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Abstract. Grid computing has great potential for supporting the inte-
gration of complex, fast changing biological data repositories to enable
distributed data analysis. One scenario where Grid computing has such
potential is provided by proteomics resources which are rapidly being de-
veloped with the emergence of affordable, reliable methods to study the
proteome. The protein identifications arising from these methods derive
from multiple repositories which need to be integrated to enable uni-
form access to them. A number of technologies exist which enable these
resources to be accessed in a Grid environment, but the independent
development of these resources means that significant data integration
challenges, such as heterogeneity and schema evolution, have to be met.
This paper presents an architecture which supports the combined use of
Grid data access (OGSA-DAI), Grid distributed querying (OGSA-DQP)
and data integration (AutoMed) software tools to support distributed
data analysis. We discuss the application of this architecture for the in-
tegration of several autonomous proteomics data resources.

1 Introduction

Grid computing technologies are becoming established which enable distributed
computational and data resources to be accessed in a service-based environment.
In the life sciences, these technologies offer the possibility of analysis of complex
distributed post-genomic resources. To support transparent access, however, such
heterogeneous resources need to be integrated rather than simply accessed in a
distributed fashion. This paper presents an architecture for such integration
and discusses the application of this architecture for the integration of several
autonomous proteomics resources.

Proteomics is the study of the protein complement of the genome. It is a
rapidly expanding group of technologies adopted by laboratories around the
world as it is an essential component of any comprehensive functional genomics
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study targeted at the elucidation of biological function. This popularity stems
from the increased availability and affordability of reliable methods to study the
proteome, as well as the ever growing numbers of tertiary structures and genome
sequences emerging from structural genomics and sequencing projects.

The In Silico Proteome Integrated Data Environment Resource (ISPIDER)
project5 aims to develop an integrated platform of proteome-related resources,
using existing standards from proteomics, bioinformatics and e-Science. The in-
tegration of such resources would be extremely beneficial for a number of reasons.
First, having access to more data leads to more reliable analyses; for example,
performing protein identifications over an integrated resource would reduce the
chances of false negatives. Second, bringing together resources containing differ-
ent but closely related data increases the breadth of information the biologist has
access to. Furthermore, the integration of these resources, as opposed to merely
providing a common interface for accessing them, enables data from a range of
experiments, tissues, or different cell states to be brought together in a form
which may be analysed by a biologist in spite of the widely varying coverage and
underlying technology of each resource.

In this paper we present an architecture which supports the combined use
of Grid data access (OGSA-DAI), Grid distributed querying (OGSA-DQP) and
data integration (AutoMed) software tools, together with initial results from
the integration of three distributed, autonomous proteomics resources, namely
gpmDB6, Pedro7 and PepSeeker8. The emergence of databases on experimental
proteomics, capturing data from experiments on protein separation and identifi-
cation, is very recent and we know of no previous work that combines data access,
distributed querying and data integration of multiple proteomics databases as
described here.

Paper outline: Section 2 gives an overview of the OGSA-DAI, OGSA-DQP
and AutoMed technologies and introduces the three proteomics resources we
have integrated. Section 3 discusses the development of the global schema inte-
grating the proteomics resources within the ISPIDER project, Section 4 presents
our new architecture, Section 5 discusses related work and Section 6 gives our
conclusions and directions of further work.

2 Background

2.1 OGSA-DAI and OGSA-DQP

OGSA-DAI (Open Grid Services Architecture - Data Access and Integration)
is an open-source, extendable middleware product exposing data resources on
Grids via web services [2]. OGSA-DAI9 supports both relational (MySQL, DB2,

5 See http://www.ispider.man.ac.uk
6 See http://gpmdb.thegpm.org
7 See http://pedrodb.man.ac.uk:8080/pedrodb
8 See http://nwsr.smith.man.ac.uk/pepseeker
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SQL Server, Oracle, PostgreSQL), XML (Xindice, plans for eXist) and text data
sources. It provides a uniform request format for a number of operations on data
sources, including querying/updating, data transformation (XSLT), compression
(ZIP/GZIP), and data delivery (FTP/SOAP).

