

Query Translation in Heterogeneous Database Environments

Edgar Jasper

MSc Computing Science project report,
School of Computer Science and Information Systems,

Birkbeck College,
University of London,

2001

This report is substantially the result of my own work except where explicitly indicated
in the text.

The report may be freely copied and distributed provided the source is explicitly
acknowledged.

 i

CONTENTS

Abstract

1. Aims and Background 1
 1.1 General Background 1
 1.2 Specific Background 1
 1.3 Aims of the Project 2

2. Specification 3
 2.1 Input to the Query Translation Tool 3
 2.2 General Issues 6
 2.3 Output from the Query Translation Tool 7

3. Design 8
 3.1 Design of lexer and parser 8
 3.2 The Structure of the Abstract Syntax Tree 8
 3.3 Query Translation 10
 3.4 Query Simpli fication 11

4. Implementation 14
 4.1 Research and Reading 14
 4.2 Parsing the Input 14
 4.3 Translating the Query 15
 4.4 Simpli fying the Query 16
 4.5 Testing the Software 17

5. Conclusions 20
 5.1 Problems with the Project 20
 5.2 Possible Improvements to the Software 20
 5.3 Final Conclusions 21

References 22

Appendices 23
 Appendix A – Java Files 23
 Node.java 23
 Substituter.java 25
 Simpli fier.java 29
 Elements.java 32
 TestDriver.java 33
 Appendix B – CUP and JLex Files 36
 EdCup1.cup 36
 EdLex1 40
 Appendix C – Text Files 42
 Appendix D – Running Instructions 44

 ii

ABSTRACT

One of the things that must be achieved to implement a heterogeneous database system
is global query processing. Global queries expressed on the global schema must be
translated into queries that can be processed by the local databases. Using a low-level
graph-based data model as the common data model this project investigates the
automatic translation of such global queries. This automatic translation is accomplished
by using the transformation pathways from the local schemas to the global schema.

The goal of this project is to produce software to translate global queries into queries
expressed in terms of the local database constructs. A secondary goal is to produce
software to optimise these translated queries for faster execution.

 1

1. AIMS AND BACKGROUND

1.1 General Background

It may be desirable to integrate a number of autonomous databases in such a way that to
the user, be that a person or another layer of software, there appears to be a single
database. This single ‘multi-database’ would sit on top of the autonomous databases -
databases that may employ different data models and be deployed on a variety of
platforms. This system is a heterogeneous database system.

There are four main things to achieve to implement such a system. These are schema
translation, schema integration, global query processing (including optimisation), and
global transaction management. Obviously, given that the local databases may employ
different data models, the local schemas must be translated into component schemas
(see [7]) expressed in some suitable common data model (CDM) so that they may be
integrated to produce the global schema expressed also in this CDM. The need for such
schema translation and integration, while not the subject of this project, has bearing on
it and will be discussed more later on.

Global query processing consists, in brief, of translating a global query expressed on the
global schema into one in terms of the component schemas from which the global
schema was derived. The resulting query is then optimised. Then the local sub-queries
expressed in the global query language of the CDM are translated into queries expressed
in local query languages appropriate for the local schemas. Finally these local sub-
queries are sent out for processing by the local databases. This project is concerned
with an aspect of this global query processing.

This project is not concerned with global transaction management so it wil l not be
discussed further.

1.2 Specific Background

This project investigates global query processing. It is a part of the AutoMed project at
Birkbeck College and Imperial College and as such works within the following
framework for schema integration and query processing developed by P. McBrien and
A. Poulovassil is. The CDM used by this framework is the hypergraph data model (see
[10]). This model is a low level model where schemas consist of nodes, edges (directed
edges that can link multiple nodes and other edges) and constraints. Schemas expressed
using other data models may be regarded as representations of schemas of this CDM at
a higher level. It is possible to translate any schema expressed using another data model
into one expressed using this CDM (see [5]). Thus the local schemas of the local
databases, that are expressed in whatever data model their respective databases may be
employing, can be automatically translated into component schemas of the CDM.

In this framework these component schemas are integrated into a global schema by
means of applying a set of schema transformations to each component schema that
transforms it into the global schema. The primitive transformations used add, delete
and rename nodes, edges and constraints. A feature of the transformations used is that
they are automatically reversible which means that the transformations used to
transform a component schema into the global schema may be used to automatically

 2

translate queries expressed on the global schema into queries expressed on the
component schemas (see [4]). The global queries are written in a common query
language (CQL) that uses CDM constructs. Details of the CQL can be found in [8].
The idea is that a global query written in the CQL can be automatically translated, using
the schema transformations, into a CQL query using constructs from the component
schemas. This query can then be divided into local sub-queries still in CQL that can
then be translated into the appropriate query language for each of the local databases
and dispatched to them. The global query processor processes the results of these local
sub-queries to produce a result for the global query. It should be possible to do all this
automatically.

1.3 Aims of the Project

The aim of this project is to develop software that can perform the automatic translation
from the original global CQL query to a CQL query expressed using constructs from the
component schemas. The software should take, as its input, details of the global schema
and component schemas expressed using the CDM, combined with the transformation
pathways that transform each component schema into the global schema. Then given a
query expressed in the CQL on the global schema it should produce a new query with
parts of it now expressed on the component schemas. The project will also look at
optimisation of the resulting query.

For the purposes of this project, the constraints part of schemas and schema
transformations (see [10]) will be ignored.

 3

2. SPECIFICATION

In this section I discuss the specification of the query translation tool that will be
produced by this project.

2.1 Input to the Query Translation Tool

A query expressed on the global schema
This query is written in the CQL (see [8]). Informally the syntax of the CQL is as
follows:

query = “ [“ query “ |” qual “ ;” … “ ;” qual “]”
 | “ [“ “]”
 | “group” query
 | “gc” aggFun query
 | query “++” query
 | query “ --” query
 | “when” query query query
 | “member” query query
 | “not” query
 | “ let” var “=” query “ in” query

qual = pat “<-” query
 | query

pat = var
 | “(“ query “,” … “,” query “)”

aggFun = “max” | “min” | “count” | “sum” | “avg”

Obviously, a more formal syntax will be needed for the actual software. From this
informal syntax we can see that a query may be a comprehension (see [8] for discussion
of comprehensions), an empty query, the result of various operations applied to other
queries such as group, group and compute, append, difference, the conditional operation
and so on. A query may also consist of a string, a variable (a ‘var’ in the above syntax),
an expression etc.

Importantly, the CQL supports comprehensions. These have syntax [e|Q1; … ;Qn]. Q1

to Qn are qualifiers - each is either a fil ter or a generator. A filter is a boolean valued
expression. A generator has syntax p<-s where p is a pattern and s a collection valued
expression. Comprehensions can represent directly common operations such as joins,
selections and projections. They have the further advantage that anything expressible in
the relational algebra is expressible with them.

Some examples of queries might be:

Q1) group(_person_quali fication)
Q2) [(n)| (c,n)<- course_name; (=)c “CompSci”]
Q3) [(n,p)|(c,n)<-course_name; (c’ ,p)<-course_programme; (=)c c’]

 4

Example 1 clearly represents a grouping operation. Example 2 represents a selection
selecting those course and name pairs where the course is computer science followed by
a projection so that the comprehension returns a collection of names only. Example 3
represents a natural join of course_name and course_programme projected to return a
collection of name and programme pairs.

The software requires a CQL query expressed on the global schema as input.

The transformations
The transformations from each component schema to the global schema have the
following syntax:

transformation = “FromSchema” NumToken transf_list “End”

transf_list = prim_transf SemiColon transf_list
 | prim_transf

prim_transf = “addNode” nodeSc heme query
 | “delNode” nodeScheme query
 | “addEdge” edgeScheme query
 | “delEdge” edgeScheme query
 | “renameNode” nodeScheme name
 | “renameEdge” edgeScheme name
 | “extendNode” nodeScheme
 | “contractNode” nodeScheme
 | “extendEdge” edgeScheme
 | “contractEdge” edgeScheme

scheme = nodeScheme | edgeScheme

nodeScheme = “<<” name “>>”

edgeScheme = “<<” name “,” scheme_list “>>”

scheme_list = scheme
 | scheme_list “,” scheme

name = StrToken

From this syntax we can see how schemes are constructed from names, which are
merely strings (‘StrToken’s), and other schemes. A schema is merely a set of such node
and edge schemes. (A schema also includes constraints which this project will ignore.)
Primitive transformations, (the ‘prim_transf’s) take a scheme and possibly another
parameter and transform a schema accordingly. The add operations (‘addNode’ and
‘addEdge’) take a scheme and add this scheme to the schema populating it by applying
a query (this being their second parameter) to the schema. The delete operations
(‘delNode’ and ‘delEdge’) take a scheme and delete this scheme from the schema.
They also take a query that gives the extent of the scheme to be deleted. This allows
these operations to be automatically reversed if desired. The rename operations behave
as you would expect. The extend and contract operations correspond to the add and

 5

delete operations respectively but they take only a scheme rather than a scheme and a
query. They are equivalent to add and delete operations with empty queries respectively
i.e. using our syntax ‘extendNode n’ is equivalent to ‘addNode n []’.

