
AutoMed in a Nutshell

http://www.doc.ic.ac.uk/automed/

Software Release 0.4

Document Release 1.0

Peter Mc.Brien

Dept. of Computing

Imperial College London

Thursday 16 th March 2006

http://www.doc.ic.ac.uk/automed/

2

Contents

1 Introduction 5

1.1 BAV approach . 5

2 Setting Up The AutoMed Repository 7

2.1 Running the Basic Example Applications . 9

2.2 Running An Example of Database Integration . 9

3 Using the AutoMed GUI 11

3.1 Querying Data Sources using the IQL . 13

3.1.1 IQL Arithmetic and Comparison . 15

3.1.2 IQL Aggregation Functions . 15

3.1.3 IQL String Functions . 15

3.2 Wrapping a Data Source . 16

3.2.1 Example of Wrapping a Relational Data Source 18

4 The AutoMed API 19

4.1 Wrapping a Data Source . 20

4.2 Transforming Schemas . 21

4.3 Query Processing . 22

4.4 Adding Tools to the GUI . 23

4.5 Describing a Schema . 25

4.6 Describing a Modelling Language . 26

4.6.1 Alternatives and Sequences . 27

4.7 Customising the Appearance of a Model . 28

4.8 Writing an AutoMed Wrapper . 31

4.8.1 Extending AutoMedWrapper . 32

4.8.2 Extending AutoMedWrapperFactory . 33

5 AutoMed Tools 35

5.1 Schema Matching and Merging . 35

5.1.1 Example of using the Match Tool . 36

5.2 Peer-to-Peer Data Integration . 37

5.2.1 Configuring and Running the Directory Service 39

3

4 CONTENTS

5.2.2 Running an AutoMed Peer . 40

5.2.3 Publishing Schemas and Obtaining Listings of Published Schemas 42

5.2.4 Example of using the P2P System . 42

A Using the Software Under Other Environments 45

A.1 Linux csh environments . 45

A.2 Microsoft Windows environments . 45

B Known Problems 47

Chapter 1

Introduction

The AutoMed project (http://www.doc.ic.ac.uk/automed/) has developed a set of tools to
support a new approach to data integration called both as view (BAV) [MP03]. This report gives
a brief overview of how to use those tools for the task of data integration, both via the AutoMed

GUI and via the AutoMed API. In this introduction, we will give a very brief overview of research
into data integration, and review the BAV approach to data integration.

A data integration system will provide a unified view of a number data sources, making them
appear as a single data source to a user or application program. The process of data integration
has two major aspects: schema integration [BLN86] in which the structures of the various local

schemas of data sources are logically related to a single global schema by a set of mappings,
and query processing where queries and updates on one schema are mapped (and split) into
queries and updates on other schemas.

Our definition of data integration allows for a number of operational interpretations for the imple-
mentation of a data integration system. In federated databases [SL90], the global schema (called
a federated schema) is a virtual view of the data sources; each query on the global schema
is transformed into a number of logically equivalent queries on the data sources, and the results
combined before being returned to a user. A mediator [Wie92] approach (where a global schema
is called mediator schema) differs from a federated database approach in that mediators may
source information from each other as well as from the original data sources. In data warehous-

ing [JLVV02] the global schema (or data warehouse schema is a materialised view of the
data sources, where data is copied from data sources into the data warehouse by a process known
as extraction transforming and loading (ETL).

A number of approaches to data integration have been proposed, which can be broadly categorised
into global as view (GAV), local as view (LAV), global local as view (GLAV), and both

as view (BAV). The approaches differ in how the mappings between schemas are specified, and
offer different degrees of precision in that specification. The fact that the approaches differ in the
precision of the mappings means that they in turn need conduct the process of schema integration
at different levels of precision. Since BAV is the most expressive approach, so it needs the greatest
level of precision in schema integration.

1.1 BAV approach

In the BAV approach, the integration of schemas is specified as a sequence of bidirectional trans-
formation steps, incrementally adding, deleting or renaming constructs, so as to map one schema
to another schema. Optionally associated with each transformation step is a query expression,
describing how instances of the construct can be obtained from the other constructs in the schema,
which will be used during query processing. Absence of a query indicates that no instances of the
construct may derived from the other constructs in the schema.

One of the novel features of the approach used in AutoMed is that it is not tied to using one

5

http://www.doc.ic.ac.uk/automed/

6 CHAPTER 1. INTRODUCTION

particular common data model (CDM) [SL90] for data integration. Instead, it works of the
principle that data modelling languages such as ER, relational, UML, etc are graph-based data
models, which can be described [MP99, BM04] in terms of constructs in the hypergraph data

model (HDM) [PM98]. The implementation of AutoMed provides only direct support for the
HDM, and it is a matter of configuration of AutoMed to provide support for a particular variant
of a data modelling language. Once configured to use a data modelling language, schemas and
transformations on those schemas can be described in terms of operations on the constructs of
that data modelling language.

repository

MDR

STR

persistent
store

-�

data source repository.cfg

-

actions.cfg

-

SQL
wrapper

?

YATTA
wrapper

?

XML
wrapper

� 6
?

SQL
data

source

6

?text file

YATTA
data
source

6

?XML file

XML
data
source

query
processor

schema
matching

-template

transformations

transformation
optimiser

6

?

66 6

?

?

6

?

?

6

? ?

GUI - user
application

Figure 1.1: AutoMed Software Architecture

The AutoMed software architecture is illustrated in Figure 1.1 [BKL+04]. When a data source
is wrapped, a definition of the schema for that data source is added to the repository. The schema
matching tool may then be used to identify related objects in various data sources (accessing the
query processor [JPZ03] to retrieve data from schema objects), and the template transformation
tool used to generate transformations between the data sources. A GUI is supplied with AutoMed
for these components, and it is possible for a user application to be configured to run from this
GUI, and use the APIs of the various components. For example, work is in progress on using the
repository in data warehousing [FP03].

The remainder of this report provides an overview of some components of the software architecture.
Section 2 explains how to install and configure the AutoMed software, and run some simple
examples to test that the installation is working correctly. Section 3 explains how the GUI may be
used to view the repository contents, and how to use the query processor from the GUI. Section 4
gives a brief overview of the AutoMed API, allowing user applications to be written. Full API
documentation is found at http://www.doc.ic.ac.uk/automed/resources/apidocs/.

http://www.doc.ic.ac.uk/automed/resources/apidocs/

Chapter 2

Setting Up The AutoMed

Repository

These instructions are based on the assumption that you are working under Linux, with a bash
shell command line environment. See Appendix A for notes on how to translate these instructions
into the commands used under different shell environments or operating systems.

To use the AutoMed repository software, which is implemented as a Java package, you must have
available a Java 1.4 runtime or development environment (the Sun JDK is used for AutoMed

project development work, and releases are tested against this version of Java), and a Postgres
database account to store the repository data (other databases will be supported in the future).

To determine which version of Java you are running at present, type at the command line:

java -version

Once you have the appropriate version of Java available, and also login details of a Postgres
database you can use, you are ready to start using the AutoMed software. First download
the AutoMed API from the AutoMed web site. There are a series of numbered releases (this
document is written to describe release 0.4), along with a latest release. Normally you should use
the highest numbered release. The latest release might be of use if you have been in contact with
AutoMed developers and some bug has been fixed or feature added that you require.

The download is held in a gzipped tar file autoreps.tgz. You should place this in a new directory
(say called automed), and set an environment variable AUTOMED to point at this directory. For
example, if directory /home/pjm/automed had been used, then you would execute

export AUTOMED=/home/pjm/automed

You should move into the new directory, and unpack the tar file using the command:

tar -zxvf autoreps.tgz

This will unpack a number of directories, including at least the following:

• apidocs: contains a set of JavaDoc documentation files of the AutoMed API. Point you
web browser at apidocs/index.html to view the documentation.

• bin: contains utilities to access the database tables used by the AutoMed repository to
store its information. These are only intended for use by people working of development of
the AutoMed repository.

• doc: contains some of the technical reports that are also available on the AutoMed web
site.

• examples: contains a set of Java application programs that use the AutoMed API, and
illustrate its use. These application programs will be referred to in this report.

7

8 CHAPTER 2. SETTING UP THE AUTOMED REPOSITORY

• jar: contains various Java jar files. All the AutoMed software is contained within au-
tomedRepositories.jar, and it is only this jar file that changes between different versions
of AutoMed. However, the AutoMed software uses the third party jar files: the IQL
parser uses java cup.jar, the XML wrapper jaxp.jar, and parser.jar, and the various relational
database wrappers each require the appropriate JDBC driver be available. The distribution
comes with a configuration file that allows a Postgres database to be used as persistent stor-
age mechanism, and this requires the use of a Postgres JDBC driver. The pg74.214.jdbc3.jar
Postgres JDBC driver supplied has been found to work correctly all recent Postgres versions,
but in general, you should use a JDBC2 or JDBC3 driver the corresponds to the version of
Postgres you are using.

Before using any AutoMed applications, you should set your CLASSPATH variable to be:

export CLASSPATH=.:$AUTOMED/jar/automedRepositories.jar:$AUTOMED/jar/java cup.jar:\
$AUTOMED/jar/jaxp.jar:$AUTOMED/jar/parser.jar:$AUTOMED/jar/pg74.214.jdbc3.jar

Now change directory to $AUTOMED/examples, and compile and run the DefineRepository exam-
ple:

javac DefineRepository.java
java DefineRepository

Given the default settings supplied with AutoMed, and if you have not used AutoMed before,
this will throw some exceptions, unless you have a database called automed running on a Postgres
server on you local machine that needs no password for you to login under you username via
JDBC. However it causes a directory and file called $HOME/.automed/data source repository.cfg
to be created, which you can edit to hold your own details. The file specifies how the AutoMed

Java API should access one or more databases that form a persistent store for the repository
information, and is split into a number of DataSource entries covering different aspects of the
repository. The two key parts, as illustrated in Figure 1.1, are the MDR, which holds definitions
of modelling languages, and the STR which holds definitions of schemas, transformations, and
the databases where those schemas are obtained from. All the repositories may be held in one
database, which is assumed to be the arrangement for the purposes of these instructions1.

To configure AutoMed ready for use you must edit $HOME/.automed/data source repository.cfg
to contain the details of the Postgres database that you will use to hold the repository data. In
particular, for each line

JdbcURL jdbc:postgresql://localhost/automed

you should change localhost to the domain name of your Postgres database (for example, in DoC at
Imperial College London it is db.doc.ic.ac.uk), and you should change AutoMed to the Postgres
database you wish to use for storing AutoMed data (it is recommended that this is a database
dedicated for the purpose; any tables that have the same same as AutoMed repository table
names will be dropped and recreated as part of the AutoMed repository initialisation process).
Also, for each line:

Password secret

you should change secret to your Postgres database password. If your Postgres username is different
from your login username, then you may specify a mapping between the two. For example, if a
user logged in under username pjm, but had a Postgres username automed, then the line shown
below should be added to each DataSource entry:

Username:pjm automed

1This best arrangement for individuals using AutoMed in isolation. If a group of users wanted to share the same
modelling languages, but have each user have their own individual descriptions of schemas and transformations,
then the MDR should be in a common shared database, and the STR (and all other Data Sources) should be in a
database belonging to each individual.

2.1. RUNNING THE BASIC EXAMPLE APPLICATIONS 9

Once you have made all the necessary changes to data source repository.cfg repeating the execution
of DefineRepository should report that a series of repositories are being initialised.

2.1 Running the Basic Example Applications

To test your AutoMed installation more fully, and to generate some examples to view with the
GUI editor described in Section 3, it is worthwhile to run some of the test applications. These all
update the repository with their actions, and report on the command line what action they take.

In the examples directory, compile and run (in the same manner as DefineRepository above) the
DefineModels application. This creates in the MDR a simple ER modelling language, a relational
modelling language, and an HDM modelling language [PM98].

To create some example schemas, run DefineSchemas. This will creates six schemas in the STR,
three in the ER modelling language (called er s1, er s2, and er s3), one relational schema (rel s1),
and two HDM schemas (hdm s1 and hdm s2).

Finally, to demonstrate the transformation and integration of schemas, run DefineTransformations,
which integrates the three ER schemas into one network of schemas, adding transformations into
the STR.

Note that these examples are self contained, in that they do not integrate any real database or
data source, but instead specify what the database schema is within the application code. Thus
you will be unable to run query processing over these examples, since there is no data source to
query. To test query processing you must also run the database integration example detailed in
the next section.