OGSA-DQP (Open Grid Services Architecture - Distributed Query Proces-
sor) is a service-based distributed query processor [1], offering parallelism to sup-
port efficient querying of OGSA-DAI resources available in a grid environment.
OGSA-DQP10 offers two services, the Grid Distributed Query Service (GDQS)
or Coordinator, and the Query Evaluation Service (QES) or Evaluator. The
Coordinator uses resource metadata and computational resource information to
compile, optimise, partition and schedule distributed query execution plans over
multiple execution nodes in the Grid. The distributed evaluator services execute
query plans generated by the Coordinator. Each Evaluator evaluates a partition
of the query execution plan assigned to it by a Coordinator. A set of Evaluators
participating in a query form a tree through which data flows from leaf Evalua-
tors which interact with Grid data services, up the tree to reach its destination.

The following steps are needed for a client to set up a connection with OGSA-
DQP and execute queries over OGSA-DAI resources. First, the client configures
an appropriate GDQS data service resource. As a result of this process, the
schemas of the resources are imported and the client is able to access one or more
of the databases whose schemas have been referenced within a single query. The
client then submits a Perform Document to OGSA-DQP containing an OQL [5]
query. The Polar* [21] compiler parses, optimises and schedules the query. The
query is partitioned, and each partition is sent to a different Evaluator. The
Evaluators then interact with the OGSA-DAI resources and with each other,
and send their results back to the GDQS, and, finally, the client.

2.2 AutoMed

AutoMed11 is a heterogeneous data transformation and integration system which
offers the capability to handle virtual, materialised and indeed hybrid data in-
tegration across multiple data models. It supports a low-level hypergraph-based
data model (HDM) and provides facilities for specifying higher-level modelling
languages in terms of this HDM. An HDM schema consists of a set of nodes,
edges and constraints, and each modelling construct of a higher-level modelling
language is specified as some combination of HDM nodes, edges and constraints.
For any modelling language M specified in this way (via the API of AutoMed’s
Model Definitions Repository), AutoMed provides a set of primitive schema
transformations that can be applied to schema constructs expressed in M. In
particular, for every construct ofM there is an add and a delete primitive trans-
formation which add to/delete from a schema an instance of that construct. For
those constructs ofM which have textual names, there is also a rename primitive
transformation.
10 See http://www.ogsadai.org.uk/about/ogsa-dqp/
11 See http://www.doc.ic.ac.uk/automed



AutoMed schemas can be incrementally transformed by applying to them a
sequence of primitive transformations, each adding, deleting or renaming just one
schema construct (thus, in general, AutoMed schemas may contain constructs
of more than one modelling language). A sequence of primitive transformations
from one schema S1 to another schema S2 is termed a pathway from S1 to S2. All
source, intermediate, and integrated schemas, and the pathways between them,
are stored in AutoMed’s Schemas & Transformations Repository.

Each add and delete transformation is accompanied by a query specifying
the extent of the added or deleted construct in terms of the rest of the constructs
in the schema. This query is expressed in a functional query language, IQL, and
we will see some examples of IQL queries in Section 4.2. Also available are
extend and contract primitive transformations which behave in the same way
as add and delete except that they state that the extent of the new/removed
construct cannot be precisely derived from the other constructs present in the
schema. More specifically, each extend and contract transformation takes a
pair of queries that specify a lower and an upper bound on the extent of the
construct. The lower bound may be Void and the upper bound may be Any, which
respectively indicate no known information about the lower or upper bound of
the extent of the new construct.

The queries supplied with primitive transformations can be used to translate
queries or data along a transformation pathway — we refer the reader to [15, 14]
for details. The queries supplied with primitive transformations also provide the
necessary information for these transformations to be automatically reversible, in
that each add/extend transformation is reversed by a delete/contract trans-
formation with the same arguments, while each rename is reversed by a rename
with the two arguments swapped.

