Query Translation in Heterogeneous Database Environments

Edgar Jasper

M Sc Computing Science project report,
School of Computer Science and Information Systems,
Birkbeck College,
University of London,
2001

This report is substantially the result of my own work except where explicitly indicated
in the text.

The report may be freely copied and distributed provided the source is explicitly
acknowledged.

CONTENTS
Abstrac

1. Aims and Badground
1.1 General Badkground
1.2 Specific Background
1.3 Aims of the Project

2. Specification
2.1 Input to the Query Trandation Tool
2.2 General Isales
2.3 Output from the Query Trandlation Tool

3. Design
3.1 Design of lexer and parser
3.2 The Structure of the Abstract Syntax Tree
3.3 Query Trandation
3.4 Query Simplification

4. Implementation
4.1 Research and Reading
4.2 Parsing the Input
4.3 Trandating the Query
4.4 Simplifying the Query
4.5 Testing the Software

5. Conclusions
5.1 Problems with the Project
5.2 Posgble Improvements to the Software
5.3 Final Conclusions

References

Appendices

Appendix A — Java Files
Node.java
Substituter.java
Simplifier.java
Elements.java
TestDriver.java

Appendix B — CUP and JLex Files
EdCupl.cup
EdLex1

Appendix C — Text Files

Appendix D — Running Instructions

N R

~NOoO ww

22

23
23
23
25
29
32
33
36
36
40
42

ABSTRACT

One of the things that must be achieved to implement a heterogeneous database system
isglobal query processing. Global queries expressed on the global schema must be
trandated into queries that can be processed by the local databases. Using a low-level
graph-based data model as the common data model this project investigates the
automatic trandlation of such global queries. Thisautomatic trandation isaccomplished
by using the transformation pathways from the local schemasto the global schema.

The goal of this project is to produce software to translate global queriesinto queries
expressed in terms of the local database constructs. A secondary goal isto produce
software to optimise these trandated queries for faster execution.

1. AIMSAND BACKGROUND

1.1 General Background

It may be desirable to integrate a number of autonomous databasesin such away that to
the user, be that a person a another layer of software, there gpearsto be asingle
database. This sngle ‘multi-database’ would sit ontop of the autonomous databases -
databases that may employ different data models and be deployed on a variety of
platforms. This g/stem is a heterogeneous database system.

There ae four main things to achieve to implement such a system. These are schema
trandation, schema integration, global query processng (including optimisation), and
global transaction management. Obvioudly, given that the local databases may employ
different data models, the local schemas must be translated into component schemas
(see [7]) expressed in some suitable coommon data model (CDM) so that they may be
integrated to produce the global schema expressed also in thisCDM. The need for such
schema tranglation and integration, while nat the subject of this projed, has bearing on
it and will be discussed more later on.

Global query processing consists, in brief, of trandating a global query expressed on the
global schema into one in terms of the cmponent schemas from which the global
schemawas derived. The resulting query isthen gptimised. Then the local sub-queries
expresed inthe global query language of the CDM are trandated into queries expressed
in local query languages appropriate for the local schemas. Finally these locd sub-
gueries are sent out for processng by the local databases. This projed is concerned
with an aspect of this global query processing.

This project is not concerned with global transaction management so it will not be
discussed further.

1.2 Specific Background

This project investigates global query processng. It isa part of the AutoMed project at
Birkbeck College and Imperial College and as such works within the following
framework for schema integration and query processng developed by P. McBrien and
A. Poulovasslis. The CDM used by this framework is the hypergraph data model (see
[10]). Thismodel isalow level model where schemas consist of nodes, edges (directed
edgesthat can link multiple nodes and other edges) and constraints. Schemas expressed
using ather data models may be regarded as representations of schemas of this CDM at
ahigher level. It ispossble to trandate any schema expressed using another data model
into one expressed using this CDM (see[5]). Thusthe locd schemas of the local
databases, that are expressed in whatever data model their respective databases may be
employing, can be automatically trandated into component schemas of the CDM.

In this framework these cmmponent schemas are integrated into a global schema by
means of applying a set of schema transformations to each comporent schema that
transformsit into the global schema. The primitive transformations used add, delete
and rename nodes, edges and constraints. A feature of the transformations used is that
they are automatically reversible which means that the transformations used to
transform a component schema into the global schema may be used to automatically

trandate queries expressed on the global schema into queries expressed on the
component schemas (see [4]). The global queries are written in acommon query
language (CQL) that uses CDM constructs. Details of the CQL can be found in [8].
Theideaisthat agloba query written in the CQL can be automatically trandated, using
the schema transformations, into a CQL query using constructs from the component
schemas. This query can then be divided into local sub-queries still in CQL that can
then be trandated into the appropriate query language for each of the local databases
and dispatched to them. The global query processor processes the results of these local
sub-queriesto produce aresult for the global query. It should be possible to do all this
automatically.

1.3 Aims of the Project

The aim of this project isto develop software that can perform the automatic translation
from the original global CQL query to a CQL query expressed using congructsfrom the
component schemas. The software should take, asitsinput, details of the global schema
and component schemas expressed using the CDM, combined with the transformation
pathways that transform each component schema into the global schema. Then given a
guery expressed in the CQL on the global schema it should produce a new query with
parts of it now expressed on the component schemas. The project will also look at
optimisation of the resulting query.

For the purposes of this project, the constraints part of schemas and schema
transformations (see [10]) will be ignored.

2. SPECIFICATION

In this ction | discussthe specification of the query trandation tool that will be
produced by this project.

2.1 Input to the Query Trandation Tool

A query expressed on the global schema
Thisquery iswritten in the CQL (see[8]). Informally the syntax of the CQL isas
follows:

query =“[* query“[" qual “;” ... *;” qual “]”

u[u “

“group” query

“gc” aggFun query

query “++" query

query “--" query

| “when” query query query

| “member” query query

| “not™ query

| “let” var “=" query “in" query

gual = pat“<-" query
| query

pat =var
[“(* query “,” ... “)” query “)”

a.ggFun - umaxn | uminn | ucountn | uwmn | uavgn

Obvioudly, a more formal syntax will be needed for the actual software. From this
informal syntax we can see that a query may be a comprehension (see [8] for discusson
of comprehensions), an empty query, the result of various operations applied to other
gueries such asgroup, group and compute, append, difference, the conditional operation
and so on. A query may also consist of astring, avariable (a‘var’ inthe gove syntax),
an expression etc.

Importantly, the CQL supports comprehensions. These have syntax [€]Qs; ... ;Qn]. Q1
to Q, are qualifiers - each is either afilter or a generator. A filter isaboolean valued
expresson. A generator has yntax p<-swhere p is a pattern and s a ollection valued
expresson. Comprehensions can represent directly common qoerations such asjoins,
selections and projedions. They have the further advantage that anything expressblein
the relational algebra is expressble with them.

Some examples of queries might be:
Q1) group(_person_qualification)

Q2) [(n)| (c,n)<- course_name; (=)c “CompSci”]
Q3) [(n,p)|(c,n)<-course_name; (C’,p)<-course_programme; (=)c C]

Example 1 clearly represents a grouping operation. Example 2 represents a selection
selecting those course and name pairswhere the course is computer sciencefollowed by
a projection so that the comprehension returns a collection of names only. Example 3
represents a natural join of course_name and course_programme projected to return a
collection of name and programme pairs.

The software requires a CQL query expressed on the global schema & input.
The transformations

The transformations from each component schema to the global schema have the
following syntax:

transformation= “FromSchema’ NumToken transf_list “End”

transf_list = prim_transf SemiColon transf_list
| prim_transf

prim_transf = “addNode” nodeSc heme query
| “delNode” nodeScheme query
| “addEdge” edgeScheme query
| “delEdge” edgeScheme query
| “renameNode” nodeScheme name
| “renameEdge” edgeScheme name
| “extendNode” nodeScheme
| “contractNode” nodeScheme
| “extendEdge” edgeScheme
| “contractEdge” edgeScheme

scheme nodeScheme | edgeScheme

nodeScheme

H<<H name H>>H
edgeScheme = “<<” name*,” scheme_list “>>"

scheme list = scheme
| scheme_list “,” scheme

name = StrToken

From this syntax we @an see how schemes are constructed from names, which are
merely strings (* StrToken’s), and other schemes. A schemaismerely a set of such node
and edge schemes. (A schema also includes constraints which this project will ignore.)
Primitive transformations, (the ‘prim_transf’s) take ascheme and possibly another
parameter and transform a schema accordingly. The add operations (‘ addNode’ and
‘addEdge’) take a scheme and add this sheme to the schema populating it by applying
a query (this being their second parameter) to the schema. The delete operations
(‘delNode’ and * delEdge’) take a scheme and delete this £heme from the schema.
They also take aquery that gives the extent of the scheme to be deleted. Thisallows
these operations to be automatically reversed if desired. The rename operations behave
asyou would expect. The extend and contract operations correspondto the add and

delete operations respectively but they take only a scheme rather than a scheme and a
query. They are equivalent to add and delete operations with empty queriesrespectively
i.e. using our syntax ‘extendNode n’ is equivalent to ‘addNode n [].

