
Towards Data Visualisation based on

Conceptual Modelling and Schema

Transformations

AutoMed Technical Report Number 39

Peter Mc.Brien1 and Alexandra Poulovassilis2

1 Dept. of Computing, Imperial College,
180 Queen’s Gate, London SW7 2BZ, p.mcbrien@ic.ac.uk
2 Birkbeck Knowledge Lab, Birkbeck, University of London,

Malet Street, London WC1E 7HX, ap@dcs.bbk.ac.uk

Abstract. Selecting data, transformations and visual encodings in cur-
rent data visualisation tools is undertaken at a relatively low level of ab-
straction - namely, on tables of data - and ignores the conceptual model
of the data. Domain experts, who are likely to be familiar with the con-
ceptual model of their data, may find it hard to understand tabular data
representations, and hence hard to select appropriate data transforma-
tions and visualisations to meet their exploration or question-answering
needs.
We propose an approach that addresses these problems by defining a
set of visualisation schema patterns that each characterise a group of
commonly-used data visualisations, and by using knowledge of the con-
ceptual schema of the underlying data source to create mappings between
it and the visualisation schema patterns. The benefits of the approach
are that we use the full knowledge of the conceptual model of the un-
derlying data to identify feasible visualisations for that data; moreover,
once this mapping is in place, the implementation of actual visual charts
can utilise the mapping to extract data, drill-down, roll-up, pivot, switch
visualisation, etc. To our knowledge, this is the first work to propose a
conceptual modelling approach to matching data and visualisations.

1 Introduction

Current data visualisation approaches base their visualisations on simple ta-
ble data presentations, and fail to capture the full schema knowledge when the
underlying data source is a structured database, such as a relational database.
Furthermore, creating visualisations requires a fresh data mapping effort for each
visualisation that is created, be it programmer effort or end-user effort. In this
paper, we propose an approach that addresses these problems by firstly defining
visualisation schema patterns that characterise each distinct (from a data

2 P.J. Mc.Brien and A. Poulovassilis

representation capability) group of commonly-used data visualisations, and sec-
ondly that uses the conceptual schema of the underlying data source to create
mappings between the data schema and the visualisation schema patterns. The
benefits of this approach are firstly that we use the full knowledge of the concep-
tual model of the underlying data to identify which are feasible visualisations for
that data, by matching the data schema with the set of visualisation schemas;
and secondly, once this mapping is in place, the creation of actual visual charts
can utilise the mapping to extract data, drill-down, roll-up, pivot, switch visu-
alisation etc.

To our knowledge, ours is the first work to propose a conceptual modelling
approach to matching data and visualisations. Section 2 gives a motivating ex-
ample scenario. Section 3 introduces the notion of visualisation schema patterns
each of which characterises a group of data visualisations, referring back to
our motivating scenario for illustrative examples. Section 4 describes the use of
common schema transformations in order to conform a dataset to a schema vi-
sualisation pattern. Section 5 discusses related work. Section 6 summarises the
contributions of the paper and highlights some areas of further work.

2 Motivating Example

The latest version of the Mondial database [8] contains information that is inte-
grated from a number of sources, and ER diagrams for two fragments of it are
shown in Figure 1 and Figure 3.

countrycode

population

area

borders
0:N

0:N

length

economy

❨
agriculture?

service?
industry?

gdp?

inflation?

unemployment?

country

population
year

population

part

of

0:N

1:1

continentencompasses

0:N

1:2

percent
name

Fig. 1. ER schema of a fragment of the Mondial database

Figure 1 shows the information that is stored about countries (including the
current population), and the history of a country’s population — through the
weak entity country population. For some countries, data about the GDP of the
country is recorded in the subset entity economy, the attributes of which are
all optional, indicated by the use of a question mark. Also recorded is which
continent or continents a country belongs to: most countries will belong 100%

Data Visualisation based on Conceptual Modelling 3

to one continent; but the cardinality constraint of 1:2 allows some (e.g. Russia,
Turkey) to spread over two continents, with the percent attribute of encompasses

recording the proportion of their land area that belongs to each continent.

Suppose we wished to explore the relationship between inflation, unemploy-
ment, and GDP in countries. We could first extract a table of data with scheme
(country, inflation, unemployment, gdp), where country corresponds to the key at-
tribute code of the country entity in Figure 1, and without null values for inflation,
unemployment, and gdp. Importing that table to Tableau, and choosing to rep-
resent countries as a ‘dimension’, and putting the inflation and unemployment
figures on the x and y axis, produces the chart shown in Figure 2(a).

