
 Journal of Visual Languages and Computing (1996) 7 , 267 – 289

 Implementing Hyperlog , a Graph-Based Database
 Language

 S TEFAN H ILD AND A LEXANDRA P OULOVASSILIS

 Department of Computer Science , King ’ s College London , Strand , London , WC 2 R 2 LS , U .K .

 Received 1 3 July 1 9 9 4 and accepted 2 8 August 1 9 9 5

 We describe the implementation of Hyperlog , a graph-based declarative language
 which supports both queries and updates over a graph-based data model called the
 Hypernode Model . This model is capable of representing arbitrarily complex data
 structures by means of nested and recursively defined graphs , while the Hyperlog
 language is computationally complete . By requiring only a very small number of
 graphical constructs , Hyperlog is well-suited to non-expert database users . In this
 paper we describe the graphical aspects of the Hyperlog implementation including
 novel techniques for : representing and updating data , queries and programs ; rep-
 resenting and browsing the database ; and representing and browsing the output from
 queries .
 ÷ 1996 Academic Press Limited

 1 . Introduction

 M UCH RECENT database research has focussed on deductive [4] and object-oriented
 [12] databases , and also on graph-based representation and manipulation of data .
 Following the general direction of these trends , a graph-based data model called the
 Hypernode Model has been developed [14 , 15] which exhibits features of all three .
 The model is based on nested , and possibly recursively defined , graphs termed
 hypernodes . Hypernodes have unique labels which serve as object identifiers : this
 means that arbitrarily complex objects can be represented by a network of
 hypernodes . Hypernodes can contain the labels of other hypernodes in their node-set ,
 including their own label : this means that the model provides inherent support for the
 nesting of information .

 The Hypernode Model comes equipped with a graph-based declarative language
 called Hyperlog which supports both queries and updates . A query in Hyperlog
 consists of a number of graphs (termed templates) which are matched against the
 hypernodes in the database and which generate graphical output . Database updates in
 Hyperlog are undertaken by means of programs . A Hyperlog program consists of a
 set of rules whose head and body are again sets of templates . The templates in the
 head of a rule indicate the updates to be undertaken for each match of the templates in
 the body of the rule . The evaluation of a program consists of a repeated matching of
 the bodies of its rules against the current database state until no more updates can be
 inferred .

 1045-926X / 96 / 030267 1 23 $18 . 00 / 0 ÷ 1996 Academic Press Limited

 S . HILD AND A . POULOVASSILIS 268

 A discussion of the rationale behind the design of Hyperlog , including its semantics
 and expressiveness can be found in [19] . Hyperlog was designed for non-expert
 database users . Thus , as we will see below , a very small number of graphical
 constructs are used to express queries and updates of arbitrary complexity . This paper
 is concerned with the implementation of the language , concentrating in particular on
 its graphical aspects . Key issues addressed include the following :

 (i) Graphical techniques for representing and updating data , queries and programs :
 in particular , we will see how all of these are created by instantiating currently
 available types , thereby guaranteeing their type-correctness .

 (ii) Graphical techniques for representing and browsing the database : we will
 describe a novel algorithm for the automatic display of the contents of a database
 which uses concepts from mechanics and self-organising networks .

 (iii) Graphical techniques for representing and browsing the output from queries ,
 which can be arbitrarily large : we regard the query output as data which can be
 stored and browsed in the same way as the database .

 We begin the paper with a brief introduction to Hyperlog in Section 2 , which sets the
 scene for the rest of the paper . In Section 3 we describe the architecture of our
 implementation . Section 4 is the key section of the paper and is concerned with the
 graphical aspects of the implementation , covering points (i) – (iii) above . Section 5
 compares Hyperlog with other graph-based database languages and highlights some of
 its distinguishing features . Finally , Section 6 gives our concluding remarks and
 directions of further work .

 2 . Overview of Hyperlog

 2 .1 . Hypernodes , Types and Instances

 A hypernode is a triple (c , N , E) where c is called the label of the hypernode and
 (N , E) is a directed graph . A hypernode repository (or simply a repository) is a set of
 hypernodes no two of which have the same label .

 We distinguish two relationships between the hypernodes in a repository : links ,
 which represent the containment of one hypernode within the node-set of another ,
 and edges , which connect two nodes in the node-set of the same hypernode . As we
 will see below , both these relationships are displayed to the user graphically .

 Hyperlog is a typed language , where both types and instances are represented by
 hypernodes . In addition to such user-defined graph types , the language also supports
 primitive types such as STRING , NUMBER and TEXTs . Poulovassilis and Levene
 [19] discusses the representational expressiveness of hypernodes . In particular , we
 show there how hypernodes can be used to represent conventional data structures
 such as mappings , tuples , records and sets , to an arbitrary level of nesting . The
 Hypernode Model can thus be used to visualise a wide variety of data models ,
 including functional , relational and object-orientated ones .

 In this paper , we concentrate mainly on object-based modelling . We use as our

 IMPLEMENTING HYPERLOG 269

ACCIDENT

time

date

car
casualty

condition

STRING
STRING

CAR
CASUALTY

CONDITION

CASUALTY

severity

fatal

serious

slight

passenger
driverclass

pedestrian

CONDITION

wet

dry

flood

ice snow

road

bright
street lights

dark

light condition

PERSON
sex

carriageway
a-road

one-way

roundabout

in-town

changing lane

turning

u-turning

starting stopping

waiting

parking

reversing
going aheadovertaking

road

manoeuvre

male

name

date of birth

STRING

female

STRING

CAR

age

reg

driver

car hit CAR

STRING

NUMBERminibus

type

taxi

back

damage
lorry

front

MANOEURES
manoeuvres

PERSON

normal car

MANOEUVRES

MANOEUVRESmanoeuvre

motorway

 Figure 1 . The Road Accident Database scheme

 running example a database that records Road Accident Data . Figure 1 shows the
 schema of this database (where a database schema is just a set of types) . Upper-case
 identifiers within types represent further types (either graph types or primitive types)
 whereas lower-case identifiers represent user-defined constants : these appear within
 instances as they stand and correspond to user-defined enumerated types in
 programming languages . Thus , the type ACCIDENT in Figure 1 shows that each
 accident instance contains information about the time , date , cars , casualties , location
 and condition of the accident , where CAR , CASUALTY and CONDITION are
 further graph types . The type CAR contains some user-defined constants : a set of
 valid car types and a set of types of damage . It references the graph types PERSON ,
 MANOUEVRES and CAR (recursively) . The types CASUALTY , PERSON ,
 CONDITION and MANOUEVRES are self explanatory .