According to the above syntax a transformation from a component schemato the global
one starts with the word ‘ FromSchema’ followed by a number (a‘NumToken’)
followed by alist of primitive transformations separated by semicolons followed by the
word ‘End’. There follows an example transformation:

FromSchema 2

addNode <<*men”>> [p | (p,g) < - person_gender; (=)g “mae™;
addNode <<*women>> [p | (p,0) < - person_gender; (=)g “female”’]
End

This transformation tells us that to transform component schema 2 into the global
schema two things must be done. Firstly, a new node ‘ men’ must be added to the
schema. This node has the extent given by the query associated with it. In thiscase the
guery performs a selection on the pairs in the collection given by person_gender
selecting only those whose gender, the second item in the pair, is equal to the string
“male”. The result of this selection is then projected o nto the first item in the pair - the
person. Thusthe new node ‘men’ has the extent of persons whose gender ismale.
Secondly, a new node ‘female’ must be added to the schema. The extent of thisis
determined in an analogous manner to new node ‘ male'.

The software will require transformations expressed using the above syntax as input.

The global schema definition

The syntax for schemes was given in the previous section as was the syntax for a
‘scheme_list’. The software will require as input the definition of the global schema
given in the form of a‘scheme_list’. For example, the following ‘ scheme_list’ definesa
global schema, S, consisting of four entities (person, address, qualification, post) and
three associations between person and address, qualification and post respectively:

<<"person">>,

<<"address'>>,

<<"qudlification">>,

<<"post">>,

<< <<"person">>,<<"address'>> >>,

<™ <<"person">>,<<"quadlification">> >>,
<<"' <<M"person>> <<"pog">> >>

The simplification rules

The purpose of smplificationsisto optimise the query that results from the translation
for faster processing on the local databases. Thisisaccomplished by the application of
various simplification rules to the query.

The syntax for a simplification rule is as follows:

simplification = “From” query “To” query

Simply the word ‘ From’ followed by a query then the word ‘ To’ followed by a query.
These will not be ordinary queries however. Indeed, they will not actually be queries at
al inasemantic sense. They will be queries according to the syntax of the CQL but
will contain within them special variables that do not correspond to anything in any of
the schemas but instead serve as placeholders for anything that might appear at that
point of the query. Thus these special querieswill in fact be query templates giving a
general form a query might take. The simplification thus communicates that any query
of a certain form can and should be replaced by a query of another form that is
equivalent to it. The syntax for expressing simplification rules and the mechanism for
implementing them is entirely my own work and therefore there is no need to say at the
specification stage what special variables the query templates will contain and how they
will be recognised. However, examples of smplification rules might be:

1) From [] ++ xxx1 To xxx1
2) From group(xxx1 ++ xxx2) To group(xxx1) merge group(xxx2)

Example 1 states that a query having the form of an empty query and something else
(syntactically it must be another query) appended to it can be simplified to just the
something else. Example 2 satesthat if a query consists of one query, i, appended to
another, g2, and a group performed on the result then this may be smplified (in some
sense) to consist of the result of a merge of g; and g, where g; is the result of a group
applied to g; and g is the result of a group applied to gz. In these examples xxx1 and
xxx2 are the specia variables.

The software will require asinput a set of these smplification rules.

2.2 General Issues

The implementation language will be Java. For the purposes of the project constraints
will be ignored. The software will assume all input to be error free and will therefore
not incorporate any error handling.

We also need some convention to translate schemes in transformation lists and schema
definitionsinto identifiersin CQL. Let G denote this trandation function for any node
scheme <<*n">> or edge scheme <<'n”, sl, ..., sn>> in the global schema. Then

G[<<" n">>] ="n"
Gl<<n”, sl, ..., N> > =" ++ “ " ++ G[SL] ++ “ " ++ .. ++“ 7 ++ G[H]

Similarly let Li denote this transation function for scheme in component schemai.
Then

Li[s] = G[g] ++ "

These trandation functions G and Li were specified by my supervisor.

2.3 Output from the Query Trandation Tool

The output of the software will be a rewritten query expressed in the CQL. All global
schema constructs in the original query will have been replaced by sub-queries using
component schema constructs. The simplification rules will also have been applied.

Here is an example that illustrates the whole trandation process. Consider the example
query Q1, group(_person_qualification) on the global schema, S, given asan example
earlier. Suppose that S has been derived from three component schemas by the
following three lists of transformations:

FromSchema 1

addNode <<"person">> menl ++ womenl,

addEdge <<"", <<"person">>, <<"post">>>> _men_postl ++_women_post1,
contractEdge <<"", <<"men">>, <<"post">> >>;
contractEdge <<, <<"women">>, <<"post">> >>;
contractNode <<"men">>;

contractNode <<"women">>;

extendNode <<"address'>>;

extendEdge <<"",<<"person">><<"address'>> >>;
extendNode <<"qualification">>;

extendEdge <<"",<<"person">>,<<"qualification">> >>
End

FromSchema 2

renameNode <<"name">> "person’”;
extendNode <<"post">>;

extendEdge <<"",<<"person">>,<<"post">> >>
End

FromSchema 3

renameEdge <<"quals’, <<"person">>, <<"qualification">> >>"";
extendNode <<"address">>;

extendEdge <<"", <<"person">>, <<"address'>> >>

End

Then the query Q1 should tranglate into the following query (note that identifiers from
schemai are suffixed with the number i):

group ([] ++ _name_gualification2 ++ quals_person_qualification3)

We would then want the resulting query to be smplified using simplification rules (the
ones given earlier will be sufficient if applied correctly) to give something like:

group(_name_qualification2) merge group (quals_person_qualification3)

3. DESIGN

The input to the program isin the form of text. The output will also be text. Thus, the
input will have to be separated into its component symbols by a lexer then converted
into some abstract form, atree, by the parser prior to its being processed. The
processing will consst of making appropriate changes to this abstract representation to
accomplish the transation and simplification according to the rules. Then to output the
processed query its tree representation will have to be turned back into text prior to
output. Thisquick sketch of a design leads into more detailed design issues.

3.1 Design of lexer and par ser

The need for alexer and a parser are obvious. The text input must be turned into some
abstract internal representation for processing. Rather than code the lexer and the parser
from scratch in Java | decided to use existing tools for the job. The reasonsfor this
decision are obvious. Performance is not a primary issue for this project, what is
required isthat the lexer and parser work correctly. Under these circumstancesto code
from scratch would just be wasting time. It was decided to use atool called JLex (see
[1]) to write the lexer and a tool called CUP (see [2]) to write the parser these being
recommended by my supervisor and being designed to work together for use with and
written in Java.

There will be just one lexer and just one parser. These will deal with all the different
types of input. Although the input text file may contain a query or alist of
simplification rules or alist of transformations | feel it is appropriate to have just one
lexer and one parser to deal with all the various varieties of input. Thisis because
transformations may contain queries and simplification rules alwaysdo. To use
different lexers and parsersfor different types of input would lead to either unnecessary
complexity or duplication of code.

The lexer will behave in the obvious manner. It will take atext file asinput and as
output will return, one by one as requested, the symbols that the text in the text file
represents. The JLex tool takes a text file containing instructions detailing how the
lexer isto work and from this produces a Java file that implements the lexer. Thus,
there will be a class for the lexer.

The parser takes asits input the symbols passed, one by one, from the lexer. From these
it constructs atree in memory. Thisisthe output it returns. The tree may represent a
query, alist of simplification rulesor alist of transformations. If it represents
transformations it will also represent the global schema - these both concern the schema
transformation process and will come from the same text file. Like JLex, CUP takesa
text file telling it how to build the parser as input and produces Javafilesthat compile to
classesto implement it. Thus, there will be a parser classin the software.

3.2 The Structure of the Abstract Syntax Tree

The same sort of tree will be used for representing queries, transformations and so on.
The reasons for this are those outlined above for having one lexer and one parser for all
input. However, other data structures will be used to represent the things other than

gueries when they are actually needed for processing. Itisnatural though for them to be
initially represented as trees when first they are read in from text files.

The trees will be binary trees. It may seem natural for the nodes of the tree to be
allowed more than two children. Take, for example, acomprehension with the structure
[e]| Qu; ... ; Qn]. It may seem natural for thisto be represented by a comprehension or a
guery node with n+1 children, the first child representing e, the second Q; and so on. If
the parent node in this structure contained information that it was representing a
comprehension this structure might seem the most obvious and easiest way to represent
acomprehension. It is certainly unambiguous. However, | decided to use binary trees
because | thought they would be more straightforward to traverse. It also occurred to
me that being of a more regular structure it might be easier to create query templates
using them and thus make processing the simplifications easier. Binary treeswill be
deeper but this doesn't really matter.

| decided that the tree should retain as much information from the text representation as
possible. | will explain what | mean by an example. Take the form of a simplification
rule. The text form isthe word ‘From’ followed by a query followed by the word ‘ To’
followed by another query. Without ambiguity the tree representation of this could
consist of node to represent the simplification having two children the first representing
the first query and the second the second. In fact the tree representation will consist of a
node representing the simplification having among its descendents nodes representing
not only the two queries but also the words ‘From’ and ‘' To’. The purpose of this
redundancy isto make reconstructing the original text easier. To reconstruct the
original text without this redundancy would require adding in extra bits of text implicit
in the tree as the tree was traversed. The software would need to know that a
simplification rule required the words ‘ From’ and ‘ To’ adding back in. With the
redundancy, the tree will be so constructed that a one simple traversal will be all that is
required to reconstruct the original text. While thisis not particularly useful for
simplification rulesit is very useful for queries. After a query has been processed it
must be converted back to text. To be able to do this easily isvery useful and justifiesa
certain amount of redundancy in the information stored in the tree.