2.2 Running An Example of Database Integration

The university data integration example demonstrates the integration of several small databases.
To run the example, you must first setup the five database schemas university1 to university5 2.
Then you should compile and execute the UniversityDatabaseWrapping application, giving it as
arguments the details of the five databases where you have stored the five schemas (which are
assumed to be present on a single DBMS; if this is not the case you will need to modify the
program). For example, if you have the databases held on a Postgres database on your own
computer, and your Postgres username is pjm with password secret, then you would execute:

java UniversityDatabaseWrapping -debug 0 -user pjm -password secret
-driver org.postgresql.Driver -url jdbc:postgresql://localhost/

If you are working with the DoC at Imperial College London you may use a copy of the databases
loaded onto the department’s SQL Server by the following command:

java UniversityDatabaseWrapping -debug 0 -user lab -password lab
-driver com.microsoft.jdbc.sqlserver.SQLServerDriver
-url jdbc:microsoft:sqlserver://db-ms.doc.ic.ac.uk\;databaseName=pjm

Once wrapped, the three of the university databases may be integrated by compiling and running
the UniversityDatabaseIntegration application.

java UniversityDatabaseIntegration

Alternatively, the UniversityAutomaticIntegration application may be used, which uses the Merge
component of the the schema match and merge tool (which will be discussed in detail in
Section 5.1).

2A tool and scripts to create these databases is available from http://www.doc.ic.ac.uk/∼pjm/databases. If
you are working within DoC at Imperial College London then you will find that these databases are publicly
available on the department’s Microsoft SQL Server DBMS, as pjm university1 to pjm university5, which you may
access when you login under username lab and password lab

http://www.doc.ic.ac.uk/~pjm/databases

10 CHAPTER 2. SETTING UP THE AUTOMED REPOSITORY

Chapter 3

Using the AutoMed GUI

Once you have configured the AutoMed software as described in Section 2, the graphical user
interface Gui application in the AutoMed software can be run by the command:

java uk.ac.ic.doc.automed.editor.Gui

This will open a window titled AutoMed Editor, which initially contains a single sub window titled
All Networks (an example of which is shown in Figure 3.1). The all networks window contains an
oval for each network of schemas you have held in your repository. A network is a set of schemas
that are connected to each other by transformations. If you have run the examples detailed in
Section 2.1, then you will have networks labelled er s3-er s2-er s1, rel s1, hdm s1 and hdm s2. If
you have run the university database integration from Section 2.2 you will have three labelled
uni s3 src-uni s1 src-uni s2 src, uni s4 src and uni s5 src.

Double clicking on any one network will open a network window that shows all schemas within that
network. For example, double clicking on that labelled er s3-er s2-er s1 will open up a new window
with the title Network er s3-er s2-er s1, which should look similar to that shown in Figure 3.1.
Selecting the schema labelled er s2d (by clicking on the schema in the window) and then clicking
on the menu button will bring up a menu of what actions you may perform on the schema. Apart
from the options to change the colouring in the diagram, the three options always available when
a single schema is selected are listed below:

• Query schema: opens a window that allows you to execute an IQL query on the schema.
In the example we are using there are no data sources attached to the schemas er s1, er s2
and er s3, and therefore query execution will always fail. We will return to describing how
to use this tool in the context of the university integration example in Section 3.1.

• Schema details: opens a window that lists the construct type and scheme of each object in
the schema. The schema details window for er s2d is shown in Figure 3.2, and it should be
noted that there are two schemes listed for each construct. The key scheme omits all parts
of the full scheme that were not declared as being key scheme fields when the modelling
language was defined. Either scheme may be used in IQL queries, though for conciseness it
is recommended to use key schemes.

• Apply transformation: opens a window that allows you to apply a single transformation
to the schema. The window will change what you are allowed to enter depending on which
type of primitive transformation you intend to create.

Other options on the network menu require that multiple schemas to be selected, which may be
done in two different ways. In both cases one schema should be first selected using a normal
mouse click. If a second schema is selected whilst holding the control key, then you will have a
group selection, which contains two schemas (where the second schema may be in a different
network). Alternatively, if the second schema is selected whilst holding the shift key then a
pathway selection is made, where a pathway comprises of all the transformations and schemas

11

12 CHAPTER 3. USING THE AUTOMED GUI

Figure 3.1: AutoMed GUI Tool viewing the basic examples

Figure 3.2: AutoMed schema object listing for schema er s2d

3.1. QUERYING DATA SOURCES USING THE IQL 13

Figure 3.3: AutoMed GUI Tool viewing schema er s2d

between the two clicked on schemas. You may therefore only make a pathway selection when the
two schemas are in the same network.

For example, to view the pathway of transformations that would map from er s2 to er s1, in the
network er s3-er s2-er s1 window, pathway select schema er s2 and er s1, which should result in all
schemas between those two schemas being highlighted. You should then use the menu to select
Transformation details, and you should then obtain a listing of the primitive transformations
shown in Figure 3.4.

Figure 3.4: AutoMed GUI view of pathway er s2 → er s1

Close this window, and select er s2e, and select the Retract menu option. Not only will the
schema disappear, but so also are the ident transformations linking er s2 to er s1e and to er s3e.
This means that the single network er s3-er s2-er s1 is now partitioned into three networks er s3,
er s2, and er s1.

You may restore the original integration as follows.

1. Comparing the schema details of er s2d with those of the schema details of er s1e and er s3e
reveals that er s2d has an attribute 〈〈person, pid, key〉〉, which the others call 〈〈person, id, key〉〉.
Selecting er s2d and then using the menu option Apply transformation, you should
choose action rename, enter the full scheme as 〈〈person, pid, key〉〉, and the new scheme
〈〈person, id, key〉〉. This will generate a new schema named er s2e.

2. To integrate the new er s2e with the identical er s1e, select er s2e, and then group select
(i.e. hold select whilst holding the control key) schema er s1e, and choose menu option
Apply ident transformation. This will cause the two networks to be merged into one.

3. Repeating the process in step (2) with er s2e and er s3e will restore the single network shown
in Figure 3.1.

3.1 Querying Data Sources using the IQL

The intermediate query language (IQL) [Pou01, JPZ03, Pou04] is functional programming
language based on list comprehensions [Bun94] that is designed to model the query processing

14 CHAPTER 3. USING THE AUTOMED GUI

capabilities of a number of database query languages in a single query language. As such, it is
not designed to be a user oriented language, but is nevertheless is straightforward for computing
professionals to use directly if required.

The IQL query tool is obtained by selecting any schema in a network view, and then selecting the
query schema option from the menu. Figure 3.5 shows the IQL tool running on schema uni ze in the
university example (which, provided you have run the applications described in Section 2.2, may
be found by double clicking on network uni s3 src-uni s1 src-uni s2 src, and scrolling down to find
uni ze at the bottom of the left hand pathway). The IQL tool may also be executed independently
from the GUI. For example, the same schema could be queried by executing the command:

java uk.ac.ic.doc.automed.editor.IQLTool uni ze

Figure 3.5: AutoMed IQL Tool

The simplest IQL query is to give the scheme of one object in a schema (which in AutoMed is
called a schema object). Any scheme of a table or column schema object that appears in the
schema details window may thus be used as an IQL query, in either the full scheme or key scheme
form. Figure 3.5 shows the result of the query 〈〈person,name〉〉, which returns a list of tuples for the
query when executed with all three data sources uni s1 src, uni s2 src, and uni s3 src selected. If
you wish to source the results from only a subset of these data sources, you may do so by using the
top right Source schemas to use selector to choose the data sources to be used when answering
a query. If you choose each schema in turn, you will find that uni s2 src returns one fewer people
than uni s1 src1. You will find that uni s3 src returns no results, since that data source contains
no information about the names of people.

To eliminate duplicate answers from a list, the keyword distinct should be prefixed to the list.
Hence modifying the query in Figure 3.5 to distinct〈〈person, name〉〉 would return

[{1, ‘Alex’}, {2, ‘Dimitri’}, {3, ‘Mike’}, {4, ‘Nerissa’}, {5, ‘Peter’}, {20, ‘Nick’}]

Any more complex query processing requires the use of list comprehensions, which produce new
lists from a combination of generators and filters. Anything that produces a list can be used
in a generator, and hence any table or column construct from the sql model may be used as a
generator. For example, an identical result to that above may be produced by:

distinct[{x, y} | {x, y} <− 〈〈person, name〉〉]

1Given the way the integration has been specified, with the staff table in uni s1 src and the person table in
uni s2 src being made equivalent by a rename transformation between er s1 and er s1a, those two tables should
return the same result. The fact that they do not represents a inconsistency between the databases that is quite
typical of ‘real world’ situations: what the AutoMed integration specifies is that from a logical perspective, the
data sources should contain the same data. It is a matter on going research as to how AutoMed should specify how
such inconsistencies should be dealt with.

3.1. QUERYING DATA SOURCES USING THE IQL 15

Several generators may be placed in a list comprehension, together with a filter to return a selection
of the results. For example, to find the names of persons and the departments in which they
work requires that we generate tuples from the lists for the schema objects 〈〈person, name〉〉 and
〈〈person, dname〉〉, and then equate the common key of the two:

distinct[{y, z} | {x, y} <− 〈〈person, name〉〉; {x, z} <− 〈〈person, dname〉〉]

More details of the IQL may by found in the IQL tutorial [Pou04], but here we provide details
of three aspects of the language that are used frequently: arithmetic, aggregation and string
functions.

3.1.1 IQL Arithmetic and Comparison

IQL supports the four basic arithmetic functions, and six comparison functions found in all pro-
gramming languages. However, a little care is needed in there use. For example, the following is
correct IQL to return only those people with ids greater than 3:

[{x, y} | {x, y} <− 〈〈person, name〉〉; x > 3]

But the following is not correct IQL to return those ids multiplies by 100:

[{z, y} | {x, y} <− 〈〈person, name〉〉; z = x ∗ 100]

This is because the equals comparison is not an assignment operation, but a boolean valued
function. Instead, you should write:

[{x ∗ 100, y} | {x, y} <− 〈〈person, name〉〉]

Note that it is correct to test for equality by putting a constant in the head of a generator. For
example, to find the name associated with id 3 you could write:

[{y} | {3, y} <− 〈〈person, name〉〉]

3.1.2 IQL Aggregation Functions

The IQL provides a number of aggregation functions. For example, the IQL query 〈〈person〉〉
will return the list containing the ids of persons as found in all the source databases, and include
duplicates as the same identifier is found in several data sources. To count the number of distinct
identifiers we have in all the databases for different persons, would require the query:

count(distinct〈〈person〉〉)

To achieve a query processing similar using aggregate functions with an SQL GROUP BY clause,
you should use the IQL gc function, with an aggregate function as its first argument. This will
first group tuples from a list by the first argument of each tuple in a list, and then apply the
aggregate function to the second argument. For example, to count how many (possibly identical)
names are associated with each person in the various data sources, you should execute:

gc count [{x, y} | {x, y} <− 〈〈person, name〉〉]

The manner in which the integration has been specified means we would expect to find the same
set of person ids in all three data sources. However, in practice it is likely that data sources will
contain some ids not present in other data sources. Since we know each id should appear three
times (once from each data source), we can find those ids not appearing in all data sources by the
following IQL query:

[x | {x, y} <− gc count [{x, x} | {x} <− 〈〈person〉〉]; y < 3.0]

The IQL also provides sum, min, max and avg functions.

3.1.3 IQL String Functions

The IQL string functions provide some of the common string processing capabilities found in
most programming languages, and are summerised in Table 3.1. Typically these would appear in

16 CHAPTER 3. USING THE AUTOMED GUI

IQL function Description
Split s p Return a tuple with string s split into two parts, based on p, which may be an

integer (indicating that character number p will start the second string), or a
string (used to determine the start of the second string).

Concat s1 s2 Concatenate two strings s1 and s2 together, returning a new string
UpperCase s Return a string which has string s converted to capital letters.
LowerCase s Return a string which has string s converted to small letters.
Substring s n1 n2 Return the substring of s starting at character number n1, and finishing just

before n2
Length s Return an integer representing the number of characters in string s.

Table 3.1: IQL builtin string functions. Note that IQL string functions count characters from one
(not zero).

the head of a comprehension. For example, to return the length of each department name, the
Length function is used as follows:

distinct[{x, Length x} | {x, x} <− 〈〈dept, dname〉〉]

3.2 Wrapping a Data Source

Selecting from the tool bar menu Tools option Wrap Data Source will open up a tool that allows you
to use any AutoMed wrappers that you have in your CLASSPATH. The AutoMed repository
software includes a wrapper for relational databases, that has been tested to work with Postgres,
Microsoft SQL Server, and Oracle data sources. You will need however to ensure you have the
JDBC driver for the database concerned in your CLASSPATH.

Figure 3.6: Data source wrapper tool, using the relational wrapper

The first step of wrapping a data source requires that you give the connection details of the data
source.