 Figure 2 illustrates some instances of the types of Figure 1 . As we discuss in greater
 detail in Section 4 . 3 , instances are created by replacing type-nodes by instance-nodes .
 For example , ACCIDENT – 12 is an instance of ACCIDENT and , within it ,

 S . HILD AND A . POULOVASSILIS 270

ACCIDENT–12

time

date

21:00

12.09.91

car

casualty

condition

CASUALTY–15

CAR–13

CASUALTY–14

CASUALTY–16

CASUALTY–14

severity

slight
passenger

class

CAR–13

damage

manoeuvre

age

PERSON–17

CAR–18

reg

driver

car hit

MANOEUVRES–19

front

type

12

F432AXK

normal–car

PERSON–17
sex

female

name Sabine Hild

MANOEUVRES–19
carriageway

road

overtaking

manoeuvre

CONDITION–16

wet

road

light condition

street lights

 Figure 2 . Part of the Road Accident Database

 CAR – 13 is an instance of CAR , CASUALTY – 14 and CASUALTY – 15 are instances
 of CASUALTY , and CONDITION – 16 is an instance of CONDITION . Note that
 any number of instances of nodes and edges can be created , for example
 ACCIDENT – 12 has two casualties .

 2 .2 . Queries

 A Hyperlog query is a set of templates . Templates dif fer from hypernodes because
 they can contain variables as their labels or nodes and because their nodes and edges
 can be negated . For example , Figure 3 shows a query that determines the time and
 date of accidents that were not caused by Alexandra P . In queries , nodes that are
 prefixed by ‘?’ or ‘!’ are variables for which matches need to be found with respect to
 the database . Variables marked ‘?’ are ones for which the user desires their matches to
 be output whereas variables marked ‘!’ are intermediate ones which are to be used for

 IMPLEMENTING HYPERLOG 271

 Figure 3 . A query within the Query / Program Editor

 matching purposes only . We discuss the handling of query output in greater detail in
 Section 4 . 4 .

 2 .3 . Programs

 A Hyperlog program is a set of rules . Each rule is an expression of the form

 h 1 , h 2 , . . . , h n ç b 1 , b 2 , . . . , b m

 where m , n $ 0 , and h 1 , . . . , h n , b 1 , . . . , b m are templates . The part of the rule that
 appears to the left of the ç symbol is the head of the rule and the part to the right is
 the body .

 The templates in the head of a rule indicate the updates to be undertaken for each
 match of the templates in the body of the rule . The evaluation of a program consists
 of repeatedly (i) matching the bodies of the rules against the current database state ,
 and (ii) updating the database with the updates inferred . The evaluation terminates
 when no new updates can be inferred . To illustrate , Figure 4 shows a program to find
 the age of the oldest car involved in any accident and to place this result in a
 hypernode labelled RESULT . Notice that in programs all variables are used for
 matching only , irrespective of whether they are marked ‘?’ or ‘!’ .

 This program comprises two rules and assumes that two hypernodes labelled
 RESULT and FLAG have already been created . The upper rule matches all instances
 of type CAR and places their ages into the RESULT hypernode . It also places a
 ‘done’ node into the FLAG hypernode , thus preventing itself from firing on
 subsequent rounds of the program execution . The lower rule fires only when there are
 two or more nodes in RESULT (so it does not fire on the first round of the program
 execution) . It deletes all values ?Y in RESULT which are less than some value ?X in
 RESULT . Overall , if there are 0 or 1 distinct car ages , the program terminates after
 the second round with at most one age in RESULT . If there are more than 1 distinct

 S . HILD AND A . POULOVASSILIS 272

 Figure 4 . A program within the Query / Program Editor

 car ages , the program terminates after the third round with the greatest car age in
 RESULT .

 Notice the hypernode with label ‘greater’ in the body of the second rule in Figure
 4 : this is a graphical representation of the built-in operator . . An alternative way to
 represent this information would have been to create an edge between ?X and ?Y in
 RESULT and annotate it with the . symbol from the tool bar . In either case , the
 operator . is built-in only for reasons of ef ficiency since Hyperlog is computationally
 complete . For example , [19] discusses how arithmetic can be carried out in the
 language . Furthermore , Hyperlog is update-complete i . e . it can be used to perform
 any computable database transformation . This aspect of the language is also discussed
 in [19] .

 3 . Implementation Architecture

 Figure 5 illustrates the architecture of our Hyperlog implementation . We observe
 from this figure that three repositories are used : one for types , one for queries and

Browser Evaluator
Type
Editor

Instance
Editor

Program/Query
Editor

Instance
Repository

Program/Query
Repository

Type
Repository

DBMS

 Figure 5 . The implementation architecture

 IMPLEMENTING HYPERLOG 273

 programs , and one for instances . The three corresponding Editors provide graphical
 facilities for the creation , viewing and update of this information : we describe these
 editors in Section 4 .

 The instance repository is further sub-divided into domains , which are numbered 0 ,
 1 , 2 , etc . Domain 0 contains the data , i . e . the instances of the currently defined types .
 Domain 1 contains the meta data , i . e . it is a ‘reflection’ of the type repository , so that
 the schema can be queried and navigated (but not updated) in the same way as the
 data . As we will see below , a new domain is generated after the evaluation of each
 query in order to hold the query output . Such domains can subsequently be viewed
 by using the Browser and can be deleted at any time .