0 10 20 30 40 50 60

In�ation

0

20

40

60

80

100

U
n
e
m
p
lo
y
m
e
n
t

In�ation vUnemployment

(a) Inflation v Unemployment

0.1 0.2 0.5 1 2 5 10 20 50

In�ation

0.5

1

2

5

10

20

50

100

U
n
e
m

p
lo

y
m

e
n
t

In�ation v Unemployment

Gdp

2

5,000,000

10,000,000

16,720,000

(b) Addition of GDP and Continent

0 1 2 3 4 5 6 7

Avg. Inflation

0

5

10

15

20

25

30

A
v
g
.
U

n
e
m

p
lo

y
m

e
n
t

Inflation v Unemployment

Gdp

1,714,571

5,000,000

10,000,000

15,000,000

20,000,000

27,048,349

(c) Roll-Up of data into Continents

0M 2M 4M 6M 8M 1�M 12M

195�Population

�M

1�M

20M

3�M

4�M

5�M

6�M

2
0
1
0
 �

o
p

� l
a
ti

o
n

Africa�op�lation Growth

(d) Population Growth

Fig. 2. Presentation of country data in Tableau

We see that, because of a few outlying data values, most of the data appears
in a small cluster to the bottom left of the diagram and is largely illegible. No use
has been made of the fact that the data distribution can easily be determined to
be skewed, and hence an alternative scaling could have been used. Furthermore,
no suggestion is made on how to include the gdp column of the table, despite the

4 P.J. Mc.Brien and A. Poulovassilis

fact that this is numeric-valued, which would suggest displaying its data using
a graphical construct suitable for representing ranges of numbers. Figure 2(b)
shows the result of a user (manually) determining that a logarithmic scale will
better spread the data relating to the relationship between inflation and unem-
ployment, and that the data in gdp can be used to scale the size of the circles, to
make a bubble chart. Figure 2(b) also includes colour coding of the countries by
the continent to which they belong. This is suggested by the database schema,
which connects countries to continent via a relationship with restricted (upper
bound 2) cardinality.

Another example of how database schema analysis can benefit the visuali-
sation of data is shown in Figure 2(d) where data from the country population

entity for countries in Africa has been ‘pivoted’ to give a column for 1950 popu-
lation figures and a column for 2010 figures, which then may be plotted against
each other.

Our second illustrative fragment of the Mondial database is shown in Fig-
ure 3, encompassing the relationships between countries, provinces and cities,
their current populations and areas, and the airports in each city.

country
code

name

part of
0:N

1:1
province name

population

area

city name
population

area

in

0:N

1:1

airportiata code

latitude
longitude

name
elevation

serves
1:1

0:N

Fig. 3. Hierarchy of countries, provinces and cities

Suppose we wished to explore the relationship between airports and their lo-
cations. We could extract a table with scheme (country, province, city, iata code),
where the first three attributes are the name attributes from the corresponding
entities. On presenting this to Tableau, one is able to select a map-based visu-
alisation that shows the distribution of airports by country — see Figure 4(a).
The database schema, with its one-many relationships between country, province
and city, suggests that we can drill down from countries to look at airports per
province, and then at airports per city — see Figure 4(b)). However, in data
visualisation tools such as Tableau, this requires the user to manually select city
instead of country to view the data at different levels of abstraction.

Data Visualisation based on Conceptual Modelling 5

1

N	mber of Recor

(a) Airports per Country (b) Airports per City

Fig. 4. Maps of Airports in Europe

3 Visualisation Schema Patterns

Our starting premise is that each instance of an entity in the database is as-
sociated with one or more graphic elements, which in visualisation are usually
classified [18] as marks (points, lines, areas, etc) or channels (colour, length,
shape, coordinate, texture, orientation, movement, etc of a mark). An attribute
value of an entity, or the participation of an entity in a relationship, is associated
with a dimension of the visualisation, and the process of visualisation is about
choosing the correct graphic elements for a given schema.

Taking an approach similar to Tableau, we identify the following two major
types of dimensions (which differ from the discrete and continuous classification
found in [16]):

– discrete dimensions have a relatively small number of distinct values, that
may nor may not have a natural ordering; they are used to choose a mark
or to vary a channel of a mark.

– scalar dimensions have a relatively large number of distinct values with a
natural numeric ordering (e.g. integers, floats, timestamps, dates); these are
represented by a channel associated with a mark.