• The URL specifies where the data source is accessible from. The first part of the URL will
determine which AutoMed wrapper should be used: jdbc indicates that the SQL database
wrapper is used, yatta that the YATTA semi-structured file wrapper is used, dom that the
XML DOM wrapper is used.

• The driver specifies which Java driver is used to access the data source, as summerised in
Table 3.2. Note that for the AutoMed SQL driver (i.e. to use a subclass of SQLWrapper),

3.2. WRAPPING A DATA SOURCE 17

the driver should be a Java JDBC driver for the DBMS in question, which you should put
in your Java CLASSPATH.

If you leave the driver box blank, then the URL is used to guess which driver is appropriate,
and this normally produces correct results, with the exception of the XMLWrapper, which
has multiple protocols that it uses to access data sources, and hence is unable to use URLs
to determine the driver used.

• The username and password are those required to access the data source remotely using
the driver you have given. For example, on a Postgres database this would be the Postgres
username and password of you database account.

URL Prefix Wrapper Driver
jdbc: SQLWrapper JDBC driver appropriate to DBMS
yatta: YattaWrapper uk.ac.ic.doc.automed.wrapper.YattaWrapper

XMLWrapper org.w3c.dom
p2p: P2PWrapper uk.ac.ic.doc.automed.wrapper.P2PWrapper

Table 3.2: Drivers for use with Wrappers

For example, choosing the URL jdbc:postgresql://db.doc.ic.ac.uk/lab bank branch, with driver org.postgresql.Driver,
username lab, and password lab, and then pressing connect should allow you to connect to an ex-
ample Postgres database containing a small banking example2.

If the tool could successfully connected to the data source, the window will update itself to appear
as shown in Figure 3.6, with certain features of the relational model available for you to select,
which will then we modelled when later the schema is produced in AutoMed. The features
available are:

• index models an SQL index as a constraint on the table that is indexed. Note the SQL
unique indexes are equivalent to a candidate key.

• primary key models an SQL primary key as a constraint on the table for which it is a key.

• foreign key models an SQL foreign key as a constraint linking table which contains the
foreign key to another table that contains the candidate key which the foreign key values
appear in.

• null constraints causes the SQL NULL and NOT NULL constraints to be modelled as part
of the table scheme.

• data type causes the SQL column data type, such as INT, STRING, etc to be modelled as
part of the table scheme.

• data size causes maximum size in bytes of the SQL column to be modelled as part of the
table scheme.

• column number causes the position of a column in the tuples of the table to be modelled
as part of the table scheme, counting columns from one.

• schema aware causes the name of a schema to be included in the scheme of each table
modelled in AutoMed. By default, this feature is not selected, and only the default schema
of the database username is modelled in automed. With this feature selected, all schemas
in the database are modelled, unless the SQL Schema option is used to name a particular
schema to model, which when combined with using schema merging, makes the schema
appear as a data source. This combination is particularly useful when using the Oracle
DBMS.

2At present, firewall restrictions prevent this from working outside the Imperial College network.

18 CHAPTER 3. USING THE AUTOMED GUI

• schema merging being set causes the name of schemas not be form part of the key scheme
of the table schema object. This is convenient to use in conjunction with the schema aware
option, to cause a particular relational schema appear as the default available to a user of a
DBMS (in particular when using an Oracle DBMS data source).

3.2.1 Example of Wrapping a Relational Data Source

First, use the Tools menu option Wrap Data Source to open the data wrapping tool, and entire the
username, password and URL of the relational database you wish to wrap. For example, with DoC,
you will be able to access URL jdbc:postgresql://db.doc.ic.ac.uk/lab bank branch with username lab
and password lab. Click Connect, and if no problems occur, the Connect button will grey out, and
the Create button next to the Source Schema box will be enabled. Enter branch src as the source
schema name, and from the features list, choose at least at least the primary key option, and
click Create. This will produce a representation of the database where each table is represented
as a separate node, with no separate representation of columns, which we call a source oriented

schema, since it breaks the AutoMed convention of representing each part of the structure that
can be changed in a schema by a separate construct type. A schema the obeys this convention is
called an AutoMed oriented schema. When this convention is applied to the relational model,
it results in a schema normalised to sixth normal form (6NF) [DDL03, Dat04].

To produce an AutoMed oriented schema, enter branch as the AutoMed schema name, and click
Create next to it. This maps branch src to a form where each attribute is also represented as a
distinct node. Note that for the YATTA and XML wrappers, the AutoMed and source oriented
schemas are identical.

Chapter 4

The AutoMed API

In this section we provide a brief overview of using the AutoMed API, describing how to create
modelling languages, schemas in those modelling languages, and transformations between those
modelling languages. We also explain how applications written over this API can be integrated
into the AutoMed GUI, thus extending the functionality of the core AutoMed toolset.

MDR

STR

Model

mid name

0:N

1:1
Construct

cid name

1:1

1:N
Scheme

0:N

1:1

Schema
Object

0:N
1:2

2:2

Transforma
tion

0:N

1:1

0:NObject

Scheme

1:N

0:N

Schema
1:1

0:N

sid name

Access
Method

Network
1:1

1:N

Figure 4.1: Conceptual View of the AutoMed Repository

Figure 4.1 gives an overview of the key object classes available in the AutoMed repository, which
are divided into two sections. The model definitions repository (MDR) allows for the de-
scription of how a data modelling language is represented as combinations of nodes, edges and
constraints in the HDM [PM98, BM05]. It is used by AutoMed ‘experts’ to configure AutoMed so
that it can handle a particular data modelling language. The schema transformation repos-

itory (STR) allows for schemas to be defined in terms of the data modelling concepts in the
MDR. It also allows for transformations to be specified between those schemas. Most AutoMed
tools and users will be concerned with editing this repository, as new databases are added to the
AutoMed repository, or those databases evolve [MP02, Fan05].

The following sections give an overview of some of the key features in the AutoMed API that a
Java programmer will need to know in order to write applications that use AutoMed. Since the
repository forms the foundation for AutoMed applications, the preamble of your Java program
will normally import the reps package as follows:

import uk.ac.ic.doc.automed.reps.*;

19

20 CHAPTER 4. THE AUTOMED API

Other packages in the AutoMed API should be imported as required by the application.

4.1 Wrapping a Data Source

To use the AutoMed wrappers, you need to import classes from the AutoMed wrappers package,
by including the following in the Java preamble.

import uk.ac.ic.doc.automed.wrappers.*;

This package also includes the SQLWrapper and YATTAWrapper wrapper implementations for SQL
and semi-structured data sources. For XML data sources, you need to also import the XMLWrap-
per:

import uk.ac.bbk.dcs.automed.xml.XMLWrapper;

To create a wrapped data source, you need a implementation of AutoMedWrapperFactory for the
type of data source you wish to access. For example, to wrap an SQL data source, you might have
the following code:

AutoMedWrapperFactory wf=new SQLWrapperFactory();
wf.setFeatures(SQLWrapperFactory.PRIMARY KEY);
wf.setFeatures(SQLWrapperFactory.FOREIGN KEY);
wf.setFeatures(SQLWrapperFactory.DATA TYPE);
wf.setFeatures(SQLWrapperFactory.DATA SIZE);
wf.setFeatures(SQLWrapperFactory.NULL CONSTRAINT);

The various calls to AutoMedWrapperFactory.setFeatures configure the wrapper factory to model
certain features of the data source in the repository. By default, the SQLWrapperFactory only
models tables and their columns, with no key or type information. The above sequence of calls to
AutoMedWrapperFactory.setFeatures cause primary keys, foreign keys, the SQL data type, the size
and the null/notnull distinction to all be modelled.

Once a AutoMedWrapperFactory has been created and configured, any number of data sources of
that type may be wrapped by calls to AutoMedWrapper.selectNewAutoMedWrapper. For example,
to create the uni s1 src schema used in the example SQL Server data source of Section 2.2 held in
a SQL Server database could be achieved by using the TransactSQLWrapper class:

TransactSQLWrapper sw=(TransactSQLWrapper)
TransactSQLWrapper.newAutoMedWrapper(“lab”,“lab”,

“com.microsoft.jdbc.sqlserver.SQLServerDriver”,
“jdbc:microsoft:sqlserver://db-ms.doc.ic.ac.uk\\\;databaseName=pjm university1”,
null,wf);

However, If the URL and/or driver is distinctive enough to identify the wrapper being used, the
AutoMedWrapper.selectNewAutoMedWrapper method can we used as follows:

AutoMedWrapper sw=
AutoMedWrapper.selectNewAutoMedWrapper(“lab”,“lab”,null,null,

“jdbc:microsoft:sqlserver://db-ms.doc.ic.ac.uk\\\;databaseName=pjm university1”,
null,wf);

The AutoMed wrapper sw will now be connected to the data source (in the example, this would
mean that it has logged in to the database), with an associated AccessMethod that holds the
username, password, url, driver and wrapper features used when the data source was wrapped.
To obtain a representation in AutoMed of the data source schema, you should call AutoMed-
Wrapper.getSchema, which returns a Schema instance that models that data source. Note that
this that the schema could have been created during the method call above if the second to last
parameter was changed from null to “uni s1 src”. Also note that if the AutoMedWrapperFactory
was changed to null, one would be created with default feature settings.

4.2. TRANSFORMING SCHEMAS 21

If the wrapper provides distinctive source oriented and AutoMed oriented schemas1 you can also
obtain the AutoMed oriented schema by calling AutoMedWrapper.newAutoMedSchema.

Schema s=sw.getSchema(“uni s1 src”);
Schema as=sw.newAutoMedSchema(“uni s1”);

Note that unless the SQLWrapper.SCHEMA AWARE feature is selected, only the default schema is
read into AutoMed. If the tables we were interested in were in a SQL schema called staffdept,
then the following executed before the getSchema method would cause that SQL schema to be
read in and have the same key schemes as if it were the default database (though the schema name
will be stored in the full table scheme):

wf.setFeatures(SQLWrapperFactory.SCHEMA AWARE);
wf.setFeatures(SQLWrapperFactory.SCHEMA MERGING);
sw.setOption(SQLWrapper.OPTION SCHEMA NAME,“staffdept”);

Note that this arrangement of features and options is typical of how an Oracle data source should be
wrapped in AutoMed. Also note that having SQLWrapperFactory.SCHEMA AWARE selected, but
not the SQLWrapperFactory.SCHEMA MERGING nor having the SQLWrapper.OPTION SCHEMA NAME
would cause all SQL schemas in the database to modelled in one AutoMed schema, which the
SQL schema name forming part of the key scheme for each table modelled.

Since AccessMethod and Schema are repository objects, they are persistent and hence will be avail-
able to other Java applications even after the current application has terminated. When starting
an application that uses a data source schema, the wrapper for the data source is retrieved by
finding the AccessMethod associated with the data source schema. The AccessMethod contains all
the details associated with the wrapper, and allows connections to data sources to be reestablished
as required. In principle more that one AccessMethod may be associated with a data source, each
with a different Protocol. For example, a relational database might in principle be accessed via ei-
ther the JDBC or ODBC protocols. In the current implementation, only one Protocol is supported
per data source type, and thus a reliable method to retrieve the wrapper for uni s1 src would be:

Schema s=Schema.getSchema(“uni s1 src”);
AccessMethod am[]=s.getAccessMethods();
AutoMedWrapper sw=AutoMedWrapper.selectNewAutoMedWrapper(am[0]);

4.2 Transforming Schemas

In the schema created in Section 4.1, we might wish to rename the table 〈〈staff〉〉 to 〈〈person〉〉. To
do this, you find the SchemaObject that represents the staff table using Schema.getSchemaObject.
Then you can use Schema.applyRenameTransformation to create a new schema that is the same as
the original schema, except 〈〈staff〉〉 being named 〈〈person〉〉:

SchemaObject staff=uni.getSchemaObject(”〈〈staff〉〉”);
Schema unia=uni.applyRenameTransformation(staff,new Object[]{”person”});

To obtain the new SchemaObject that represents 〈〈person〉〉, we need to inspect the result of the
transformation. At a conceptual level, each transformation either deletes, adds or changes one
SchemaObject. Thus each end of the transformation has at most one SchemaObject associated
with it, which may be found by asking for the object that is associated with the Schema at that
end of the transformation. In practice, there is a complexity that a rename of one SchemaOb-
ject was cause others to be renamed. In the example, renaming 〈〈staff〉〉 to 〈〈person〉〉 means that
column 〈〈staff,id〉〉 is renamed to 〈〈person,id〉〉, primary key 〈〈staff pk,staff,〈〈staff,id〉〉〉〉 is renamed to
〈〈staff pk,person,〈〈person,id〉〉〉〉, etc. In AutoMed this is handled by the SchemaObject being rep-
resented as an array, where the first element of the array is the object being renamed, and the
remaining elements of the array are objects renamed as consequence of that renaming.