As discussed in [15], this means that AutoMed is a both-as-view (BAV) data
integration system: the add/extend steps in a transformation pathway corre-
spond to Global-As-View (GAV) rules as they incrementally define target schema
constructs in terms of source schema constructs; while the delete and contract
steps correspond to Local-As-View (LAV) rules since they define source schema
constructs in terms of target schema constructs. An in-depth comparison of BAV
with other data integration approaches can be found in [15, 14].

2.3 The Proteomics Resources

Thus far we have integrated three autonomous proteomics resources, all of which
contain information on protein/peptide identification:

The Proteome Experimental Data RepOsitory (PEDRo [9]) provides access
to a collection of descriptions of experimental data sets in proteomics. PEDRo
was one of the first databases used for storing proteomics experimental data.
It has also been used as a format for exchanging proteomics data, and in this
respect has influenced the standardisation activities of the Proteomics Standards
Initiative (PSI12).

12 See http://psidev.sourceforge.net



The Global Proteome Machine Database (gpmDB [6]) is a publicly available
database with over 2,200,000 proteins and almost 470,000 unique peptide identi-
fications. The resource was initially designed to assist in the validation of peptide
MS/MS spectra and protein coverage patterns, where patterns in previous as-
signments could be used to allow some measure of confidence to be assigned to
new identifications. Although the gpmDB is restricted to minimal information
relating to the protein/peptide identification, it provides access to a wealth of in-
teresting and useful peptide identifications from a range of different laboratories
and instruments.

PepSeeker [16] is a database developed as part of the ISPIDER project and
is targeted directly at the identification stage of the proteomics pipeline. The
database captures the identification allied to the peptide sequence data, coupled
to the underlying ion series and as a result it is a comprehensive resource of pep-
tide/protein identifications. The repository currently holds over 50,000 proteins
and 50,000 unique peptide identifications.

3 The Proteomics Grid Application

3.1 The ISPIDER Project

Experimental proteomics is an essential component for the elucidation of protein
biological functions. It involves the study of a set of proteins produced by an
organism with the aim of understanding their behaviour under a variety of exper-
imental conditions and environments. The development of new technologies for
protein separation, such as 2D-SDS-PAGE (PolyAcrylamide Gel Electrophore-
sis), High Performance Liquid Chromatography (HPLC) and Capillary Elec-
trophoresis, together with the availability of public accessible protein sequence
databases, has enabled scientists to conduct many interesting proteomics exper-
iments on a daily basis. Also, thanks to techniques such as Multi-Dimensional
Protein Identification Technology (MudPIT), a single proteomics experiment
may identify hundreds of proteins and, as a result, produce a large amount of
valuable biological data.

There is a growing number of resources that offer a range of approaches for
the capture, storage and dissemination of proteomic experimental data, reflect-
ing the fact that proteomics has now come of age in the post-genomic era and
is delivering large, complex datasets which are rich in information. While the
existence of such databases opens up many possibilities for the proteomics com-
munity, there is still a need for a support for integrating proteomics data, and
tools for constructing proteomics-specific experiments.

The aim of the ISPIDER project is to build on state-of-the-art technologies
for e-science and data integration in order to provide an environment for in-
tegrating proteomics data, constructing and executing analyses over such data,
and a library of proteomics-aware components that can act as building blocks for
such analyses. The project is Grid-enabling existing proteomics data resources,
creating new resources, producing middleware technologies for the integration



of these resources — including tools for data integration, workflows and data
analysis — and producing visualisation and other types of client for biologist
end users.

3.2 Developing the Global Schema

One of the key questions that arose when we started the integration task, was
the scope of the global schema. One choice would be a global schema targeted to
answering a specific class of proteomics questions e.g. protein-specific questions.
A typical query that could be issued in such a case would be give me the list of
proteins that have been identified so far by the proteomics experiments. Opting
for this choice implies a limited usage of the integrated databases. For example,
the user will probably not be able to have information on the peptide masses
that have been used as inputs to the identification. An alternative choice would
be a global schema that is a ‘union’ schema, integrating the full schemas of
the participant databases. Building such a schema together with specifying the
mappings between its constructs and the constructs of the participant schemas
may, however, turn out to be a complex and lengthy process.