The tree will obviously be made up of node objects. The code will thus require a node
class. What functionality should this node class have? Each node will need to store
information regarding what structure its sub-tree represents (if it represents a valid
structure in its own right), what text is associated with the node (i.e. the text, if any, for
the textual representation of the structure) and linksto itsleft and right child. Because
nodes may often have to be treated as the root of their sub-trees representing their sub-
structures, the node class may require some extra functionality on top of this simple
design.

Figure 1 at the end of this section shows a tree representing the query ‘ group
(_person_qualification)’. It also showsthat even for a very simple query the tree is
quite large.

3.3 Query Trandation

In broad terms the job of the actual trandation software isto take trees representing a
query, the global schema and transformation rules and to produce atree representing the
guery trandated with reference to the global schema and transformation rules. One
possible design for this software would involve taking the query tree, traversing it to
find references to global schema constructs and then using the transformation rulesto
replace these global schema congtructs with appropriate queries on the component
schemas. Thisisnot the design | decided to use. It makes more sense to initialise the
trand ation software once with the global schema and transformation rules and have it
store mappings from global schema congtructs and queries expressed on the component
schemas. Then when passed a query tree to trandate it can traverse thistree and replace
each global schema construct it finds with the appropriate query using the mappings it
has stored. Thisisclearly a more efficient way of accomplishing the trandation.

This trandation will be accomplished using a substituter class (so called because it
performs substitutions in the query tree). Its constructor will take atree, generated from
atransformationsfile, representing both a global schema and alist of transformations
from component schemas. It will generate the mappings from this tree and store them
as part of the data for substituter objects. Substituter objects will have a method that
will take a query and perform the appropriate subgtitutionsin it to trandate it onto the
component schemas.

Once the mappings are generated the actual process of performing substitutions will be
fairly straightforward. Generating the mappings from the tree representing the global
schema and the transformation list requires more thought however. Firstly, alist of the
global identifiers that may appear in global queries will be generated from the global
schema. Coding this should be reasonably simple. The sub-tree representing the global
schema can be traversed to find each scheme sub-structure. A function to convert a
scheme sub-tree into a string identifier will then be used and each identifier added to a
list stored by the substituter object. When thislist is generated it can be used to help
generate the mappings.

If aglobal construct isnot mentioned in atransformation list from a component schema
to the global schema this means that no transformation is performed on it. Using the
example given during the specification, the transformation from component schema3 to
the global schema does not do anything to the * person’ node. Thusidentifier ‘person’in
the global schema mapsto identifier ‘ person3’ in component schema 3. To generate all
the mapping for component schema 3 we may initially assume that ‘ person’ maps to
‘person3’, ‘address mapsto ‘address3’ and so on. We then processits pr imitive
transformations in reverse order changing the mappings aswe go. So firstly we would
make ‘_person_address map to the empty query ‘[]’. Then we would make ‘ address
map to the empty query ‘[]’. Finally, we would make *_person_qualification’ map to
‘quals_person_qualification’. We could perform this process for each transformation
and end up with a set of mapping from global identifiers for each component schema.
Following the running example, ‘ person’ maps to ‘ menl ++ womenl’ for component
schema 1, ‘ person’ mapsto ‘name2’ for component schema 2 and ‘ person’ maps to
‘person3’ for component schema 3. We can then put all these mappings together to get
ageneral mapping from global identifiersto queries expressed using component schema
congtructs. So ‘person’ would map to ‘menl ++ womenl ++ name2 ++ person3’. This

10

is, in essence, how the mapping will be generated athough in practise rather than store a
set of mapping for each component schema it will be easier to generate the mappings
for schema 1, add these to the general mappings, generate the mappings for schema 2,
add these to the general mappings and so on and so on.

Asan aside, it should be noted that as far astransation from global queries goes, which
is after all what this project is concerned with, schemes deleted or contracted from
component schemas are irrelevant — they have no bearing on trand ation from global
gueries because they are not present in the global schemato be trandated. | will include
them in my examples, however, for completeness and the software should be able to
cope with their presence even if by coping with them | only mean ignoring them.

So, to summarise, the constructor for the substituter object will be passed atree
representing both the global schema and the transformations from the component
schemas. From thisit will generate, using the method outlined above, a list of global
identifiers and a set of mappings from global identifiersto queries expressed in terms of
the component schemas. These will be stored as part of the data of the object.
Substituter objects will have a method that when passed a query tree will use these
mappings to substitute for the global identifiersin the query tree the appropriate
component queries. Thus, query trandation from global queries to queries expressed
using component schema constructs will be achieved.

3.4 Query Simplification

The lexer and parser will convert the text file containing the simplification rulesinto a
tree as explained above. It will then be necessary to convert this tree into some data
structure representing ‘from’ and ‘to’ query templates for use when smplifying queries.
The query templates themselves will remain in the form of trees. A list structure will
store pairs of these templates representing from-to simplifications. The actual process
of simplification will proceed as follows. The query to be smplified isin the form of a
tree. Thisquery tree will be traversed in-order. Each node will then be checked to see
it its sub-structure corresponds to one of the ‘from’ query templates in the list - going
through the list in order. If it does correspond its sub-tree will be changed to have the
same shape as the appropriate ‘to’ query template in the list of pairs. This process will
be repeated until atraversal of the query tree is completed with no alterations, indicating
that al simplifications have been performed. The process needs to be repeated asa
simplification of a particular structure in a query might cause a structure of which the
simplified structure is a sub-structure to require simplifying. Only a complete tree
traversal without change can make sure that all simplifications that can be done have
been done.

This simple algorithm for performing the smplifications has various inadequacies.
Firgly, it is probably not very efficient. Secondly, the order in which smplifications
are performed - which may affect the final query produced - is rather arbitrary being as
it is determined more by convenience than logic. However, this algorithm should work
so isfineasafirst attempt. Furthermore, by using multiple smplification list text files
and performing this whole process multiple timesit is possible to exercise more control
over the order of simplifications if desired.

11

To accomplish all thisthere will be asimplifier class. The constructor for this classwill
take a tree representing a list of simplification rules. It will traverse this tree to generate
the list of pairs of templates that will form part of the data for the simplifier object.
Simplifier objectswill have a method that will take a query and perform the appropriate
simplifications on it.

12

Figurel. The abstract syntax tree for the query ‘group (_person_qualification). Each
node contains information about what structure its sub-tree represents (query,
expression etc.) and also an associated text value.

query
textVa=null

-

T~

query expr
textVa=null textVa=null
expr & RRB
textVa=null textVa=null textvVa=")"
VarToken LRB query
textVa= textvVa=“(" textVa=null
“group”
expr
textVa=null
VarToken
textVa=

“_person_qualification”

13

4. IMPLEMENTATION

4.1 Research and Reading

The subject matter of this project goes considerably beyond the material covered in the
Databases lectures on the M Sc course. This meant that a large amount of preparatory
reading and research was required before the design of the software could even begin.
It was necessary to learn arelatively substantial volume of material connecting to the
framework within which | was to work. | had to learn about the hypergraph data model.
| had to learn how the automatically reversible schema transformations worked. ([3],
[4], [5], [6], [7] and [10] were all relevant to these goals). It was also necessary for me
to understand the workings of the common query language (CQL) to be used (I used
[8]). Obviously, aswell asreading | needed to spend a reasonable amount of time
actually working through the mechanics of the framework on paper as well. | spent
approximately a month and half on the above. Aswell asthis, during thistime, my
supervisor explained to me the precise syntax of the query language and the
transformation language. We also discussed various things that could be attempted
beyond the basic automatic query trandation. In the end, of these extensions of the
project, there was only time to actually attempt to implement the simplification of
trandlated queries.

4.2 Parsing the I nput

The first thing to implement was software to parse input into trees so that it could be
processed. My supervisor recommended the use of the tools CUP and JLex for this.
Having never used these tools before — indeed, having no previous experience with
parsing — it was necessary to dedicate some time to learning how to use them. For this|
read the manuals downloaded with the software (see [1] and [2]). After about two
weeks | felt confident enough to move onto coding.

Thefile ‘EdLex1’ isthe file passed to JLex for it to create the lexer from. Bascally, it
lists what symbols are to be looked for in the text file to be analysed and gives code to
be executed when these symbols are found. ‘EdLex1’ also contains code for a‘main()’
method. Thisisnot to be used by my finished software but can be used to test that the
lexer is producing the expected results by outputting information about each symbol the
lexer produces. From ‘EdLex1’ JLex generates a Java source code file ‘EdLex1.java.
When compiled two classfiles are produced ‘EdLex1.class and ‘ Yylex.class. The
EdLex1 class can be used for testing as explained above. The Yylex classiswhat is
actually used for lexing by the other software. Yylex objects are created with an
associated source of input — text files for the purposes of this project — and contain a
next_token() method that, unsurprisingly, returns the next token.