1At present, SQLWrapper (and all its subclass wrappers) provide distinctive source and AutoMed schemas,
whilst YattaWrapper and XMLWrapper do not.

22 CHAPTER 4. THE AUTOMED API

Hence, after the applying the transformation above, we may find the renamed SchemaObject
〈〈person〉〉 as follows:

SchemaObject map=Transformation.getTransformation(uni,unia).getSchemaObject(ns);
SchemaObject person=(SchemaObject)map.getSchemeDefinition()[0];

Other transformations are applied in a similar manner, but some important details differ. When
applying an add or extend transformation, you need to give as a parameter the Construct instance
you are going to create a SchemaObject for when performing the transformation. For example,
to add 〈〈male〉〉 and 〈〈female〉〉 ER entities based on which 〈〈person〉〉 instances are associated to
a particular value in 〈〈person,sex〉〉 (and assuming that the DefineModels example application has
been run), the following code should be used:

Model er=Model.getModel(“er”);
Construct ent=er.getConstruct(“entity”);
Schema unib=unia.applyAddTransformation(ent,new Object[]{”male”},

”[{x} | {x,’M’} <- 〈〈person,sex〉〉]”,null);
Schema unic=unib.applyAddTransformation(ent,new Object[]{”female”},

”[{x} | {x,’F’} <- 〈〈person,sex〉〉]”,null);

If we wish the to create a generalisation between the 〈〈male〉〉, 〈〈female〉〉, and 〈〈person〉〉 entities, we
must obtain the SchemaObject instances that represent this elements of the schema (and not use
strings) as illustrated below:

SchemaObject person=uni.getSchemaObject(“〈〈person〉〉”);
SchemaObject male=Transformation.getTransformation(s1a,s1b).getSchemaObject(s1b);
SchemaObject female=Transformation.getTransformation(s1b,s1c).getSchemaObject(s1c);
Construct gen=er.getConstruct(“generalisation”);
Schema unid=unic.applyAddTransformation

(gen,new Object[]{”sex”,”total”,person,male,female},null,null);

Note that any transformation creating a constraint should never supply a query (if you do, then
a runtime exception will be generated).

To apply delete or contract transformations, you need only give the SchemaObject instance to
be deleted, along with any query that will restore the extent of the object being deleted if its
Construct class is not of type constraint. For example, to delete the 〈〈person,sex〉〉 attribute, the
following code would be used:

SchemaObject personsex==unid.getSchemaObject(”〈〈person,sex〉〉”);
Schema unie=applyDeleteTransformation(personsex,

”[{x,’M’} | {x} <−〈〈male〉〉] ++ [{x,’F’} | {x} <−〈〈female〉〉]”,
”distinct [{x} | {y,x} <−〈〈person,sex〉〉] = [’F’,’M’]”);

Note that using the various apply methods in Transformation can only ever generate a new
Schema.VIRTUAL TYPE type Schema instance, means that it is never possible to trasform one
Schema.DATA SOURCE TYPE, Schema.STORED TYPE, or Schema.MATERIALISED TYPE type
Schema to another just using the apply methods. To achieve this integration of two data sources,
you must at some point create an ident transformtion. Suppose that we have translated another
schema to get a SchemaObject instance held in uniebis. Provided that these two Schema instances
hold SchemaObjects with the same name and Contruct type, you will be able to ident the schemas
together using the static method Transformation.createIdentTransformation:

Transformation.createIdentTransformation(unie,uniebis,null,null)

4.3 Query Processing

The IQL query processing is split into three stages that allow application programmers to have
significant control over the query processing, and to add their own extensions onto the IQL. To
begin with, we have a query a schema (which we shall refer to as the query schema), which

4.4. ADDING TOOLS TO THE GUI 23

shall be represented in a graph structure called the AbstractSyntaxGraph (ASG). Then each
of the three stages will require its own class that rewrites the ASG to another form. All query
processing classes are located in a single package that should be included in applications using the
query processor:

import uk.ac.bbk.dcs.automed.qproc.*;

The first stage in query processing is to map the queries on the query schema into queries on
extensional schemas connected to the query schema by pathways. This process is conducted by
the QueryReformulator, one of which needs to be created for each query schema that is to be
queried with respect to a set of source schemas. For example, to query uni ze in the University
example against all attached data sources, you would create QueryReformulator as follows:

Schema qs=Schema.getSchema(”uni ze”);
Schema extSchemas[]=qs.findAttachedExtSchemas();
QueryReformulator qr=new QueryReformulator(qs,extSchemas);

The output of the QueryReformulator with be a version of the query with constructs from the query
schema replaced by constructs from the source schemas. This is when broken up into fragments
by the FragmentProcessor, which is created without any parameters:

FragmentProcessor fp=new FragmentProcessor();

Finally, each query fragment with need to be evaluated against the data source, and replaced by
the values that form the result of the query. This process is conducted by the Evaluator, that
is created to evaluate a specific version of the IQL. If no user functions are to be added, the
StandardFunctionTable should be used as follows:

FunctionTable ft=new StandardFunctionTable();
Evaluator e=new Evaluator(ft);

Once these classes have been created, any number of queries can be made on the query schema
using the same class instances. For example, one query evaluation could be conducted by:

ASG q=new ASG(“distinct 〈〈person, name〉〉”);
qr.reformulate(q);
fp.process(q);
e.evaluate(q);

4.4 Adding Tools to the GUI

The AutoMed GUI provides a graphical tool to view the contents of the STR, and perform
certain API calls from graphical tools, in particular the creation of transformations, and the
wrapping of data sources. Apart from running the GUI from the command line as described in
Section 3, an application may open the tool using the following code:

Gui gui=Gui.openMainWindow();

The Gui.openMainWindow method will not create a new Gui instance if it has been called before, and
hence it is safe to place this is application code without checking if the code is being called from the
GUI tool. The Gui class can display a windown describing any Postionable instance in the repository
(i.e. any instance of Schema, SchemaObject, and Network) using the GuicreateEditorFrame method.
It should be noted that at present the view of SchemaObject produces an empty window, but in a
later release the window will contain information about the schema object. For example, to open
as view of a Schema called er s2:

Schema s=Schema.getSchema(“er s2”);
gui.createEditorFrame(s);

24 CHAPTER 4. THE AUTOMED API

The AutoMed GUI tool allows users to add their own applications to the menu structure of
the GUI, and to pass to the application any instances that have been selected by the user. Any
updates that the application makes to the repository are automatically reflected in the GUI. The
GUI editor and classes are included by the following statement:

include uk.ac.ic.doc.automed.editor.*

Any application that is to be called by the GUI must provide a static method that takes an array
of Object instances as an argument, and returns a single UserActionResult. It is valid (and often
the case) for null to be returned. For example, the IQLTool described in Section 3.1 contains the
following method:

public static UserActionResult getTool(Object o[]) {
new IQLTool((Schema)o[0]);
return null;

}

Note that the method implicitly assumes that the object array passed to it contains a single
instance of the Schema class. The configuration files associated with the GUI ensure that this will
always be the case, by controlling which objects in the GUI may be selected before the method is
called, by placing in configuration file a series of 〈method statement〉 entries, the syntax for which
is given in Table 4.1.

For example, a menu option called Query schema ... to call IQLTool.getTool is configured by the
following entry, where the schema(single,inside) entry indicates that the menu option is active
wherever a single schema is selected, or the menu is brought up inside a schema window with
nothing selected.

schema(single,inside) {
name ”Query schema ...”,
method uk.ac.ic.doc.automed.editor.IQLTool.getTool

}

Sometimes, the basic choice of enabling menu items based on there being just the 〈selection type〉s
listed in Table 4.1 is not sufficient, in which case an enabler method may be provided, which takes
an object array, and returns a boolean to indicate if the menu option should be enabled. For
example, applying a ident transformation requires that exactly two schemas are selected. This
may be configured by using a 〈selection type〉 of multi, with an enabler method that returns true
if passed an Object array of two elements:

schema(multi) {
name ”Apply ident transformation”,
method uk.ac.ic.doc.automed.editor.Gui.applyIdent,
enabler uk.ac.ic.doc.automed.editor.Gui.exactlyTwo

}

The GUI on startup reads a master configuration file actions.cfg held in the $HOME/.automed
directory. If you are using the default one written by the AutoMed API, this should look
roughly like the file shown in Figure 4.2 in structure.

//
// AutoMed GUI editor master configuration
//
include ”::standard editor actions.cfg”
include ”my actions.cfg”
// include ”::developer actions.cfg”
// include ”::test actions.cfg”

Figure 4.2: Example actions.cfg file

4.5. DESCRIBING A SCHEMA 25

The include statements cause other configuration files to be included into the main configuration
file. All the include statements that have :: in front of the filename cause the file to be sourced
from the editor package directory (and hence cannot be altered by a user). The three such supplied
configuration files illustrated above have the following purpose:

• The standard set of tools used by the GUI (and which were described in Section 3) are listed
in standard editor actions.cfg.

• New experimental tools distributed with AutoMed are described in developer actions.cfg.

• A complete set of all possible configurations are described in test actions.cfg. You might
wish to uncomment this entry, and comment out all the other entries, and then run the GUI
tool to experiment with which configuration patterns are obtained when certain windows
and objects are selected.

〈selection object〉 description
root Refers to the master All Networks window, where only the inside select option

has any effect.
network Refers to anything that represents the Network class, i.e. any node in the All

Networks window, or being inside any Network ... window.
schema Refers to anything that represents the Schema class, i.e. any node in a Net-

work ... window, or being inside any Schema ... window.
schemaobject Refers to anything that represents the SchemaObject class, i.e. any construct

in a Schema ... window, or being inside any SchemaObject ... window.

〈selection type〉 description
inside Menu has been called inside a window of selection object, with nothing se-

lected in that window.
single Menu has been called with a single selection object selected.
multi Menu has been called with two or more selection objects selected. Multiple

objects are selected either by dragging box over a set of objects, or by control-
clicking on several individual objects.

path Menu has been called with a pathway of the selection objects selected. Paths
are obtained by selecting one object, and then shift-clicking on another object
linked to the first by some set of arcs in the diagram.

〈gui configuration file〉 ::= 〈method statement〉*

〈selection〉 ::= 〈selection object〉(〈selection type〉 [, 〈selection type〉]*)

〈method statement〉 ::= 〈selection〉 [, 〈selection〉]* {
name “〈menu text〉” ,
method ”〈full method name〉” [,
enable ”〈enabler method name〉”]

}

Table 4.1: BNF definition of the GUI configuration file format.

The my actions,cfg configuration file is sourced from the same directory as actions.cfg, and is where
a user should put there own GUI tool 〈method statement〉 declarations. This ensures that if the
repository updates the actions.cfg file you do not loose your personal configuration options.

4.5 Describing a Schema

Schemas of Schema.DATA SOURCE TYPE are normally created using a wrapper over a data
source, and then schemas of Schema.VIRTUAL TYPE type are created by applying transfor-
mations to schemas. However, if you want to write your own wrapper, or write a tool that

26 CHAPTER 4. THE AUTOMED API

is designed to create new schemas independently from a data source (which should by of type
Schema.STORED TYPE or Schema.MATERIALISED TYPE), then you need to understand how the
API may be used to describe a schema. The first step is to give the schema a name and create it
using the Schema.createSchema method as follows:

if (force)
Schema.retract(”mdr”);

Schema s=Schema.createSchema(“mdr”);

Note, that Schema.createSchema will throw an IntegrityException if a schema with the name mdr al-
ready exists. To prevent this occurring, we preceded the attempt to create the schema with a call to
Schema.retract if the boolean flag force is set. This will remove any schema with that name (and all
dependent schemas). A schema is dependent on another schema if former schema is generated by
the application of Transformation.applyAddTransformation, Transformation.applyDeleteTransaction
etcmethods (in the Transformation class to the later schema.

The you need to obtain references to the Construct instances that model the type of the SchemaOb-
jects which represent the objects in the schema. Suppose we want to create the ER model of the
MDR shown in Figure 4.1 using the er Model created by the example application DefineMod-
els (q.v. Section 2.1). Then we would need to get the Model by referencing by its name using
Model.getModel, and then get associated Constructs by using Construct.getConstruct.