According to the above syntax a transformation from a component schema to the global
one starts with the word ‘FromSchema’ followed by a number (a ‘NumToke n’)
followed by a list of primitive transformations separated by semicolons followed by the
word ‘End’. There follows an example transformation:

FromSchema 2
addNode <<“men”>> [p | (p,g) < - person_gender; (=)g “male”];
addNode <<“women”>> [p | (p,g) < - person_gender; (=)g “female”]
End

This transformation tells us that to transform component schema 2 into the global
schema two things must be done. Firstly, a new node ‘men’ must be added to the
schema. This node has the extent given by the query associated with it. In this case the
query performs a selection on the pairs in the collection given by person_gender
selecting only those whose gender, the second item in the pair, is equal to the string
“male”. The result of this selection is then projected o nto the first item in the pair - the
person. Thus the new node ‘men’ has the extent of persons whose gender is male.
Secondly, a new node ‘female’ must be added to the schema. The extent of this is
determined in an analogous manner to new node ‘male’.

The software will require transformations expressed using the above syntax as input.

The global schema definition
The syntax for schemes was given in the previous section as was the syntax for a
‘scheme_list’. The software will require as input the defin ition of the global schema
given in the form of a ‘scheme_list’. For example, the following ‘scheme_list’ defines a
global schema, S, consisting of four entities (person, address, qualification, post) and
three associations between person and address, qualification and post respectively:

<<"person">>,
<<"address">>,
<<"qualification">>,
<<"post">>,
<<"",<<"person">>,<<"address">> >>,
<<"",<<"person">>,<<"qualification">> >>,
<<"",<<"person">>,<<"post">> >>

The simplification rules
The purpose of simplifications is to optimise the query that results from the translation
for faster processing on the local databases. This is accomplished by the application of
various simplification rules to the query.

The syntax for a simplification rule is as follows:

simplification = “From” query “To” query

 6

Simply the word ‘From’ followed by a query then the word ‘To’ followed by a query.
These will not be ordinary queries however. Indeed, they will not actually be queries at
all in a semantic sense. They will be queries according to the syntax of the CQL but
will contain within them special variables that do not correspond to anything in any of
the schemas but instead serve as placeholders for anything that might appear at that
point of the query. Thus these special queries will in fact be query templates giving a
general form a query might take. The simplification thus communicates that any query
of a certain form can and should be replaced by a query of another form that is
equivalent to it. The syntax for expressing simplification rules and the mechanism for
implementing them is entirely my own work and therefore there is no need to say at the
specification stage what special variables the query templates will contain and how they
will be recognised. However, examples of simplification rules might be:

1) From [] ++ xxx1 To xxx1
2) From group(xxx1 ++ xxx2) To group(xxx1) merge group(xxx2)

Example 1 states that a query having the form of an empty query and something else
(syntactically it must be another query) appended to it can be simplified to just the
something else. Example 2 states that if a query consists of one query, q1, appended to
another, q2, and a group performed on the result then this may be simplified (in some
sense) to consist of the result of a merge of g1 and g2 where g1 is the result of a group
applied to q1 and g2 is the result of a group applied to q2. In these examples xxx1 and
xxx2 are the special variables.

The software will require as input a set of these simplification rules.

2.2 General Issues

The implementation language will be Java. For the purposes of the project constraints
will be ignored. The software will assume all input to be error free and will therefore
not incorporate any error handling.

We also need some convention to translate schemes in transformation lists and schema
definitions into identifiers in CQL. Let G denote this translation function for any node
scheme <<“n”>> or edge scheme <<“n”, s1, ..., sn>> in the global schema. Then

G[<<“n”>>] = “n”
G[<<“n”, s1, ..., sn> > = “n” ++ “_” ++ G[s1] ++ “_” ++ ... ++ “_” ++ G[sn]

Similarly let Li denote this translation function for scheme in component schema i.
Then

Li[s] = G[s] ++ “i”

These translation functions G and Li were specified by my supervisor.

 7

2.3 Output from the Query Translation Tool

The output of the software will be a rewritten query expressed in the CQL. All global
schema constructs in the original query will have been replaced by sub-queries using
component schema constructs. The simplification rules will also have been applied.

Here is an example that illustrates the whole translation process. Consider the example
query Q1, group(_person_qualification) on the global schema, S, given as an example
earlier. Suppose that S has been derived from three component schemas by the
following three lists of transformations:

FromSchema 1
addNode <<"person">> men1 ++ women1;
addEdge <<"", <<"person">>, <<"post">> >> _men_post1 ++_women_post1;
contractEdge <<"", <<"men">>, <<"post">> >>;
contractEdge <<"", <<"women">>, <<"post">> >>;
contractNode <<"men">>;
contractNode <<"women">>;
extendNode <<"address">>;
extendEdge <<"",<<"person">>,<<"address">> >>;
extendNode <<"qualification">>;
extendEdge <<"",<<"person">>,<<"qualification">> >>
End

FromSchema 2
renameNode <<"name">> "person";
extendNode <<"post">>;
extendEdge <<"",<<"person">>,<<"post">> >>
End

FromSchema 3
renameEdge <<"quals", <<"person">>, <<"qualification">> >> "";
extendNode <<"address">>;
extendEdge <<"", <<"person">>, <<"address">> >>
End

Then the query Q1 should translate into the following query (note that identifiers from
schema i are suffixed with the number i):

group ([] ++ _name_qualification2 ++ quals_person_qualification3)

We would then want the resulting query to be simplified using simplification rules (the
ones given earlier will be sufficient if applied correctly) to give something like:

group(_name_qualification2) merge group (quals_person_qualification3)

 8

3. DESIGN

The input to the program is in the form of text. The output will also be text. Thus, the
input will have to be separated into its component symbols by a lexer then converted
into some abstract form, a tree, by the parser prior to its being processed. The
processing will consist of making appropriate changes to this abstract representation to
accomplish the translation and simplification according to the rules. Then to output the
processed query its tree representation will have to be turned back into text prior to
output. This quick sketch of a design leads into more detailed design issues.

3.1 Design of lexer and parser

The need for a lexer and a parser are obvious. The text input must be turned into some
abstract internal representation for processing. Rather than code the lexer and the parser
from scratch in Java I decided to use existing tools for the job. The reasons for this
decision are obvious. Performance is not a primary issue for this project, what is
required is that the lexer and parser work correctly. Under these circumstances to code
from scratch would just be wasting time. It was decided to use a tool called JLex (see
[1]) to write the lexer and a tool called CUP (see [2]) to write the parser these being
recommended by my supervisor and being designed to work together for use with and
written in Java.

There will be just one lexer and just one parser. These will deal with all the different
types of input. Although the input text file may contain a query or a list of
simplification rules or a list of transformations I feel it is appropriate to have just one
lexer and one parser to deal with all the various varieties of input. This is because
transformations may contain queries and simplification rules always do. To use
different lexers and parsers for different types of input would lead to either unnecessary
complexity or duplication of code.

The lexer will behave in the obvious manner. It will take a text file as input and as
output will return, one by one as requested, the symbols that the text in the text file
represents. The JLex tool takes a text file containing instructions detailing how the
lexer is to work and from this produces a Java file that implements the lexer. Thus,
there will be a class for the lexer.

The parser takes as its input the symbols passed, one by one, from the lexer. From these
it constructs a tree in memory. This is the output it returns. The tree may represent a
query, a list of simplification rules or a list of transformations. If it represents
transformations it will also represent the global schema - these both concern the schema
transformation process and will come from the same text file. Like JLex, CUP takes a
text file telling it how to build the parser as input and produces Java files that compile to
classes to implement it. Thus, there will be a parser class in the software.

3.2 The Structure of the Abstract Syntax Tree

The same sort of tree will be used for representing queries, transformations and so on.
The reasons for this are those outlined above for having one lexer and one parser for all
input. However, other data structures will be used to represent the things other than

 9

queries when they are actually needed for processing. It is natural though for them to be
initially represented as trees when first they are read in from text files.

The trees will be binary trees. It may seem natural for the nodes of the tree to be
allowed more than two children. Take, for example, a comprehension with the structure
[e | Q1; ... ; Qn]. It may seem natural for this to be represented by a comprehension or a
query node with n+1 children, the first child representing e, the second Q1 and so on. If
the parent node in this structure contained information that it was representing a
comprehension this structure might seem the most obvious and easiest way to represent
a comprehension. It is certainly unambiguous. However, I decided to use binary trees
because I thought they would be more straightforward to traverse. It also occurred to
me that being of a more regular structure it might be easier to create query templates
using them and thus make processing the simplifications easier. Binary trees will be
deeper but this doesn’t really matter.

I decided that the tree should retain as much information from the text representation as
possible. I will explain what I mean by an example. Take the form of a simplification
rule. The text form is the word ‘From’ followed by a query followed by the word ‘To’
followed by another query. Without ambiguity the tree representation of this could
consist of node to represent the simplification having two children the first representing
the first query and the second the second. In fact the tree representation will consist of a
node representing the simplification having among its descendents nodes representing
not only the two queries but also the words ‘From’ and ‘To’. The purpose of this
redundancy is to make reconstructing the original text easier. To reconstruct the
original text without this redundancy would require adding in extra bits of text implicit
in the tree as the tree was traversed. The software would need to know that a
simplification rule required the words ‘From’ and ‘To’ adding back in. With the
redundancy, the tree will be so constructed that a one simple traversal will be all that is
required to reconstruct the original text. While this is not particularly useful for
simplification rules it is very useful for queries. After a query has been processed it
must be converted back to text. To be able to do this easily is very useful and justifies a
certain amount of redundancy in the information stored in the tree.