Thefile *EdCupl.cup’ isthefile passed to CUP that it uses to create the actual parser.
Thisfile starts by listing the various symbols that the text to be parsed may contain
including non-terminal symbols. A syntax is then specified with code included that
givesinstructions on how to construct each of the sub-structures that might make up the
resulting tree. From ‘EdCupl.cup’ CUP generates two Java source code files,
‘sym.java and ‘parser.java’ which compileto ‘sym’ and ‘parser’ classes. The sym

class contains only static final int variables — one for each terminal symbol. These are

14

needed for use by the lexer. | also chose to use them elsewhere in the software. For this
purpose | created another class, Elements, containing static final int variables for each
non-terminal symbol. The parser classiswhat actually doesthe parsing. When a parser
object is created the constructor is passed a Yylex object (which has a source of input
associated with it). Thus, the parser receives tokens from the lexer. The parser object
has a method parse() which parses all tokens it receives from the Yylex object into a
tree and returns an object that contains a reference to the root of the tree.

Trees are made up of nodes. Thus, as| was writing the lexer and the parser | also
needed to write a node class. The code for thisisin file ‘Node.java’. Asdiscussed
earlier, this needs member variablesto store referencesto the left and right children, to a
string containing the text for the node and to store an int giving which symbol, terminal
or non-terminal, the node and its sub-tree represent. At this stage, | included all these
variables and also various constructors to be used by the lexer and the parser. The
methods for this class were not needed at this stage and were not written until later.

When the above was written and working the software was capable of parsing input
from text filesinto trees. Combined with other code that was evolved during the
project, now surviving as the printQuery() and outputTree() methods of the TestDriver
class, it was possible to check that everything was working correctly. Thiswork on
producing a functional parser took approximately one month.

4.3 Trandating the Query

The next thing to implement was software for trandating queries based on
transformations. Thisis accomplished using the Substituter class the source code for
which isin file* Substituter.java. This class has one constructor and one public
method, performSubs().

The constructor is passed a Node reference which is the root of a tree generated by
parsing a transformationstext file. Its purposeisto initialise an ArrayList object,
globalnames, which contains alist of the names of the constructs of the global schema
and to initialise a HashM ap object, mainMap, which contains mappings from names of
global constructs to queries expressed using component schema constructs. The
globalnames object isinitialised fairly easily. The recursive method
buildGlobalNames() is called which traverses the appropriate section of the input tree
finding schemes for the global constructs, converting them into identifiers, and adding
these identifiers to globalnames. This method makes use of the scheme_to_name()
method which in turn callsthe recursive s_to_n() method which findsthe * StrToken’'sin
the scheme and concatenates them together in the appropriate manner to give the name
of the identifier for the scheme.

Initialising the mainMap object is more complicated. Firdly, itisset up so that every
globa name maps to an empty query (making use of the static final emptyQuery Node
reference). Then buildSubMap() is called, being passed a reference to the root of the
part of the input tree containing the transformations. The buildSubMap() is recursive
and traverses the tree looking for transformations from component schemas to the
globa schema. Whenever it finds a transformation is creates a HashMap(), tempmap,
which isinitialised to map each global construct to itself (i.e. it assumes no changes are

15

made to it initially). This tempmap object is then passed to the process_tran() method
along with the Node reference that is the root of the transformation. The process_tran()
method returns having altered tempmap so that now it maps each global name to the
appropriate query for the component schema the transformation relatesto. Using
tempmayp, mainMap isthen updated so that the query for every global name in tempmap
is appended to the query for the same global name in mainMap. Obvioudy, when
buildSubMap() isfinished mainM ap contains mappings from names of global identifiers
to queries expressed on the component schemas that give the correct result.

The process_tran() method works as follows. It is passed a reference to the tempmap
HashMap as explained above. It is also passed a Node reference to the transformation it
is meant to process. It isarecursive method, which goes through the primitive
transformations that make up the transformation it isto process, in reverse order. It
must go through them in reverse order for the following reasons. Each transformation
congsts of aseries of primitive transformations that transform a component scheme into
the global schema. Each primitive transformation is automatically reversible. Thus,
reversing first the last primitive transformation done, then the second last and so on can
reverse the whole transformation. Thus process tran() processes the primitive
transactions in reverse order making the appropriate substitutions in the queriesin
tempmap.

From the above we can see how the constructor initialises the mainMap and
globalnames objects. We can now turn to the Substituter class's only public method,
performSubs(). The workings of this method are simple. It isarecursive method that is
passed a Node reference. The sub-tree of this node is traversed recursively and
instances of global identifiers are found they are replaced in the tree by queries
expressed in terms of the component schemas. The mainMap HashMap is used.

To accomplish all the above extra functionality had to be added to the Node class. The
copySubtree() and copyNode() methods were added. The Substituter class uses these
methods. The copySubtree() method returns a node that is the root of atreethat isa
copy of the sub-tree of the node whose copySubtree() is called. The copyNode()
method takes a Node reference as a parameter. Calling a Node object’s copyNode()
method causes that node to become the root of atree that is a copy of the tree of the
parameter Node object.

Substituter objects enable queriesto be trandated using their performSubs() methods.

This section of the implementation took approximately two weeks. Again more code
was needed to test that iswas working and some of thissurvivesin the TestDriver class.

4.4 Simplifying the Query

Next, | needed to write the software for simplifying the queries once trandated. This
job is done by the Simplifier class the source code for which isin file * Simplifier.java.
This class has one constructor and one public method, simplify().

The constructor is passed a Node reference. Thisnode is the root of atree resulting

from parsing asimplifications text file. Simplifier objects have a member variable,
guerypairs, and the purpose of the constructor isto initialise this. The querypairs object

16

isan ArrayList whose function isto hold pairs of query templates — these being the
‘from’ and ‘to’ query template pairst o perform simplifications. Itisinitialised in the
following way. The constructor calls a recursve method, setltUp(), that traverses the
input tree. For each smplification structure it finds in the tree it adds a query pair to
guerypairs. These query pairs are the ‘from’ and ‘to’ templates for the smplification.
The constructor then calls the cleanTemplates() method. This method alters the query
templates in querypairs slightly to make the process of comparison with real queries
dightly easier.

Simplifier's public method, simplify(), is used to perform the actual simplifications. It
is passed a Node reference. Thisnode isroot of the tree representing the query to be
simplified. The simplify() method calls the simp() method which traverses the tree
performing smplifications and returns a value of true if any smplifications were
needed. It repeatedly calls ssmp() until such time as simp() returns a value of false
indicating no simplifications were performed and thus no more will be necessary. The
simp() method itself isrecursive, it calls check() on every node in the tree. Thus
check() is performed on every sub-tree in the query tree. The check() method itself calls
the compare() method once for every pair of templatesin querypairs. The compare()
method calls the comp() method passing it the root node of the sub-tree to be checked,
the root node of the ‘ from’ template of the pair being processed and an empty HashMap,
mapvar. The comp() method isarecursive method that checks whether a sub-tree and a
query template have the same structure — a structure requiring simplification. It returns
trueif thisisthe case. It also finds placeholder identifiersin the template and adds
mappings to the mapvar object mapping from each placeholder identifier in the template
to the sub-query to be substituted for the identifier in the ‘to’ template. The compare()
method then, provided comp() returned true, changes the sub-tree to simplify its
structure using the ‘to’ template from the pair and usi ng mapvar.

Thus, queries may be simplified using the simplify() methods of Simplifier objects.
This section of the implementation took approximately two weeks.

4.5 Testing the Softwar e

By the time | had completed the above sections of implementation there was very little
time left for teting. However, some rudimentary testing was done. As part of the
testing process | needed to complete the TestDriver class. Initsfinal version, it hasa
main() method that displays a menu offering options of loading a transformationsfile,
displaying the substitutions made during transations, loading a query, outputting the
query, outputting a text representation of the structure of the query tree, transating the
guery, loading a smplifications file and performing simplifications. | used this classto
help test the rest of the software. (The code to implement the menu in the TestDriver
class was adapted from code written by Keith Mannock of Birkbeck College. It usesthe
TextlO class written by David Eck of Hobart and William Smith College, Geneva. |
could easily have written the menu from scratch but did not do so in an effort to save
time.)

Asfar as| could ascertain the query trandation part of the software worked aswould be

desired. | will use the running example from Chapter 2 of thisreport. Given the global
schema, S, and transformation list, stored in the file * TFilel.txt’ this was successfully

17

parsed and the following output was given when the test driver was asked to display the
substitutions to be made during trandations:

person
[]++ (menl++ womenl) ++ name2 ++ person3

address

[1++([])++address2 ++ ([])

gualification

[1++([]) ++ qudlification2 ++ qualification3

post

[]++postl ++ ([]) ++ post3

_person_address

[1++([])++ _name address2 ++ ([])

_person_quadlification

[1++([])++ _name_qualification2 ++ quals_person_qualification3
_person_post

[1++ (_men_postl ++ women postl) ++ ([]) ++ _person_post3

This output indicates that the Substituter object has * person’ mapping to ‘[] ++ (menl
++ womenl) ++ name2 ++ person3’ and so on. The Substituter object has global
identifiers mapping to queries expressed on component schemas and these appear to be
accurate. When asked to translate the example query ‘group (_person_qualification)’
and then output the result it gave:

group (([]1++ ([]) ++ _name_qualification2 ++ quals_person_qualification3))

Thisis a query that would give the correct results. | tentatively conclude that the query
trandation software works but clearly more substantive testing remains to be done.