 The Browser generates the containment graph of a selected domain of the instance
 repository and presents it to the user . In particular , the results of a query can be
 viewed in this way . As we will see in Section 4 . 5 , various reduction strategies are
 provided for further restricting the instances to be displayed by the Browser . In
 addition , specific instances can be selected from the Browser display and their
 contents edited by the Instance Editor . A trail of the last 20 visited instances is
 automatically maintained within the Browser display .

 The Evaluator reads a query / program from the query / program repository and
 evaluates it with respect to a selected domain of the instance repository . In the case of
 a query , the result of the query is stored within a new domain , ready for subsequent
 viewing by the Browser . In the case of a program , the selected domain is updated with
 the changes inferred . The Evaluator employs algorithms which in fact perform a much
 more ef ficient evaluation of programs than just repeatedly matching rule bodies with
 respect to the entire domain on each round : [Ben93] gives a preliminary account of
 the optimizations employed .

 Notice that there is no strict 1 – 1 mapping between the repositories and the
 components of the architecture . The Evaluator , for example , accesses all three
 repositories to perform its task , while the Instance Editor accesses both the type
 repository and the instance repository . The Database Management System coordinates
 access to the repositories by the other components and takes care of buf fering and
 caching of frequently-used information . We refer the interested reader to [22] for a
 discussion regarding the implementation of hypernode repositories , which we do not
 consider further in this paper .

 4 . Graphical Features of the Implementation

 The graphical features of our implementation can be summarized as follows :

 (i) the display and update of individual hypernodes within the Type Editor ;
 (ii) the display and update of individual hypernodes within the Instance Editor ;

 (iii) the display and update of a query or program within the Query / Program Editor ;
 (iv) the display of a domain within the Browser , including the node placement

 algorithm , the reduction strategies , and the database navigation aids .

 In Section 4 . 1 we describe the functionality of the Type Editor while in Section 4 . 2

 S . HILD AND A . POULOVASSILIS 274

 we discuss the issues involved in the automatic graphical display of hypernodes . In
 Sections 4 . 3 , and 4 . 4 and 4 . 5 we address the Instance Editor , the Query / Program
 Editor and the Browser , respectively .

 4 .1 . The Type Editor

 A hypernode database schema consists of a set of types which are created and updated
 using the Type Editor . Figure 6 illustrates the user interface of the Type Editor , with
 the type CAR of Figure 1 being edited . The tool bar located beneath the title bar
 allows the user to select from a number of options namely , from left to right : delete
 the current type , create a constant-annotated node , create a type-annotated node ,
 delete a node , create an edge , delete an edge , return to normal edit mode after any
 previous operation , rename a node , and exit .

 All operations on a type are performed by means of mouse-pointing . Most
 operations require the user to select the object that is to be manipulated and then to
 choose one of the options from the icons in the tool-bar . Nodes and edges are selected
 by clicking close to them and the type itself is selected by clicking close to its name .
 Edges are drawn automatically by the system and nodes can be moved around within
 the type—if they are connected to an edge , this follows them around automatically .

 Nodes or edges can be added to , or deleted from , a type at any time . This of course
 has implications on the current instances of that type . In particular , nodes or edges
 can be added to a type without af fecting the type-correctness of its instances : these
 will simply record no information with respect to the new nodes or edges . However ,
 deletion of a node or an edge from a type results in the deletion of the corresponding
 information from its instances (after confirmation by the user) . Note that deletion of a
 node within a type or instance automatically causes the deletion also of any edges
 incident upon it .

 Figure 6 . A type within the Type Editor

 IMPLEMENTING HYPERLOG 275

 4 .2 . Drawing Hypernodes using Bezier Curves

 From the description of the Type Editor above we observe that the user manually
 performs the placement of nodes within a type while the system automatically
 performs the drawing of the surrounding outline and of the edges between nodes . The
 problem we faced in supporting this functionality was to find a formula that could be
 easily and ef ficiently computed , and which generated smooth rather than angular
 graphics . A solution for the implementation of both the outline and the edges of a
 hypernode is to use a Bezier curve [21] .

 Given a set of vertices , the Bezier formula produces a smooth curve from the first
 vertex to the last vertex , with the intermediate vertices defining the derivatives , order ,
 and shape of the curve . In general , the vertices form an open polygon , as shown in
 Figure 7 . The Bezier curve will tend to follow the polygon shape , and so moving the
 vertices of the polygon gives fine control over the final shape of the curve .

 The mathematical basis of the Bezier curve is a polynomial-blending function which
 interpolates between the first and the last vertices . The Bernstein polynomials are used
 as weighting functions for each vertex . These polynomials are given by the following
 formula , where n is the degree of the polynomial , i is the number of the particular
 vertex (the vertices being numbered from 0 to n) and (n

 i) 5 n ! / i !(n 2 i)! :

 J n , i (t) 5 S n
 i
 D t i (1 2 t) n 2 i

 The Bezier curve is then defined by a function B (t) where 0 # t # 1 and P i is the
 position of vertex i :

 B (t) 5 O n
 i 5 0

 P i J n , i (t)

 Two useful properties of this function are as follows :

 $ B (0) 5 P 0 and B (1) 5 P n i . e . the curve is guaranteed to start at the first vertex and to
 end at the last vertex

 $ the r th derivative of the curve at its start and end is determined by the first r and
 the last r vertices respectively ; in particular , the first derivative (i . e . the slope) of the

1
2

3

4

1
5

42, 3

1

4

3

2

5

 Figure 7 . Bezier curves

 S . HILD AND A . POULOVASSILIS 276

w

GRAPH TYPE2 7

81

3, 4 5, 6

ys

xs

(xp, yp)

 Figure 8 . Drawing outlines

 curve at its start and end is governed by the first two and the last two control
 points , respectively .