The tree will obviously be made up of node objects. The code will thus require a node
class. What functionality should this node class have? Each node will need to store
information regarding what structure its sub-tree represents (if it represents a valid
structure in its own right), what text is associated with the node (i.e. the text, if any, for
the textual representation of the structure) and links to its left and right child. Because
nodes may often have to be treated as the root of their sub-trees representing their sub-
structures, the node class may require some extra functionality on top of this simple
design.

Figure 1 at the end of this section shows a tree representing the query ‘group
(_person_qualification)’. It also shows that even for a very simple query the tree is
quite large.

 10

3.3 Query Translation

In broad terms the job of the actual translation software is to take trees representing a
query, the global schema and transformation rules and to produce a tree representing the
query translated with reference to the global schema and transformation rules. One
possible design for this software would involve taking the query tree, traversing it to
find references to global schema constructs and then using the transformation rules to
replace these global schema constructs with appropriate queries on the component
schemas. This is not the design I decided to use. It makes more sense to initialise the
translation software once with the global schema and transformation rules and have it
store mappings from global schema constructs and queries expressed on the component
schemas. Then when passed a query tree to translate it can traverse this tree and replace
each global schema construct it finds with the appropriate query using the mappings it
has stored. This is clearly a more efficient way of accomplishing the translation.

This translation will be accomplished using a substituter class (so called because it
performs substitutions in the query tree). Its constructor will take a tree, generated from
a transformations file, representing both a global schema and a list of transformations
from component schemas. It will generate the mappings from this tree and store them
as part of the data for substituter objects. Substituter objects will have a method that
will take a query and perform the appropriate substitutions in it to translate it onto the
component schemas.

Once the mappings are generated the actual process of performing substitutions will be
fairly straightforward. Generating the mappings from the tree representing the global
schema and the transformation list requires more thought however. Firstly, a list of the
global identifiers that may appear in global queries will be generated from the global
schema. Coding this should be reasonably simple. The sub-tree representing the global
schema can be traversed to find each scheme sub-structure. A function to convert a
scheme sub-tree into a string identifier will then be used and each identifier added to a
list stored by the substituter object. When this list is generated it can be used to help
generate the mappings.

If a global construct is not mentioned in a transformation list from a component schema
to the global schema this means that no transformation is performed on it. Using the
example given during the specification, the transformation from component schema 3 to
the global schema does not do anything to the ‘person’ node. Thus identifie r ‘person’ in
the global schema maps to identifier ‘person3’ in component schema 3. To generate all
the mapping for component schema 3 we may initially assume that ‘person’ maps to
‘person3’, ‘address’ maps to ‘address3’ and so on. We then process its pr imitive
transformations in reverse order changing the mappings as we go. So firstly we would
make ‘_person_address’ map to the empty query ‘[]’. Then we would make ‘address’
map to the empty query ‘[]’. Finally, we would make ‘_person_qualification’ map to
‘quals_person_qualification’. We could perform this process for each transformation
and end up with a set of mapping from global identifiers for each component schema.
Following the running example, ‘person’ maps to ‘men1 ++ women1’ for component
schema 1, ‘person’ maps to ‘name2’ for component schema 2 and ‘person’ maps to
‘person3’ for component schema 3. We can then put all these mappings together to get
a general mapping from global identifiers to queries expressed using component schema
constructs. So ‘person’ would map to ‘men1 ++ women1 ++ name2 ++ person3’. This

 11

is, in essence, how the mapping will be generated although in practise rather than store a
set of mapping for each component schema it will be easier to generate the mappings
for schema 1, add these to the general mappings, generate the mappings for schema 2,
add these to the general mappings and so on and so on.

As an aside, it should be noted that as far as translation from global queries goes, which
is after all what this project is concerned with, schemes deleted or contracted from
component schemas are irrelevant – they have no bearing on translation from global
queries because they are not present in the global schema to be translated. I will include
them in my examples, however, for completeness and the software should be able to
cope with their presence even if by coping with them I only mean ignoring them.

So, to summarise, the constructor for the substituter object will be passed a tree
representing both the global schema and the transformations from the component
schemas. From this it will generate, using the method outlined above, a list of global
identifiers and a set of mappings from global identifiers to queries expressed in terms of
the component schemas. These will be stored as part of the data of the object.
Substituter objects will have a method that when passed a query tree will use these
mappings to substitute for the global identifiers in the query tree the appropriate
component queries. Thus, query translation from global queries to queries expressed
using component schema constructs will be achieved.

3.4 Query Simplification

The lexer and parser will convert the text file containing the simplification rules into a
tree as explained above. It will then be necessary to convert this tree into some data
structure representing ‘from’ and ‘to’ query templates for use when simplifying queries.
The query templates themselves will remain in the form of trees. A list structure will
store pairs of these templates representing from-to simplifications. The actual process
of simplification will proceed as follows. The query to be simplified is in the form of a
tree. This query tree will be traversed in-order. Each node will then be checked to see
it its sub-structure corresponds to one of the ‘from’ query templates in the list - going
through the list in order. If it does correspond its sub-tree will be changed to have the
same shape as the appropriate ‘to’ query template in the list of pairs. This process will
be repeated until a traversal of the query tree is completed with no alterations, indicating
that all simplifications have been performed. The process needs to be repeated as a
simplification of a particular structure in a query might cause a structure of which the
simplified structure is a sub-structure to require simplifying. Only a complete tree
traversal without change can make sure that all simplifications that can be done have
been done.

This simple algorithm for performing the simplifications has various inadequacies.
Firstly, it is probably not very efficient. Secondly, the order in which simplifications
are performed - which may affect the final query produced - is rather arbitrary being as
it is determined more by convenience than logic. However, this algorithm should work
so is fine as a first attempt. Furthermore, by using multiple simplification list text files
and performing this whole process multiple times it is possible to exercise more control
over the order of simplifications if desired.

 12

To accomplish all this there will be a simplifier class. The constructor for this class will
take a tree representing a list of simplification rules. It will traverse this tree to generate
the list of pairs of templates that will form part of the data for the simplifier object.
Simplifier objects will have a method that will take a query and perform the appropriate
simplifications on it.

 13

Figure1. The abstract syntax tree for the query ‘group (_person_qualification)’. Each
node contains information about what structure its sub-tree represents (query,
expression etc.) and also an associated text value.

query
textVal=null

expr
textVal=null

LRB
textVal= “(”

&
textVal=null

expr
textVal=null

VarToken
textVal=
“_person_qualification”

query
textVal=null

VarToken
textVal=
“group”

RRB
textVal= “)”

expr
textVal=null

query
textVal=null

 14

4. IMPLEMENTATION

4.1 Research and Reading

The subject matter of this project goes considerably beyond the material covered in the
Databases lectures on the MSc course. This meant that a large amount of preparatory
reading and research was required before the design of the software could even begin.
It was necessary to learn a relatively substantial volume of material connecting to the
framework within which I was to work. I had to learn about the hypergraph data model.
I had to learn how the automatically reversible schema transformations worked. ([3],
[4], [5], [6], [7] and [10] were all relevant to these goals). It was also necessary for me
to understand the workings of the common query language (CQL) to be used (I used
[8]). Obviously, as well as reading I needed to spend a reasonable amount of time
actually working through the mechanics of the framework on paper as well. I spent
approximately a month and half on the above. As well as this, during this time, my
supervisor explained to me the precise syntax of the query language and the
transformation language. We also discussed various things that could be attempted
beyond the basic automatic query translation. In the end, of these extensions of the
project, there was only time to actually attempt to implement the simplification of
translated queries.

4.2 Parsing the Input

The first thing to implement was software to parse input into trees so that it could be
processed. My supervisor recommended the use of the tools CUP and JLex for this.
Having never used these tools before – indeed, having no previous experience with
parsing – it was necessary to dedicate some time to learning how to use them. For this I
read the manuals downloaded with the software (see [1] and [2]). After about two
weeks I felt confident enough to move onto coding.

The file ‘EdLex1’ is the file passed to JLex for it to create the lexer from. Basically, it
lists what symbols are to be looked for in the text file to be analysed and gives code to
be executed when these symbols are found. ‘EdLex1’ also contains code for a ‘main()’
method. This is not to be used by my finished software but can be used to test that the
lexer is producing the expected results by outputting information about each symbol the
lexer produces. From ‘EdLex1’ JLex generates a Java source code file ‘EdLex1.java’.
When compiled two class files are produced ‘EdLex1.class’ and ‘Yylex.class’. The
EdLex1 class can be used for testing as explained above. The Yylex class is what is
actually used for lexing by the other software. Yylex objects are created with an
associated source of input – text files for the purposes of this project – and contain a
next_token() method that, unsurprisingly, returns the next token.

The file ‘EdCup1.cup’ is the file passed to CUP that it uses to create the actual parser.
This file starts by listing the various symbols that the text to be parsed may contain
including non-terminal symbols. A syntax is then specified with code included that
gives instructions on how to construct each of the sub-structures that might make up the
resulting tree. From ‘EdCup1.cup’ CUP generates two Java source code files,
‘sym.java’ and ‘parser.java’ which compile to ‘sym’ and ‘parser’ classes. The sym
class contains only static final int variables – one for each terminal symbol. These are

 15

needed for use by the lexer. I also chose to use them elsewhere in the software. For this
purpose I created another class, Elements, containing static final int variables for each
non-terminal symbol. The parser class is what actually does the parsing. When a parser
object is created the constructor is passed a Yylex object (which has a source of input
associated with it). Thus, the parser receives tokens from the lexer. The parser object
has a method parse() which parses all tokens it receives from the Yylex object into a
tree and returns an object that contains a reference to the root of the tree.