The option we chose is therefore a trade-off between these two alternatives,
and the global schema is a subset of the union of the participant schemas. This
global schema captures enough information for answering common proteomics
questions, particularly queries involving analysis of the results of the proteomics
experiments. The scope of this results analysis ranges from the software used
for the identification, the peptides produced by the digestion of the proteins,
the protein database against which the candidate proteins are compared, to the
score and description of the identified proteins. Our choice of results analysis
as the scope of the global schema has also been motivated by the fact that it
represents the area of overlap between the three databases being integrated, thus
allowing the user to pose queries that combine and compare results analysis from
the three databases.

Figure 1 gives a UML class diagram of the global schema (the PRIDE13

data resource mentioned in the figure has not yet been integrated with the other
three resources and this is an area of ongoing work). In a protein identification
pipeline (a common type of proteomics experiment), a protein is identified using
a mass spectrometer which determines the mass-to-charge ratio of the protein
ions. The ms level of Spectrum describes how many rounds of Mass Spectrometry
(MS) have been performed, for example a common and powerful MS technique
is tandem MS, in which two rounds of MS are performed. The first round of MS
produces a spectra of the precursor ions, predefined selections (determined by
mz range start and mz range end) of the precursor ions then undergo a second MS
round to produce a number of product ion spectra. The relationship between each
product spectra and its respective precursor spectra is captured by the Precursor

association. Individual peaks in each of the precursor spectra are described by

13 See http://www.ebi.ac.uk/pride/
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Fig. 1. The Global Schema — colouring denotes the origin of the attributes.

the mass-to-charge ratio (m to z), the peak height (abundance) and the isotopic
pattern around the main peak (multiplicity).

The next step in the protein identification pipeline then involves submis-
sion of the ion spectra (described by Spectrum) to an identification tool such as



Mascot14 [18] or Imprint15. The classes DBSearch and DBSearchParam capture
information about who did the identification, when they did it, what program
they used, what database was searched, etc.

In tandem MS, several peptide hits are often generated in the identification
process. A PeptideHit is linked to IonTable and AA. IonTable provides information
on ions matching peptide ion fragments. AA describes how specific amino acid
residues in a Peptide are modified (usually chemical modifications), modified,
and indicates whether the residue was determined to be a point mutation, pm.
ProteinHit represents the proteins against which all or some of the peptides have
been aligned, and links to some information about the protein itself. A Protein

is characterised by a textual description of the protein, an accession number,
the predicted mass of the protein, its amino-acid sequence, any common in vivo
modifications, the organism in which it is to be found, the open reading frame
number, orf number, and the reading frame, rf.

To build the above global schema, we adopted an incremental approach.
We began with the PEDRo schema, specifically the section of its schema that
captures peptide/protein identifications. This was for two reasons. First, the
results analysis in the PEDRo schema has significant overlaps with the schemas
of the other databases and covers most of our target global schema. Second, the
PEDRo schema captures more information compared to the other databases,
and thus allows for a more detailed view of the results analysis. For example, in
PEDRo, the protein is characterized by the accession number, the synonyms, the
organism that was the source of the protein and the sequence of the protein, in
addition to other information. In contrast, a protein in PepSeeker, for instance,
is simply described by its accession number and name.

Given this initial global schema, we then derived the correspondences be-
tween the classes and attributes of gpmDB and PepSeeker with this schema.
The limited schema documentation and sometimes cryptic attribute naming of
those resources meant interviews with the database providers were needed to
identify precisely the meaning of every attribute in the schemas.

