported thread models (one-to-one,

many-to-one, many-to-many)4 and different stack sizes are all factors de-

pending on the operating system. The specific implementation of the Java

Virtual Machine that is used and its configuration is also important. For

example, synchronization performance is a factor that is strictly associated

with the JVM implementation used. Two resources for JVM and how it is

related to performance are [1] and [4] whereas in [3] one can find specific

information on Java threading in Solaris.

4.6.3 Thread creation on demand vs. thread pools

A thread pool is a collection of previously created threads that sit idle until

there is a task to perform. As the program has tasks for execution, it creates

threads for them instantiating a Runnable object and passing it to the thread

pool executor for execution. One thread that sits idle in the pool takes the

task and executes it. As a thread pool might have fewer threads than tasks

to execute, it might have to wait for an available thread to run it stored

in a waiting queue. Java’s implementation of a thread pool is provided

through the Executor interface and it comes with two different kinds: the

ScheduledThreadPoolExecutor and the ThreadPoolExecutor.

There are a number of reasons for choosing to use a thread pool, rather than

creating threads on demand. First, there is a common assumption that the

overhead of creating a thread is high and by using a pool we gain a lot in

4According to how user threads are mapped into OS threads.



CHAPTER 4. INTRODUCTION TO JAVA THREADS 31

performance. The degree to which this is true depends on the program. The

extra time used to create a thread, usually has an upper of a few hundred

microseconds [26], is usually not important for some programs. Second,

using a thread pool the programmer can concentrate on the program logic

rather than writing code for thread creation and manipulation. Finally,

thread pools provide some performance benefits; one for example, could

throttle the number of threads so they don’t flood the system. Further

details on thread pools in general and Java’s support can be found in Chapter

10 of [26] and in [25] accordingly. Concluding, choosing between creating

threads on demand and dynamically creating a thread depends upon the

program and is subject to trade offs.



Chapter 5

Parallelization of the

AutoMed Query Processor

This section describes in detail the implementation of the new evaluator

regarding its parallelization. During the design phase, it was a high priority

to maintain the modularity of the application and create a component that is

easily maintainable and extendable. Whenever it was not possible to create

a new class to encode the required logic, we tried to modify existing code as

little as possible, keeping the two logics clearly separated.

5.1 ParallelEvaluator design

ParallelEvaluator is the new implementation of QueryEvaluationProvider

for executing a query in parallel. Figure 5.1 shows the class diagram for

the new component. It extends the Evaluator class, keeping the same

Figure 5.1: ParallelEvaluator class diagram.
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functionality and adding a new, threaded, logic for reducing built-in func-

tions. The QueryEvaluator component illustrated in Figure 2.3 corresponds

to the QueryEvaluationProvider interface which is implemented by the

Evaluator class.

The new implementation is based on the following observation: evaluating

a function has three discrete steps; a pre-processing step, where function-

associated operations before the actual evaluation are performed, the eval-

uation step (includes reduction to normal form or to weak-head form of the

arguments of the functions in parallel) and a post-processing step, where

function-associated operations after the evaluation take place.

The new evaluator overrides function reduce_buitin and changes the way

in which it evaluates built-in functions. With the new design of the IQL

functions (see Section 5.4 below), each function encodes information on

(a) whether its arguments should be processed in parallel or not, and (b)

whether an argument is to be reduced to normal form or weak-head normal

form. The evaluator then decides if it should use a new thread or not, based

on this information. Below is a code snippet of reduce_builtin:

...

CountDownLatch cond=new CountDownLatch(arity);

Object tasks[]=new Object[arity];

for(int i=0;i<arity;i++){

if((function.getEvaluationMeta().get(i)).toString().equals("evaluate"))

{

tasks[i]=new EvaluatorEvaluateThread(this,args[i],cond);

try{ getPool().execute((EvaluatorEvaluateThread)tasks[i]); }

catch(RejectedExecutionException ex){ }

}

....

cond.await();

redex.mimicThisCell(function.post_processing(args));

}

Above, the number of tasks that are to be created depends on the arity of the

function. The parent thread creates as many Object ojects as the arity of

the function, and a CountDownLatch object is also initialized with the arity

of the function. The Object objects are the tasks that will be executed

and the CountDownLatch object is used to synchronize the parent thread

with its children. The parent thread waits for the children to end, calling

cond.await(), and upon completion calls the post_processing() method
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of the current built-in function. In the cond.await() call, the parent thread

is waiting until the latch has counted down to zero. Every time a child

thread finishes, it calls the CountDownLatch.countDown() method, of the

CountDownLatch object passed as a parameter from the parent, decreasing

the count of the latch. Eventually, when all the children threads finish, the

parent thread continues with its execution.

5.2 Annotating queries

In order to support our semi-explicit model, we have to annotate queries and

indicate the level to which each cell belongs to. This class was created to

include all annotation constants needed and also includes some previously

defined constants related to IQL queries. The semantics of each constant is

Figure 5.2: AnnotationConstants class.

explained in the next section.