Trees are made up of nodes. Thus, as I was writing the lexer and the parser I also
needed to write a node class. The code for this is in file ‘Node.java’. As discussed
earlier, this needs member variables to store references to the left and right children, to a
string containing the text for the node and to store an int giving which symbol, terminal
or non-terminal, the node and its sub-tree represent. At this stage, I included all these
variables and also various constructors to be used by the lexer and the parser. The
methods for this class were not needed at this stage and were not written until later.

When the above was written and working the software was capable of parsing input
from text files into trees. Combined with other code that was evolved during the
project, now surviving as the printQuery() and outputTree() methods of the TestDriver
class, it was possible to check that everything was working correctly. This work on
producing a functional parser took approximately one month.

4.3 Translating the Query

The next thing to implement was software for translating queries based on
transformations. This is accomplished using the Substituter class the source code for
which is in file ‘Substituter.java’. This class has one constructor and one public
method, performSubs().

The constructor is passed a Node reference which is the root of a tree generated by
parsing a transformations text file. Its purpose is to initialise an ArrayList object,
globalnames, which contains a list of the names of the constructs of the global schema
and to initialise a HashMap object, mainMap, which contains mappings from names of
global constructs to queries expressed using component schema constructs. The
globalnames object is initialised fairly easily. The recursive method
buildGlobalNames() is called which traverses the appropriate section of the input tree
finding schemes for the global constructs, converting them into identifiers, and adding
these identifiers to globalnames. This method makes use of the scheme_to_name()
method which in turn calls the recursive s_to_n() method which finds the ‘StrToken’s in
the scheme and concatenates them together in the appropriate manner to give the name
of the identifier for the scheme.

Initialising the mainMap object is more complicated. Firstly, it is set up so that every
global name maps to an empty query (making use of the static final emptyQuery Node
reference). Then buildSubMap() is called, being passed a reference to the root of the
part of the input tree containing the transformations. The buildSubMap() is recursive
and traverses the tree looking for transformations from component schemas to the
global schema. Whenever it finds a transformation is creates a HashMap(), tempmap,
which is initialised to map each global construct to itself (i.e. it assumes no changes are

 16

made to it initially). This tempmap object is then passed to the process_tran() method
along with the Node reference that is the root of the transformation. The process_tran()
method returns having altered tempmap so that now it maps each global name to the
appropriate query for the component schema the transformation relates to. Using
tempmap, mainMap is then updated so that the query for every global name in tempmap
is appended to the query for the same global name in mainMap. Obviously, when
buildSubMap() is finished mainMap contains mappings from names of global identifiers
to queries expressed on the component schemas that give the correct result.

The process_tran() method works as follows. It is passed a reference to the tempmap
HashMap as explained above. It is also passed a Node reference to the transformation it
is meant to process. It is a recursive method, which goes through the primitive
transformations that make up the transformation it is to process, in reverse order. It
must go through them in reverse order for the following reasons. Each transformation
consists of a series of primitive transformations that transform a component scheme into
the global schema. Each primitive transformation is automatically reversible. Thus,
reversing first the last primitive transformation done, then the second last and so on can
reverse the whole transformation. Thus process_tran() processes the primitive
transactions in reverse order making the appropriate substitutions in the queries in
tempmap.

From the above we can see how the constructor initialises the mainMap and
globalnames objects. We can now turn to the Substituter class’s only public method,
performSubs(). The workings of this method are simple. It is a recursive method that is
passed a Node reference. The sub-tree of this node is traversed recursively and
instances of global identifiers are found they are replaced in the tree by queries
expressed in terms of the component schemas. The mainMap HashMap is used.

To accomplish all the above extra functionality had to be added to the Node class. The
copySubtree() and copyNode() methods were added. The Substituter class uses these
methods. The copySubtree() method returns a node that is the root of a tree that is a
copy of the sub-tree of the node whose copySubtree() is called. The copyNode()
method takes a Node reference as a parameter. Calling a Node object’s copyNode()
method causes that node to become the root of a tree that is a copy of the tree of the
parameter Node object.

Substituter objects enable queries to be translated using their performSubs() methods.
This section of the implementation took approximately two weeks. Again more code
was needed to test that is was working and some of this survives in the TestDriver class.

4.4 Simplifying the Query

Next, I needed to write the software for simplifying the queries once translated. This
job is done by the Simplifier class the source code for which is in file ‘Simplifier.java’.
This class has one constructor and one public method, simplify().

The constructor is passed a Node reference. This node is the root of a tree resulting
from parsing a simplifications text file. Simplifier objects have a member variable,
querypairs, and the purpose of the constructor is to initialise this. The querypairs object

 17

is an ArrayList whose function is to hold pairs of query templates – these being the
‘from’ and ‘to’ query template pairs t o perform simplifications. It is initialised in the
following way. The constructor calls a recursive method, setItUp(), that traverses the
input tree. For each simplification structure it finds in the tree it adds a query pair to
querypairs. These query pairs are the ‘from’ and ‘to’ templates for the simplification.
The constructor then calls the cleanTemplates() method. This method alters the query
templates in querypairs slightly to make the process of comparison with real queries
slightly easier.

Simplifier’s public method, simplify(), is used to perform the actual simplifications. It
is passed a Node reference. This node is root of the tree representing the query to be
simplified. The simplify() method calls the simp() method which traverses the tree
performing simplifications and returns a value of true if any simplifications were
needed. It repeatedly calls simp() until such time as simp() returns a value of false
indicating no simplifications were performed and thus no more will be necessary. The
simp() method itself is recursive, it calls check() on every node in the tree. Thus
check() is performed on every sub-tree in the query tree. The check() method itself calls
the compare() method once for every pair of templates in querypairs. The compare()
method calls the comp() method passing it the root node of the sub-tree to be checked,
the root node of the ‘from’ template of the pair being processed and an empty HashMap,
mapvar. The comp() method is a recursive method that checks whether a sub-tree and a
query template have the same structure – a structure requiring simplification. It returns
true if this is the case. It also finds placeholder identifiers in the template and adds
mappings to the mapvar object mapping from each placeholder identifier in the template
to the sub-query to be substituted for the identifier in the ‘to’ template. The compare()
method then, provided comp() returned true, changes the sub-tree to simplify its
structure using the ‘to’ template from the pair and usi ng mapvar.

Thus, queries may be simplified using the simplify() methods of Simplifier objects.
This section of the implementation took approximately two weeks.

4.5 Testing the Software

By the time I had completed the above sections of implementation there was very little
time left for testing. However, some rudimentary testing was done. As part of the
testing process I needed to complete the TestDriver class. In its final version, it has a
main() method that displays a menu offering options of loading a transformations file,
displaying the substitutions made during translations, loading a query, outputting the
query, outputting a text representation of the structure of the query tree, translating the
query, loading a simplifications file and performing simplifications. I used this class to
help test the rest of the software. (The code to implement the menu in the TestDriver
class was adapted from code written by Keith Mannock of Birkbeck College. It uses the
TextIO class written by David Eck of Hobart and William Smith College, Geneva. I
could easily have written the menu from scratch but did not do so in an effort to save
time.)

As far as I could ascertain the query translation part of the software worked as would be
desired. I will use the running example from Chapter 2 of this report. Given the global
schema, S, and transformation list, stored in the file ‘TFile1.txt’ this was successfully

 18

parsed and the following output was given when the test driver was asked to display the
substitutions to be made during translations:

person
[] ++ (men1 ++ women1) ++ name2 ++ person3
address
[] ++ ([]) ++ address2 ++ ([])
qualification
[] ++ ([]) ++ qualification2 ++ qualification3
post
[] ++ post1 ++ ([]) ++ post3
_person_address
[] ++ ([]) ++ _name_address2 ++ ([])
_person_qualification
[] ++ ([]) ++ _name_qualification2 ++ quals_person_qualification3
_person_post
[] ++ (_men_post1 ++ _women_post1) ++ ([]) ++ _person_post3

This output indicates that the Substituter object has ‘person’ mapping to ‘[] ++ (men1
++ women1) ++ name2 ++ person3’ and so on. The Substituter object has global
identifiers mapping to queries expressed on component schemas and these appear to be
accurate. When asked to translate the example query ‘group (_person_qualification)’
and then output the result it gave:

group (([] ++ ([]) ++ _name_qualification2 ++ quals_person_qualification3))

This is a query that would give the correct results. I tentatively conclude that the query
translation software works but clearly more substantive testing remains to be done.