The global schema was then incrementally expanded by additional classes
and attributes that were captured in those databases and not already in the
global schema. This mainly consisted of adding the information about the ions
associated to the peptides and the modifications they undergo. For example,
from PepSeeker, we added the entity IonTable which provides information on the
ions matching peptide ion fragments. The schemas of gpmDB and PepSeeker are
relatively disjoint, with respect to the set of fields that have been added to the
global schema, with few exceptions such as the attributes pep start and pep end

of the class PeptideHit which exist in both PepSeeker and gpmDB schemas.
To identify the instances of the global schema entities, we chose to use life

science identifiers LSIDs16. LSID is a Life Sciences Research Uniform Resource

14 See http://www.matrixscience.com/search form select.html
15 Imprint is an in-house software tool for Peptide Mass Fingerprinting (PMF), which

involves only a single round of MS
16 See http://www.omg.org/technology/documents/formal/life sciences.htm



Name (URN) specification which provides a standardised naming schema for
biological entities in the life sciences domain. The three databases use integers
to identify their entity instances, and the usage of LSIDs in the (virtual) global
database allowed us to overcome the problem of identifier conflict. For example,
the LSID URN:LSID:ispider.man.ac.uk:pedro.protein:99 refers to the protein iden-
tified by the number 99 in the Pedro database, where ispider.man.ac.uk denotes
the authority that issued the LSID17.

4 System Architecture

While OGSA-DAI supports access of data resources in a Grid and OGSA-DQP
supports distributed querying of such resources and location transparency, these
technologies do not support schema transformation and schema integration.
Thus, if applications require heterogeneous Grid-based data to be transformed
and integrated, the onus is on the application to encode the necessary transfor-
mation/integration logic. This may impact on the robustness and maintainability
of applications, and hence the use of data integration middleware that abstracts
out this functionality from applications is advantageous because it enables ap-
plications to access resources as one virtual integrated resource, notwithstanding
the varying formats and data models used by those autonomous resources. To
our knowledge, there is currently no such Grid-enabled middleware, and hence
our decision to combine OGSA-DAI/DQP with AutoMed into an architecture
that enables both transformation and integration of Grid-based data and dis-
tributed query processing over the Grid resources. The main advantage of using
AutoMed rather than a LAV or GAV-based data integration system is that it
readily supports the evolution of both source and integrated schemas by allowing
transformation pathways to be extended — this means that the entire integra-
tion process does not have to be repeated, and the schemas and pathways can
instead be ‘repaired’.

Figure 2 illustrates the architecture we have developed. Data sources are
exposed using OGSA-DAI grid services. The AutoMed-DAI wrapper imports
schema information from any data source, via OGSA-DAI, into the AutoMed
Metadata Repository. Thereafter, AutoMed’s schema transformation/integration
functionality can be used to create one or more virtual global schemas, together
with the transformation pathways between these and the AutoMed representa-
tions of the data source schemas. Queries posed on a virtual global schema can be
submitted to AutoMed’s Query Processor, and this interacts with OGSA-DQP
via an AutoMed-DQP wrapper to evaluate these queries. OGSA-DQP itself in-
teracts with the data sources via the OGSA-DAI services.

In the remainder of this section we present the major components of this ar-
chitecture in greater detail: the mechanisms for enabling data access and integra-
tion; how queries posed on a virtual global schema are processed by AutoMed’s
Query Processor and OGSA-DQP; and the AutoMed-DQP wrapper.

17 Note the LSID key attributes are not listed in the UML class diagram in Figure 1.
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Fig. 2. The AutoMed, OGSA-DAI and OGSA-DQP architecture.

4.1 Data Access and Integration

We assume that each data source is made accessible as a grid data resource using
OGSA-DAI’s Grid Data Service (GDS). To ‘import’ a data source schema into
AutoMed, we have developed the AutoMed-DAI Wrapper. This sends a schema
request document to the GDS, which returns an XML Response Document con-
taining the schema metadata of the data source. The AutoMed-DAI wrapper
uses this information to create the corresponding AutoMed schema in the Au-
toMed Metadata Repository.