This example reveas certain problems with the simplification software, however.
Consider the following simplification rules contained in file * SFilel.txt’:

From group(xxx1 ++ xxx2) To (group(xxx1)) merge (group(xxx2))
From xxx1 ++ [] To xxx1

From [] ++ xxx1 To xxx1

From ([]) To[]

From ((xxx1)) To (xxx1)

From xxx1 ((xxx2)) To xxx1 (xxx2)

There are sufficient rules here to simplify the trandated query given above. When these
rules are given to a Simplifier object, however, and simplifications performed the result
is the following:

((group ([]1)) merge (group (_name_quadlification2))) merge (group (
guals_person_qualification3))

Thisis not the desired result. The problem clearly arises from the lack of control over
the order inwhich rules are performed. The‘([])’ is separated out to have its own group
operation before it is got rid of by the other rules. It thus escapes being got rid of. The
problem for this query could be solved by adding extra simplification rules but | didn’t

18

do this because | wanted to illustrate the potential problems of lacking control over the
order the simplification rules are performed in. To further illustrate this point consider
the following. ‘ SFile2.txt’ consists of:

From xxx1 ++ [] To xxx1

From [] ++ xxx1 To xxx1

From ([]) To[]

From ((xxx1)) To (xxx1)

From xxx1 ((xxx2)) To xxx1 (xxx2)

and ‘ SFile3.txt’ of
From group(xxx1 ++ xxx2) To (group(xxx1)) merge (group(xxx2))

If, using the test driver, we trandlate the query as above then load ‘ SFile2.txt’ and
perform simplifications we get:

group (_name_qualification2 ++ quals_person_qualification3)
If we then load * SFile3.txt’” and perform simplifications we get:
(group (_name_gualification2)) merge (group (quals_person_qualification3))

Thisis essentially what isdesired. Using an, admittedly ad hoc, method to control the
order of simplifications we can get the desired result. There were other problems with
the simplification software but these were problems | expected all along, so were not
discovered as aresult of testing so are not discussed here but later.

Other testing was performed but it was all of the same nature as that given above. | did
not perform anything that could be considered truly rigorous systematic testing. Firstly,
| did not have time. Secondly, | have insufficient knowledge of how this software will
need to perform in practice, what might be considered typical queries and typical
transformations, to test for these things. The testing was therefore limited to things like
that given above. However, even in the example given, the software must produce
mappings from global identifiers using transformations that include adding, extending
and renaming both nodes and edges. So a certain range of things are tested.

To conclude, the testing indicated that the software essentially worked as planned with
some limitations on the smplifications. However, more rigorous testing is clearly
needed. Finishing the TestDriver class, testing, debugging and some writing up were
done in parallel for about two weeks. Most of this time was spent on debugging.

19

5. CONCLUSIONS

5.1 Problems with the Proj ect

The main problem with the finished software lies with the smplification of the
trandated queries. Asexplained in section 4 this does not work asintended. The user
does not have proper control over the order in which simplifications are performed and
this can lead to undesired results. This problem can be avoided by using multiple
Simplifier objects but thisis not an ideal solution. It renders control of the order in
which smplifications are performed something that has to be done in code. It would be
much better if this control were available by instructions contained in the smplifications
text file. A further problem with the query simplification part of the software comes
from the way | designed the syntax of simplifications. The ‘from’ and ‘to’ query
templates must syntactically be queries. If they are not the parser will produce an error.
This limits the type of simplifications that can be performed and prevents certain
desirable ones from being implemented. For example, it is not possible to specify
simplifications for lists of qualifiers within comprehensions. A list of qualifiersis not a
query so this cannot be done. It may, however, be desirable that it is done.

Apart from the above problems the actual software works as intended as far as my
testing has been able to ascertain. The are, however, further problems with the project
asawhole. Due to poor time management a disproportionate amount of time was spent
on certain activities. Had it not been for this better code may have been produced. |
found the code | had written difficult to debug when it came to this stage and by this
stage there was insufficient time to drastically change it to make it easier to debug. The
biggest problem caused by not having sufficient time was the lack of testing. | have
confidence in the design of the software, with the exception of those deficiencies
already mentioned, but | cannot state with certainty that the actual code written will
awayswork. Thisis because of inadequate testing.

5.2 Possible Improvementsto the Software

There are a number of possible improvements that could be made to the software.
Obvioudly, the smplification of queries could be improved as discussed above.
Another possible improvement, would be the extension of the transformation language.
An enhanced transformation language isoutlined in [9]. Transformationsin the existing
language are schema specific in that they are meant only to transform a single schema,
A, into asingle schema, B. In the extended language, parameterised transformations
can be written. Thus, one parameterised transformation could take any schema, Ai,
from a set of schemas, A1, A2 ... An, and transform it into a schema, Bi - its equivalent
schemafrom B1, B2 ... Bn. Thiswould obviously constitute a major extension to the
software as it currently is.

Another addition to the software would be to enable it to trandate the Common Query
Language from and to SQL. It islikely that a user would want to query the
heterogeneous database usng SQL, or another high-level query language, rather than
the CQL. Itisalso likely that the local databases would need to be queried using SQL.
Trangdlating to and from SQL, and probably other query languages, would be a
necessary addition to make a practically useful system.

20

5.3 Final Conclusons

There were various problems with some aspects of the final software. Problems with
time management during the project led to inadequate testing. Despite this the central
goal of the project was to produce software to automatically trandate queries expressed
on a global schema into ones expressed on various component schema using the
transformation pathways in between and this central goal was achieved. Even if the
software does turn out to have bugs my testing did not detect | believe the basic design
to be sound. The software | have written and work | have done provide agood basisfor
the extensions outlined above.

21

REFERENCES

[1] Berk E, “JLex: A lexical analyzer generator for Java’,
http://www.cs.princeton.edu/~appel/modern/java/JLex, 1997.

[2] Hudson S, “CUP User's Manua”,
http://www.cs.princeton.edu/~appel/modern/java/ CUP, 1999.

[3] McBrien P and Poulovassilis A, “A formal framework for ER schema
transformation”, Proc. ER'97, volume 1331 of LNCS, pages408 -421. Springer-Verlag,
1997.

[4] McBrien P and Poulovassilis A, “Automatic migration and wrapping of databases
applications— a schematransformation approach”, Proc. ER'99, volume 1728 of LNCS,
pages 96-113. Springer-Verlag, 1999.

[5] McBrien P and Poulovassilis A, “A uniform approach to inter -model
transformations’, Advanced Information Systems Engineering, 11th International
Conference CAiISE'99, volume 1626, pages 333-348. Springer-Verlag, 1999.

[6] McBrien P and Poulovassilis A, “Schema evolution in heterogeneous database
applications, a schema transformation approach”. Technical Report 31/03/00, Birkbeck
College and Imperial College.

[7] Poulovassilis A, Lecture course entitled “Advances in Databases’ (Notes4 —
Distributed Databases, Notes 5 — Heterogeneous Databases). July 2001.

[8] Poulovassilis A, “Automed working document 2, the Automed Intermediate Query
Language”. Technical Report 15/06/01, Birkbeck College.

[9] Poulovassilis A, “Automed working document 4, An enhanced transformation
language for the HDM”. Technical Report 31/06/01, Birkbeck College.

[10] Poulovassilis A and McBrien P, “A general formal framework for schema
transformation”, Data and Knowledge Engineering, 28(1), pages 47-71, 1998.

22

APPENDIX A —JavaFiles

Nodejava
package QTran;

inport java.io.?*;
i nport java_cup.runtine.*;

public cl ass Node
{

int snum
Node | Ref, rRef;
String textVal;

public Node(int snum bject | Ref, Object rRef)

{
this. snum = snum
this. | Ref = (Node)l Ref;
this.rRef = (Node)rRef;
}
public Node(int snum String textVal)
{
this(snum null, null);
this.textVal = new String(textVal);
}

public Node(Object | Ref, Object rRef)

t hi s(El ement s. PARTI AL_STRUCTURE, | Ref , r Ref) ;
}

publ i c Node(l nput Stream i npstr) throws Exception
{

parser p = new parser(new Yyl ex(inpstr));

Synbol s = p.parse();

Node n = (Node)s. val ue;

this. snum = n.snum

this. | Ref n. | Ref;

this.rRef = n.rRef;

this.textVal = n.textVal;

}

private Node()

{
}

public void copyNode(Node n)
{

if (n==null) throw new Nul | Poi nt er Exception();

shum = n. snum
if (n.textVal!l=null)

textVal = new String(n.textVal);
el se textVal = null;

if (n.IRefl=null)
| Ref = n. | Ref.copySubtree();

23

el se | Ref =nul | ;
if (n.rRef!=null)

rRef = n.rRef.copySubtree();
el se rRef =nul | ;

}

publ i ¢ Node copySubtree()

{
Node n

n.snum

= new Node();
= snum
if (textVal!l=null)
n.textVal = new String(textVal);
else n.textVal = null;

if (IRef!=null)
n. | Ref = | Ref.copySubtree();

if (rRef!
n. r Ref

nul)
r Ref . copySubtree();

return n;