 4 . 2 . 1 . Drawing Outlines

 Since we are using a Bezier curve , this problem reduces to identifying suitable control
 points to generate the outline . Experimentation has shown that 8 control points can
 be used to generate a satisfactory curve and Figure 8 shows the placement of these 8
 points . The outline starts and ends at either side of the name of the type , whence the
 placement of control points 1 and 8 . Control points 2 and 7 are placed at the same
 height as 1 and 8 , and ensure that the shape starts and ends with a near-horizontal
 slope . The other two positions of interest are the bottom-right and bottom-left edge
 of the shape . Two control points are placed at each of these positions , giving them
 more weight in B (t) . This ensures that the outline expands towards these positions
 and that the hypernode has more room for its contents .

 The only information required to reproduce the outline of any hypernode is thus its
 name , the position of the centre of the name , and the maximum width and height of
 the hypernode . This information is stored together with the node- and edge-set of the
 hypernode . Given this information , the coordinates of all 8 control points can easily
 be reproduced .

 4 .2 .2 . Drawing Edges

 Edges are somewhat more demanding than outlines to draw . An edge can connect two
 dif ferent nodes or can connect a node with itself .

 For the first of these cases the problem reduces to identifying suitable control
 points for a Bezier curve . The arrow at the end of an edge can be drawn very simply if
 the edge hits the target node at an angle of 45 degrees (since the two lines making up
 the arrow are then just horizontal and vertical lines , respectively) . Since the Bezier
 curve is guaranteed to end tangentially to the line defined by the last two control
 points , this can easily be achieved by using a suitably-placed control point near the
 target node . Four cases for its placement can be distinguished , determined by the

 IMPLEMENTING HYPERLOG 277

Target D

Target C

Target A

Target B

Start-node

 Figure 9 . Relative positions of the end-node to the start-node

ye

additional controlpoint

ys

d

c'

xs
Start

xe

Target

 Figure 10 . The four control points for an edge

 relative position of start and target node to each other—see Figure 9 . Thus , the
 control point will be placed in the appropriate quadrant at an angle of 45 8 to the target
 node , and at some experimentally determined distance .

 The above arrangement will produce nice looking edges if the start node and end
 node are not too far apart . If they are , then the edge looses its elegant arch with the
 ef fect that it looks more like a straight line . Our algorithm checks for this situation
 and inserts another control point either above or below the start node . Figure 10
 illustrates the look of such an edge , where the additional control point is set if
 u xe 2 xs u $ d x and u ye 2 ys u $ d y , for some experimentally determined constants d x
 and d y .

 The second kind of edge is one which starts and ends at the same node . There are
 no sub-cases to consider here and Figure 11 shows the placement of the control points
 required .

y

d'

Node
d'

d'

d'

x

 Figure 11 . The three control points for a cyclic edge

 S . HILD AND A . POULOVASSILIS 278

 4 .3 . The Instance Editor

 Instances of types are created and updated using the Instance Editor . Since Hyperlog
 is strongly typed , a new instance is created by first selecting a type for it . A unique
 label for the instance will then be generated by the system , but the user is also given
 the option of changing this to some other unique label . For example , Figure 12 shows
 the display within the Instance Editor just after the user has chosen to create an
 instance of type PERSON and the label of the instance has been set to PERSON – 32 .
 At this stage , PERSON – 32 has been inserted into the instance repository but as yet
 contains no nodes or edges . As we can see from Figure 12 , the contents of the type
 PERSON are displayed within the new instance . To avoid confusion , this type
 information appears in a dif ferent colour (green) than the instance information (black) .
 As with the Type Editor , the tool bar allows the user to select from a number of
 options namely , from left to right : return to the previous instance that was being
 edited , switch of f the type information (see below) , delete a node , delete an edge ,
 return to normal edit mode after any previous operation , rename a node and exit .

 The user can now instantiate nodes of the (green) type definition by double-clicking
 on them . When creating an instance of a primitive type such as a string or a number ,
 the editor prompts the user to enter the value of this node and accepts it if it is
 type-correct . When creating an instance of a graph type , the editor creates a unique
 label but allows the user to override it with another new label or with the label of an
 existing hypernode of the correct type .

 Edges can be created between any two nodes that are of the same type as the start
 and end nodes of an edge in the type-definition : as in the Type Editor , edges are
 drawn automatically . In addition , constants are inserted automatically as soon as an
 edge is created that originates or terminates there .

 Any number of instantiations of nodes or edges can be made . Since these are
 type-checked , the type-correctness of the instance is guaranteed . The Instance Editor
 provides the same facilities for deleting and moving nodes and edges as the Type
 Editor .

 Figure 12 . Creating an instance with the Instance Editor

 IMPLEMENTING HYPERLOG 279

 Figure 13 . Viewing an instance with the Instance Editor

 When viewing an instance , the super-imposed type definition may be distracting :
 see , for example , the left-hand screen of Figure 13 which illustrates an instance of type
 PERSON . The Instance Editor therefore provides a function which allows the user to
 switch of f the type definition , and this is the default option when the Instance Editor
 is called on to view an instance that is already in existence (the right-hand screen of
 Figure 13) .

 After creating an instance , the user can move ‘into’ that instance by double-clicking
 on one of its nodes . If this node is a text file , a Text Editor is invoked to edit it . If the
 node is a label , the Instance Editor presents the contents of this next instance for
 viewing or update . This navigation process can be repeated as many times as desired .
 The trail of visited instances is displayed in the Browser window , in addition to the
 current Browser selection .

 4 .4 . The Query / Program Editor

 This editor provides all the functions necessary to create and manipulate the templates
 representing a query or program , which we consider in turn below .