During the annotation phase, the query tree is traversed and wrapper ob-

jects are inserted. In serial execution, the same wrapper object is used

to access the database. In parallel execution this is not efficient, because

race and synchronization issues may occur. For this reason a new class,

named QueryAnnotationProviderForParallelEvaluation1, was created.

This class extended so it can be used for annotating the query in parallel

evaluation.

5.3 The threading level mechanism

The user can choose which functions are to be evaluated in parallel, by

modifying the threading level in which the evaluator operates. The thread-

ing level mechanism is controlled via the threadingLevel member variable

1Provided by Lucas Zamboulis.
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of the QueryProcessorConfiguration class. When evaluator operates for

example, in ANNOTATION_LEVEL_THREE, functions that contained in lower

levels are also evaluated in parallel. Currently there are five predefined lev-

els:

• ANNOTATION_LEVEL_ZERO: in this level there is no parallelism and the

parallel evaluator operates like the serial one.

• ANNOTATION_LEVEL_ONE: in this level the basic collection functions

are parallelized. It includes functions Append, Intersect, Monus and

Union.

• ANNOTATION_LEVEL_TWO: this level encodes the parallelization of the

Comprehension function.

• ANNOTATION_LEVEL_THREE: this level includes all arithmetic and com-

parison functions.

• ANNOTATION_LEVEL_FOUR: this level includes all other functions except

those that are of arity one.

The number of levels and the functions assigned to each one, were decided

based on the expected improvement that we would have parallelizing each

function. Our grouping is verified by the experimental results, as discussed

in Section 6.4.

New levels can be easily defined by adding or removing functions. The

threading level mechanism therefore introduces a new grouping of IQL func-

tions based on the threading level they belong.

With the above technique, we support a semi-explicit model, in which some

predefined functions are parallelized and the user chooses between them,

tuning the evaluator for each different query.

5.4 The new design of IQL functions

Creating new classes for the parallel version of the functions, would require to

duplicate a lot of code, causing redundancy problems and making code main-

tenance harder. Therefore, we modified the abstract class BuiltInFunction

that all functions override. A new function, post_processing(Cell args[],

Evaluator e):Cell, was added, which every function that follows the argu-

ment evaluation/post-processing model, must override, adding its own logic.
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A member value, evaluationMeta:ArrayList was also added to encode the

evaluation mode. The possible values for the evaluation mode are:

• evaluate: for evaluation to normal form.

• weakHNF: for evaluation to weak head normal form.

• perform: meaning that the argument must be evaluated without

creating a new thread, calling the perform function instead of the

post_processing.

• none: meaning that the argument is not to be evaluated.

It is important to note that for each argument of the function there is a

corresponding value for the evaluation mode. For example, consider function

intersect, which is of arity two and evaluates both its arguments to normal

form before performing their intersection. The constructor of the class is

like this:

public Intersect() throws ParseException {

...

evaluationMeta.add(0,new String("evaluate"));

evaluationMeta.add(1,new String("evaluate"));

...

}

This is a generic design and interferes the least with the serial evaluation.

Functions that follow the pre-processing, evaluation, post-processing model,

just need to override the post_processing function and add their own logic.

New functions can be also easily added without the need for code modifica-

tions in the parallel evaluator.

Note also that currently there is no function that needs a pre-processing

step.

5.5 ThreadPoolExecutor configuration

Instead of creating new threads each time we needed one, we chose to use a

thread pool. There are various reasons for this choice: first, we have a lot

of short-running tasks, so each thread evaluates the arguments of a function

finishing in a short period of time. Thus, we can reuse previously created

threads from the pool, sitting idle, rather than having the cost of creating a

new one each time. Second, using a thread pool, we delegate all the thread
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management to the pool itself.

For this implementation the ThreadPoolExecutor class of Java 5 was used.

To use this pool, two things are needed: first, the tasks that the pool is to

run must be created, and second, the pool itself must be instantiated and

configured.

The tasks are simple Runnable objects, following the standard approach

to threading discussed in Section 4.3. Two runnable objects were created:

the EvaluatorEvaluateThread, which fully evaluates its arguments and the

EvaluatorWHNFThread, which partially evaluates its arguments.

The pool is an instance of the ThreadPoolExecutor class. Below, some

important points of creating and configuring the pool, are discussed:

package java.util.concurrent;

public class ThreadPoolExecutor implements ExecutorService {

public ThreadPoolExecutor(int corePoolSize,

int maximumPoolSize,

long keepAliveTime,

TimeUnit unit,

BlockingQueue<Runnable> workQueue);

...