}

24

Substituter.java

package Qrran;
inport java.util.?*;

public class Substituter
{
static final Node enptyQuery =
new Node(El ement s. query,
new Node(El ements. expr, new Node(sym LSB,
Node(sym RSB, "]1")), null);

HashMap mai n\vap;
ArraylLi st gl obal nanes;

private String cleanStr(String s)
{
return s.substring(l, s.length() - 1);

}

private void s_to_n(StringBuffer s, Node root)

{

if (root==null) return;

if (root.snume=sym Str Token)

{
s. append(cl eanStr(root.textVal));
s. append("_");
return;

}

s_to_n(s, root.|Ref);

s_to_n(s, root.rRef);

}

private String schenme_t o_nane(Node root)
{
StringBuffer s = new StringBuffer();
s_to_n(s, root);
s.del eteChar At (s.length()-1);
return s.toString();

}

private void buil dd obal Nanes(Node root)
{
if (root==null) return;

if (root.snum == El ements. schene)

{
gl obal nanes. add(schene_t o_nane(root));
return;

}
bui | d@ obal Nanes(r oot .| Ref);
bui | d@ obal Nanes(r oot . r Ref);

"),

}
private void update_tree(Node n, String s, Node Q)
{
if (n==null) return;
if (n.snum == El ements. expr)
if (n.lRef.snum == sym Var Token)

25

new

if (n.lRef.textVal.equals(s))

n. copyNode(new Node(El emrent s. expr, new Node(new
Node(sym LRB, "("), q),
new Node(sym RRB, ")")));
return;

}
update_tree(n.I Ref, s, Q);
update_tree(n.rRef, s, Q);

}
private voi d update_map(HashMap tenpnmap, String s, Node Q)
{

for (int i=0; i<globalnames.size(); i++)

{

Node n =
((Node) (t empmap. get (gl obal nanes. get(i)))).copySubtree();
update_tree(n,s,q);
t enprmap. put (gl obal nanes. get (i), n.copySubtree());
}
}

private void text_rep(Node n, String f, String t)
{
if (n==null) return;

if (n.snume=sym Var Token)
{

StringBuffer sb = new StringBuffer();
int i = 0;
int ni = n.textVal.indexOf(f);
while (ni!=-1)
{
sb. append(n.textVal.substring(i,ni));
sb. append(t);
i =ni + f.length();
ni = n.textVal.indexCOf(f,i);

sb. append(n.textVal.substring(i));
n.textVal = sb.toString();
return;
}
text_rep(n.|Ref,f,t);
text_rep(n.rRef,f,t);

}
private void text_replace(HashMap tenpmap, String f, String t)
{

for (int i=0; i<globalnames.size(); i++)

{

Node n =

((Node) (t empmap. get (gl obal nanes. get(i)))).copySubtree();
text_rep(n,f,t);
t enprmap. put (gl obal nanes. get (i), n.copySubtree());

}

private void process_tran(Node root, HashMap tenpmap, String num
{

if (root==null) return;
if (root.snum == El enments.primtransf)

26

{
if((root.lRef.snum==s ym ContractNode)| |

(root. | Ref.snum==s ym Contract Edge))
return;
if((root.lRef.snum==s ym ExtendNode)| |(root.|Ref.snum==
sym Ext endEdge))

updat e_map(tenpmap,s chene_t o_nanme(root.rRef)+num

enpt yQuery) ;
return;
}

Strings=s cheme_to_nane(root.| Ref.rRef);
inti snum=r oot.| Ref.| Ref.snum
if((isnum==sym AddNode)| |(isnum==s ym AddEdge))
updat e_map(tenpmap,s +numr oot.rRef);
elsei f(isnum==s ym RenaneNode)
text_repl ace(tenpmap,c leanStr(root.rRef.|l Ref.textVal),s);
elsei f(isnum==s ym RenaneEdge)
text _repl ace(tenpnap,
cleanStr(root.rRef.| Ref.textVal)+s.substring(s.indexOf('_")),s) ;
return;
}
process_tran(root.rRef,t enpmap,n unm);/ /Noteu nusualw ayr ound.
process_tran(root.| Ref,t enpmap,n um;

}
privatev oidb uil dSubMap(Noder oot)
{
if(root==null)r eturn;
if(root.snum==El enments.transformation)
{
Stringnum=r oot.| Ref.| Ref.rRef.textVal;
//n umwillh oldt henunber oft hel ocals chemab ei ngworked
with.
HashMapt enpmap =n ew HashMap();
for(inti =0;i <global names.size();i ++)
{
t enprmap. put (gl obal nanes. get (i), n ew Node(El enents. query,n ew
Node(

El ement s. expr,n ew Node(sym Var Token,
(String) (gl obal nanes. get(i))+num),n ull),n wull)) ;

}
process_tran(root,t enpmap,n um;
for(inti =0;i <global names.size();i ++)

{
Node g 1 =(Node) (mai nMap. get (gl obal names. get(i)));
Node g 2=(Node) (t enpnmap. get (gl obal names. get (i)));
Noden g=n ew Node(El enents. query,
new Node(ql,n ew Node(sym Append,"” ++")) ,q 2);
mai nMap. put (gl obal names. get (i), n . copySubtree());
}
return;

}
bui | dSubMap(r oot . | Ref);
bui | dSubMap(r oot . r Ref) ;

}

publicv oidp erfornSubs(Nodet root)

27

{
if (troot == null) return;
if (troot.snum == El enents. expr)
if (troot.| Ref.snum == sym Var Token)

Node n = (Node) (mai nMap. get (troot.| Ref.textVal));
if (n!=null)
troot . copyNode(new Node(El ements. expr, new Node(
new Node(sym LRB, "("), n), new Node(symRRB, ")")));
return;

}
per fornSubs(troot.| Ref);
per fornSubs(troot.rRef);

}

public Substituter(Node root)

{
mai nMap = new HashMap();
gl obal nanes = new ArraylList();
bui | d@ obal Nanes(r oot .| Ref);

for (int i=0; i<globalnames.size(); i++)
mai nMap. put (gl obal names. get (i), enptyQuery. copySubtree());

bui | dSubMap(r oot . r Ref);

28

Simplifier.java

package Qrran;
inport java.util.?*;

public class Sinplifier

{
ArraylLi st querypairs;

static final String startVarStr = "xxx";
private class QueryPair
Node from to;

QueryPair (Node f, Node t)
{
from= f.copySubtree();
to = t.copySubtree();
}
}

private bool ean conp(Node queryNd, Node tenpl ateNd, HashMap napv)

{
if ((queryNd==null)]|]| (tenpl ateNd==null))

if ((queryNd==null) &&(tenpl ateNd==null)) return true;
el se return fal se;

}
if ((tenplateNd.textVal!=null) &&
(tenplateNd.textVal .startsWth(startVarStr)))
{
mapv. put (tenpl at eNd. t ext Val , quer yNd) ;
return true;
}
if (queryNd.snum =t enpl at eNd. snum)
return fal se;
if (queryNd.textVal!=null)
{

if (!(queryNd.textVal.equal s(tenplateNd.textVal))) return fal se;

else if (tenmplateNd.textVal!=null) return fal se;

bool ean bl = conmp(queryNd.| Ref, tenpl ateNd.| Ref, mapv);
bool ean b2 = conmp(queryNd.rRef, tenpl ateNd.rRef, mapv);
return (bl&&bh?2);

}

private void repl ace(Node root, HashMap mapv)
{
if (root==null) return;
if ((root.textVal!=null) &&
(root.textVal.startsWth(startVarStr)))
{
Node n = (Node) (mapv. get(root.textVal));
root. copyNode(n);
return;
}
repl ace(root. | Ref, mapv);
repl ace(root.rRef, mapv);

}

29

private bool ean conpare(Node root, int i)
{
HashMap mapvar = new HashMap();
QueryPair gp = (QueryPair) (querypairs.get(i));
bool ean b = conp(root, qp.from nmapvar);
if (b)
{

root. copyNode(qgp.to);
repl ace(root, mapvar);

}

return b;
}
private bool ean check(Node root)
{

bool ean b = fal se;
for(int i=0; i<querypairs.size(); i++)

{
bool ean b2 = conpare(root, i);
b = b||b2;
return b;
}
private bool ean sinp(Node root)
{

if (root==null) return false;
bool ean a, b, c;

a = check(root);
b = sinp(root.| Ref);
c = sinp(root.rRef);

return al|b|]c;

}
public void sinplify(Node root)
{
bool ean b;
do
b = sinp(root);
while (b);
}
private void cl eanTenpl at e(Node root)
{
if (root==null) return;
if ((root.snum==El enents. query) &&
(root. | Ref.snum==El ements. expr) &&
(root. | Ref.| Ref.snumr=sym Var Token) &&
(root.|Ref.l Ref.textVal.startsWth(startVarStr)))
{
root.textVal = root.| Ref.| Ref.textVal;
return;

cl eanTenpl at e(root . | Ref);
cl eanTenpl at e(r oot . r Ref);

}

private void cl eanTenpl at es()

{

for(int i=0; i<querypairs.size(); i++)

30

{
cleanTenpl ate(((QueryPair)(querypairs.get(i))).from);

cleanTenpl ate(((QueryPair)(querypairs.get(i))).to);
}
}

private void setltUp(Node root)
{
if (root==null) return;

if (root.snum== Elenments.sinplification)