Model er=Model.getModel(”er”);
Construct ent=er.getConstruct(”entity”);
Construct att=er.getConstruct(”attribute”);
Construct rel=er.getConstruct(”relationship”);

The SchemaObject class models various objects within a schema, and are created by calls to
Schema.createSchemaObject, which takes as its first argument an instant of Construct that defines
the type of the SchemaObject, and its second argument an Object array containing the full scheme

of the object. For example, to create the model and construct entities, and its attributes mid and
name would require the following calls:

SchemaObject model=s.createSchemaObject(ent,new Object[]{”model”});
SchemaObject construct=s.createSchemaObject(ent,new Object[]{”construct”});

Once the entities have been created, attributes on entities can be created, which in their scheme
will reference the entity SchemaObject instances created above. The definition of the er model will
be described in Section 4.6, and will show that the first field of the scheme of attributes is defined
to always reference SchemaObject that was created with an entity Construct.

s.createSchemaObject(att,new Object[]{model,”mid”,”key”});
s.createSchemaObject(att,new Object[]{model,”name”,”notnull”});
s.createSchemaObject(att,new Object[]{construct,”cid”,”key”});
s.createSchemaObject(att,new Object[]{construct,”name”,”notnull”});

A relationship between entities is created in a similar manner to attributes, in the sense that the
scheme must name two entity SchemaObject instances, followed by the two cardinality constraints:

s.createSchemaObject(rel,new Object[]{””,construct,model,”1:1”,”0:N”});

4.6 Describing a Modelling Language

For each modelling language, an instance of the Model class should be created. For example, the
following creates a modelling language called er:

Model=Model.createModel(“er”);

Each modelling language construct must be classified as being one of four types: nodal, link,
link-nodal, and constraint.

4.6. DESCRIBING A MODELLING LANGUAGE 27

A nodal construct represents a simple list of values. Exactly one element of the construct scheme
must be identified as the name of the underlying HDM node, and be of type node name. Often a
nodal construct has just this one scheme element, for example in an ER model, the construct for
an entity would be defined by:

Construct entity=er.createConstruct(”entity”,Construct.CLASS NODAL,true);
entity.addNodeNameScheme();

A link-nodal construct is a combination of a link and a node. It models a node type which cannot
exist in isolation but requires another construct with which to be associated. The construct scheme
must contain one string element for the name of the new HDM node, an optional name for the
HDM edge name, and must contain a reference to an existing construct. For example, an ER
attribute can be defined by:

Construct attribute=er.createConstruct(”attribute”,Construct.CLASS LINK NODAL,true);
attribute.addReferenceScheme(entity);
attribute.addNodeNameScheme();
attribute.addConstraintScheme(false);

A link construct is one that can only be instantiated (i.e. a schema object of its type be con-
structed) by referring to other schema objects. One scheme element may be identified as the
underlying HDM edge’s name, and at least two of the instance scheme’s elements must refer to
other schema objects that have underlying HDM nodes or edges. For example we define a binary
relationships construct scheme as follows:

Construct relationship=er.createConstruct(”relationship”,Construct.CLASS LINK,true);
relationship.addEdgeNameScheme();
relationship.addReferenceScheme(entity,2,2);
relationship.addConstraintScheme(2,2,false);

Note that the numbers in the last two method calls specify a lower and upper bound on the
number of occurrences of the item being added to the scheme. Hence the above states that there
is one name of an edge, followed by two references to entity constructs, followed by two constraint
expressions.

A constraint construct has no extent, and must be associated with at least one other construct
on which it places a constraint on its extent. For example, a generalisation in a ER model places a
restriction on entities such that the extent of one is a subnet of the extent of another. This would
be defined by:

Construct generalisation=er.createConstruct(”generalisation”,Construct.CLASS CONSTRAINT,true);
generalisation.addLabelScheme();
generalisation.addLabelScheme(false);
generalisation.addReferenceScheme(entity);
generalisation.addReferenceScheme(entity,2,0,false);

Note that in the last Construct.addReferenceScheme, the use of an upper bound value of 0 being
less than the lower bound value of 2 means that the repository will not enforce any upper bound
on the number of subclass entities that can appear in the generalisation.

4.6.1 Alternatives and Sequences

Apart from the four basic types of construct outlined above, the AutoMed API supports two more
constructs that allow for the accurate representation of more complex modelling languages. These
are virtual constructs, which may be used in the addReferenceScheme method to specify patterns
that may occur in the scheme of a construct, but may not be used to create a SchemaObject
instant.

In the ER modelling so far defined, it is assumed that attributes are only placed on entities. If
we wanted to allow attributes to be also placed on relationships, we have the problem that the
Construct.addReferenceScheme needs to reference more than one type of Construct. This may be

28 CHAPTER 4. THE AUTOMED API

achieved by defining an alternation Construct, which can not be instantiated in any schema, but
can be used in references to constructs to represent a choice of different constructs, as the following
code fragment illustrates.

Construct entityOrRelationship=eer.createConstruct(”entity or relationship”,
Construct.CLASS ALTERNATION,false);

Construct attribute=eer.createConstruct(”attribute”,Construct.CLASS LINK NODAL,true);
attribute.addReferenceScheme(entityOrRelationship);
attribute.addNodeNameScheme();
attribute.addConstraintScheme(false);

The entityOrRelationship alternation construct is used the place of the attribute definition where
we want a reference to either an entity or relationship appear in the scheme of the attribute.

The sequence construct allows a list of construct references, labels and constraints to be handled
as a single unit. This is useful when one wishes to ensure that the list occurs either in its entirety
or not at all. For example, if we wanted to change our binary ER relationship construct to instead
be an n-ary relationship, it might be thought that we could change the last two scheme definitions
to be:

relationship.addReferenceScheme(entity,2,0);
relationship.addConstraintScheme(2,0,false);

indicating that there is no upper bound on the number of entities referenced, and cardinali-
ties. However, this would make the scheme 〈〈worksin,person,dept,1:1,0:N,1:1〉〉 a valid scheme, even
though the number of cardinality constraints does not match the number of entities referenced. In-
stead we should create a sequence that contains both an entity reference and cardinality constraint.
This could be defined as follows:

Construct relationshipTarget=eer.createConstruct(”relationship target”,
Construct.CLASS SEQUENCE,false);

relationshipTarget.addReferenceScheme(entityOrRelationship,1,1);
relationshipTarget.addConstraintScheme(1,1,false);

This may then be used in the definition of relationships by modifying the scheme definitions to be
as follows:

relationship.addEdgeNameScheme();
relationship.addReferenceScheme(relationshipTarget,2,0);

This alternative definition allows for a scheme of the form 〈〈worksin,person,1:1,dept,0:N〉〉 but would
not allow 〈〈worksin,person,1:1,dept,0:N,1:1〉〉 since the last constraint does not appear after a refer-
ence to an entity.

4.7 Customising the Appearance of a Model

The AutoMed GUI has a default representation of SchemaObject instances which uses the HDM
associated with Construct type to determine the appearance of the SchemaObject as follows:

• Construct.CLASS NODAL types are represented by a rectangular box, with the node name
drawn within.

• Construct.CLASS LINK NODAL types are represented by a small circle, with a line connecting
the circle to any types referenced by the link nodal scheme, and the name of the node drawn
on the opposite side of the circle to the first of these lines.

• Construct.CLASS LINK types are represented by a diamond shape, with a line connecting the
diamond to any types referenced by the link scheme.

• Construct.CLASS CONSTRAINT types are represented by a dashed rounded rectangle, with

4.7. CUSTOMISING THE APPEARANCE OF A MODEL 29

the first label of the constraint placed inside the rectangle, and with a line connecting the
rounded rectangle to any types referenced by the constraint scheme.

Figure 4.3: AutoMed GUI Tool viewing schema er s2d using the default Drawable implementa-
tions

Figure 4.3 illustrates the appearance of all four of these default appearances. Whilst this gives
a ‘pseudo-ER’ appearance to the diagrams, and is adequate for basic viewing of models, it will
invariably be the case that not all information in the modelling language is presented. Even the
‘pseudo-ER’ diagram omits the cardinality constraints on the relationships in the example ER
modelling language, and the cardinality of attributes, and draws generalisations in an ambiguous
manner. The AutoMed API allows a developer to implement custom classes for drawing the
objects in a modelling language, and store the names of those classes in the repository, such that
the GUI tool then uses them for drawing schemas. Figure 3.3 illustrates the classes shipped with
the AutoMed GUI to enhance the appearance of ER diagrams.

female male

person
pid

name
worksin dept dname

sex

?

DefaultDrawNodalVertex

?

DefaultDrawLinkVertex

?

DefaultDrawNodalVertex

] �

DefaultDrawNodalVertex

I �
DefaultDrawLinkArc

-DefaultDrawConstraintVertex

	

Y

DefaultDrawConstraintArc

-DefaultDrawConstraintArc

s

U

DefaultDrawLinkNodalVertex

6

6

DefaultDrawLinkNodalArc

6

DefaultDrawLinkNodalArc

	

DefaultDrawLinkNodalVertex

Figure 4.4: Default Drawable implementations used to paint AutoMed SchemaObjects

The Gui in the uk.ac.doc.ic.automed.editor package conceptualises each object it needs to draw
as being an implementation of the Positionable interface, that the repository classes Network,
Schema and SchemaObject each implement. Each appearance of a Positionable in a EditorPanel
requires that the Positionable be wrapped inside a Drawable implementation. Each SchemaObject
based on a Construct that is not of nodal type will have two graphical components: a vertex and
several arcs connecting that vertex to other constructs. Constructs that are of nodal type have
just the vertex. These vertex and arcs are drawn by implementations of the DrawableVertex and

30 CHAPTER 4. THE AUTOMED API

Construct type DrawableVertex implementation DrawableArc implementation
CLASS NODAL DefaultDrawNodalVertex N/A
CLASS LINK NODAL DefaultDrawLinkNodalVertex DefaultDrawLinkNodalArc
CLASS LINK DefaultDrawLinkVertex DefaultDrawLinkArc
CLASS CONSTRAINT DefaultDrawConstraintVertex DefaultDrawConstraintArc

Table 4.2: Default Classes used for drawing Constructs

DrawableArc interfaces. The default implementations used for various construct types are listed in
Table 4.2, and used to annotate the schema objects shown in Figure 4.4. Whilst it is possible to
write your own replace implementations of these two interfaces, it is recommended that instead
you extend two classes DrawVertex and DrawArc, overriding methods as necessary. All the classes
in Table 4.2 extend these two classes, and if you wish your construct to appear similar to one of
these, you might consider overriding one of these default implementations.

The methods of DrawVertex that you might wish to override are:

• DrawVertex.getBounds() returns the Rectangle within which you want your object to appear.
You should use the Positionable.getPosition() method on the Positionable p to calculate this
position.

• DrawVertex.getCentre() returns the Point which is the absolute location of Positionable.getPosition()
relative to the top-left corner of the DrawVertex.getBounds() rectangle.

• DrawVertex.getCentreOffset() returns the Point which is the location of Positionable.getPosition()
relative to the top-left corner of the DrawVertex.getBounds() rectangle.

• DrawVertex.setText sets what text should be used to label the vertex. The default imple-
mentation uses the Positionable.getLabel().

• DrawVertex.paint draws the object in a Graphics2D canvas.

• DrawVertex.getConnectionPoint takes a Point as an argument, and calculates when a line
representing an arc from that point to the graphical centre of the drawable should stop.

person

pid

6

dse.getCentre()

	

dse.bounds()

�
dsa.bounds()

	

dsa.getConnectionPoint(dse.getCentre())

�

dse.getConnectionPoint(dsa.getCentre())

R

dsa.getCentre()

Schema s=Schema.getSchema(“er s2d”);
SchemaObject se=s.getSchemaObject(〈〈person〉〉);
SchemaObject sa=s.getSchemaObject(〈〈person,pid〉〉); Gui gui=Gui.openMainWindow();
gui.createEditorFrame(s);
DrawableVertex dse=(DrawableVertex)gui.getDrawable(se);
DrawableVertex dsa=(DrawableVertex)gui.getDrawable(sa);

Figure 4.5: Points and shapes computed by DrawVertex methods

Figure 4.5 illustrates the Points and Rectangle returned on an example schema. Note that the
result of getConnectionPoint() is used by the default implementation of DrawArc to decide where
it should draw the arc connecting nodes in the diagram.

4.8. WRITING AN AUTOMED WRAPPER 31

The following illustrates a complete example of a Drawable implementation that enhances the
representation of attributes in our ER modelling languages, by putting a question mark after any
nullable attribute, and a asterisk after a multi-valued attribute.

public class DrawERAttributeVertex extends DefaultDrawLinkNodalVertex {
public DrawERAttributeVertex(EditorPanel ep,Positionable schemaObject,

Positionable d[]) {
super(ep,schemaObject,d);
Object s[]=((SchemaObject)schemaObject).getSchemeDefinition();
String card=s[2].toString();

if (”null”.equals(card))
text+=”?”;

if (”multi”.equals(card))
text+=”*”;

setText(text);
}

}

To make the GUI use this method for drawing a SchemaObject called attribute, a call to the
Construct.setVertexDrawable method should be made as follows:

attribute.setVertexDrawable(DrawERAttributeVertex.class.getName());

There is a analogous Construct.setArcDrawable method to supply a new DrawableArc implemen-
tation. Note that the Drawable implementation must be in your CLASSPATH both when you
compile your application, and when you run the GUI.