}

The core pool size, maximum pool size, keep alive time and work queue

control how the threads within the pool are managed. The thread pool is

created with M core threads and N maximum threads. When a task enters

the pool for execution and the pool has fewer than M threads, a new thread

is created to handle the request, even if there are idle threads. If there are

more than M threads but less than N, a new thread will be created only if

the queue is full and all threads are busy; otherwise the task will be placed

on the queue, or if it is full, a new thread will be created to serve the request.

If the pool has N threads and the queue is full, the task is rejected; otherwise

it is placed on the queue for later execution. Idle threads die after unit time

period, in an attempt to reduce the total number of threads in the pool. In

our case the pool was created calling:

ThreadPoolExecutor(4,50,10L,TimeUnit.SECONDS,

new SynchronousQueue<Runnable>());

As we expect to have a lot of short-running tasks, we create a small number

of core threads (four) so that the pool quickly reaches this number and start

reusing threads. We also have fifty maximum threads and a Synchronous

queue, which does not have an internal capacity. Thus, tasks are never stored

in the queue and if all threads are busy, always a new one is created to serve
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the request, as we do not want to have the storing delay. Idle threads die

after ten seconds.

5.6 Using the new evaluator

The programmer can enable the new evaluator by calling the setParallelPro

cessing(int level):void method of the QueryProcessorConfiguration

class. This method sets the threading level to the parameter’s value and

also changes the annotator and the evaluator that will be used. Supposing

we have a QueryProcessorConfiguration object, qpc, the following code

enables the parallel evaluator for parallel execution of the basic collection

functions:

qpc.setParallelProcessing(AnnotationConstants.ANNOTATION_LEVEL_ONE);



Chapter 6

Performance evaluation

This chapter presents the performance evaluation of our parallel evaluator.

Section 6.1 discusses measuring performance of a Java application in gen-

eral. Section 6.2 presents the execution environment used to perform the

experiments and Section 6.3 discusses some code-related points observed

during evaluation process, which are strongly connected with the overall

performance of AutoMed, and do not only affect parallel evaluation, but

serial evaluation as well. Finally, Section 6.4 presents and comments the

experiments conducted.

6.1 Measuring performance

Measuring performance of a Java program, particularly measuring perfor-

mance of isolated tasks, presents certain difficulties. JVMs perform just-

in-time compilation of the Java byte-code. This means that the longer an

application runs, the more efficient the application becomes: more code be-

comes compiled, more methods become inlined and so on. A second compli-

cation is introduced by the garbage collector. In our case we are measuring

the performance of discrete operations, the time that query execution takes,

and when the garbage collector is running may interfere with this timing.

Platform-specific factors may also affect performance. Different operating

systems and virtual machines produce different results (Section 4.6.2) and

heap and thread stack sizes can also affect performance (Section 4.6.1). The

number and timing of processors are also important factors in performance

evaluation.

Results presented in this chapter are coupled to the configuration discussed

39
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in the next section.

6.2 The test environment

Table 6.1 lists the characteristics of the computers used for the experiments.

Table 6.1: Technical characteristics.

Name Memory CPU(s) Operating System DBMS

PC1 2GB 2 x P4 3.0Ghz Win XP Pro Postgres 8.0

PC2 1GB 2 x P4 3.0Ghz Win XP Pro MySQL 4.1

PC3 1.5GB P4 2.4Ghz Win XP Pro MySQL 4.1

AutoMed was installed on PC1. The AutoMed repository was stored in

a Postgres relational database, using the pg74.214.jdbc3 jdbc driver for

communication with the database. MySQL 4.1 was installed in the two other

computers, each of which had two different databases used to submit queries.

MySQL Connector/J 5.0.7 driver was used for communication with these

databases, supporting full parallelism for database access. Table 6.2 lists

the tables of each database and their size. Conducting the experiments with

larger tables was not possible due to memory restrictions placing an upper

limit on the size of query results that can be constructed.

Table 6.2: Tables used and their size.

Database

table proseq protein aa peptide species
gpmdb

size 884 1568 9818 19696 59553

table proteinhit peptidehit
pepseeker

size 137191 186873

Stabilizing the execution environment was an important goal. First, we

assigned fixed values to the heap size, so the JVM does not allocate memory

dynamically. Using flags -Xms and -Xmx for the initial and maximum heap

size accordingly, we created a heap size of 1200 mbytes1. Also a thread stack

1This is a large heap size necessary only for the experiments and not in normal execution

of the AutoMed toolkit.
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frame of 10mbytes was created using the flag -Xss. Second, we tried to

minimize the effects of garbage collection. After the end of each experiment

we call the System.gc() method, to give an indication to the JVM that the

garbage collector should be called, and the executing thread sleeps for three

seconds, in order to avoid interfering with the garbage collector. A new

instance of the Evaluator and ParallelEvaluator2 classes is also created

to ensure the same execution conditions for each experiment. Third, the

thread pool was instantiated with a fixed number of threads, all of them

being pre-started. None of these threads are destroyed even if they are idle

for a long time. Thus, we have a fixed number of threads, always available

to execute a task. The reason for this choice was that we did not want to

count the added cost of creating-destroying a thread in the experiments3.