This example reveals certain problems with the simplification software, however.
Consider the following simplification rules contained in file ‘SFile1.txt’:

From group(xxx1 ++ xxx2) To (group(xxx1)) merge (group(xxx2))
From xxx1 ++ [] To xxx1
From [] ++ xxx1 To xxx1
From ([]) To []
From ((xxx1)) To (xxx1)
From xxx1 ((xxx2)) To xxx1 (xxx2)

There are sufficient rules here to simplify the translated query given above. When these
rules are given to a Simplifier object, however, and simplifications performed the result
is the following:

((group ([])) merge (group (_name_qualification2))) merge (group (
quals_person_qualification3))

This is not the desired result. The problem clearly arises from the lack of control over
the order in which rules are performed. The ‘([])’ is separated out to have its own group
operation before it is got rid of by the other rules. It thus escapes being got rid of. The
problem for this query could be solved by adding extra simplification rules but I didn’t

 19

do this because I wanted to illustrate the potential problems of lacking control over the
order the simplification rules are performed in. To further illustrate this point consider
the following. ‘SFile2.txt’ consists of:

From xxx1 ++ [] To xxx1
From [] ++ xxx1 To xxx1
From ([]) To []
From ((xxx1)) To (xxx1)
From xxx1 ((xxx2)) To xxx1 (xxx2)

and ‘SFile3.txt’ of

From group(xxx1 ++ xxx2) To (group(xxx1)) merge (group(xxx2))

If, using the test driver, we translate the query as above then load ‘SFile2.txt’ and
perform simplifications we get:

group (_name_qualification2 ++ quals_person_qualification3)

If we then load ‘SFile3.txt’ and perform simplifications we get:

(group (_name_qualification2)) merge (group (quals_person_qualification3))

This is essentially what is desired. Using an, admittedly ad hoc, method to control the
order of simplifications we can get the desired result. There were other problems with
the simplification software but these were problems I expected all along, so were not
discovered as a result of testing so are not discussed here but later.

Other testing was performed but it was all of the same nature as that given above. I did
not perform anything that could be considered truly rigorous systematic testing. Firstly,
I did not have time. Secondly, I have insufficient knowledge of how this software will
need to perform in practice, what might be considered typical queries and typical
transformations, to test for these things. The testing was therefore limited to things like
that given above. However, even in the example given, the software must produce
mappings from global identifiers using transformations that include adding, extending
and renaming both nodes and edges. So a certain range of things are tested.

To conclude, the testing indicated that the software essentially worked as planned with
some limitations on the simplifications. However, more rigorous testing is clearly
needed. Finishing the TestDriver class, testing, debugging and some writing up were
done in parallel for about two weeks. Most of this time was spent on debugging.

 20

5. CONCLUSIONS

5.1 Problems with the Project

The main problem with the finished software lies with the simplification of the
translated queries. As explained in section 4 this does not work as intended. The user
does not have proper control over the order in which simplifications are performed and
this can lead to undesired results. This problem can be avoided by using multiple
Simplifier objects but this is not an ideal solution. It renders control of the order in
which simplifications are performed something that has to be done in code. It would be
much better if this control were available by instructions contained in the simplifications
text file. A further problem with the query simplification part of the software comes
from the way I designed the syntax of simplifications. The ‘from’ and ‘to’ query
templates must syntactically be queries. If they are not the parser will produce an error.
This limits the type of simplifications that can be performed and prevents certain
desirable ones from being implemented. For example, it is not possible to specify
simplifications for lists of qualifiers within comprehensions. A list of qualifiers is not a
query so this cannot be done. It may, however, be desirable that it is done.

Apart from the above problems the actual software works as intended as far as my
testing has been able to ascertain. The are, however, further problems with the project
as a whole. Due to poor time management a disproportionate amount of time was spent
on certain activities. Had it not been for this better code may have been produced. I
found the code I had written difficult to debug when it came to this stage and by this
stage there was insufficient time to drastically change it to make it easier to debug. The
biggest problem caused by not having sufficient time was the lack of testing. I have
confidence in the design of the software, with the exception of those deficiencies
already mentioned, but I cannot state with certainty that the actual code written will
always work. This is because of inadequate testing.

5.2 Possible Improvements to the Software

There are a number of possible improvements that could be made to the software.
Obviously, the simplification of queries could be improved as discussed above.
Another possible improvement, would be the extension of the transformation language.
An enhanced transformation language is outlined in [9]. Transformations in the existing
language are schema specific in that they are meant only to transform a single schema,
A, into a single schema, B. In the extended language, parameterised transformations
can be written. Thus, one parameterised transformation could take any schema, Ai,
from a set of schemas, A1, A2 ... An, and transform it into a schema, Bi - its equivalent
schema from B1, B2 ... Bn. This would obviously constitute a major extension to the
software as it currently is.

Another addition to the software would be to enable it to translate the Common Query
Language from and to SQL. It is likely that a user would want to query the
heterogeneous database using SQL, or another high-level query language, rather than
the CQL. It is also likely that the local databases would need to be queried using SQL.
Translating to and from SQL, and probably other query languages, would be a
necessary addition to make a practically useful system.

 21

5.3 Final Conclusions

There were various problems with some aspects of the final software. Problems with
time management during the project led to inadequate testing. Despite this the central
goal of the project was to produce software to automatically translate queries expressed
on a global schema into ones expressed on various component schema using the
transformation pathways in between and this central goal was achieved. Even if the
software does turn out to have bugs my testing did not detect I believe the basic design
to be sound. The software I have written and work I have done provide a good basis for
the extensions outlined above.

 22

REFERENCES

[1] Berk E, “JLex: A lexical analyzer generator for Java”,
http://www.cs.princeton.edu/~appel/modern/java/JLex, 1997.

[2] Hudson S, “CUP User’s Manual”,
http://www.cs.princeton.edu/~appel/modern/java/CUP, 1999.

[3] McBrien P and Poulovassilis A, “A formal framework for ER schema
transformation”, Proc. ER’97, volume 1331 of LNCS, pages 408 -421. Springer-Verlag,
1997.

[4] McBrien P and Poulovassilis A, “Automatic migration and wrapping of databases
applications – a schema transformation approach”, Proc. ER’99, volume 1728 of LNCS,
pages 96-113. Springer-Verlag, 1999.

[5] McBrien P and Poulovassilis A, “A uniform approach to inter -model
transformations”, Advanced Information Systems Engineering, 11th International
Conference CAiSE’99, vo lume 1626, pages 333-348. Springer-Verlag, 1999.

[6] McBrien P and Poulovassilis A, “Schema evolution in heterogeneous database
applications, a schema transformation approach”. Technical Report 31/03/00, Birkbeck
College and Imperial College.

[7] Poulovassilis A, Lecture course entitled “Advances in Databases” (Notes 4 –
Distributed Databases, Notes 5 – Heterogeneous Databases). July 2001.

[8] Poulovassilis A, “Automed working document 2, the Automed Intermediate Query
Language”. Technical Report 15/06 /01, Birkbeck College.

[9] Poulovassilis A, “Automed working document 4, An enhanced transformation
language for the HDM”. Technical Report 31/06/01, Birkbeck College.

[10] Poulovassilis A and McBrien P, “A general formal framework for schema
transformation”, Data and Knowledge Engineering, 28(1), pages 47 -71, 1998.

 23

APPENDIX A – Java Files

Node.java

package QTran;

import java.io.*;
import java_cup.runtime.*;

public class Node
{
 int snum;
 Node lRef, rRef;
 String textVal;

 public Node(int snum, Object lRef, Object rRef)
 {
 this.snum = snum;
 this.lRef = (Node)lRef;
 this.rRef = (Node)rRef;
 }

 public Node(int snum, String textVal)
 {
 this(snum, null, null);
 this.textVal = new String(textVal);
 }

 public Node(Object lRef, Object rRef)
 {
 this(Elements.PARTIAL_STRUCTURE,lRef,rRef);
 }

 public Node(InputStream inpstr) throws Exception
 {
 parser p = new parser(new Yylex(inpstr));
 Symbol s = p.parse();
 Node n = (Node)s.value;
 this.snum = n.snum;
 this.lRef = n.lRef;
 this.rRef = n.rRef;
 this.textVal = n.textVal;
 }

 private Node()
 {
 }

 public void copyNode(Node n)
 {
 if (n==null) throw new NullPointerException();

 snum = n.snum;

 if (n.textVal!=null)
 textVal = new String(n.textVal);
 else textVal = null;

 if (n.lRef!=null)
 lRef = n.lRef.copySubtree();

 24

 else lRef=null;
 if (n.rRef!=null)
 rRef = n.rRef.copySubtree();
 else rRef=null;
 }

 public Node copySubtree()
 {
 Node n = new Node();
 n.snum = snum;

 if (textVal!=null)
 n.textVal = new String(textVal);
 else n.textVal = null;

 if (lRef!=null)
 n.lRef = lRef.copySubtree();

 if (rRef!=null)
 n.rRef = rRef.copySubtree();

 return n;
 }

}

 25

Substituter.java

package QTran;

import java.util.*;

public class Substituter
{
 static final Node emptyQuery =
 new Node(Elements.query,
 new Node(Elements.expr, new Node(sym.LSB, "["), new
Node(sym.RSB, "]")), null);

 HashMap mainMap;

 ArrayList globalnames;

 private String cleanStr(String s)
 {
 return s.substring(1, s.length() - 1);
 }

 private void s_to_n(StringBuffer s, Node root)
 {
 if (root==null) return;
 if (root.snum==sym.StrToken)
 {
 s.append(cleanStr(root.textVal));
 s.append("_");
 return;
 }
 s_to_n(s, root.lRef);
 s_to_n(s, root.rRef);
 }

 private String scheme_to_name(Node root)
 {
 StringBuffer s = new StringBuffer();
 s_to_n(s, root);
 s.deleteCharAt(s.length()-1);
 return s.toString();
 }

 private void buildGlobalNames(Node root)
 {
 if (root==null) return;
 if (root.snum == Elements.scheme)
 {
 globalnames.add(scheme_to_name(root));
 return;
 }
 buildGlobalNames(root.lRef);
 buildGlobalNames(root.rRef);
 }

 private void update_tree(Node n, String s, Node q)
 {
 if (n==null) return;
 if (n.snum == Elements.expr)
 if (n.lRef.snum == sym.VarToken)