When a dimension is represented by a colour channel, then if it is a discrete
dimension it lends itself to using a colour key, where each colour represents a
discrete value. Alternatively, if it is a scalar dimension, then a spectrum of colours
can be used to represent a range of values. Hence, in our descriptions below, when
we talk of a colour we assume the ability to automatically choose between these
two representations based on the type of the dimension.

Scalar dimensions are evenly distributed if their values are (roughly)
spread evenly over the entire range of values in the dimension (many visuali-
sations struggle to represent data where most data is in a small range of values
and there are some outlying values).

6 P.J. Mc.Brien and A. Poulovassilis

As is well known [18], what we are naming discrete or scalar dimensions may
have specific real-world characteristics, and may for example be a geographical,
temporal, or lexical dimension. This characterisation then may suggest spe-
cific visualisations for their representation (e.g. a map, time slider, word cloud,
etc). However, in this paper we focus on what assistance can be given to the
visualisation process by the knowledge represented in the schema of the data,
and hence we only consider these real-world characteristics if required for the
use of a particular visualisation. Indeed our work should be viewed as providing
assistance to existing visualisation techniques, to be used where data is sourced
from a structured database. Our work is therefore complementary to aspects
such as task-based visualisation design and interaction during design.

In the following subsections we present successively more complex visualisa-
tion schema patterns, and the visualisations that they encompass. Our survey
of visualisation techniques has so far not found any visualisations that require
more complex schema patterns than those presented here, and in particular none
that require a pair of relationships to be considered together.

E k

a1

a2 ...
(a) Basic Entity

E

k2

R
1:1

0:N
Ep k1

a1

a2 ...
(b) Weak Entity

Ep

kp

Ec

kc
a1 a2. . .

R
0:N

1:1

(c) One-Many Relationship (Hierarchy)

E1

k1

E2

k2

a1

a2

. . .

R
0:N

0:N

(d) Many-Many Relationship

E k

a2

a1 . . .

R
0:N

0:N

(e) Reflexive

Fig. 5. Visualisation Schema Patterns for Data Visualisations

3.1 Basic Entity Visualisations

An ER entity can be regarded as a conceptual modelling of a relational table.
Many visualisations are designed to represent such tabular data, so we begin by
identifying a category of visualisations that are suitable for representing an entity
with its keys and attributes. This ‘basic entity’ visualisation schema pattern is
illustrated in Figure 5(a), where it should be noted that the key attribute k might

Data Visualisation based on Conceptual Modelling 7

be inherited from a parent, such as economy in Figure 1 having an inherited key
code from country. Many visualisations fit into this category, and we list below a
sample to illustrate the way in which different features of each visualisation are
represented in our approach.

– Basic bar charts represent instances of an entity E (identified by the value
of k) as bars, with the length of the bar determined by the value of an
attribute a1. Hence a1 should be a scalar attribute.

– A calendar chart (found in both D3 and Google Charts) represents in-
stances of E according to a date-valued attribute a1. Optionally, a second
dimension a2 can be used to colour the calendar entry.

– In scatter diagrams (such as in Figure 2(a)), each point represents an
instance of E, and two dimensions a1 and a2 are used to plot the point’s x
and y coordinates. Optionally, a third dimension a3 can be used to colour
the point.

– In bubble charts (such as in Figure 2(b)), each bubble denotes an instance
of E; two dimensions a1 and a2 are used to plot the coordinates of the bubble,
and a third dimension a3 its size. Optionally, a fourth dimension a4 can be
used to colour it.

– In choropleth maps (such as in Figure 4(a)) each region represents an
instance of E, hence k must be interpretable as a geographical region, and
a1 is represented by a colour.

– Similarly in word clouds each word represents an instance of E and hence
k must be interpretable as a lexical domain, with a1 being the character size.

The table below summarises the above analysis, where |k| denotes the number
of distinct values of the key k. The upper cardinality of 100 shown in relation to
the bar chart is subjective, and aesthetics-driven; it would be user-configurable
in any implementation.

Basic Entity Visualisations

Name |k| mandatory optional

Bar Chart 1..100 a1 scalar -

Calendar 1..* a1 temporal scalar a2 colour

Scatter Diagrams 1..* a1, a2 scalar a3 colour

Bubble Charts 1..* a1, a2, a3 scalar a4 colour

Choropleth Maps 1..* k geographical, a1 colour -

Word Clouds 1..* k lexical, a1 scalar a2 colour

Note that all of the above visualisations (and indeed those listed in the fol-
lowing subsections) may have additional temporal scalars represented by time
sliders, and discrete scalars represented by snapshot or paging options.