The program was compiled using Java 1.5 and executed in Java HotSpot

1.5 virtual machine. All the experiments ran outside the IDE, from the

command prompt. As the IDE maintains its own JVM, we had a notable

improvement when running from the command prompt, both in serial and

parallel executions.

6.3 Performance associated code observations

During the evaluation process we observed and modified parts of the code

affecting performance, discussed below:

• Cache inside CallToWrapper class: each time a CallToWrapper func-

tion is used to evaluate an IQL query against a data source, it checks

whether it can use internally cached data to fulfill the request4. In or-

der to operate correctly, each time data is retrieved from or stored in

the cache, a copy is created, using the method Cell.copyOfGraph().

With the size of data increasing, this process can take a significant

amount of time, delaying query execution. This cache was designed to

improve a specific category of queries, joins and cartesian products. As

it is out of the scope of this thesis to investigate the general behavior

2In normal execution, the same instance of the Evaluator or ParallelEvaluator

classes is used for evaluation of multiple queries.
3The cost of having varying number of threads inside the pool was counted and does

not affect the results of the experiments.
4Note that this cache operates within a single query and not across queries i.e. the

cache is initialized whenever a new query is submitted to the AQP.
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of the cache, all experiments were conducted with the cache disabled.

• Retrieving data using the same wrapper object: until now, the same

wrapper object was used to access data, causing race conditions and

a need for synchronization techniques with parallel execution. This is

not desirable as concurrent data retrieval is fully supported from the

jdbc driver used, and synchronizing the threads would add unnecessary

delays. To solve this problem we create a different wrapper object for

each subquery. This is not the perfect solution, as it uses multiple

connections to access the database. Instead we can have one wrapper

object per database and use a connection pool to access the database.

Since this part of code is developed by the Imperial College, we tried to

interfere as little as possible with their code, and a new query annotator

was developed to produce different wrapper objects to access data.

• The SQLWrapper class: SQLWrapper class extends the AutoMedWrapper

abstract class and is responsible for retrieving SQL data. The whole

class was carefully restructured in order to efficiently support the par-

allel query evaluation. The previous implementation included calls to

functions (i.e. static methods toASGList() or toASGTuple()), that

although created to simplify the code, were causing delays to parallel

execution.

• Static methods and member variables: every time there is a call to a

static method, threads try to acquire the lock of the class to which

the method belongs, causing delays. Throughout the AutoMed code

there are calls to static methods, or static member variables, that sig-

nificantly delay query evaluation. For example, a static QProcLogger

object within the Cell and ASG classes is used to log various debug-

ging information. This is a bottleneck for parallel execution and was

removed. As a second example, the Cell class had a static member

called id used to uniquely identify each cell. Every time a new Cell

was created, id value was incremented by one, causing a race condition

(as multiple threads may try to read and modify its value each time).

As this member was not used anywhere in AutoMed, it was removed.
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6.4 Experimental results

This section presents and discusses our performance evaluation of the new

evaluator. For each experiment, we give the initial query and the query that

is submitted to the query evaluator after reformulation, optimization and

annotation. Each experiment is conducted using both the serial and the

parallel evaluator, performing one hundred iterations for each one. We have

two different fixed databases and we use the seven tables discussed above,

except where explicitly stated otherwise. Thus, each point in the following

graphical representations corresponds to the average execution time of the

query over one hundred iterations, for each of the seven tables.

The Append function (++) is used for the integration semantics and for all

the experiments5. Append is commonly used for integration semantics in

AutoMed and optimizers that take it into account already exist.

First experiment

Here the initial query has nested calls to the (++) function and, after the op-

timization, the number of calls to the append function and nesting increases.

Queries with nested calls to functions is something usual in AutoMed appli-

cations (e.g. ISPIDER6) and with this experiment we test whether there is

an improvement in parallelizing collection operators like (++). The parallel

evaluator operates on level ANNOTATION_LEVEL_ONE and there are two target

schemas (S1 and S2 respectively).

Query:

([{x}|{x} ← 〈〈...〉〉] + + [{x}|{x} ← 〈〈...〉〉]) + +

([{x}|{x} ← 〈〈...〉〉 ] + + [{x}|{x} ← 〈〈...〉〉])

Query submitted for evaluation:

((++)

((++)

((++) (Q1) (Q2) )

(Q3) )

((++)

(Q4) (Q5) )

5Other collection functions (like Intersect or Union) can be equally used, exploiting

other optimizers or writing new ones.
6ISPIDER is a project that aims to create a platform to support distributed data

analysis using Grid-based technologies. See Section 7.1 for more details.
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)

where

Q1 ≡ $wrapper MySQLWrapper@1dcc2a3

((++) L[{x}|{x} ←:: S1 : 〈〈...〉〉 :] L[{x}|{x} ←:: S1 : 〈〈...〉〉 :])