 4 . 4 . 1 . Queries

 Figure 3 above illustrates the editor display with a query currently being edited . The
 editor provides similar functionality to the Instance Editor in that it allows the
 creation of templates from types . However , its visual space is strictly 2-dimensional
 and so that all the query templates exist on one screen (which is vertically and
 horizontally scrollable) . The tool bar options in Figure 3 (and Figure 4) are , from
 left-to-right : switch of f the type information , create a node , delete a node or edge , add
 a negation annotation to a node or edge , add a comparison operator annotation to an
 edge (the next 5 icons) , create an arrow symbol (only applicable for a program) , delete
 an arrow symbol , return to normal edit mode , rename a node , execute a query or
 program , and exit .

 Similarly to instances , queries are created by instantiating one or more types into
 one or more templates each . For example , the query in Figure 3 was created by
 instantiating the types ACCIDENT , CAR and PERSON . An important consequence
 of this functionality is that no searching that violates the database schema (and is
 therefore bound to find no matches) is ever undertaken .

 S . HILD AND A . POULOVASSILIS 280

 While matching a query , the Evaluator has to be able to distinguish between
 variables that need to be matched , and identifiers which are constants . We adopted the
 convention that variables are marked by the prefix ‘?’ or ‘!’ and the Evaluator only
 generates output for those variables with prefix ‘?’ .

 A problem that we faced in supporting queries was how to handle their output in a
 flexible fashion . The solution we came up with was to generate hypernodes within a
 new domain from the matches for ‘?’ variables . The Browser can then be used to view
 this output in an identical fashion to the way that the data in Domain 0 is viewed . The
 Evaluator thus applies each matching substitution that it finds to the ‘?’ variables in
 the query and inserts the resulting hypernodes into a new domain , where they await
 selection for browsing by the user .

 4 . 4 . 2 . Programs

 For the entering of programs , the Query / Program Editor also allows the placement
 of left-arrow symbols amongst the templates . Apart from this slight extension , the
 functionality provided for entering queries is suf ficient to cater for programs too .

 A program contains purely graphical data and so the Evaluator’s first task upon
 being passed a program to evaluate is to identify ‘clusters’ in the program layout and
 thus generate the individual rules . By analysing the coordinates of each template , the
 Evaluator can assign it to a specific rule and also decide whether it is part of the head
 of the rule or part of the body . In order to assign templates to rules , the Evaluator
 makes use of the fact that each rule contains exactly one arrow , and that its templates
 stretch out horizontally to the right and left of that arrow . The number of rules in the
 program is assumed to be the same as the number of arrows placed by the user . The
 rules are constructed around these arrows by assigning each template to that rule
 whose arrow is vertically closest to the template . For example , Figure 14 shows the
 splitting of a set of templates into two separate rules . Since the templates in rules are

head body

D
C

A

B

a
b c

E

head body

rule 2

rule 1

 Figure 14 . Splitting templates into rules

 IMPLEMENTING HYPERLOG 281

 Figure 15 . Display of a database domain

 created from types , it is easily seen that a program does not undertake any
 type-incorrect (and therefore redundant) matching , and does not make any updates
 that will violate the type integrity of the repository .

 4 .5 . The Browser

 The Browser gives the user an overview of the structure of a selected domain of the
 instance repository . In particular , it displays the labels of hypernodes within a selected
 domain together with the containment relationships between them . Thus , if a and b
 are both hypernodes and b is in the node-set of a , the Browser will display a link
 a 5 b . Figure 15 illustrates the display of a domain within the Road Accidents
 database . Note that primitive nodes such as numbers , strings and text are not
 displayed since they represent database contents rather than database structure . The
 Browser allows the user to access a particular instance by double-clicking on it . This
 will call up the Instance Editor for viewing or update of the instance . The Browser
 display is refreshed after each update within the Instance Editor since this may af fect
 the containment relationships .

 Since recursion and nesting are underlying principles of the Hypernode Model , the
 Browser is a particularly useful and indeed essential component of the system . A
 number of issues have been addressed in its implementation : first , a domain may be
 further broken down before being browsed by using one of a number of practically
 useful reduction strategies ; second , the user has to be supported in not getting lost
 within the Browser display ; and third , nodes and links have to be automatically placed
 within the Browser window . We discuss each of these issues in turn below .

 4 . 5 . 1 . Reduction Strategies

 In Section 3 above we discussed the notion of a domain within the instance
 repository . The Browser can display either an entire selected domain , or a sub-domain
 thereof created by choosing one of the following options :

 S . HILD AND A . POULOVASSILIS 282

 (i) One type only . This displays only instances of the domain which are of a
 particular type . This strategy can be used if the user wishes to enter the domain
 through a specific type and wishes to see all current instances of that type in the
 domain . Often , particular types can be identified as ‘natural’ entry-points to the
 database ;

 (ii) Isolated nodes only . This displays only those instances of the domain which are
 not contained in the node-set of any other instance and which themselves do not
 contain any other instances . This strategy is particulary helpful for identifying
 ‘stray’ instances ;

 (iii) Non-nested nodes only . This displays only those instances which are not
 contained in any instance but which do themselves contain other instances .
 Again , such instances often turn out to be ‘natural entry-points’ to the database ;

 (iv) Nested nodes only . This displays instances which are both contained in some
 instance and themselves contain other instances ;

 (v) One instance only . This displays the instance that is currently being worked on
 within the Instance Editor , as well all the instances that it contains . This strategy
 is the default while a new instance is being created . Since the number of nodes
 that are being displayed is typically small the Browser can generate quick output
 and can assist the user by presenting an up-to-date picture of the data being
 edited .

 4 . 5 . 2 . Database Navigation

 ‘Getting lost’ in large graph data structures has been found to be a major problem ever
 since the advent of Hypertext databases [20] . Several techniques have been developed
 to assist the user when navigating through such databases , some of which our Browser
 makes use of . First , it maintains a backlog of the last n (default 20) instances the user
 has visited . This ‘trail’ is superimposed over the normal Browser output in a dif ferent
 colour so that the user can visually trace the path that was used to reach the current
 instance . All instances that are contained within the trail are always displayed in the
 Browser window , irrespective of whether they comply with the current reduction
 strategy or not . Second , the information stored in the backlog is accessible to the
 other components of the implementation architecture which can use it to support a
 ‘go back’ function (as the Instance Editor indeed does) .