In our approach, visualisation schema patterns are used in conjunction with
the database schema to guide the process of choosing a visualisation, by find-
ing sub-graphs of the database schema that match each visualisation schema.
Although this is an instance of the (NP-complete) subgraph isomorphism prob-
lem, the query graph (i.e. the visualisation schema) will be small and hence we
anticipate fast execution times using state-of-the-art algorithms such as [11].

8 P.J. Mc.Brien and A. Poulovassilis

For example, starting with the schema in Figure 1 and matching Figure 5(a)
against it, a match is found with the entity country, with k matching code and
choices area and population for the scalars a1 and a2. The user can therefore be
offered a bar chart, scatter diagram, choropleth or word cloud visualisation of
the data.

3.2 Weak Entity Visualisations

A particular form of compound key (often arising from the representation of
weak entity data in an ER schema) identifies a family of visualisations where
one part of the key, k1 (the key of the entity that the weak entity is attached
to) identifies a set of tuples, and the second part of the key, k2, identifies a tuple
in the set. The visualisation schema pattern for this is shown in Figure 5(b),
where it should be noted that k1 would match a key relationship in the data;
for example, in Figure 3 if E matched province then k1 would match part of and
hence be based on the code of country.

The values of k2 must lie within a similar range of values for all instances of
k1 (so as to make their visualisation in one chart meaningful). Also, we say that
the values of k2 are complete with respect to k1 if it is the case that the same
set of values appears for k2 for each value of k1. For example, the weak entity
country population in Figure 1 meets the range requirement since the dates for
population figures range over a period of less than 200 years, but it fails the
completeness test since the years in which population figures are available vary
from country to country. By contrast, the province and city entities in Figure 3
both fail the range test, since the names of provinces are almost entirely disjoint
between countries, and the names of cities are almost entirely disjoint between
provinces.

As with the basic entity visualisation, there are many visualisations suited
to present the weak entity visualisation, a selection of which are listed below.

– In a line chart each line represents a distinct value of k1; k2 represents a
scalar dimension to be plotted along the x-axis; and a1 must be a scalar
dimension to be plotted along the y-axis. XY variations allow an additional
dimension a2 to be added to the y-axis.

– In a stacked bar chart, distinct values of k1 are represented by a bar, with
one of the elements in the stack representing a value of k2, and the length of
the bar determined by a scalar dimension a1. Each value of k1 should appear
with the same (or almost the same) set of values for k2 (the completeness
property) so that the elements in each stack can be compared.

– A group bar chart is similar, except that k2 determines the height of an
element in the group. A stacked group bar chart combines group and bar
charts to allow the weak entity key to have two parts, k2 and k3.

– In a spider chart, each ring represents a value of k1 and each spoke a value
of k2; the intersection of the ring with a spoke is determined by a1.

The table below summarises the above analysis. Again the upper cardinalities
shown for |k1| and |k2| are aesthetics-driven and would be user-configurable.

Data Visualisation based on Conceptual Modelling 9

Weak Entity Visualisations

Name |k1| |k2| complete mandatory optional

Line Chart 1..20 1..* no k2, a1 scalar a2 scalar

Stacked Bar Chart 1..20 1..20 yes a1 scalar -

Grouped Bar Chart 1..20 1..20 no a1 scalar -

Spider Chart 3..10 1..20 yes a1 scalar -

3.3 One-Many Relationships

Relationships that are one-many (such as part of, in, and serves in Figure 3) lend
themselves to visualisations that are hierarchical in nature. The visualisation
schema for these relationships is illustrated in Figure 5(c), where the entity that
is on the ‘many’ side of the relationship (such as as country for part of) will be
considered the parent entity Ep, and the other entity (province for part of) the
child entity Ec. Visualisations that represent the one-many visualisation schema
are less common, but some examples are listed below.

– In a tree map, rectangles representing instances of Ep are divided into
rectangles representing Ec, the area of which is proportional to the value of
a scalar dimension a1. A selector may be added to alter the proportion to
be determined by other scalar dimensions a2, a3, . . .

– In a hierarchy tree, nodes represent instances of Ep that are connected
by lines to circles representing instances of Ec. A discrete dimension a1 may
optionally be used to colour the lines linking the entities.

– A circle packing represents instances of Ep by circles, with instances of
Ec placed as circles inside the circle of their parent instance of Ep. A scalar
dimension a1 is used to determine the area of the circles of Ec.