Q2 ≡ $wrapper MySQLWrapper@14eaec9 L[{x}|{x} ←:: S2 : 〈〈...〉〉 :]

Q3 ≡ $wrapper MySQLWrapper@d67067

((++) L[{x}|{x} ←:: S2 : 〈〈...〉〉 :] L[{x}|{x} ←:: S2 : 〈〈...〉〉 :])

Q4 ≡ $wrapper MySQLWrapper@e22f2b

((++) L[{x}|{x} ←:: S1 : 〈〈...〉〉 :] L[{x}|{x} ←:: S1 : 〈〈...〉〉 :]

Q5 ≡ $wrapper MySQLWrapper@17cf6b6 L[{x}|{x} ←:: S2 : 〈〈...〉〉 :]
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This experiment confirms the anticipated speed-up due to parallelism. Ex-

ecuting the arguments of nested functions in parallel, drops the execution

time up to thirty five percent for the given table sizes. Note that this differ-

ence becomes more obvious as the number of tuples increases.

Second experiment

Here the initial query is a projection with two target schemas (S1 and S2

respectively) and the query submitted for evaluation is a single (++) func-

tion. The parallel evaluator operates on level ANNOTATION_LEVEL_ONE.

Query:

[ {x} | {x} ← 〈〈...〉〉 ]
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Query submitted for evaluation:

((++)

($wrapper MySQLWrapper@ea48be L[{x}|{x} ←:: S1 : 〈〈...〉〉 :])

($wrapper MySQLWrapper@12aea3e L[{x}|{x} ←:: S2 : 〈〈...〉〉 :]))
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Results of this experiment shows that the drop in execution time is strongly

coupled with the type of query. This query has fewer calls than the first one

to nested functions, thus fewer subtrees can be evaluated in parallel. But

as observed, even with a simple query like this, parallel execution achieves

a drop in execution time of up to ten percent.

Third experiment

In accordance with the previous experiment, here we have a projection but

with an added condition (half of each table is selected) and optimization is

turned off. With optimization switched on, the selection condition is pushed

down into the wrappers and this query would not differ from the previous

one. The query submitted for evaluation is a simple comprehension with

a single generator whose body is a (++) function. The comprehension has

also a filter, selecting the half of each table. The parallel evaluator operates

on level ANNOTATION_LEVEL_ONE. There are two target schemas (S1 and S2

respectively).

In this query, the added cost for checking for the condition is comparable to
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the cost of retrieving data and dominates the overall cost, eliminating the

benefits from fetching data in parallel.

Query:

[ {x} | {x} ← 〈〈...〉〉;x > table size/2 ]

Query submitted for evaluation:

L[{x}|{x} ← ((++)

($wrapper MySQLWrapper@12bf419 L[{k1}|{k1} ←:: S1 : 〈〈...〉〉 :])

($wrapper MySQLWrapper@1c89f29 L[{k1}|{k1} ←:: S2 : 〈〈...〉〉 :]) );

((>) x table size/2) ]
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Fourth experiment

This is the same experiment as the previous one, but this time parallel evalu-

ator operates on level ANNOTATION_LEVEL_THREE, evaluating the arguments

of arithmetic and comparison functions in parallel. With this experiment

we show that, usually, it is not beneficial to have simple comparisons eval-

uated in a threaded manner. Checking the condition for each element of

the collection using a new thread causes a very fine grained parallelization,

delaying rather than improving performance.
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Fifth experiment

This is an example of a cartesian product. Optimization is disabled and the

experiment is conducted with the parallel evaluator operating first on level

ANNOTATION_LEVEL_ONE and then on ANNOTATION_LEVEL_TWO, with only one

target schema (S1) and table (proseq). With this configuration we also in-

vestigate parallelization of comprehensions.

Query:

[ {x, y} | {x} ← 〈〈proseq〉〉; {y} ← 〈〈proseq〉〉; ]

Query submitted for evaluation:

L[{x, y}|

{x} ← ($wrapper MySQLWrapper@9a92b5 L[{k1}|{k1} ←:: S1 : 〈〈proseq〉〉 :]);

{y} ← ($wrapper MySQLWrapper@13803d1 L[{k1}|{k1} ←:: S1 : 〈〈proseq〉〉 :])]
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Currently cartesian products is a category of queries that is not adequately

supported by AutoMed. This is because this category of queries are trans-

lated and executed in a nested loops evaluation strategy. Thus we have a

complexity of O(n2) and as all operations are done in memory, even for small

tables we get out of memory errors. For the given configuration, the only

table that could be used was table proseq with size 884 tuples.

This experiment adds to the argument that when it comes to parallelizing

a functional language, it is beneficial to diverge from the lazy evaluation

model and support some kind of eager evaluation. With the different ap-

proach that we adopt in translating the Comprehesion function for parallel

evaluation, we achieve a drop of fifty percent in execution time.