 4 . 5 . 3 . Node Placement

 Node placement is one of the major problems that the Browser has to address .
 Generally , the Browser has to handle any number of links between any number of
 nodes . It has to create a clear picture of the domain structure , for example avoiding
 crossing of links as much as possible . Moreover , the display has to be produced
 within a acceptable amount of time and it has to be repeatable . Repeatability ensures
 that the user is presented with the same picture for the same domain . It is also
 desirable that minor changes in the domain , such as the insertion of a new isolated
 instance , result in only minor changes to the Browser representation .

 A graph-drawing algorithm was recently described in [9] which deterministically
 produces satisfactory output . However , this algorithm is computationally intensive
 and in practice takes too long to compute its output for our purposes . In contrast ,

 IMPLEMENTING HYPERLOG 283

Push force

Link force

C

A B

 Figure 16 . The nodes and the forces between them

 our graph-drawing algorithm is dynamic in that it can be tailored to deliver a result
 after an arbitrarily short or long period of time , at the price that the result will be
 nearly optimal if the time provided is long and less optimal if the computation is to
 terminate within a shorter period of time . Our algorithm combines ideas from
 mechanics and self-organising networks [2 , 13] and we now describe its salient
 features :

 Firstly , two kinds of forces are defined between nodes :
 (i) push - forces , p # , appear between any two nodes and force them apart , similar to the

 magnetic force between two charged particles whose charge is of same polarity ;
 (ii) link - forces , l # , are generated by a link between two nodes and force the nodes

 together , similar to the force exerted by a rubber-band .
 Both kinds of forces are directed forces and can thus be computed using vector
 arithmetic . Figure 16 shows an example scenario with three nodes , two of which are
 linked , and all the forces acting on the nodes .

 In our discussion below , we will denote the vector from a node a to a node b (i . e .
 b # 2 a #) by c # a , b , the Euclidean distance between a and b by u c # a , b u , and the unit vector
 from a to b by c # 0

 a ,b .
 The size of each force is a function of the distance between the two nodes . The

 push-force on a node a that is generated by a node b can be defined as follows , where
 f is some function that is monotonic decreasing in its argument :

 p # a , b 5 2 c # 0
 a ,b ? f (u c # a , b u)

 Note that the direction of the push-force is opposite to the direction of c # 0
 a ,b i . e . the

 force is pushing the nodes apart .
 The link-force on a node a that is generated by a link to a node b can similarly be

 defined as follows , where g is some function that is monotonic increasing in its
 argument :

 l # a , b 5 c # 0
 a ,b ? g (u c # a , b u)

 5 0
 if b is in the node-set of a
 otherwise

 Thus , the link-force acts in the same direction as c # 0
 a ,b .

 It can be noted that for some value of u c # a , b u , f (u c # a , b u) 5 g (u c # a , b u) . This is , ef fectively ,
 the distance at which no net force acts on two nodes that are linked to each other . We
 call this distance the ‘resting distance’ .

 S . HILD AND A . POULOVASSILIS 284

 Given a set of nodes , N , the vector # i gives the sum of all the forces acting on any
 node a i P N :

 # i 5 O u N u

 j 5 1
 (p # a i , a j 1 l # a i , a j)

 Finally , we define the energy of the system to be the sum of the scalars of all the
 forces acting onto all the nodes at any time :

 L 5 O u N u

 i 5 1
 u # i u

 L is a measure of the ‘orderedness’ of the current state : a small value represents a state
 where unrelated nodes are far apart and where nodes that are linked are close to their
 resting distance . The problem of positioning a set of nodes can therefore be rephrased
 as finding a minimum for L . Our algorithm attempts to find a local minimum by
 iteration . At each step of the iteration , it allows each node a i to be dragged away by
 the vector # i i . e . by the link- and push-forces currently acting upon it . Problems arise
 since the dynamic behaviour of the forces itself can only be approximated by taking
 ‘snapshots’ before each iteration , computing the new forces and then moving the
 nodes . Taking these snapshots at higher frequencies will improve the simulation-
 behaviour but slow down the entire process . To ensure that the algorithm will
 terminate , a temperature , t , is introduced into the system to act as a multiplicative
 factor to the size of the forces . The temperature is lowered at each iteration , until
 eventually it ‘freezes’ the movement of the nodes and the algorithm terminates .
 Hence , the definition of # i is modified to

 # i , n 5 t (n) ? O u N u

 j 5 1
 (p # a i ,a j 1 l # a i ,a j)

 where n denotes the current iteration and t (n) is a suitably chosen temperature
 function , returning values in the range 0 . . 1 . The following temperature function ,
 which produces a temperature in the range 0 . . 0 . 2 , has been found to give satisfactory
 results :

 t (n) 5
 0 ? 2

 1 ? 001 n

 In practice , the freezing point has been found to be around 0 ? 01 , which is reached
 after 5300 iterations . At 0 ? 01 , the value of L is almost always less than 1 pixel which
 means that no changes will be made to any node position . In fact , it has been found
 that the algorithm reaches this stage earlier in most cases , simply because the forces
 themselves have come to a minimum . Generally , by modifying the temperature
 function in such a way that the temperature decreases more quickly , the algorithm can
 be forced to reach a ‘frozen’ stage earlier . However , the resulting layout may not be as
 good .

 Clearly , the initial placement of the nodes has a significant influence on the final
 result . This can easily be certified by simply considering a situation where all the
 nodes are initially placed on a straight line . In this case , the nodes always remain in a
 linear arrangement . Equally unfruitful is an initial placement where all the nodes are
 positioned at the same location since in this case no directions can be computed and

 IMPLEMENTING HYPERLOG 285

 no movements can happen at all . Finally , since we want to obtain repeatability , a
 random initial placement is also ruled out . Thus , a circular initial placement is used ,
 and nodes are initially placed at equal intervals along the circumference of a circle .