The table below summarises the above analysis.

One-many relationships

Name |k1| |k2| per k1 mandatory optional

Tree Map 1..100 1..100 a1 scalar a2 colour

Hierarchy Tree 1..100 1..100 - a1 colour

Circle Packing 1..100 1..100 a1 scalar a2 colour

3.4 Many-Many Relationships

Relationships that are many-many (such as borders in Figure 1) lend themselves
to visualisations that represent networks of data. The visualisation schema pat-
tern for these relationships is illustrated in Figure 5(d), where it should be noted
that the data that governs the visualisation is now present as attributes of the
relationship between entities E1 and E2. Visualisations that represent the many-
many visualisation schema are the rarest, with two being the following:

– In sankey diagrams, the left hand elements of the diagram represent in-
stances of E1, the right hand elements represent instances of E2, and the
width of the flow between the left and right elements represents scalar di-
mension a1. Optionally, a second attribute a2 of the many-many relationship
may be represented by varying the colour of the connection.

10 P.J. Mc.Brien and A. Poulovassilis

– In chord diagrams, (as found in D3, and based on the Circos package)
instances of the entities are represented by points on the perimeter of the
circle, with the value of a1 varying the width of the connection between
pairs of points. Again a second attribute a2 of the many-many relationship
may be represented by varying the colour of the connection. We note that
chord diagrams are particularly suited to reflexive relationships, shown in
Figure 5(e), since then the points around the circle represent instances of
just one type of entity E, and are not grouped according to which entity
type they belong to.

The table below summarises the above analysis.

Many-many relationships

Name |k1| |k2| reflexive mandatory optional

Sankey 1..20 1..20 no a1 scalar a2 colour

Chord 1..100 1..100 yes a1 scalar a2 colour

4 Schema Transformations to Create Visualisations

An advantage of our approach is that we can use well-known schema transfor-
mations, such as those documented in [2], to transform a database schema so
that it is suitable for visualisation. We identify below three such common trans-
formations and illustrate them through examples on the Mondial dataset. These
transformations can be viewed as a way of changing the database schema so that
it contains a sub-graph allowing a particular class of visualisations to be used.

4.1 Pivot

It is often the case a single graphical element needs to represent data sourced
from more that one instance of an entity. For example, the chart in Figure 2(d)
requires the comparison of country population instances for a given country with
year 1950 with those for the same country with year 2010. Using Datalog, we
define a pivot function to handle this, as follows:

Pivot E(a, b) {v1, . . . , vn} →
Ep(a v1, . . . , a vn) :-

E(v1, a v1),
...,
E(vn, a vn).

For example, Pivot country population(year, population) {1950, 2010} gives a
new entity country population pivot(population 1950, population 2010) that is a
subset of country.

countrycode ✛
country

population
pivot

population 1950

population 2010

Data Visualisation based on Conceptual Modelling 11

It should be noted that this is not an information preserving [9] transfor-
mation, since any country that does not have both a 1950 and a 2010 population
figure will be missing from the pivoted country population entity. Hence any vi-
sualisation derived from this data is not a complete representation of the 1950
and 2010 population data in country population.3

4.2 Denormalisation

A common practice is to use what we classify as one-many visualisations in Sec-
tion 3 in order to represent schemas containing many-many relationships, in a
kind of denormalisation of the data. The data transformation required is defined
by the Datalog rule below, where starting with the many-many visualisation
schema pattern in Figure 5(d), a new weak entity ED2 is formed as a denor-
malised version of E2, where the key of ED2 is a combination of k1 and k2, and
the attributes of R are now moved into ED2:
Denormalise E2(k2, x, . . .) R(k1, k2, a, . . .) →
ED2(k1, k2, x, . . . , a, . . .) :-

E2(k2, x, . . .),
R(k1, k2, a, . . .).

For example, applying this to the borders relationship in Figure 1:
Denormalise country(code, population) borders(code1, code2, length)

generates a new weak entity borders denormalised(code1, code2, length, population)
with length as an attribute. Note that the code1 of the scheme appears as a
relationship in the ER diagram.

country

code

population

borders

denormalised
code2

length

borders
0:N

1:1

population

When using a one-many visualisation on such a structure, using kc as a colour
dimension will ensure that the same colour is used to represent a particular
value of kc. Thus, in our example, the code2 attribute should be used as a colour
dimension.

It should be noted that this is an information preserving transformation, in
that all data present in the original schema is now present in the revised schema,
and hence visualisations derived from this schema can be regarded as complete
representations of the original schema.