The same behavior has been observed with joins. The parallel evaluator,

operating on level ANNOTATION_LEVEL_TWO, is faster than the serial evalua-

tor.

6.5 Conclusions

The above experiments tested the performance of the new evaluator in dif-

ferent scenarios. During the performance evaluation we ignored the network

cost. We can safely assume that in a setting where a number of data sources

are integrated and parallel query processing is performed, there would be a

dedicated network that minimizes delays and is only used for communica-

tion between the machines hosting the data.

Our experiments show that the new evaluator is faster for all queries (pro-
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vided an appropriate threading level is chosen), with this improvement vary-

ing according to the type of query. The speed-up observed varies between

ten percent (second experiment) and fifty percent (fourth exeperiment), for

the given data sizes and queries. In queries with nested collection functions,

a common category of queries in AutoMed, we have observed a drop of up

to thirty five percent. Furthermore, the benefits of parallel evaluation are

connected with the size of tables: the larger the size of the tables, the greater

the difference in execution time.

However, the fourth experiment shows that if the threading level is not

carefully chosen, the parallel evaluator can be a lot slower. For the majority

of the queries, operating on level ANNOTATION_LEVEL_TWO is sufficient. In-

deed, moving to a higher threading level, yields very fine task granularity,

significantly affecting performance. Even parallelizing the basic collection

functions (level ANNOTATION_LEVEL_ONE) is enough to offer a notable im-

provement.

Cartesian products and joins are a category of queries that are still not eval-

uated efficiently. Both require a large amount of memory and even though

joins do not cause out of memory errors, we cannot have an acceptable re-

sponse time in large data sets.
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Distributed query processing

7.1 Introduction

A Distributed Database System (DDS) [7] consists of several databases stored

at different locations, communicating using a network. Each database is

managed by and running under an independent Database Management Sys-

tem (DBMS). These servers can cooperate in executing global queries and

global transactions, offering transparent data distribution.

Distributed query processing is not something new and has been engross-

ing the scientific community since the release of the experimental database

system, System R∗ [8]. Since then, solutions that address the challenges

of distributed query processing have been proposed (e.g. data slicing and

scattering, data duplication, distributed joins, semi joins and Bloom filters),

with articles appearing in many conferences and scientific journals. Investi-

gation and presentation of these topics is out of the scope of this thesis.

With the emergence of heterogeneous data integration, new challenges are

appearing. In addition to the need for schema translation and integration,

there are new challenges regarding global query processing and optimiza-

tion: A query expressed on a global schema now needs to be translated

into the constructs of the data source schemas, and this translation is likely

to be more complex than the unions and joins of fragments in relational

DDBs. Local databases will in general support different query languages,

hence the types of queries that each data source can handle must be taken

into account. The cost of processing local queries is likely to be different on

different data sources, complicating the task of deriving a global cost model.

There are various solutions, proposed from the academic community and re-

50
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search centers. ISPIDER [32] combines the Grid data access (OGSA-DAI)1,

Grid distributed querying (OGSA-DQP)2 and AutoMed tools, to support

distributed data analysis. RoDEX3 is another project, developed at Impe-

rial College, for supporting data integration and distributed query processing

in a peer-to-peer network [18]. Reference [5] is a proposal from Microsoft

for distributed query processing in a heterogeneous environment for SQL

server.

Our approach, discussed in the following sections, follows a simplified dis-

tributed model. It is a first attempt to natively support distributed query

processing using the AutoMed Query Processor.

7.2 The architecture

With our approach, we follow a hierarchical distributed model. Figure 7.1

illustrates this architecture. In this approach, we have a central node to

Figure 7.1: Distributed architecture.

1See http://www.ogsadai.org.uk.
2See http://http://www.ogsadai.org.uk/about/ogsa-dqp/.
3See http://www.doc.ic.ac.uk/automed/rodex.html.
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which the query is submitted. Each node in the Directed Acyclic Graph

(DAG), is an autonomous AutoMed installation, which has its own global

schema, integrating a number of data sources and may communicate with

other AutoMed installations. Queries submitted to each node are expressed

in IQL, thus there is no query language translation issue. The whole pro-

cess for answering a query submitted to a node is orchestrated by wrappers

created for this reason.

In order to be able to answer a query, each node in the DAG must be aware

of the global schema that its neighbors are exposing. Thus, the first step is

to wrap the global schemas of remote installations. This process must be

performed in each node that has a child. For example, in Figure 7.1 node

1 wraps the schemas of each of its children (nodes 2-3). The programmer

must know the name of the global schema that each of the children expose.

Suppose for example, that a query Q is submitted to the node 1 in Fig-

ure 7.1. This query first has to be reformulated according to the source and

target schemas. Suppose that one of the target schemas contain a remote

schema; this makes no difference to query reformulation as this schema is

available and stored in the local repository. Query reformulator does not

distinguish between local and remote schemas.