4.8 Writing an AutoMed Wrapper

Implementing an AutoMed Wrapper for a particular type of date source requires that:

1. You design an instance of Model and associated instances of Construct that can be used as
a basis to represent the schema of the data source. If the data source modelling language is
very different from the standard AutoMed representation of languages, you might create
two models, one source oriented, and one AutoMed oriented.

2. You write an extension of AutoMedWrapperFactory, that includes methods to create the
instances you designed in (1), and which can also use either data source metadata and/or
input from an expert user to create instances of SchemaObject to represent the schema of a
particular data source.

3. You write an extension of AutoMedWrapper that can connect to the data source, and which
can return the extent of any nodal, link-nodal or linking SchemaObject in the Schema as-
sociated with the data source. All persistent information about a wrapper must be held in
AccessMethod instance. Thus an AutoMedWrapper should be created by giving either the
connection details for a data source not used before, or by giving the AccessMethod for a
data source that has previously been wrapped.

In general, one wrapper may map a data source into AutoMed is a variety of ways, and may or
may not model certain features of the data source. This is handled in AutoMed wrappers by the
concept of features, which is a bitmap what indicates which features are on or off in a particular
wrapper instance. The features should be

1. Described by static constants in your extension of AutoMedWrapperFactory, numbered 1,2,4,8,. . .

32 CHAPTER 4. THE AUTOMED API

2. Recorded in the AccessMethod created by the wrapping process

3. Used by your AutoMedWrapper in deciding how it interacts with the data source when
running queries and updates.

The purpose of separating functionality into AutoMedWrapper and AutoMedWrapperFactory is that
each instance of AutoMedWrapperFactory may read several schemas of several data sources in a
consistent manner, and create several AutoMedWrapper and associated Schema instances which
represent several data sources using the same data modelling language. Thus features should only
be settable on an AutoMedWrapperFactory before it has been used to map its first schema. After
this, any attempt to set the features will throw an IntegrityException, provided the implementation
of AutoMedWrapperFactory sets the protected variable factoryInUse after creating its first schema.

4.8.1 Extending AutoMedWrapper

To allow users to call AutoMedWrapper.newAutoMedWrapper with appropriate parameters, and
have your wrapper class selected, your wrapper should register itself with AutoMedWrapper using
the AutoMedWrapper.registerWrapper, by including a static initialiser. For example, the Transact-
SQLWrapper registers itself by:

static {
AutoMedWrapper.registerWrapper(new TransactSQLWrapper()).getClass(),

”com.microsoft.jdbc.sqlserver.SQLServerDriver”,null);
}

To know that your wrapper class is loaded when the GUI is running (and therefore it will be offered
as an option to users of the GUI), you should ensure that it is loaded in your data source repository.cfg
or one of its included files. For example, the reps schema.cfg included by default in data source repository.cfg
contains the following line to load PostgresWrapper:

load ”uk.ac.ic.doc.automed.wrappers.PostgresWrapper”

To create a wrapper, it is expected that each wrapper implementation provides a factory method
AutoMedWrappernewAutoMedWrapper that given details of a date source, attempts to connect
to it, and if given the schema name, calls the AutoMedWrapper.getSchema method to create the
Schema that represents the data source. If the schema name is not given, then

A wrapper for a data source stores is configuration in the repository class AccessMethod. Ev-
ery subclass of AutoMedWrapper is expected to implement a constructor method that takes an
AccessMethod and String password. For example, the Postgres wrapper has the constructor:

public PostgresWrapper(AccessMethod am, String password)
throws DataSourceException {

this.am=am;

if (password==null)
this.password=am.getPassword();

else
this.password=password;

url=am.getURL();
s=am.getSchema();
username=am.getUsername();
driver=am.getDBDriver();
awf=new PostgresWrapperFactory();
try {

awf.setFeatures(am.getAutoMedWrapperFactoryFeatures());
}
catch (Exception e) {

4.8. WRITING AN AUTOMED WRAPPER 33

throw InconsistentException.newInconsistentException(”Unable to set ”+
”features of brand new WrapperFactory! ”,e);

}
connect();
cacheWrapper();

}

The test on the password allows the user to override the password held inside the AccessMethod.
Then the details of the AccessMethod are unloaded into variables provided in AutoMedWrapper for
the purpose. The call to the AutoMedWrapper.connect method (which must be supplied within the
wrapper implementation) then opens the data source, and finally AutoMedWrapper.cacheWrapper
is called to ensure that this wrapper instance is always returned by methods that attempt to locate
wrappers by reference to AccessMethod. Apart from constructors, AutoMedWrapper.connect is one
of four methods that the wrapper implementation must provide:

• AutoMedWrapper.connect should ensure that the driver (if any) used to assess the data source
can be loaded, and that the data source can be opened for reading using any username and
password supplied. The implementation of connect should only use the password, username,
url, and driver fields on AutoMedWrapper, and not the AutoMedWrapperFactory which might
to be present at the time connect is called. This allows features of the AutoMedWrapperFac-
tory to be changed before the schema is populated.

• AutoMedWrapper.getProtocolName must return the name of the protocol associated with this
wrapper. This is used only for identification purposes, and does not (at present) impact on
the operation of the system. For example, the PostgresWrapper and TransactSQLWrapper
wrappers both return jdbc to indicate their reliance on the JDBC protocol.

• AutoMedWrapper.executeIQL must take an ASG containing a single scheme, and return an
ASG representing the list associated that represents the content of the data source corre-
sponding to that scheme.

• AutoMedWrapper.getDefaultWrapperFactory return an instance of the AutoMedWrapperFac-
tory that is designed to populate Schema for the wrapper, and also create Model and associ-
ated Constructs those schemas will be described in.

4.8.2 Extending AutoMedWrapperFactory

The AutoMedWrapperFactory.getModel method should create a new instance of the Model your
wrapper needs only if that Model is not already present in the repository. Otherwise it should
return the existing Model instance. Hence in outline, a getModel will follow the following structure:

try {
sql=Model.getModel(modelName);

}
catch (NotFoundException e) {

sql=Model.createModel(modelName);
table=sql.createConstruct(. . .);
...

}

The AutoMedWrapperFactory.getAutoMedModel method should similarly create or return the Au-

toMed oriented schema if your wrapper has one, or if your wrapper does not, just return the
return the result of getModel.

The AutoMedWrapperFactory.populateSchema should be passed a AutoMedWrapper which has al-
ready has its AutoMedWrapper.connect method called, and had an empty Schema created. The
AutoMedWrapperFactory.populateSchema method then reads in the schema of a data source, and
creates SchemaObject instances to represent the data source schema.

34 CHAPTER 4. THE AUTOMED API

The AutoMedWrapperFactory.getFeatureNames method should return an array of strings, contain-
ing the names of features that may be used in this wrapper. The elements of the array correspond
to a bit map that is used as an integer to AutoMedWrapperFactory.setFeatures: the first array
element should be a feature that has a static constant 1 associated with it, the second a static
constant 2, the third a static constant 4, etc.

Chapter 5

AutoMed Tools

The standard AutoMed distribution comes with a number of tools to assist in performing data
integration using the AutoMed repository. In this chapter, we detail two tools, the first providing
a mechanism to automate the integration of schemas, and the second to allow for P2P exchange
schemas, pathways and queries between several AutoMed repositories.

5.1 Schema Matching and Merging

In model management [Ber03], the Match operator determines what are the semantic relation-
ships between SchemaObject instances in different schemas, and the Merge operator uses these
semantics relationships to combine two Schemas into a single new Schema.

Since AutoMed is much more precise in its specification of the relationship between schemas,
it follows that the AutoMed Merge operator requires a more precise description of semantic
relationships from the Match operator than is found in other approaches. The semantic relation-
ships supported by AutoMed Match [Riz04] compare two SchemaObjects 〈〈A〉〉 and 〈〈B〉〉 from
two Schemas SA and SB and determine what is the semantic relationship between the two schema

objects. We say that two schema objects are compatible 〈〈A〉〉
S
∼ 〈〈B〉〉 if it is always the case that

(1) when the same data value appears in the extent of both schema objects then it represents
the same real world concept, and (2) if the data values differ, then they represent different real
world concepts. From this definition it follows that if we had a SchemaObject 〈〈person〉〉 = [1, 2, 3]
in one schema representing the identifiers of students, and a SchemaObject 〈〈dept〉〉 = [1, 2, 3] in
another schema representing identifiers of departments, then we would that 〈〈person〉〉 and 〈〈dept〉〉
are incompatible. By contrast if we had the same 〈〈person〉〉 SchemaObject in one schema, and
in another schema a SchemaObject 〈〈staff〉〉 = [1, 3, 5], where the value 1 is both cases represented
the same person ’Alex’, value 2 represents person ’Dimitri’ who only appears in the first schema,
value 3 represented ’Mike’ in both, etc, then we say the schema objects are compatible.

For compatible schema objects we identify four subclasses of compatibility, giving the five semantic
relationships listed below:

1. equivalence 〈〈A〉〉
S
= 〈〈B〉〉 holds iff 〈〈A〉〉

S
∼ 〈〈B〉〉 holds, and it is semantically correct to say

that at all times 〈〈A〉〉 = 〈〈B〉〉

2. subsumption 〈〈B〉〉
S

⊂ 〈〈A〉〉 holds iff 〈〈A〉〉
S
∼ 〈〈B〉〉 holds, 〈〈A〉〉

S
= 〈〈B〉〉 does not hold, and it is

semantically correct to say that at all times 〈〈B〉〉 −− 〈〈A〉〉 = []

3. intersection: 〈〈A〉〉
S

∩〈〈B〉〉, iff 〈〈A〉〉
S
∼〈〈B〉〉 holds, 〈〈A〉〉

S
= 〈〈B〉〉, 〈〈B〉〉

S

⊂〈〈A〉〉, 〈〈A〉〉
S

⊂〈〈B〉〉 do not
hold, and it is semantically correct to say that at some time count [x | x<−〈〈A〉〉; x<−〈〈B〉〉] > 0
and that at all at times there exists a real world concept which we can represent by a schema
object 〈〈C〉〉 = [x | x <− 〈〈A〉〉; x <− 〈〈B〉〉]

35

36 CHAPTER 5. AUTOMED TOOLS

4. disjointness 〈〈A〉〉
S

6 ∩ 〈〈B〉〉 iff 〈〈A〉〉
S
∼ 〈〈B〉〉 holds, and 〈〈A〉〉

S
= 〈〈B〉〉, 〈〈B〉〉

S

⊂ 〈〈A〉〉, 〈〈A〉〉
S

⊂ 〈〈B〉〉,

and 〈〈A〉〉
S

∩ 〈〈B〉〉 do not hold

5. incompatibility 〈〈A〉〉
S

6∼ 〈〈B〉〉 iff 〈〈A〉〉
S
∼ 〈〈B〉〉 does not hold.

Several properties of the semantic relationships should be noted. Firstly, it is clear from the defi-
nitions that any pair of schema objects must fall into exactly one of the five types of relationships.
Secondly, the phrase ‘semantically correct to say’ allows any particular extent of the schemas to
violate the IQL constraint. For example, is if two schemas contain the schema objects 〈〈person〉〉
and 〈〈staff〉〉 that are supposed to represent all staff members of a university, then we would say

that 〈〈person〉〉
S
= 〈〈staff〉〉, even if at any given time there might be some staff members appearing in

one schema and not the other, due to asynchronous updates or errors in updates to the schemas.

In general, determining the semantic relationships between schema objects can only be fully deter-
mined by a domain expert. However, certain properties of the schema and of the data associated
with the schema may be used to get an approximation of the semantic relationship, which is what
the AutoMed schema matching tool attempts to achieve. As distributed, the tool has a number
of modules examining different properties as follows:

• Data-Type: the data type of schema objects are compared, and if both have the same type
then the schema objects are regarded as equivalent..

• Statistics: for String data types, the frequency occurrence of different characters are com-
pared, and if similar, the schema objects are regarded as equivalent.

• Name: the naming of the schema objects are compared. If the strings are similar, then the
schema objects are regarded as equivalent, if one has a name that is a substring of a second
schema object, then the first is regarded as being a subset of the other.

• Number of Instances: the number of instances in the data source are compared, and the
smaller number indicates which is a subset of the other.

• Existence: A sample of instances is taken from each data source, and tested for membership
of the other, giving indications of equivalence, subset or overlapping.

• Naive-Bayes: A Naive-Bayes algorithm is used on the data sources.

• Precision: the minimum and maximum length of strings or value of numbers in the data
source are compared. If the intervals are the same, then the schema objects are equivalent,
if one interval is a subset of another then one schema object is a subset of the other, and if
the intervals overlap, then the schema objects overlap.