{
querypairs.add(new QueryPair(root.| Ref.|Ref.rRef, root.rRef)

return;
}
setltUp(root.| Ref);
setltUp(root.rRef);

}

public Sinplifier(Node root)
{
querypairs = new ArraylList();
setltUp(root);
cl eanTenpl ates();
}
}

31

Elementsjava
package Qrran;

public class El enents

{
public static final int PARTI AL_STRUCTURE = 999;
public static final int seq = 1004,
public static final int qual = 1006
public static final int quals = 1005
public static final int query = 1002;
public static final int expr = 1003;
public static final int nane = 1007
public static final int transformation = 1008;
public static final int transf_list = 1009;
public static final int primtransf = 1010;
public static final int scheme = 1011
public static final int nodeScheme = 1012
public static final int edgeScheme = 1013;
public static final int schene_list = 1014;
public static final int schema_def = 1015;
public static final int schema_defs = 1016;
public static final int transformations = 1017
public static final int allinfo = 1018;
public static final int sinplification = 1019;
public static final int sinp_list = 1020;

}

32

TestDriver.java

package QTran;
inport java.io.*;

public class TestDriver
{
private stati
private stati
private stati
private stati

final char LOADTRANS = 'a';
final char LISTSUBS = 'b';
final char GETQUERY = 'c¢';
final char PRINTQUERY = 'd';

private static final char PRINTTREE = 'e';
private static final char TRANSLATE = 'f"';
private static final char LOADSIMPS = '¢g';

final char SIMPLIFY = "h';
final char EXIT = 'x';

private stati
private stati

O0O0O0O0O0O0O0O00 00

Substituter sub;
Sinplifier sinp;
Node q;

TestDriver() {}

public static void main(String[] args) throws Exception
{
TestDriver d = new TestDriver();
do {
Systemout.println("\t\tMnu");
Systemout.println("\t" + LOADTRANS + "- |oad transformations
file");
Systemout.println("\t" + LI STSUBS + "- display substitutions
made during translation");
Systemout.println("\t"
Systemout.println("\t"
Systemout.println("\t"
representation of query tree");
Systemout.println("\t"
Systemout.println("\t"
file");
Systemout. println("\t" + SIMPLIFY + "- perform
sinplifications");
Systemout.println("\t" + EXIT + "- exit");
Systemout.print("\t>");
} while (d.action(Textl QO getlnChar()));
System out. println("\n\nFinished!");

GETQUERY + "- load query fromfile");
PRI NTQUERY + "- print query");
PRI NTTREE + "- output text

+ + +

TRANSLATE + "- translate query");
LOADSI MPS + "- load sinplification

+ + -

}
private bool ean action(char c) throws Exception
{
switch(c){
case LOADTRANS : |oadTrans(); break;
case LISTSUBS : |istSubs(); break;

case CETQUERY : get Query(); break;
case PRINTQUERY : printlt(); break;
case PRINTTREE : printTree(); break;
case TRANSLATE : translate(); break;
case LOADSI MPS : |oadSi nps(); break;
case SIMPLIFY : sinplify(); break;
case EXIT : return fal se;

33

**--);

defaul t:

Systemout.println("** Unknown sel ection

}

return true;

}

private void sinplify()
{

}

private void transl ate()

{
}

private void printlt()
{

sinmp.simplify(q);

sub. per f or nBubs(q);

print Query(q):
Systemout. println();

}

private void printTree()
{
out put Tree(q) ;
Systemout. println();

}

private void getQuery() throws Exception

{
Systemout.print("Enter the file name: ");
String name = Textl Q getlnString();
q = new Node(new Fil el nput Stream nane));

}

private void | oadSi nps() throws Exception

{
Systemout.print("Enter the file name: ");
String name = Textl Q getlnString();
Node n = new Node(new Fil el nput St ream(nane));
sinmp = new Sinplifier(n);

}

private void | oadTrans() throws Exception

{
Systemout.print("Enter the file name: ");
String name = Textl Q getlnString();
Node n = new Node(new Fil el nput St ream(nane));
sub = new Substituter(n);

}

private void |istSubs()
{
for (int i=0; i<sub.globalnames.size(); i++)
{
String s = (String)(sub. gl obal nanmes. get (i));
Systemout. println(s);
pri nt Query((Node) (sub. mai nMap. get(s)));
Systemout. println();

34

public static void output Tree(Node n)

{

}

Systemout. print(n.snum+ "|");

if (n.textVal!l=null) Systemout.print(n.textVal);
Systemout.print("{");

if (n.IRefl=null) outputTree(n.|Ref);
Systemout.print(",");

if (n.rRef!=null) outputTree(n.rRef);
Systemout.print("}");

public static void printQuery(Node n)

{

if (n==null) return;
print Query(n. | Ref);
if (n.textVal!l=null) Systemout.print(n.textVal+" ");
print Query(n.rRef);

35

APPENDIX B —CUP and JLex Files

EdCupl.cup
package QTran;

term nal VarToken, StrToken, NumToken, AnyToken,
Let, Equal, Append, Difference, In, Sem Col on, LArrow,
Conma, Bar, LSB, RSB, LRB, RRB,
LDAB, RDAB, FronSchemn, End,
AddNode, Del Node, AddEdge, Del Edge, RenaneNode, RenaneEdge,
Ext endNode, Contract Node, ExtendEdge, Contract Edge,
From To;

non term nal query, expr, seq, quals, qual,
name, transformation, transf_list, primtransf, schene,
nodeSchere, edgeScheme, schene_list, transfornmations,
sinmplification, sinp_list,
al I i nfo;

precedence left Let, Equal, Append, Difference, In, LArrow, Sem Col on,
Comma, Bar, LSB, RSB, LRB, RRB, LDAB, RDAB, FronSchemn, End,
AnyToken, Var Token, Nunifoken, StrToken;

allinfo ::= scheme_list:el transformations: e2
{: RESULT = new Node(El enents.allinfo, el, e2);
'}
| query:el
{: RESULT = new Node(El enments.allinfo, el, null);
)

| sinp_list:el
{: RESULT = new Node(El enments.allinfo, el, null);
i}

sinmp_list ::= sinp_list:el sinplification:e2
{: RESULT = new Node(El ements.sinp_list, el, e2);
o}
| sinplification:el
{: RESULT = new Node(El enents.sinp_list, el, null);

)
sinplification ::= Fromel query:e2 To:e3 query:e4
{: RESULT = new Node(El ements.sinplification,
new Node(new Node(el, e2), e3), ed);
o}
transformations ::= transformations:el transfornmation:e2
{: RESULT = new Node(El enents.transformations,
el, e2?);
o}
| transformation:el
{: RESULT = new Node(El enents.transformations,
el, null);
)
transformation ::= FronSchema: el Numloken: e2 transf_list:e3 End: e4d

36

transf _|i st

pri mtransf

e2);

e2);

e2);

e2);

RESULT = new Node(El ements.transformation,

new Node(new Node(el, e2), e3), ed);

primtransf:el Sem Colon:e2 transf_list:e3

{: RESULT = new Node(El ements.transf_|ist,
new Node(el, e2), e3);
o}

primtransf:el

{: RESULT = new Node(El ements.transf _|ist,
el, null);

o}

AddNode: el nodeSchene: e2 query: e3
{: RESULT = new Node(El ements. primtransf,
new Node(el, e2), e3);

-}

Del Node: el nodeSchene: e2 query: e3

{: RESULT = new Node(El ements. primtransf,
new Node(el, e2), e3);

2}

AddEdge: el edgeSchene: e2 query: e3

{: RESULT = new Node(El ements. primtransf,
new Node(el, e2), e3);

-}

Del Edge: el edgeSchene: e2 query: e3

{: RESULT = new Node(El ements. primtransf,
new Node(el, e2), e3);
o}

RenaneNode: el nodeSchene: e2 nane: e3

{: RESULT = new Node(El ements. primtransf,
new Node(el, e2), e3);

i}

RenaneEdge: el edgeSchene: e2 namne: e3

{: RESULT = new Node(El ements. primtransf,
new Node(el, e2), e3);

o}

Ext endNode: el nodeSchene: e2
{: RESULT = new Node(El ements. primtransf,

o}

Contract Node: el nodeSchene: e2
{: RESULT = new Node(El ements. primtransf,

o}

Ext endEdge: el edgeSchene: e2
{: RESULT = new Node(El ements. primtransf,

o}

Cont ract Edge: el edgeSchene: e2
{: RESULT = new Node(El ements. primtransf,

37

el,

el,

el,

el,

scheme ::= nodeSchene: el
RESULT = new Node(El enents. schene, el, null);
| edgeSchene: el

RESULT = new Node(El enents. schene, el, null);
)

nodeSchene ::= LDAB: el namre: e2 RDAB: e3

. RESULT = new Node(El emrent s. nodeSchene,
new Node(el, e2), e3);
1

edgeSchene ::= LDAB: el nane:e2 Comma: e3 schenme_list:e4 RDAB: e5

. RESULT = new Node(El emrent s. edgeSchene,
new Node(new Node(new Node(el, e2), e3), ed), eb);
o}

scheme_list ::= schene: el
{: RESULT =
new Node(El ements. schenme_list, el, null);
i}

| scheme_list:el Conmma: e2 schemne: e3
{: RESULT = new Node(El enents.schene_list,
new Node(el, e2), e3);
)

nane ::= StrToken:el
{: RESULT = new Node(El enents. nane, el, null); :};

query ::= expr:el
{: RESULT =
new Node(El ements. query, el, null);