The query after reformulation is optimized and must then be annotated. In

this phase, we have to indicate that the constructs of the subtree that the

wrapper can translate are located in a remote installation. For this reason

a new annotator, QueryAnnotationProviderForDistributedEvaluation,

was created. This annotator extends the QueryAnnotationProviderFor

ParallelEvaluation inserting wrapper objects in the optimized query. This

annotator does not check for query language translation and does not have

a parser associated with it. When the evaluation phase begins and the

CallToWrapper function is called, the wrapped subquery is sent to the re-

mote installation for evaluation. In this node, the query may be evaluated

against the local data sources, or the query may need to be remotely eval-

uated. Note, that because each node is an autonomous installation, the

evaluator may operate in a serial mode or a parallel mode with a different

threading level than the node from which the query was received. Each

node can independently decide the configuration that it will follow, based

for example on the available memory.

This architecture has following advantages: First, it supports a flexible DAG



CHAPTER 7. DISTRIBUTED QUERY PROCESSING 53

architecture. Queries can submitted to any node and the nodes may be con-

nected creating a DAG. With this approach we also avoid possible problems

with cycles in query processing. Second, we offer a layered abstraction to

integrated data sources. In order to answer a query, it is not needed to have

detailed knowledge of the schemas of the data sources: the global schema

that each installation exposes is enough. Third, it changes the way that

queries are answered, balancing the workload between the nodes. Whereas

in the current implementation, data must be transfered from the source

databases and stored centrally in the memory of the machine where the

logic of the built-in IQL functions is applied, with distributed execution

the whole process is performed in different nodes, balancing the resource

consumption.

7.3 The AutoMedHost wrappers

As discussed above, the distributed query processing is orchestrated by

wrappers. These wrappers are the AutoMedHostWrapperFactory and the

AutoMedHostWrapper.

During the wrapping of remote schemas, the method populateSchema(Auto

MedWrapper wrapper) of the AutoMedHostWrapperFactory is called. This

then calls the method retrieveSchema() of the wrapper instance to create

a new connection to the remote AutoMed installation and retrieve the re-

mote schema. The retrieved schema is then stored in the local repository.

The AutoMedHostWrapper is responsible for handling communication be-

tween different AutoMed installations and services the requests for schema

retrieval and query execution. The first time the class is loaded into the

JVM of an AutoMed installation, the wrapper registers itself with an as-

sociated protocol and driver, so it will be possible to be used by the query

annotator. The following code snippet shows this process:

static {

AutoMedWrapper.registerWrapper(AutoMedHostWrapper.class,

Protocol.assertProtocol("AutoMedHostProtocol"),

"AutoMedHostDriver","AutoMedHostProtocol:");

}

When the query is evaluated, function executeIQL(ASG q):ASG of the AutoMed

HostWrapper is called. This method is responsible for executing the query
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in the remote node and encodes the logic for handling the communication

between the two cooperating nodes.

Currently, AutoMedHostWrapper only supports the relational data model.

Supporting different data models would require a complicated communica-

tion protocol to transfer the metadata of the model between the nodes. Due

to time restrictions we chose to only support the relational model for the

current implementation.

7.4 Communication between AutoMed installations

In order for a query to be evaluated in each node, a running instance of

a simple server that would accept and serve connections from other nodes

must exist, as well as, a communication protocol which all nodes obey.

AutoMedHost is a simple, threaded server that was developed for serving re-

quests from other nodes. Thus, an AutoMed installation is implemented by

an instance of the AutoMedHost class. AutoMedHost uses the ServerSocket

class to create and bind a socket that is used for communicating with remote

clients. Class ServerSocket establishes a connection between two AutoMed-

Hosts using the TCP/IP protocol. Using the TCP protocol, we do not have

to manually control communication (acknowledge packets, check for the or-

der that packets arrive, retransmit lost packets and so on) that the UDP

protocol would require. When a new connection arrives, the AutoMedHost

server creates a new thread to serve this request and then waits again for a

new one. The following is the code snippet of this process:

while(keepAlive){

try {

Socket accept = server.accept();

new Dispatcher(accept).start();

} catch (IOException ex) { ex.printStackTrace(); }

}

The Dispatcher class extends the Thread class, and the new thread executes

the code within the run() method of this class. This method, based on the

type of the request that was received, either retrieves a schema or executes

a query. Below is the code snippet:

public void run(){

PrintWriter out = null;
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BufferedReader in = null;

String response = null;

try {

// get the streams that are used

// to write to and read from the socket

out = new PrintWriter(new OutputStreamWriter(

socket.getOutputStream()));

in = new BufferedReader(new InputStreamReader(

socket.getInputStream()));

//get the request

response=in.readLine();

//check the type of the request

switch(new Integer(response).intValue()){

case DistrComConstants.GET_SCHEMA_REQUEST:

//retrieve schema

...

break;

case DistrComConstants.EXECUTE_QUERY_REQUEST:

//execute a query

...

break;

}

}

...