 26

 if (n.lRef.textVal.equals(s))
 {
 n.copyNode(new Node(Elements.expr, new Node(new
Node(sym.LRB, "("), q),
 new Node(sym.RRB, ")")));
 return;
 }
 update_tree(n.lRef, s, q);
 update_tree(n.rRef, s, q);
 }

 private void update_map(HashMap tempmap, String s, Node q)
 {
 for (int i=0; i<globalnames.size(); i++)
 {
 Node n =
((Node)(tempmap.get(globalnames.get(i)))).copySubtree();
 update_tree(n,s,q);
 tempmap.put(globalnames.get(i), n.copySubtree());
 }
 }

 private void text_rep(Node n, String f, String t)
 {
 if (n==null) return;
 if (n.snum==sym.VarToken)
 {

 StringBuffer sb = new StringBuffer();
 int i = 0;
 int ni = n.textVal.indexOf(f);
 while (ni!=-1)
 {
 sb.append(n.textVal.substring(i,ni));
 sb.append(t);
 i = ni + f.length();
 ni = n.textVal.indexOf(f,i);
 }
 sb.append(n.textVal.substring(i));
 n.textVal = sb.toString();
 return;
 }
 text_rep(n.lRef,f,t);
 text_rep(n.rRef,f,t);
 }

 private void text_replace(HashMap tempmap, String f, String t)
 {
 for (int i=0; i<globalnames.size(); i++)
 {
 Node n =
((Node)(tempmap.get(globalnames.get(i)))).copySubtree();
 text_rep(n,f,t);
 tempmap.put(globalnames.get(i), n.copySubtree());
 }
 }

 private void process_tran(Node root, HashMap tempmap, String num)
 {
 if (root==null) return;
 if (root.snum == Elements.prim_transf)

 27

 {
 i f ((r oot . l Ref . snum == s ym. Cont r ac t Node) | |
 (r oot . l Ref . snum == s ym. Cont r ac t Edge))
 r et ur n;
 i f ((r oot . l Ref . snum == s ym. Ext endNode) | | (r oot . l Ref . snum ==
sym. Ext endEdge))
 {
 updat e_map(t empmap, s cheme_t o_name(r oot . r Ref) +num,
empt yQuer y) ;
 r et ur n;
 }
 St r i ng s = s cheme_t o_name(r oot . l Ref . r Ref) ;
 i nt i snum = r oot . l Ref . l Ref . snum;
 i f ((i snum == s ym. AddNode) | | (i snum == s ym. AddEdge))
 updat e_map(t empmap, s +num, r oot . r Ref) ;
 el se i f (i snum == s ym. RenameNode)
 t ex t _r epl ace(t empmap, c l eanSt r (r oot . r Ref . l Ref . t ext Val) , s) ;
 el se i f (i snum == s ym. RenameEdge)
 t ex t _r epl ace(t empmap,
c l eanSt r (r oot . r Ref . l Ref . t ex t Val) +s. subst r i ng(s. i ndexOf (' _')) , s) ;
 r et ur n;
 }
 pr ocess_t r an(r oot . r Ref , t empmap, n um) ; / / Not e u nusual w ay r ound.
 pr ocess_t r an(r oot . l Ref , t empmap, n um) ;
 }

 pr i vat e v oi d b ui l dSubMap(Node r oot)
 {
 i f (r oot ==nul l) r et ur n;
 i f (r oot . snum == E l ement s . t r ansf or mat i on)
 {
 St r i ng n um = r oot . l Ref . l Ref . r Ref . t ext Val ;
 / / n um wi l l h ol d t he n umber of t he l ocal s chema b ei ng w or ked
wi t h.

 HashMap t empmap = n ew HashMap() ;
 f or (i nt i =0; i <gl obal names. s i ze() ; i ++)
 {
 t empmap. put (gl obal names. get (i) , n ew Node(El ement s . quer y , n ew
Node(
 El ement s. expr , n ew Node(sym. Var Token,
(St r i ng) (gl obal names. get (i)) +num) , n ul l) , n ul l)) ;

 }
 pr ocess_t r an(r oot , t empmap, n um) ;
 f or (i nt i =0; i <gl obal names. s i ze() ; i ++)
 {
 Node q 1 = (Node) (mai nMap. get (gl obal names. get (i))) ;
 Node q 2 = (Node) (t empmap. get (gl obal names. get (i))) ;
 Node n q = n ew Node(El ement s . quer y ,
 new Node(q1, n ew Node(sym. Append, " ++")) , q 2) ;
 mai nMap. put (gl obal names. get (i) , n q. copySubt r ee()) ;
 }

 r et ur n;
 }
 bui l dSubMap(r oot . l Ref) ;
 bui l dSubMap(r oot . r Ref) ;
 }

 publ i c v oi d p er f or mSubs(Node t r oot)

 28

 {
 if (troot == null) return;
 if (troot.snum == Elements.expr)
 if (troot.lRef.snum == sym.VarToken)
 {
 Node n = (Node)(mainMap.get(troot.lRef.textVal));
 if (n != null)
 troot.copyNode(new Node(Elements.expr, new Node(
 new Node(sym.LRB, "("), n), new Node(sym.RRB, ")")));
 return;
 }
 performSubs(troot.lRef);
 performSubs(troot.rRef);
 }

 public Substituter(Node root)
 {
 mainMap = new HashMap();
 globalnames = new ArrayList();

 buildGlobalNames(root.lRef);

 for (int i=0; i<globalnames.size(); i++)
 mainMap.put(globalnames.get(i), emptyQuery.copySubtree());

 buildSubMap(root.rRef);
 }
}

 29

Simplifier.java

package QTran;

import java.util.*;

public class Simplifier
{
 ArrayList querypairs;

 static final String startVarStr = "xxx";

 private class QueryPair
 {
 Node from, to;

 QueryPair(Node f, Node t)
 {
 from = f.copySubtree();
 to = t.copySubtree();
 }
 }

 private boolean comp(Node queryNd, Node templateNd, HashMap mapv)
 {
 if ((queryNd==null)||(templateNd==null))
 {
 if ((queryNd==null)&&(templateNd==null)) return true;
 else return false;
 }
 if ((templateNd.textVal!=null) &&
(templateNd.textVal.startsWith(startVarStr)))
 {
 mapv.put(templateNd.textVal, queryNd);
 return true;
 }
 if (queryNd.snum!=templateNd.snum)
 return false;
 if (queryNd.textVal!=null)
 {
 if (!(queryNd.textVal.equals(templateNd.textVal))) return false;
 }
 else if (templateNd.textVal!=null) return false;
 boolean b1 = comp(queryNd.lRef, templateNd.lRef, mapv);
 boolean b2 = comp(queryNd.rRef, templateNd.rRef, mapv);
 return (b1&&b2);
 }

 private void replace(Node root, HashMap mapv)
 {
 if (root==null) return;
 if ((root.textVal!=null) &&
(root.textVal.startsWith(startVarStr)))
 {
 Node n = (Node)(mapv.get(root.textVal));
 root.copyNode(n);
 return;
 }
 replace(root.lRef, mapv);
 replace(root.rRef, mapv);
 }

 30

 private boolean compare(Node root, int i)
 {
 HashMap mapvar = new HashMap();
 QueryPair qp = (QueryPair)(querypairs.get(i));
 boolean b = comp(root, qp.from, mapvar);
 if (b)
 {
 root.copyNode(qp.to);
 replace(root, mapvar);
 }
 return b;
 }

 private boolean check(Node root)
 {
 boolean b = false;
 for(int i=0; i<querypairs.size(); i++)
 {
 boolean b2 = compare(root, i);
 b = b||b2;
 }
 return b;
 }

 private boolean simp(Node root)
 {
 if (root==null) return false;
 boolean a,b,c;
 a = check(root);
 b = simp(root.lRef);
 c = simp(root.rRef);
 return a||b||c;
 }

 public void simplify(Node root)
 {
 boolean b;
 do
 b = simp(root);
 while (b);
 }

 private void cleanTemplate(Node root)
 {
 if (root==null) return;
 if ((root.snum==Elements.query) &&
 (root.lRef.snum==Elements.expr) &&
 (root.lRef.lRef.snum==sym.VarToken) &&
 (root.lRef.lRef.textVal.startsWith(startVarStr)))
 {
 root.textVal = root.lRef.lRef.textVal;
 return;
 }
 cleanTemplate(root.lRef);
 cleanTemplate(root.rRef);
 }

 private void cleanTemplates()
 {
 for(int i=0; i<querypairs.size(); i++)

 31

 {
 cleanTemplate(((QueryPair)(querypairs.get(i))).from);
 cleanTemplate(((QueryPair)(querypairs.get(i))).to);
 }
 }

 private void setItUp(Node root)
 {
 if (root==null) return;
 if (root.snum == Elements.simplification)
 {
 querypairs.add(new QueryPair(root.lRef.lRef.rRef, root.rRef)
);
 return;
 }
 setItUp(root.lRef);
 setItUp(root.rRef);
 }

 public Simplifier(Node root)
 {
 querypairs = new ArrayList();
 setItUp(root);
 cleanTemplates();
 }
}