These AutoMed data source schemas can now be incrementally transformed
and integrated into one or more global virtual schemas, using the API of Au-
toMed’s Schemas & Transformations Repository to issue transformation steps
and to create intermediate and final virtual schemas within this repository —
we give some examples of transformations below.



Global Query Processor

Query
Annotator

Logical
Optimiser

IQL
query

IQL
result

Evaluator
Query

Reformulator

AutoMed
Repository

AutoMed DQP
wrapper

Fig. 3. The AutoMed Query Processor.

4.2 Query Processing

After the integration of the data sources, the user is able to submit to the
AutoMed Query Processor (AQP) a query, Q, to be evaluated with respect to a
virtual global schema. Q is expressed in AutoMed’s own query language, IQL18.

For example, the following query, Q1, retrieves all identifications for the pro-
tein with accession number ENSP00000339074. This query would allow biologists
studying this protein to find out more about the kinds of environments in which
it has been seen by other scientists. Here, <<Protein,accession_number>> de-
notes the projection of the Protein (virtual) relation onto its primary key at-
tribute (LSID) plus its accession number attribute:

[lsid|{lsid,an}<-<<Protein,accession number>>;an=‘ENSP00000339074’]

As a second example, the following query, Q2, retrieves all protein identifica-
tions that match a given peptide. Such a query would allow a scientist working
with a protein sequence to ask whether peptide ATLITFLCDR has been seen before
in other proteomics experiments:

[{an,lsid3}|{lsid1,seq}<-<<PeptideHit,sequence>>; seq = ‘ATLITFLCDR’;

{lsid2,pr}<-<<ProteinHit,protein>>;

{lsid3,an}<-<<Protein,accession_number>>; pr = lsid3;

{pepID,protID}<-<<PeptideHitToProteinHit_mm>>;

lsid1 = pepID; lsid2 = protID]

Figure 3 shows the major components of the AQP and we now consider each
of them in turn. Since the initial query, Q, is expressed over a global schema,
it references only global schema constructs and needs to be transformed into a
query expressed over the data source schemas before it can be evaluated. This is
accomplished by the Query Reformulator component of the AQP which traverses

18 IQL is a comprehensions-based language and we refer the reader to [12] for details of
its syntax, semantics and implementation. Such languages subsume query languages
such as SQL-92 and OQL in expressiveness [4].



the schema transformation pathways from the global schema down to the data
source AutoMed schemas, and uses the query within each transformation step to
incrementally reformulate Q until finally an equivalent query Qref results which
references only schema constructs within the data source schemas.

For example, the following transformation steps within the transformation
pathways integrating respectively the PepSeeker, PEDRo and gpmDB schemas
are of relevance to reformulating Q1. Here, id2lsid is an IQL function that
generates the global LSID identifiers19. In the first step, the relation Protein
of the global schema is populated from the proteinhit relation of PepSeeker;
since the latter may contain multiple occurrences of any given protein, the IQL
function distinct is used to remove duplicates:

add(<<Protein,accession_num>>,

[{id2lsid [‘pepseeker.proteinhit:’,toString d],x}|

{d,x}<-(distinct [{k,x}|{k,x}<-<<proteinhit,ProteinID>>])])

...

add(<<Protein,accession_num>>,[{id2lsid [‘pedro.protein:’,toString d],x}|

{d,x}<-<<protein,accession_num>>])

...

add(<<Protein,accession_num>>,

[{id2lsid [‘gpmdb.proseq:’,toString d],x}|{d,x}<-<<proseq,label>>])

Q1 is reformulated to Q1
ref below using the queries appearing within the

above transformation steps:

[lsid|{lsid,an}<-([{id2lsid [‘pepseeker.proteinhit:’,toString d],x}|

{d,x}<-(distinct [{k,x}|{k,x}<-<<proteinhit,ProteinID>>])]

++ [{id2lsid [‘pedro.protein:’,toString d],x}|

{d,x}<-<<protein,accession_num>>]