There is an API for matching modules, which allows for new modules to be written and added
into the tool. The tool aggregates the rusults of all the modules, and suggests which semantic
relationship is most likely to exist between pairs of schema objects from different schemas. The
user may then correct the tools choices, before using the tool to also perform a Merge of the
schemas, using techniques described in [RM05].

5.1.1 Example of using the Match Tool

The schema matching tool requires that you first select two schemas that you wish to match, using
the same method as you would if you wish to add an ident transformation between then (i.e. by
clicking on one schema in a network window, and then control-clicking on a second schema). You
should then bring up the menu and select Discover semantic relationships. For example, in the
university example, the application described in Section 3.2 wraps two data sources in networks
uni s4 src and uni s5 src but leaves them unintegrated. Opening up these two networks, selecting
uni s4, control-selecting uni s5, and then selecting Discover semantic relationships results in the
window illustrated in Figure 5.1, listing all the compatible semantic relationships that the tool

5.2. PEER-TO-PEER DATA INTEGRATION 37

has found. (The tool will take sometime to run depending on how many modules it has been
configured to use).

Figure 5.1: Schema matching and merging tool

Note that in this example, the modules have given a resonable solution, identifying that the dept
tables of the two schemas overlap. If you disagree which the tools choice of semantic relationship,
then you may change it by clicking the menu over the current setting. Choosing anything apart
from the tools choice of semantic relationship will result in the semantic relationship being dis-
played in black rather than blue. If the tool has entirely missed a compatible pairing, then you
should select the Actions tool bar menu option Add Mapping option to add it it. You may use the
View tool bar menu to activate the viewing of the results of different modules, and hence discover
which module(s) contribute to the tool reaching a certain decision.

If you look at the instances of the 〈〈dept〉〉 tables (using the IQL query tool), you will find that
the instances are disjoint, but we can assume that the two tables may share values in the future.
Tick both of the semantic relationships as being correct, and then use the Action tool bar menu
option to select Merge Schemas. This will create the necessary transformations in the repository
to map between the two schemas, and the two networks are replaced by a single new one.

5.2 Peer-to-Peer Data Integration

The term peer-to-peer (P2P) is used to describe computer systems where computers interact
with each other as equals, and there is no notion of a central server to control the interaction. The
AutoMed P2P data integration implementation [Laz05] supports this notion by allowing separate
AutoMed systems to publish the fact that they have a pathway from a set of data sources to one
or more public schemas [MP03]. As illustrated in Figure 5.2, the logical view of a AutoMed
P2P data integration is that a peer Pn will integrate a number of data sources DSa,DSb, . . . into
some global schema GSn, and then transform that global schema into one or more public schemas
PSs, PSt, When two peers Px, Py share a public schema PSs, then they will have a pathway
mapping between the data sources at each peer. For example, in Figure 5.2, the fact the P1 and
P2 share PS2 means that taking the combined knowledge of the two peers together, there is a
pathway from DS3 to both DS1 and DS2. These logical associations may be chained together.
In the figure, the fact that PS3 is shared by P2 and P3 means that combining the knowledge of
P1, P2 and P3 gives a pathway from DS1 to DS4, DS1 to DS5, etc.

Note that a data source may be accessible via very different peers. For example, DS4 is accessible
from peers P2 and P3. Also note that if just one schema is being mapped to public schemas, then
no global schema is necessary. For example, DS6 on P4 is mapped directly to two public schemas
PS1 and PS4. Finally, also note that a peer may store information about several data sources
without itself integrating those data sources. For example, P4 has pathways from DS6 and DS7 to
public schemas, but does not integrate them together. However, the fact that DS7 has a pathway
to PS3 and DS6 has a pathway to PS4 means that the knowledge of P3 combined with P4 does
give an integration of DS6 and DS7.

This flexible method of describing the logical associated of peers to data sources and public schemas
may be used in two operational ways of interaction between peers:

• Px may send a query on PSs to peer Py, requesting that Py evaluate the result. Py may

38 CHAPTER 5. AUTOMED TOOLS

P1

PS1 PS2

DS1 DS2

GS1

P3

PS3 PS4

DS4 DS5

GS3

P4

PS1 PS4

DS6

PS3

DS7

P2

PS2 PS3

DS3 DS4

GS2

Figure 5.2: Public Schemas in a P2P Data Integration Environment

then transform the query into one on its local data sources, and pass back the results to Px.
For example P1 may execute queries, evaluating the results against DS1 and DS2. It may
then ask for a remote execution of the query on P2, and obtain an answer from DS3.

In addition, Py may act as a broker, passing on the query to any other peers it knows
support PSs, or any other public schemas PSt that Py has a pathway between PSs and
PSt. For example, the query from P1 having been passed to P2 may be transformed into a
query on PS3, and then the logical association with P3 used to then pose the query on PS3

on P3, and obtain answers from DS4 and DS5.

• Px may request that Py send the pathways from PSs to the local data sources of Py over to
Px. Peer Px may store these pathways in its local repository, and evaluate queries directly
of the remote data sources.

For example, P1 may ask for the pathway on P2 from PS2 to DS3, and add that information
into its local repository. This means it may then perform the translation of queries from
PS2 to P2, placing no load on P2

To implement these two methods of interaction, the architecture in Figure 5.3 has been developed
and implemented. The components have the following purpose:

1. In order that peers may discover other peers that share common public schemas, the P2PDirectory
provides a central record of which peers exist on the network, and which public schemas those
peers implement. It also records which host a named peer last appeared at.

2. In order that a number of peers can run on a single host, yet all peers on the network need
only know from the directory which host a peers runs on, the P2PRegistry provides access
to all the AutoMed peers on the same host as it runs. It executes on what should be a
standard port (and hence ‘well known’, defaulting to 8282) throughout the AutoMed P2P
network. All requests from other peers are sent to this standard port number.

Note that the combination of P2PDirectory and P2PRegistry allow for a peer to migrate
from one host to another. The peer would simply logoff one P2PRegistry and login to the
P2PRegistry of another host, which in turn would inform P2PDirectory of the peer’s new
location.

3. To provide a interface that allows two AutoMed repositories to interact, the AutoMedPeer
provides a set of messages that can be exchanged with other AutoMed peers, containing

5.2. PEER-TO-PEER DATA INTEGRATION 39

information about schemas, pathways, and requests to execute queries. There should be
one AutoMedPeer instance for each AutoMed repository in the P2P network, and each
AutoMedPeer should have a name that is unique to that peer.

host1
P1

Repository

MDR

STR

AutoMedPeer

P2

Repository

MDR

STR

AutoMedPeer

P2PRegistry

host2
P3

Repository

MDR

STR

AutoMedPeer

P2PRegistry

host3

P2PDirectory directory

repository

Figure 5.3: The AutoMed P2P Architecture

5.2.1 Configuring and Running the Directory Service

The AutoMed P2P directory requires the following configuration files for setup and operation:

• p2p directory repository.cfg file to setup the database tables used by the directory

• p2p directory server.cfg file to run as a background process. This file includes settings from
another file called p2p common.cfg.

Note that these configuration files are automatically created in your .automed directory with
default settings the first time their associated programs are run. Normall, you do not need to do
anything with these files unless you want to customise them for your environment.

//
// AutoMed P2P Directory Repository
//
JdbcURL jdbc:postgresql://host3.example.net/automedp2p
Username automed
Password secret
JdbcDriver org.postgresql.Driver

Figure 5.4: Example p2p directory repository.cfg file, where the directory repository is to be held
on the local host, in a Postgres database called automedp2p

The AutoMed P2P directory needs a JDBC accessible database in order to hold the persistent
information for the directory. An example repository configuration file is illustrated in Figure 5.4,
which should be present in your .automed directory (q.v. Page 2). This configuration file is created
the first time the directory initialiser program is run by the command:

40 CHAPTER 5. AUTOMED TOOLS

java uk.ac.ic.doc.automed.p2p.directory.P2PDirectoryRepositry

//
// AutoMed P2P Directory and Registries
//
//UDP settings for server
//the thread’s wait time (in seconds)
udpWaitTime 0
// the gap time (in seconds) between two successive runs of a thread
udpThreadInterval 2
numberOfUDPThreads 5

//other parameters
//the time (in milliseconds) during which a thread must wait for a partner thread to finish
threadWaitTime 50

// common settings
include p2p common.cfg

Figure 5.5: Example p2p directory server.cfg file

Note if you had an existing AutoMed P2P directory installed, this would cause its repository
tables to be cleared. Once the directory repository has been initialised, the P2PDirectory should
be run as a background task. This will require a directory configuration such as that illustrated
in Figure 5.5 to be also present in your .automed directory. The settings in this and the included
p2p common.cfg file (Figure 5.6) should be agreed to by all other AutoMed peers so that the port
numbers for registry and directory services are consistent across the P2P network. These files are
created the first time the directory program is executed by the command:

nohup java uk.ac.ic.doc.automed.p2p.directory.P2PDirectory

5.2.2 Running an AutoMed Peer

The AutoMed peer requires the following configuration files to run:

• p2p peer.cfg file which includes settings from p2p common.cfg file (Figure 5.6) for the peer’s
operations.

These files are automatically created with the default settings the first time their associated
programs are run. These programs will be discussed below.

Before using the AutoMed P2P system on a particular host, you must ensure that there is a
local P2PRegistry running on that host. To run a registry you execute the command:

nohup java uk.ac.ic.doc.automed.p2p.P2PRegistry

Once the registry is running, you may start AutoMed peer application by the command:

java uk.ac.ic.doc.automed.editor.Gui

This program initialises one AutoMedPeer class instance for the current Java Virtual Machine

(JVM) to handle all communication with other AutoMed peers. To create it use the P2P tool
bar menu, and select Login. Alternatively, you may directly run the standalone application:

java uk.ac.ic.doc.automed.p2p.gui.PeerApplication

You should select a name that you would like to identify your peer by, and use it to join the P2P
network, and login. The default suggested for you by the tool is a combination of the database
username and URL of the database used for your STR repository, and should ensure that your
peer is globally unique across any AutoMed P2P work.

5.2. PEER-TO-PEER DATA INTEGRATION 41

//
// AutoMed P2P Peer and Directory common configuration
//
// TCP settings
serverHost flagstaff.doc.ic.ac.uk
serverPort 56056
registryPort 55055

// UDP settings
udpServerHost flagstaff.doc.ic.ac.uk
udpServerPort 56156

// packet buffer size esp. for TCP connections
//TCP settings
numberOfTCPThreads 5
timeOut 0
packetBufferSize 1000000

//timer values
// – helloTime = keep alive;
// – updateTime = time period during which data update occurs b/w peer and directory server
// – refreshTime = periodic update interval b/w peer and directory
// – holdTime = time to keep entries even after refresh period; flushTime = time
// – to wait before deleting entries after hold time period
helloTime 10
updateTime 15
refreshTime 30
holdTime 35
flushTime 40

//Peer status codes
psActive ac
psInactive in
psFlush fl

Figure 5.6: Example p2p common.cfg file

//
// AutoMed P2P Peer configuration
//
//UDP settings for client
udpWaitTime 5
numberOfUDPThreads 1

//TCP settings
numberOfTCPThreads 1
timeOut 20000
packetBufferSize 100000

// cache age time (in seconds)
queryCacheAgeTime 30

// common settings
include p2p common.cfg

Figure 5.7: Example p2p peer.cfg file

42 CHAPTER 5. AUTOMED TOOLS

5.2.3 Publishing Schemas and Obtaining Listings of Published Schemas

Once you have logged in to the P2P network, you can perform the following operations from the
Directory option of the GUI P2P toolbar menu.

• Schema Info to list which peers have a copy of a public schema in their repositories, and send
queries to those peers.

• Get Schema to copy a public schema into the local AutoMed repository

• Advertise Path to inform the directory that the local peer has a pathway from the public
schema to one or more data sources.

5.2.4 Example of using the P2P System

Let us suppose that we have a situation where the three databases from the University database
integration (q.v. Section 2.2) have been held separately by three different AutoMed repositories,
and that the owners of these repositories wished to exchange schema, pathway and data with each
other. To set this situation up, you need to remove the schemas from you repository if you them
already loaded, which you may do by selecting schemas uni s1 src, uni s2 src and uni s3 src in turn,
and using the retract menu option on each one.

Setting up Peer 1 holding database university2

To configure the first peer, use the Wrap Data Source (q.v. 3.2) tool to wrap the second university
database (with DoC pjm university2, as discussed in Section 2.2). You should use the tool to both
create a source oriented schema called uni s2 src, and then to create an AutoMed oriented schema
called uni s2

Then use the GUI tool bar File menu option Import to load the university staff.atm file held in
the data directory. This will create a network and schema called university staff, which is a public
schema for the university database that has already been designed for you. (Of course, you could
also design your own).