 32

Elements.java

package QTran;

public class Elements
{
 public static final int PARTIAL_STRUCTURE = 999;
 public static final int seq = 1004;
 public static final int qual = 1006;
 public static final int quals = 1005;
 public static final int query = 1002;
 public static final int expr = 1003;
 public static final int name = 1007;
 public static final int transformation = 1008;
 public static final int transf_list = 1009;
 public static final int prim_transf = 1010;
 public static final int scheme = 1011;
 public static final int nodeScheme = 1012;
 public static final int edgeScheme = 1013;
 public static final int scheme_list = 1014;
 public static final int schema_def = 1015;
 public static final int schema_defs = 1016;
 public static final int transformations = 1017;
 public static final int allinfo = 1018;
 public static final int simplification = 1019;
 public static final int simp_list = 1020;
}

 33

TestDriver.java

package QTran;

import java.io.*;

public class TestDriver
{
 private static final char LOADTRANS = 'a';
 private static final char LISTSUBS = 'b';
 private static final char GETQUERY = 'c';
 private static final char PRINTQUERY = 'd';
 private static final char PRINTTREE = 'e';
 private static final char TRANSLATE = 'f';
 private static final char LOADSIMPS = 'g';
 private static final char SIMPLIFY = 'h';
 private static final char EXIT = 'x';

 Substituter sub;
 Simplifier simp;
 Node q;

 TestDriver() {}

 public static void main(String[] args) throws Exception
 {
 TestDriver d = new TestDriver();
 do {
 System.out.println("\t\tMenu");
 System.out.println("\t" + LOADTRANS + "- load transformations
file");
 System.out.println("\t" + LISTSUBS + "- display substitutions
made during translation");
 System.out.println("\t" + GETQUERY + "- load query from file");
 System.out.println("\t" + PRINTQUERY + "- print query");
 System.out.println("\t" + PRINTTREE + "- output text
representation of query tree");
 System.out.println("\t" + TRANSLATE + "- translate query");
 System.out.println("\t" + LOADSIMPS + "- load simplification
file");
 System.out.println("\t" + SIMPLIFY + "- perform
simplifications");
 System.out.println("\t" + EXIT + "- exit");
 System.out.print("\t>");
 } while (d.action(TextIO.getlnChar()));
 System.out.println("\n\nFinished!");
 }

 private boolean action(char c) throws Exception
 {
 switch(c){
 case LOADTRANS : loadTrans(); break;
 case LISTSUBS : listSubs(); break;
 case GETQUERY : getQuery(); break;
 case PRINTQUERY : printIt(); break;
 case PRINTTREE : printTree(); break;
 case TRANSLATE : translate(); break;
 case LOADSIMPS : loadSimps(); break;
 case SIMPLIFY : simplify(); break;
 case EXIT : return false;

 34

 default: System.out.println("** Unknown selection [" + c + "]
**");
 }
 return true;
 }

 private void simplify()
 {
 simp.simplify(q);
 }

 private void translate()
 {
 sub.performSubs(q);
 }

 private void printIt()
 {
 printQuery(q);
 System.out.println();
 }

 private void printTree()
 {
 outputTree(q);
 System.out.println();
 }

 private void getQuery() throws Exception
 {
 System.out.print("Enter the file name: ");
 String name = TextIO.getlnString();
 q = new Node(new FileInputStream(name));
 }

 private void loadSimps() throws Exception
 {
 System.out.print("Enter the file name: ");
 String name = TextIO.getlnString();
 Node n = new Node(new FileInputStream(name));
 simp = new Simplifier(n);
 }

 private void loadTrans() throws Exception
 {
 System.out.print("Enter the file name: ");
 String name = TextIO.getlnString();
 Node n = new Node(new FileInputStream(name));
 sub = new Substituter(n);
 }

 private void listSubs()
 {
 for (int i=0; i<sub.globalnames.size(); i++)
 {
 String s = (String)(sub.globalnames.get(i));
 System.out.println(s);
 printQuery((Node)(sub.mainMap.get(s)));
 System.out.println();
 }
 }

 35

 public static void outputTree(Node n)
 {
 System.out.print(n.snum + "|");
 if (n.textVal!=null) System.out.print(n.textVal);
 System.out.print("{");
 if (n.lRef!=null) outputTree(n.lRef);
 System.out.print(",");
 if (n.rRef!=null) outputTree(n.rRef);
 System.out.print("}");
 }

 public static void printQuery(Node n)
 {
 if (n==null) return;
 printQuery(n.lRef);
 if (n.textVal!=null) System.out.print(n.textVal+" ");
 printQuery(n.rRef);
 }
}

 36

APPENDIX B – CUP and JLex Files

EdCup1.cup

package QTran;

terminal VarToken, StrToken, NumToken, AnyToken,
 Let, Equal, Append, Difference, In, SemiColon, LArrow,
 Comma, Bar, LSB, RSB, LRB, RRB,
 LDAB, RDAB, FromSchema, End,
 AddNode, DelNode, AddEdge, DelEdge, RenameNode, RenameEdge,
 ExtendNode, ContractNode, ExtendEdge, ContractEdge,
 From, To;

non terminal query, expr, seq, quals, qual,
 name, transformation, transf_list, prim_transf, scheme,
 nodeScheme, edgeScheme, scheme_list, transformations,
 simplification, simp_list,
 allinfo;

precedence left Let, Equal, Append, Difference, In, LArrow, SemiColon,
 Comma, Bar, LSB, RSB, LRB, RRB, LDAB, RDAB, FromSchema, End,
 AnyToken, VarToken, NumToken, StrToken;

allinfo ::= scheme_list:e1 transformations:e2
 {: RESULT = new Node(Elements.allinfo, e1, e2);
 :}
 | query:e1
 {: RESULT = new Node(Elements.allinfo, e1, null);
 :}
 | simp_list:e1
 {: RESULT = new Node(Elements.allinfo, e1, null);
 :}
 ;

simp_list ::= simp_list:e1 simplification:e2
 {: RESULT = new Node(Elements.simp_list, e1, e2);
 :}
 | simplification:e1
 {: RESULT = new Node(Elements.simp_list, e1, null);
 :}
 ;

simplification ::= From:e1 query:e2 To:e3 query:e4
 {: RESULT = new Node(Elements.simplification,
 new Node(new Node(e1, e2), e3), e4);
 :}
 ;

transformations ::= transformations:e1 transformation:e2
 {: RESULT = new Node(Elements.transformations,
 e1, e2);
 :}
 | transformation:e1
 {: RESULT = new Node(Elements.transformations,
 e1, null);
 :}
 ;

transformation ::= FromSchema:e1 NumToken:e2 transf_list:e3 End:e4

 37

 {:
 RESULT = new Node(Elements.transformation,
 new Node(new Node(e1, e2), e3), e4);
 :}
 ;

transf_list ::= prim_transf:e1 SemiColon:e2 transf_list:e3
 {: RESULT = new Node(Elements.transf_list,
 new Node(e1, e2), e3);
 :}
 | prim_transf:e1
 {: RESULT = new Node(Elements.transf_list,
 e1, null);
 :}
 ;

prim_transf ::= AddNode:e1 nodeScheme:e2 query:e3
 {: RESULT = new Node(Elements.prim_transf,
 new Node(e1, e2), e3);
 :}
 | DelNode:e1 nodeScheme:e2 query:e3
 {: RESULT = new Node(Elements.prim_transf,
 new Node(e1, e2), e3);
 :}
 | AddEdge:e1 edgeScheme:e2 query:e3
 {: RESULT = new Node(Elements.prim_transf,
 new Node(e1, e2), e3);
 :}
 | DelEdge:e1 edgeScheme:e2 query:e3
 {: RESULT = new Node(Elements.prim_transf,
 new Node(e1, e2), e3);
 :}

 | RenameNode:e1 nodeScheme:e2 name:e3
 {: RESULT = new Node(Elements.prim_transf,
 new Node(e1, e2), e3);
 :}

 | RenameEdge:e1 edgeScheme:e2 name:e3
 {: RESULT = new Node(Elements.prim_transf,
 new Node(e1, e2), e3);
 :}

 | ExtendNode:e1 nodeScheme:e2
 {: RESULT = new Node(Elements.prim_transf, e1,
e2);
 :}

 | ContractNode:e1 nodeScheme:e2
 {: RESULT = new Node(Elements.prim_transf, e1,
e2);
 :}

 | ExtendEdge:e1 edgeScheme:e2
 {: RESULT = new Node(Elements.prim_transf, e1,
e2);
 :}

 | ContractEdge:e1 edgeScheme:e2
 {: RESULT = new Node(Elements.prim_transf, e1,
e2);

 38

 :}
 ;

scheme ::= nodeScheme:e1
 {:
 RESULT = new Node(Elements.scheme, e1, null);
 :}
 | edgeScheme:e1
 {:
 RESULT = new Node(Elements.scheme, e1, null);
 :}
 ;

nodeScheme ::= LDAB:e1 name:e2 RDAB:e3
 {:
 RESULT = new Node(Elements.nodeScheme,
 new Node(e1, e2), e3);
 :}
 ;

edgeScheme ::= LDAB:e1 name:e2 Comma:e3 scheme_list:e4 RDAB:e5
 {:
 RESULT = new Node(Elements.edgeScheme,
 new Node(new Node(new Node(e1, e2), e3), e4), e5);
 :}
 ;

scheme_list ::= scheme:e1
 {: RESULT =
 new Node(Elements.scheme_list, e1, null);
 :}
 | scheme_list:e1 Comma:e2 scheme:e3
 {: RESULT = new Node(Elements.scheme_list,
 new Node(e1, e2), e3);
 :}
 ;

name ::= StrToken:e1
 {: RESULT = new Node(Elements.name, e1, null); :};

query ::= expr:e1
 {: RESULT =
 new Node(Elements.query, e1, null);
 :}
 | Let:e1 VarToken:e2 Equal:e3 query:e4 In:e5 query:e6
 {: RESULT = new Node(Elements.query,
 new Node(new Node(new Node(
 new Node(e1, e2), e3), e4), e5), e6);
 :}
 | query:e1 Append:e2 query:e3
 {: RESULT = new Node(Elements.query,
 new Node(e1, e2), e3);
 :}
 | query:e1 Difference:e2 query:e3
 {: RESULT = new Node(Elements.query,
 new Node(e1, e2), e3);
 :}
 | query:e1 expr:e2
 {: RESULT = new Node(Elements.query, e1, e2);
 :};