}

When a node needs to retrieve a schema it must send a GET_SCHEMA_REQUEST

and when it needs to execute a query an EXECUTE_QUERY_REQUEST. All the

communication variables are included in class DistrComConstants. Fig-

ure 7.2 illustrates the communication diagram of our protocol.

7.5 Using the evaluator for distributed query pro-

cessing

Using the new evaluator for distributed querying processing requires more

involvement from the user than the parallel execution. First, an instance

of the AutoMedHost class should be running in each machine (except the
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Figure 7.2: Communication state diagram.

machine to which the query is submitted). Then the user must wrap all the

remote schemas that each machine wants to be aware of. The following code

snippet shows how this can be performed:

...

AutoMedWrapper fstw=AutoMedWrapper.selectNewAutoMedWrapper("","",null,

"AutoMedHostDriver","AutoMedHostProtocol://193.61.44.26/gpmdb1",

"gpmdb3",new AutoMedHostWrapperFactory());

AutoMedWrapper sndw=AutoMedWrapper.selectNewAutoMedWrapper("","",null,

"AutoMedHostDriver","AutoMedHostProtocol://193.61.44.40/gpmdb1",

"gpmdb4",new AutoMedHostWrapperFactory());

...

In the above example, the user chooses to wrap and store into the local repos-

itory the global schemas with name gpmdb1, stored in the machines with IP

addresses 193.61.44.26 and 193.61.44.40 accordingly. The name that these

two schemas would have in the local repository is gpmdb3 and gpmbd4 and

the driver and protocol that should be used are the AutoMedHostDriver and

the AutoMedHostProtocol accordingly. After the wrapping, the schemas

can be integrated and queries that use these schemas can be written as

usual. Note also that distributed query processing requires the use of the

QueryAnnotationProviderForDistributedEvaluation annotator.

Appendix A includes a full example of distributed query processing.
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Conclusions and future work

This project extends the AutoMed Query Processor component to support

parallel and distributed query processing.

In order to meet the goals for this project, I had to gain an understanding

of the AutoMed theoretical aspects. It was necessary to understand the

abstract representation of IQL queries and the IQL language itself. As IQL

is a functional language, an investigation of functional languages and how

they can be parallelized was also conducted. After this, all the intermediate

steps that comprise the query evaluation process were studied, focusing on

the query annotation and query evaluation, as these are the main topics I

was involved with. Understanding the source code of AutoMed was another

challenge. I studied all the main classes that comprise the query proces-

sor and after that, I developed the new parallel evaluator by extending the

existing one. During the evaluation phase, I studied the code in more de-

tail, locating and changing parts that were causing delays, synchronization

issues and possible race conditions. The help of Lucas Zamboulis, the lead

developer of the AutoMed project at Birkbeck, was crucial to understand in

depth the source code of the AutoMed.

The second requirement for the AQP was to support distributed query pro-

cessing. For this reason, a threaded server that accepts new connections

and serves requests from client was developed to model an AutoMed in-

stallation. New wrappers that will be responsible for the communication

between the cooperating nodes were developed. For this purpose I studied

the AutoMedWrapper and AutoMedWrapperFactory classes and implemented

the new wrappers. A simple communication protocol was also developed to

synchronize the communicating nodes.

57
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The new evaluator achieves a significant drop in execution time in certain

queries. Despite this, there is still work that can be done to improve its

performance and functionality. First, special IQL syntax could be created

that would be used to define explicit parallel evaluation policies and im-

prove the flexibility of our semi-explicit model. Second, with the current

evaluation strategy, even if arguments of a function are evaluated in par-

allel, the parent thread must wait for its children to end. Changing the

evaluation strategy, small independent subtrees could be located and sub-

mitted to a thread for evaluation. This requires extensive changes to the

way that evaluation and annotation are performed. Third, changing the way

that the function Flatmap is evaluated according to the model discussed in

Section 3.4, may achieve a further speed-up. This requires to investigate

topics like the size of the cluster, what a cluster could be considered to be

and so on. Fourth, a deep analysis and restructuring of the code could be

done, as there are parts of the code that can be changed (like the cache in

the CallToWrapper function), improving overall performance.

The current implementation of the distributed query processor is the first

step to support distributed query processing in AutoMed. With the current

evaluator, we can answer queries in a distributed manner, but in a very

simple way: for example, we cannot support distributed joins. An exten-

sion to this implementation would be to support communication between

the cooperative nodes and perform a distributed join. Extending the com-

munication protocol to support more data models than the relational model

is of high priority. Having a caching policy in distributed query execution

and using metadata for load balancing between nodes would also be a ben-

eficial extension to the current implementation. Allowing objects, like the

QueryProcessorConfiguration class, to be serialized and passed between

AutoMed installations, would make the new evaluator more flexible.
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