++ [{id2lsid [‘gpmdb.proseq:’,toString d],x}|{d,x}<-<<proseq,label>>]);

an = ‘ENSP00000339074’]

Q2 makes use of the many-to-many relationship between the ProteinHit
and PeptideHit relations of the global schema for reformulation. The following
transformation steps are of relevance to answering Q2 with respect to the PEDRo
schema (we do not list the transformations relevant to the other schemas or the
reformulated query Q2

ref itself, due to space limitations)20:

add(<<PeptideHit,sequence>>,[{id2lsid [‘pedro.peptidehit:’,toString d],

x}|{{d,e},x}<-<<peptidehit,sequence>>])

...

add(<<ProteinHit,protein>>,[{id2lsid [‘pedro.proteinhit:’,toString d],

id2lsid [‘pedro.protein:’,x]}|

{d,x}<-<<proteinhit,protein>>])

19 It takes as input two string arguments, concatenates them, and prefixes the result
by ‘URN:LSID:ispider.man.ac.uk:’

20 In the first step, peptidehit has a composite key whose first attribute is used to
generate the LSID, the second attribute being a foreign key to another table.



...

add(<<Protein,accession_number>>,[{id2lsid [‘pedro.protein:’,toString d],

x}|{d,x}<-<<protein,accession_num>>])

...

add(<<PeptideHitToProteinHit_mm>>,

[{k1,k2}|{k1,x}<-[{id2lsid [‘pedro.peptidehit:’,toString d],x}|

{{d,e},x}<-<<peptidehit,db_search>>];

{k2,y}<-[{id2lsid [‘pedro.proteinhit:’,toString d],x}|

{d,x}<-<<proteinhit,db_search>>];

x = y])

A reformulated query, Qref , is next processed by the Logical Optimiser com-
ponent which simplifies Qref by applying a number of algebraic optimisations. In
our context here, one goal of this component is to simplify Qref is to create the
largest possible subqueries that can be pushed down to OGSA-DQP for evalua-
tion, so as to make maximum usage of the data sources’ own query capabilities
and minimise the resource consumption of AutoMed’s Evaluator.

The optimised query, Qopt, is still expressed in IQL and needs to be translated
into OQL, the query language supported by OGSA-DQP. We have developed an
AutoMed-DQP Wrapper, see below, for translating (a subset of) IQL into OQL.

The Query Annotator component interacts with the AutoMed-DQP wrapper
to identify maximal subqueries translatable by that wrapper and to instantiate
wrapper objects within Qopt. The resulting query, Qannot, is finally sent to Au-
toMed’s Evaluator for evaluation. This makes calls to OGSA-DQP to compute
the results of the subqueries specified by the Query Annotator, and undertakes
any further necessary post-processing of these results.

4.3 The AutoMed-DQP wrapper

The AutoMed-DQP wrapper undertakes two tasks. First, it needs to inform the
AutoMed Query Processor of the subset of IQL it is capable of translating into
OQL. As with all other AutoMed wrappers, we have developed a BNF grammar
specification from which a parser for the relevant subset of IQL is automatically
generated. The AutoMed-DQP wrapper translates IQL comprehensions with one
level of nesting (in accordance with the OQL queries supported by OGSA-DQP).

The AutoMed-DQP wrapper is also responsible for making interactions with
OGSA-DQP transparent to the remainder of the AutoMed infrastructure. On
receiving an IQL query, the wrapper first translates it into the equivalent OQL
query. The OQL query is then sent to OGSA-DQP for evaluation. The reply
from OGSA-DQP is in the form of an XML Response Document containing the
query results. The AutoMed-DQP wrapper translates this document into the
IQL type system, and returns the result to AutoMed’s Evaluator component.