 39

expr ::= NumToken:e1
 {: RESULT = new Node(Elements.expr, e1, null); :}
 | StrToken:e1
 {: RESULT = new Node(Elements.expr, e1, null); :}
 | VarToken:e1
 {: RESULT = new Node(Elements.expr, e1, null); :}
 | AnyToken:e1
 {: RESULT = new Node(Elements.expr, e1, null); :}
 | LSB:e1 query:e2 Bar:e3 quals:e4 RSB:e5
 {: RESULT = new Node(Elements.expr,
 new Node(new Node(new Node(e1, e2), e3), e4), e5);
 :}
 | LSB:e1 RSB:e2
 {: RESULT = new Node(Elements.expr, e1, e2); :}
 | LRB:e1 seq:e2 RRB:e3
 {: RESULT = new Node(Elements.expr,
 new Node(e1, e2), e3);
 :}
 | LRB:e1 query:e2 RRB:e3
 {: RESULT = new Node(Elements.expr, new Node(e1, e2), e3);
 :};

seq ::= seq:e1 Comma:e2 query:e3
 {: RESULT = new Node(Elements.seq, new Node(e1, e2), e3);
 :}
 | query:e1
 {: RESULT = new Node(Elements.seq, e1, null); :}
 ;

quals ::= qual:e1 SemiColon:e2 quals:e3
 {: RESULT = new Node(Elements.quals, new Node(e1, e2),
e3);
 :}
 | qual:e1
 {: RESULT = new Node(Elements.quals, e1, null); :}
 ;

qual ::= query:e1
 {: RESULT = new Node(Elements.qual, e1, null); :}
 | query:e1 LArrow:e2 query:e3
 {: RESULT = new Node(Elements.qual, new Node(e1, e2), e3);
 :}
 ;

 40

EdLex1

package QTran;

import java_cup.*;
import java_cup.runtime.*;

public class EdLex1
{
 public static void main(String[] args) throws Exception
 {
 Yylex yy = new Yylex(System.in);
 Symbol t;
 while ((t = yy.next_token()).sym != sym.EOF)
 System.out.println(t + " " + ((Node)(t.value)).textVal);
 }
}

%%

%cup

%eofval{
return (new Symbol(sym.EOF,""));
%eofval}

NUMTOKEN = [0-9]+|([0-9]+)(".")([0-9]+)
STRTOKEN = \"[^\"]*\"
PREFIXOPERATOR = "(+)"|"(-
)"|"(*)"|"(/)"|"(&)"|"(#)"|"(=)"|"(!=)"|"(<)"|"(>)"|"(<=)"|"(>=)"
VARTOKEN = [a-z_][A-Za-z0-9_]*

NN_WHITESPACE = [\ \t\b\012]+

%%

"let" { return (new Symbol(sym.Let, new Node(sym.Let, "let"))); }
"in" { return (new Symbol(sym.In, new Node(sym.In, "in"))); }
"=" { return (new Symbol(sym.Equal, new Node(sym.Equal, "="))); }
"++" { return (new Symbol(sym.Append, new Node(sym.Append, "++"))); }
"--" { return (new Symbol(sym.Difference, new Node(sym.Difference, "-
-"))); }
";" { return (new Symbol(sym.SemiColon, new Node(sym.SemiColon,
";"))); }
"<-" { return (new Symbol(sym.LArrow, new Node(sym.LArrow, "<-"))); }
"," { return (new Symbol(sym.Comma, new Node(sym.Comma, ","))); }
"|" { return (new Symbol(sym.Bar, new Node(sym.Bar, "|"))); }
"[" { return (new Symbol(sym.LSB, new Node(sym.LSB, "["))); }
"]" { return (new Symbol(sym.RSB, new Node(sym.RSB, "]"))); }
"(" { return (new Symbol(sym.LRB, new Node(sym.LRB, "("))); }
")" { return (new Symbol(sym.RRB, new Node(sym.RRB, ")"))); }
"Any" { return (new Symbol(sym.AnyToken, new Node(sym.AnyToken,
"Any"))); }

"<<" { return (new Symbol(sym.LDAB, new Node(sym.LDAB, "<<"))); }
">>" { return (new Symbol(sym.RDAB, new Node(sym.RDAB, ">>"))); }

"FromSchema" { return (new Symbol(sym.FromSchema, new
Node(sym.FromSchema, "FromSchema"))); }
"End" { return (new Symbol(sym.End, new Node(sym.End,
"End"))); }

 41

"addNode" { return (new Symbol(sym.AddNode, new Node(sym.AddNode,
yytext()))); }
"delNode" { return (new Symbol(sym.DelNode, new Node(sym.DelNode,
yytext()))); }
"addEdge" { return (new Symbol(sym.AddEdge, new Node(sym.AddEdge,
yytext()))); }
"delEdge" { return (new Symbol(sym.DelEdge, new Node(sym.DelEdge,
yytext()))); }
"renameNode" { return (new Symbol(sym.RenameNode, new
Node(sym.RenameNode, yytext()))); }
"renameEdge" { return (new Symbol(sym.RenameEdge, new
Node(sym.RenameEdge, yytext()))); }
"extendNode" { return (new Symbol(sym.ExtendNode, new
Node(sym.ExtendNode, yytext()))); }
"contractNode" { return (new Symbol(sym.ContractNode, new
Node(sym.ContractNode, yytext()))); }
"extendEdge" { return (new Symbol(sym.ExtendEdge, new
Node(sym.ExtendEdge, yytext()))); }
"contractEdge" { return (new Symbol(sym.ContractEdge, new
Node(sym.ContractEdge, yytext()))); }

"From" { return (new Symbol(sym.From, new Node(sym.From, "From"))); }
"To" { return (new Symbol(sym.To, new Node(sym.To, "To"))); }

{PREFIXOPERATOR} { return (new Symbol(sym.VarToken, new
Node(sym.VarToken, yytext()))); }
{VARTOKEN} { return (new Symbol(sym.VarToken ,new Node(sym.VarToken,
yytext()))); }
{STRTOKEN} { return (new Symbol(sym.StrToken ,new Node(sym.StrToken,
yytext()))); }
{NUMTOKEN} { return (new Symbol(sym.NumToken ,new Node(sym.NumToken,
yytext()))); }

{NN_WHITESPACE} { }

. { return (new Symbol(sym.error,"**ERROR**")); }

\n { }
\r { }

 42

APPENDIX C – Text Files

QFile1.txt

group(_person_qualification)

TFile1.txt

<<"person">>,
<<"address">>,
<<"qualification">>,
<<"post">>,
<<"",<<"person">>,<<"address">> >>,
<<"",<<"person">>,<<"qualification">> >>,
<<"",<<"person">>,<<"post">> >>
FromSchema 1
addNode <<"person">> men1 ++ women1;
addEdge <<"", <<"person">>, <<"post">> >> _men_post1 ++_women_post1;
contractEdge <<"", <<"men">>, <<"post">> >>;
contractEdge <<"", <<"women">>, <<"post">> >>;
contractNode <<"men">>;
contractNode <<"women">>;
extendNode <<"address">>;
extendEdge <<"",<<"person">>,<<"address">> >>;
extendNode <<"qualification">>;
extendEdge <<"",<<"person">>,<<"qualification">> >>
End
FromSchema 2
renameNode <<"name">> "person";
extendNode <<"post">>;
extendEdge <<"",<<"person">>,<<"post">> >>
End
FromSchema 3
renameEdge <<"quals", <<"person">>, <<"qualification">> >> "";
extendNode <<"address">>;
extendEdge <<"", <<"person">>, <<"address">> >>
End

SFile1.txt

From group(xxx1 ++ xxx2) To (group(xxx1)) merge (group(xxx2))
From xxx1 ++ [] To xxx1
From [] ++ xxx1 To xxx1
From ([]) To []
From ((xxx1)) To (xxx1)
From xxx1 ((xxx2)) To xxx1 (xxx2)

SFile2.txt

From xxx1 ++ [] To xxx1
From [] ++ xxx1 To xxx1
From ([]) To []
From ((xxx1)) To (xxx1)
From xxx1 ((xxx2)) To xxx1 (xxx2)

 43

SFile3.txt

From group(xxx1 ++ xxx2) To (group(xxx1)) merge (group(xxx2))

 44

APPENDIX D – Running Instructions

1) Copy the directories QTran, java_cup and JLex and their contents somewhere into

the Java class path on the machine.

2) The test driver can then be executed by entering:

java QTran.TestDriver

3) Queries, simplifications and transformations can be loaded from text files using the
menu. The test driver only deals with one query, one set of transformations and one
set of simplifications at a time. Loaded a new simplification file, for instance,
removes the old one – but it doesn’t remove the current query or set of
transformations.