 The outline of the entire placement algorithm is given below , where push – force is
 a suitable implementation of the function f , and link – force a suitable implementa-
 tion of the function g (in practice f (x) 5 10000 / x 2 and g (x) 5 x have been found to
 give satisfactory results) :

 PROCEDURE placement (N , L) h N is the set of nodes and L the set of links j
 VAR p : ARRAY [1 . . u N u] OF VECTOR h the push force on each node j

 l : ARRAY [1 . . u N u] OF VECTOR h the link force on each node j

 initial – placement (N) h generate the initial placement of the nodes j
 t 5 0 ? 2 h initialise the temperature j
 REPEAT

 t 5 t / 1 ? 001 ; h decrement the temperature j
 FOR i 5 1 TO u N u h reset the forces j

 p[i] 5 (0 , 0)
 l[i] 5 (0 , 0)

 FOR i 5 1 TO u N u h compute the forces for each node j
 FOR j 5 i TO u N u h consider each other node in turn j

 p[i] 5 p[i] 1 t p push – force(i , j)
 l[i] 5 l[i] 1 t p link – force(i , j , L)
 p[j] 5 p[j] 1 t p push – force(j , i)
 l[j] 5 l[j] 1 t p link – force(j , i , L)

 sum 5 0
 FOR i 5 1 TO u N u h move the nodes j

 move(i , p[i] 1 l[i])
 sum 5 sum 1 SIZE(p[i]) 1 SIZE(l[i])

 UNTIL sum , 1 h terminate if sum of movements is less
 than one pixel j

 Figure 17 shows a typical positioning sequence . There are 10 iterations between each
 of the screen-dumps with the first representing the initial circular node placement .
 The entire process terminated after just 60 iterations in less than 2 seconds . Experience
 has shown that the algorithm rarely executes more than 150 iterations .

 The maximum number of nodes that can comfortably be presented on one
 screen-full is around 25 . If the number of instances within the selected domain and
 reduction strategy exceeds this number , the Browser performs a horizontal and
 vertical partitioning of the domain into multiple pages of output between which the
 user can move with simple menu-bar commands . The partitioning is determined by
 the links between the hypernodes : the isolated and non-nested hypernodes are
 partitioned into the first level of pages ; for such page , its children pages contain the
 hypernodes nested within its hypernodes ; and so on until all the hypernodes are
 allocated to a page .

 5 . Comparison with other Graph-Based Database Languages

 Many other database languages have also used graphs as their underlying data
 structure . Several provide graphical query formulation facilities over the conceptual
 data model , for example [1 , 8 , 11] . Others , closer to our own work , aim to provide an

 S . HILD AND A . POULOVASSILIS 286

 Fi
gu

re
 1

7 .
 A

 t
yp

ic
al

 p
os

it
io

ni
ng

 s
eq

ue
nc

e

 IMPLEMENTING HYPERLOG 287

 integrated approach to representing , querying and , possibly , updating both schema
 and data , for example [5 , 6 , 7 , 10 , 16 , 17] . With the exception of [6] , all these
 approaches regard the database as one flat graph as opposed to a set of nested graphs
 as in our case . Nesting is an extremely powerful abstraction and visualization
 technique which is inherent in the Hypernode Model and in Hyperlog . It allows two
 kinds of relationships to be represented graphically : links representing the contain-
 ment of one hypernode within the node-set of another , and edges connecting two
 nodes in the node-set of the same hypernode . Nesting is also employed in Hy 1 [6]
 whose graphs can have nodes , called blobs , which are sets of further nodes . However ,
 hypernodes are more general since their nodes can be graphs . Other dif ferences
 between other graph-based database languages and Hyperlog are as follows :

 G 1 [7] and its successor Graphlog [5] are query languages for the Hy 1
 environment [6] . In these languages queries are graphs whose edges are annotated
 with regular expressions c . f . Hyperlog which is rule based . These queries are matched
 against the database graph and return sub-graphs thereof . Database updates are not
 supported .

 GOOD [10] is a graphically-represented functional data model with an associated
 transformation language . GOOD queries are also graphs , called patterns , which
 match sub-graphs of the database graph . Updates are specified by incorporating into
 patterns five graphically-represented primitive operations (for adding or deleting a
 node or an edge , and an operation called ‘abstraction’) . Programs consist of sequences
 of patterns . Hyperlog is a higher-level language and does not require the use of such
 primitives .

 Hyperlog programs are strictly declarative i . e . no ordering is attached to rules . In
 contrast , G-Log [17] is a rule-based language whose rules are ordered . This allows the
 programmer procedural control of the execution semantics . In G-Log , dif ferent
 colouring is used to distinguish between positive and negative edges / nodes . Nesting is
 not supported : instead several types can be merged to form an instance which then
 appears as one entity . For the presentation of sizable amounts of data , G-Log must
 therefore utilize a textual presentation method .

 Gql [16] provides a graphical representation of queries which are then translated
 into the functional database language FDL [18] for evaluation . Several queries can be
 combined into one query by linking them using negation , relational operators or
 aggregation . Computation is represented by annotating nodes with arithmetic
 expressions . Currently , Gql has no facilities for updates . In addition , the output to a
 Gql query is just the textural output of the underlying FDL .

 To summarize , all the graphical query languages reviewed above rely to some extent
 on the use of predefined graphical symbols to obtain expressiveness and / or to solve
 ambiguities . Dif ferent colouring of edges or dif ferent shapes are typically used to
 uniquely define the intended semantic meaning . Being rule-based , Hyperlog can keep
 this overhead to a minimum . Thus , Hyperlog queries and programs consist of a set of
 graphs , and the only special symbols are negation of nodes and edges , and implication
 arrows (for programs only) . Other novelties of our implementation are the automatic
 generation of edges within hypernodes , the algorithm for generating the Browser
 display , the storage and viewing of query output in the same way as the data , and the
 type-based creation of instances , queries and programs , thereby guaranteeing their
 type-correctness .