Select university staff, and then control select uni s2, and use the Discover semantic relationships
menu option. This will bring up a list of semantic relationships that the schema match tool has
determined. You should just tick off those pairs where the schemes are identical on left and right,
before choosing Actions menu option Merge Schemas.

Now choose the tool bar GUI P2P menu option Directory, click on the Publish Schema button, and
enter the schema name university staff and give it a description (such as ‘details of university staff
members and their departments’). This will publish the schema onto the P2P network. Clicking
the Refresh button will get this information back from the directory.

Now select university staff entry in the list, and click the Advertise Path button. This informs the
directory that the peer has a path of a data source for that public schema.

Setting up Peer 2 holding database university3

To run the second peer, you need a second AutoMed repository. If you run under a differ-
ent username (with a different URL for the repository) then you will have no conflicts with
Peer 1 that we setup above. However, if you run under the same username, then the same
data source repository.cfg will be used. To avoid this, then use the -c switch on the Gui application
as in the following example:

java uk.ac.ic.doc.automed.editor.Gui -c /.automed/anon.cfg

which will load anon.cfg instead of the standard data source repository.cfg. (The -h switch may be
used to find all Gui options). If you are using the same database server for both repositories, then
within anon.cfg you might also use the database username aliasing. For example:

5.2. PEER-TO-PEER DATA INTEGRATION 43

Username:pjm anon

would cause the Linux user pjm to contact the repository database under username anon.

Once you have the second repository running, you should wrap university3 in a similar way to how
Peer 1 wrapped university2, and login to the P2P network.

When you run the P2P directory viewer from this peer, you should see that university staff is
available as a public schema. Selecting it, and then clicking the Schema Info button will bring up
a window listing the details of Peer 1. Selecting Peer 1 from the list, and then clicking the Query
button will send a query over to Peer 1 for it to process.

Clicking on the Get Schema button will insert a copy of university staff in Peer 2’s repository.
You may then match your local uni s3 with that public schema in a similar way to how this was
performed on Peer 1. The use the Directory view tool to Advertise Path.

Now Peer 1 will be able to query uni s3.

44 CHAPTER 5. AUTOMED TOOLS

Appendix A

Using the Software Under Other

Environments

A.1 Linux csh environments

To use the configuration instructions under a csh command line environment, you need only change
the setting of environment variables to the csh equivalent. For example, under bash the variable
setting

export MYVAR=MyValue

becomes under a csh:

setenv MYVAR MyValue

A.2 Microsoft Windows environments

To use the configuration instructions under a Windows cmd command line environment, you need
only change the setting of environment variables to the Windows equivalent. Also, any directory
separators are changed from colons to semi-colons. For example, under bash the variable setting

export CLASSPATH=$AUTOMED/jar/automedRepositories.jar:$AUTOMED/jar/java cup.jar

becomes under Windows:

set CLASSPATH=%AUTOMED%/jar/automedRepositories.jar;%AUTOMED%/jar/java cup.jar

The AutoMed configuration directory .automed is placed in the users home directory.

45

46 APPENDIX A. USING THE SOFTWARE UNDER OTHER ENVIRONMENTS

Appendix B

Known Problems

• AbstractMethodError Exceptions being throw

The Postgresql driver jdbc7.0-1.1.jar gives the error:

Exception in thread ”main” java.lang.AbstractMethodError
at uk.ac.ic.doc.automed.Util.resultSetToArray(Util.java:338). . .

If is recommended that you use the pgjdbc.jar driver supplied with the AutoMed distribu-
tion in the $AUTOMED/jar directory.

• Empty networks in the GUI All Networks window

After performing a retract of a transformation that causes the network to be partitioned into
two or more networks, it is sometimes the case the a spurious empty network also appears
in the All Networks window. You should not select this network, and it will not appear
the next time that the GUI tool is run, and otherwise causes no harm.

• Spurious tables appearing the schema of a wrapped Postgres data source.

After wrapping a Postgres data source, tables which do not appear in the schema as listed
by the psql command are appearing in the AutoMed repository view of the schema. This
is probably due to the wrong JDBC driver being used for the version of Postgres you are
wrapping. For example, Postgres 7.4 should be wrapped with the jdbc3 JDBC driver.

47

48 APPENDIX B. KNOWN PROBLEMS

Bibliography

[Ber03] P.A. Bernstein. Applying model management to classical meta data problems. In Proc.

CIDR’03, 2003.

[BKL+04] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed:
A BAV data integration system for heterogeneous data sources. In Proc. CAiSE’04,
volume 3084 of LNCS, pages 82–97. Springer, 2004.

[BLN86] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

[BM04] M. Boyd and P.J. McBrien. Towards a semi-automated approach to intermodel trans-
formations. In Proc. EMMSAD 04, CAiSE Workshop Proceedings Volume 1, pages
175–188, 2004.

[BM05] M. Boyd and P.J. McBrien. Comparing and transforming between data models via an
intermediate hypergraph data model. Journal on Data Semantics, IV:69–109, 2005.

[Bun94] P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.

[Dat04] C.J. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition edition,
2004.

[DDL03] C.J. Date, H. Darwen, and N.A. Lorentzos. Temporal Data and the Relational Model.
Morgan Kaufmann, 2003.

[Fan05] H. Fan. Using schema transformation pathways for incremental view maintenance. In
Proc. DaWak’05. 2005.

[FP03] H. Fan and A. Poulovassilis. Using AutoMed metadata in data warehousing environ-
ments. In Proc. DOLAP03, pages 86–93, New Orleans, 2003.

[JLVV02] M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Fundamentals of Data Ware-

houses. Springer, 2nd edition edition, 2002.

[JPZ03] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrating
data in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

[Laz05] C. Lazanitis. Schema based peer-to-peer data integration. Master’s thesis, Imperial
College London, 2005.

[MP99] P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations.
In Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

[MP02] P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database ar-
chitectures, a schema transformation approach. In Proc. CAiSE’02, volume 2348 of
LNCS, pages 484–499. Springer, 2002.

[MP03] P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transfor-
mation rules. In Proc. ICDE’03, pages 227–238. IEEE, 2003.

49

50 BIBLIOGRAPHY

[PM98] A. Poulovassilis and P.J. McBrien. A general formal framework for schema transfor-
mation. Data and Knowledge Engineering, 28(1):47–71, 1998.

[Pou01] A. Poulovassilis. The automed intermediate query language. Technical Report No. 2,
AutoMed, 2001.

[Pou04] A. Poulovassilis. A tutorial on the IQL query language. Technical Report No. 28,
AutoMed, 2004.

[Riz04] N. Rizopoulos. Automatic discovery of semantic relationships between schema elements.
In Proc. of 6th ICEIS, 2004.

[RM05] N. Rizopoulos and P.J. McBrien. A general approach to the generation of conceptual
model transformations. In O. Pastor and J.F. e Cunha, editors, Proc. CAiSE’05, volume
3520 of LNCS, pages 326–341. Springer, 2005.

[SL90] A. Sheth and J. Larson. Federated database systems. ACM Computing Surveys,
22(3):183–236, 1990.

[Wie92] G. Wiederhold. Mediators in the architecture of future information systems. IEEE

Computer, 25(3):38–49, March 1992.

Index

AutoMed oriented, 18
6NF, 18

AbstractSyntaxGraph, 23
AccessMethod, 20, 31, 32
actions.cfg, 24
All Networks, 25
alternation, 28
AutoMedWrapper, 31, 32

connect, 33
executeIQL, 33
getDefaultWrapperFactory, 33
getProtocolName, 33
getSchema, 20
newAutoMedSchema, 21
newAutoMedWrapper, 32
registerWrapper, 32
selectNewAutoMedWrapper, 20

AutoMedWrapperFactory, 20, 31, 33
getAutoMedModel, 33
getFeatureNames, 34
getModel, 33
populateSchema, 33
setFeatures, 20, 34

BAV, 5
both as view, 5
broker, 38

candidate key, 17
CDM, 6
column number, 17
common data model, 6
compatible, 35
constraint, 27
Construct

addReferenceScheme, 27
CLASS CONSTRAINT, 28
CLASS LINK, 28
CLASS LINK NODAL, 28
CLASS NODAL, 28
getConstruct, 26
setArcDrawable, 31
setVertexDrawable, 31

data integration, 5
data size, 17
data type, 17
data warehousing, 5

developer actions.cfg, 25
disjointness, 36
dom, 16
DrawableArc, 30
DrawableVertex, 29
DrawArc, 30
DrawVertex, 30

getBounds(), 30
getCentre(), 30
getCentreOffset(), 30
getConnectionPoint, 30
paint, 30
setText, 30

driver, 16

enabler, 24
equivalence, 35
ETL, 5
extraction transforming and loading, 5

features, 31
filters, 14
foreign key, 17
FragmentProcessor, 23
full scheme, 26

GAV, 5
generators, 14
GLAV, 5
global as view, 5
global local as view, 5
group selection, 11
GUI, 23
Gui, 23

openMainWindow, 23

HDM, 6
hypergraph data model, 6

ident, 22
include, 25
incompatibility, 36
incompatible, 35
index, 17
INT, 17
IntegrityException, 26
intermediate query language, 13
intersection, 35
IQL, 13

51

52 INDEX

IQL Functions
avg, 15
count, 15
gc, 15
max, 15
min, 15
sum, 15

IQL functions
aggregation, 15
Length, 16
string, 15

IQLTool, 24

Java Virtual Machine, 40
jdbc, 16
JVM, 40

LAV, 5
link, 27
link-nodal, 27
local as view, 5

mappings, 5
MDR, 19
mediator, 5
Model

getModel, 26
model definitions repository, 19
model management, 35
my actions,cfg, 25

Network, 25
network, 11
nodal, 27
NOT NULL, 17
NULL, 17
null constraints, 17

Option
SQL Schema, 17

Oracle, 21

P2P, 37
password, 17
pathway, 11
pathway selection, 11
peer, 37
peer-to-peer, 37
Positionable, 29, 30

getLabel(), 30
getPosition(), 30

primary key, 17, 18
psql, 47
public schemas, 37

query processing, 5
query schema, 22
QueryReformulator, 23

retract, 42

Schema, 20, 25
applyRenameTransformation, 21
createSchema, 26
createSchemaObject, 26
DATA SOURCE TYPE, 22, 25
getSchemaObject, 21
MATERIALISED TYPE, 22, 26
retract, 26
STORED TYPE, 22, 26
VIRTUAL TYPE, 22, 25

schema
data warehouse, 5
depedendent, 26
federated, 5
global, 5
local, 5
mediator, 5

schema aware, 17
schema integration, 5
schema match and merge, 9
schema merging, 18
schema object, 14
schema transformation repository, 19
SchemaObject, 25, 26
sequence, 28
sixth normal form, 18
source oriented, 18
SQL

GROUP BY, 15
SQLWrapper, 20

OPTION SCHEMA NAME, 21
SCHEMA AWARE, 21

SQLWrapperFactory, 20
SCHEMA AWARE, 21
SCHEMA MERGING, 21

standard editor actions.cfg, 25
STR, 19
STRING, 17
subsumption, 35

test actions.cfg, 25
TransactSQLWrapper, 20
Transformation

applyAddTransformation, 26
applyDeleteTransaction, 26
createIdentTransformation, 22

transformation
add, 22
extend, 22

URL, 16
UserActionResult, 24
username, 17

view
materialised, 5

INDEX 53

virtual, 5

XMLWrapper, 20

yatta, 16
YATTAWrapper, 20

	Introduction
	BAV approach

	Setting Up The AutoMed Repository
	Running the Basic Example Applications
	Running An Example of Database Integration

	Using the AutoMed GUI
	Querying Data Sources using the IQL
	IQL Arithmetic and Comparison
	IQL Aggregation Functions
	IQL String Functions

	Wrapping a Data Source
	Example of Wrapping a Relational Data Source

	The AutoMed API
	Wrapping a Data Source
	Transforming Schemas
	Query Processing
	Adding Tools to the GUI
	Describing a Schema
	Describing a Modelling Language
	Alternatives and Sequences

	Customising the Appearance of a Model
	Writing an AutoMed Wrapper
	Extending AutoMedWrapper
	Extending AutoMedWrapperFactory

	AutoMed Tools
	Schema Matching and Merging
	Example of using the Match Tool

	Peer-to-Peer Data Integration
	Configuring and Running the Directory Service
	Running an AutoMed Peer
	Publishing Schemas and Obtaining Listings of Published Schemas
	Example of using the P2P System

	Using the Software Under Other Environments
	Linux csh environments
	Microsoft Windows environments

	Known Problems