5 Related Work

The importance of data integration in the life sciences has resulted in diverse
technical approaches being followed. In many of these there is little support pro-



vided by the infrastructure for resolving schematic heterogeneities. For example,
workflow systems enable requests to be formed that both access data resources
and invoke analyses on the values retrieved (e.g. [3, 17]). However, many bioin-
formatics web services take and return formatted strings that require custom
transformation operations to be developed for converting data between formats.
Perhaps the most widely used data integration system in bioinformatics is SRS
[22]. However, like workflow systems, it principally supports storage and access
to entries from data resources that started out as formatted textual documents,
and the principal mode of access involves navigation between these documents,
rather than querying an integrated schema. As such, both of the above ap-
proaches make visible the sources from which data is derived and preserve at
least some aspects of the source data format.

In approaches building on distributed database technology, there is a ten-
dency to construct views over the underlying data resources, thus hiding schematic
heterogeneities from users. In distributed query processing systems that have
been designed for or used in bioinformatics, such as DiscoveryLink [11] or Kleisli
[7], existing databases or file-based resources are wrapped, and views can be
constructed over the wrapped sources using the GAV approach. As such, declar-
ative techniques can be used to provide a more uniform representation of the
data in a domain, although with the maintenance challenges widely associated
with GAV. There have also been attempts to support querying over domain
models expressed as biological ontologies, as in Tambis [10], but again the global
schema either directly reflects the structure of the underlying resources or defines
the global model using GAV.

Where data is to be subject to intensive integrated analysis, the warehousing
approach has also been popular in bioinformatics (e.g. [8, 20]). However, the
population and maintenance of a centralised warehouse is often laborious, due
to inconsistencies between different data sources, naming schemes, etc. However,
where data is obtained from databases, these can use queries to populate the
warehouse model, as in GAV, or make use of technologies such as AutoMed, as
in BioMap [13].

In proteomics, although there are many resources that integrate data about
proteins (e.g. [19]), the emergence of databases on experimental proteomics,
capturing data from experiments on protein separation and identification, is very
recent. As such, we know of no previous work that seeks to support access to
multiple proteomics databases, as described here. Furthermore, as the schemas
of the databases to be integrated overlap significantly, fine-grained resolution of
schema conflicts is crucial to the provision of an effective integration strategy. In
essence, in the approach described in this paper, OGSA-DQP provides a query-
oriented middleware analogous to that provided by DiscoveryLink or Kleisli, and
AutoMed is used to resolve the heterogeneities in the schemas of the sources.
We are not aware of a similar approach elsewhere in the life sciences.



6 Conclusions

We have presented an architecture combining Grid data querying (OGSA-DAI/
DQP) and data integration (AutoMed) software tools which enables distributed
query processing together with the resolution of semantic heterogeneity over au-
tonomous data resources. We have presented results within the ISPIDER project
of integrating autonomous resources reflecting various proteomics domains and
representations thereof. From a biology viewpoint, the final ISPIDER platform
will provide researchers with more information than any of the resources alone,
so allowing them to perform analyses that were previously prohibitively difficult
or impossible. This integration process both builds on and provides impetus to
the development of data standards in the proteomics and related domains.

Additional global schemas may be created as resources holding information
relevant to, but disjoint from, the initial global schema are integrated within the
ISPIDER platform. To enable querying across such schemas, a global ‘super-
schema’ could then be created. This methodology exemplifies the flexibility and
scalability of AutoMed’s transformation-based approach which also provides the
basis for materialised as well as virtual data integration and tracking data prove-
nance. These facilities too are being pursued within the ISPIDER project.

Beyond data integration, the ISPIDER data sources offer a number of web
services to the outside world, performing tasks ranging from simple data re-
trieval, to significantly more complex operations. We are using Taverna21, part
of the myGrid22 middleware, to enable users to construct complex analysis work-
flows from the available web services. We are currently investigating the inter-
operation of AutoMed with Taverna for integrating heterogeneous web services.

We are currently evaluating our system in terms of query processing and are
considering extensions to the LogicalOptimiser of the AQP as well as to the OQL
subset supported by OGSA-DQP; this will enable the translation of larger IQL
queries into OQL, which we expect will offer a notable performance boost.
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