 S . HILD AND A . POULOVASSILIS 288

 6 . Conclusions

 We have described the implementation of a graph-based query and update language
 called Hyperlog . We have in particular concentrated upon the graphical aspects of the
 implementation , including : the graphical creation of types (which are graphs) and the
 automatic drawing of the edges within them ; the graphical creation of instances ,
 queries and programs by instantiating currently defined types , thus ensuring their
 type-correctness ; a novel algorithm for automatically displaying the database contents ;
 and the storage and viewing of query output in the same way as the database .

 A further novelty of our implementation is the close integration of the two main
 paradigms for interrogating databases , namely declarative querying and navigation . In
 particular , queries generate data which can be browsed and which can have further ,
 ‘what-if’ style , queries posed against it .

 As we mentioned in Section 2 , the Hypernode Model can be used to visualize
 functional , relational and object-orientated data , while Hyperlog can be used to query
 and update this data at the same , very high , conceptual level . Thus , one of the
 important applications of Hyperlog is the visualisation and manipulation of existing
 heterogeneous databases .

 References

 1 . M . Angelaccio , T . Catarci & G . Santucci (1990) QBD* : a graphical query language with
 recursion . IEEE Transactions on Software Engineering 16 , 1150 – 1163 .

 2 . R . Beale & T . Jackson (1990) Neural Computing — an Introduction . Institute of Physics
 Publishing , London .

 3 . K . Benkerimi & A . Poulovassilis (1993) Semi-Naive Evaluation for Hyperlog , a graph-
 based language for complex objects . In : 1 st International Workshop on Rules in Database
 Systems , Edinburgh . Springer-Verlag Workshops in Computer Science , pp . 251 – 267 .

 4 . S . Ceri , G . Gottlog & L . Tanca (1990) Logic Programming and Databases . Surveys in
 Computer Science , Springer-Verlag , Berlin .

 5 . M . P . Consens & A . O . Mendelzon (1990) Graphlog : a visual formalism for real life
 recursion . In : ACM Symposium on Principles of Database Systems , Nashville , Tennessee ,
 pp . 404 – 416 .

 6 . M . P . Consens & A . O . Mendelzon (1993) Hy 1 : A Hygraph-based query and visualization
 system . In : ACM SIGMOD International Conference on Management of Data , ACM
 Press , Denver , pp . 511 – 516 .

 7 . I . F . Cruz , A . O . Mendelzon & P . T . Wood (1988) G 1 : Recursive Queries Without
 Recursion . In : 2 nd International Conference on Expert Database Systems , Tysons Corner ,
 Virginia , ACM Press , Denver pp . 355 – 368 .

 8 . B . Czedo , R . Elmasri & M . Rusinkiewicz (1990) A graphical data manipulation language
 for an Extended Entity-Relationship Model . IEEE Computer 23 , 26 – 36 .

 9 . E . R . Gansner (1993) A Technique for Drawing Directed Graphs . IEEE Transactions on
 Software Engineering 19 , 214 – 230 .

 10 . M . Gyssens M ., J . Paredaens & D . V . Van Gucht (1990) A graph-oriented object model for
 database end-user interfaces . In : ACM SIGMOD International Conference on the
 Management of Data , Atlantic City , New Jersey , ACM Press , Denver pp . 24 – 33 .

 11 . H . Kangassalo (1988) CONCEPT D : A graphical language for conceptual modelling and
 data base use . In : IEEE 1 9 8 8 International Workshop on Visual Languages , Pittsburgh ,
 ACM Press , Denver .

 12 . W . Kim (1990) Object-oriented databases : definition and research directions . IEEE
 Transactions on Knowledge and Data Engineering 2 , 327 – 341 .

 13 . T . Kohonen (1990) Self Organisation and Associative Memory , Springer-Verlag .
 14 . M . Levene & A . Poulovassilis (1990) The Hypernode Model and its associated query

 IMPLEMENTING HYPERLOG 289

 language . In : 5 th Jerusalem Conference on Information Technology (JCIT - 5) . IEEE
 Computer Society Press , Los Alamitos , CA , pp . 520 – 530 .

 15 . M . Levene , A . Poulovassilis , K . Benkerimi , S . Schwartz & E . Tuv (1993) Implementation of
 a Graph-Based Data Model for Complex Objects . ACM SIGMOD Record 22 , 26 – 31 .

 16 . A . Papantonakis & P . King (1994) Gql , a declarative graphical query language based on the
 functional data model . In : Advanced Visual Interfaces Workshop , Bari , Italy , pp . 133 – 122 .

 17 . J . Paredaens , P . Peelman & L . Tanca (1991) G-Log : A Declarative Graphical Query
 Language . In : 2 nd International Conference on Deductive and Object - Oriented Databases ,
 Munich . Springer-Verlag LNCS 566 , Berlin , pp . 108 – 127 .

 18 . A . Poulovassilis & P . King (1990) Extending the Functional Data Model to computational
 conpleteness . In : International Conference on Extending Database Technology (EDBT - 9 0) ,
 Venice . LNCS 416 , Springer-Verlag , Berlin , pp . 75 – 91 .

 19 . A . Poulovassilis & M . Levene (1994) A nested-graph model for the representation and
 manipulation of complex objects . ACM Transactions on Information Systems 12 , 35 – 68 .

 20 . I . Ritchie (1989) HYPERTEXT—moving towards large volumes . The Computer Journal
 32 , 516 – 523 .

 21 . D . F . Rogers & J . A . Adams (1976) Mathematical Elements for Computer Graphics .
 McGraw-Hill , London .

 22 . E . Tuv , A . Poulovassilis & Levene M . (1992) A storage manager for the hypernode model .
 In : 1 0 th British National Conference on Databases , Aberdeen . Springer-Verlag LNCS 618 ,
 Berlin , pp . 59 – 77 .