-}
| Let:el VarToken:e2 Equal:e3 query:e4 In:e5 query:eb
{: RESULT = new Node(El enents. query,
new Node(new Node(new Node(
new Node(el, e2), e3), e4), e5), eb);
)
| query:el Append: e2 query:e3
{: RESULT = new Node(El enents. query,
new Node(el, e2), e3);
)

| duery: el Difference:e2 query:e3
{: RESULT = new Node(El enents. query,
new Node(el, e2), e3);
)

| query:el expr:e2

{: RESULT = new Node(El ements. query, el, e2);
°H

38

expr

seq ::

qual s ::

e3);

qual

Numroken: el
{: RESULT = new Node(El ements.expr, el, null); :}
Str Token: el
{: RESULT = new Node(El ements.expr, el, null); :}
Var Token: el
{: RESULT = new Node(El ements.expr, el, null); :}
AnyToken: el
{: RESULT = new Node(El ements.expr, el, null); :}
LSB: el query: e2 Bar:e3 qual s: e4 RSB: e5
{: RESULT = new Node(El enents. expr,

new Node(new Node(new Node(el, e2), e3), ed), e5);

o}
LSB: el RSB: e2
{: RESULT = new Node(El enents.expr, el, e2); :}
LRB: el seq: e2 RRB:e3
{: RESULT = new Node(El enents. expr,
new Node(el, e2), e3);
}

LRB:el query:e2 RRB:e3
{: RESULT = new Node(El enents. expr, new Node(el, e2), e3);
°H

seq: el Conmma: e2 query:e3

{: RESULT = new Node(El enents.seq, new Node(el, e2), e3);
)
query:el

{: RESULT = new Node(El ements.seq, el, null); :}

qual : el Sem Col on: e2 qual s: e3
{: RESULT = new Node(El enents. qual s, new Node(el, e2),

)
qual : el
{: RESULT = new Node(El enents.quals, el, null); :}

query:el

{: RESULT = new Node(El ements.qual, el, null); :}
query:el LArrow e2 query:e3

{: RESULT = new Node(El enents. qual, new Node(el, e2), e3);
)

39

EdLexl
package Qrran;

inport java_cup.*
i nport java_cup.runtinme.*;

public class EdLex1
public static void main(String[] args) throws Exception

{
Yyl ex yy = new Yyl ex(Systemin);

Synbol t;
while ((t = yy.next_token()).sym!= sym ECF)
Systemout.printin(t +" " + ((Node)(t.value)).textVal);
}
}
%%
Y%cup
%eof val {
return (new Synbol (sym ECF,""));
%eof val }

NUMIOKEN = [0-9]+| ([0-9]1+)(".")([0-9]+)
STRTOKEN = \"[/M"]*\"

PREFI XOPERATOR = "(+)"| " (-
)Illll()IllII(/)IIlII(&)IIlII(#)IIlII(
VARTCOKEN = [a-z_] [A-Za-z0-9_]

)R (<) (=) "

*

NN_WHI TESPACE = [\ \t\b\012]+

%%

"let" { return (new Synbol (sym Let, new Node(sym Let, "let"))); }
"in" { return (new Synbol (symIn, new Node(symln, "in"))); }

"= { return (new Synbol (sym Equal, new Node(sym Equal, "=")));
"++" { return (new Synbol (sym Append, new Node(sym Append, "++")));
"--" { return (new Synbol (sym Di fference, new Node(sym Di fference,
"))}

" { return (new Symbol (sym Sem Col on, new Node(sym Seni Col on,
"))}

"<-" { return (new Symbol (sym LArrow, new Node(sym LArrow, "<-")));
" { return (new Symbol (sym Comma, new Node(sym Corma "))

"I" { return (new Synbol (sym Bar, new Node(sym Bar, "|"))); }

"I { return (new Symbol (sym LSB, new Node(sym LSB, "["))); }

"1™ { return (new Symbol (sym RSB, new Node(sym RSB, "]"))); }

"(" { return (new Symbol (sym LRB, new Node(sym LRB, "("))); }

"Y' { return (new Synbol (sym RRB, new Node(sym RRB, ")"))); }
"Any" { return (new Symbol (sym AnyToken, new Node(sym AnyToken,
"Any"))); }

"<<" { return (new Synbol (sym LDAB, new Node(sym LDAB, "<<")));
">>" { return (new Synbol (sym RDAB, new Node(sym RDAB, ">>")));

"Frontchema" { return (new Synbol (sym FronSchema, new
Node(sym Fr onSchema, "Frontchema"))); }

" End" { return (new Synbol (sym End, new Node(sym End,
" Endll))) ; }

40

"addNode" { return (new Synbol (sym AddNode, new Node(sym AddNode,
yytext()))); }
"del Node" { return (new Synbol (sym Del Node, new Node(sym Del Node,
yytext()))); }
"addEdge" { return (new Synbol (sym AddEdge, new Node(sym AddEdge,

yytext()))); }
"del Edge" { return (new Synbol (sym Del Edge, new Node(sym Del Edge,

yytext()))) }

"renameNode" { return (new Synbol (sym RenameNode, new
Node(sym RenanmeNode, yytext()))); }
"renanmeEdge" { return (new Synbol (sym RenameEdge, new

Node(sym RenaneEdge, yytext()))); }

"ext endNode" { return (new Synbol (sym Ext endNode, new
Node(sym Ext endNode, yytext()))); }

"contract Node" { return (new Synbol (sym Cont ract Node, new
Node(sym Cont ract Node, yytext()))); }

"ext endEdge" { return (new Synbol (sym Ext endEdge, new
Node(sym Ext endEdge, yytext()))); }

"contract Edge" { return (new Synbol (sym Contract Edge, new
Node(sym Cont ract Edge, yytext()))); }

"From' { return (new Synbol (sym From new Node(sym From "Froni'))); }
"To" { return (new Synbol (sym To, new Node(sym To, "To"))); }

{ PREFI XOPERATOR} { return (new Synbol (sym Var Token, new
Node(sym Var Token, yytext()))); }
{VARTOKEN} { return (new Synbol (sym Var Token , new Node(sym Var Token,

yytext()))); }
{STRTOKEN} { return (new Synbol (sym StrToken , new Node(sym StrToken,

yytext()))): }
{NUMIOKEN} { return (new Synbol (sym Numloken , new Node(sym NunToken,

yytext()))); }
{ NN_WH TESPACE} { }

{ return (new Synbol (symerror,"**ERROR**")),; }

41

APPENDI X C — Text Files

QFilel.txt

group(_person_qualification)

TFilel.txt

<<"person">>,

<<"addr ess" >>,

<<"qualification">>,

<<"post">>,

<<"", <<"person">>, <<"addr ess" >> >>,

<<"", <<"person">> <<"qualification">> >>,
<<"", <<"person">> <<"post">> >>
Fronchema 1

addNode <<"person">> nmenl ++ wonenl;

addEdge <<"", <<"person">> <<"post">> >> men_postl ++_wonmen_post1;
contract Edge <<"", <<"men">>, <<"post">> >>;
contract Edge <<"", <<"women">>, <<"post">> >>;

contract Node <<"nen">>;

contract Node <<"wonen">>;

ext endNode <<"address">>;

ext endEdge <<"", <<"person">>, <<"address">> >>

ext endNode <<"qualification">>;

ext endEdge <<"", <<"person">> <<"qualification">> >>
End

FronSchema 2

renaneNode <<"nane">> "person";

ext endNode <<"post">>;

ext endEdge <<"", <<"person">>, <<"post">> >>

End

FronSchema 3

renamekEdge <<"qual s", <<"person">> <<"qualification">> >>
ext endNode <<"address">>;

ext endEdge <<"", <<"person">>, <<"address">> >>

End

SFilel.txt

From group(xxxl ++ xxx2) To (group(xxxl)) merge (group(xxx2))
From xxx1 ++ [] To xxx1

From[] ++ xxx1 To xxxl1

From ([]) To []

From ((xxx1)) To (xxx1)

From xxx1 ((xxx2)) To xxx1 (xxx2)

SFil e2.txt

From xxx1 ++ [] To xxx1

From[] ++ xxx1 To xxxl1

From ([]) To []

From ((xxx1)) To (xxx1)

From xxx1 ((xxx2)) To xxx1 (xxx2)

42

SFile3.txt

From group(xxxl ++ xxx2) To (group(xxxl1l)) merge (group(xxx2))

43

APPENDI X D — Running I nstructions

1) Copy the directories QTran, java_cup and JLex and their contents somewhere into
the Java class path on the machine.

2) Thetest driver can then be executed by entering:
java QIran. TestDri ver

3) Queries, simplifications and transformations can be loaded from text files using the
menu. The test driver only deals with one query, one set of transformations and one
set of smplifications at atime. Loaded a new smplification file, for instance,
removes the old one — but it doesn’'t remove the current query or set of
transformations.