A similar rule to that given above can also be used to denormalise the data
from the ‘many’ end of a one-many relationship into the entity representing the
‘one’ end of the relationship, and this may be used as a cue to present the user
with the choice of roll-up or drill-down of information.

3 It should also be noted that the physical implementation of a visualisation (such
as a chord diagram) requires associations between instances of E1 and E2 in many-
many relations to be presented with the values of E2 forming columns of a table,
and values of E1 as rows, which can be produced by a variation of the Pivot function
where tables are outer-joined together. The production of data targeted at specific
visualisation tools in an area of future work.

12 P.J. Mc.Brien and A. Poulovassilis

4.3 Mandatory Attribute Specialisation

Visualisations often require that attributes in the table to be visualised have
known values (not containing the value null). This means that the data needs to
be reduced to include only mandatory attributes for the purpose of visualisation.
The data transformation required is defined by the following Datalog rule:
Mandatory E(k, a1, . . . , an) →
EM(k, a1, . . . , an) :-

E(k, a1, . . . , an),
IsNotNull(a1),
...,
IsNotNull(an).

For example, applying Mandatory economy(code, inflation, unemployment) to
the economy entity of Figure 1 will result in a subset entity economy mandatory

with two mandatory attributes, as illustrated below.

economy

gdp?

agriculture?
...

✛
economy

mandatory

inflation

unemployment

Applying this transformation to Figure 1 allows us to generate Figure 2(a).
It should be noted that this transformation is not information preserving, since
any instance of economy that only has one of inflation or unemployment present
will be omitted from the new entity, and so Figure 2(a) will be an incomplete
representation of the inflation and unemployment data.

Furthermore, the user can be guided to include additional attributes such as
gdp, by producing a further specialisation of economy mandatory that includes
gdp, and hence to produce the bubble chart in Figure 2(b), which is a possible
basic entity visualisation in Section 3.1 that is able to model this third scalar
dimension.

If the user instead wants to additionally visualise continent, they can be
guided to choose a filtering of the many-many relationship encompasses that
establishes a one-many relationship between continents and countries (i.e. to
make continent become an attribute of country), e.g. by choosing a filtering
that selects the relationship instances with percent greater than 50.

5 Related Work

The field of data visualisation is a very broad one (for reviews see e.g. [1,17,15])
and is continuing to widen with the advent of ‘big data’ arising from web-scale
applications and the need to develop new techniques for exploring such data [5].
Current data visualisation tools (e.g. Tableau4, D35, Google Charts6) require
users to manually select data, apply transformations, and select appropriate

4 https://www.tableau.com/products/desktop
5 https://github.com/d3/d3/wiki/Gallery
6 https://developers.google.com/chart/interactive/docs/examples

https://www.tableau.com/products/desktop
https://github.com/d3/d3/wiki/Gallery
https://developers.google.com/chart/interactive/docs/examples

Data Visualisation based on Conceptual Modelling 13

visual encodings from a vast array of possibilities. The user may therefore find
it hard to understand the meaning of the data, the transformations that may be
applied to it, and the range of visualisation possibilities, and may easily fail to
‘see the wood for the trees’.

For these reasons, there has been work towards automated recommendation
of visualisation possibilities and for ranking such recommendations [6,12,7,20].
The SemVis system [4] reduces the visualisation search space by using a domain
ontology for mapping the source data into a visual representation ontology for
storing ‘knowledge about visualisation tools’, and a bridging ontology to map
between the domain ontology and the visual representation ontology. Our work
is similar in spirit to this, but we make use of a database-specific conceptual
schema that describes the domain expert’s specific dataset (rather than a more
general domain ontology); we also make use of the same conceptual modelling
formalism (ER diagrams) to express our visualisation schemas, thus allowing
common schema transformations to be applied to the former in order to con-
form them with the latter. Other recent work that is close to ours is the Voyager
system [21] which provides a number of techniques aiming to alleviate the above
problems, including faceted browsing of visualisation recommendations, and au-
tomatic clustering and ranking of visualisations according to data properties and
perceptual effectiveness principles. However, this work focusses on the visualisa-
tion of a single relational table of data, and misses the opportunity to exploit a
domain expert’s understanding of their data at a conceptual level, and also to
undertake matchings between the data and the visualisation possibilities at this
conceptual level. Thus our work can be viewed as being complementary to that
of Voyager.

Several works have derived taxonomies of classes of visualisation e.g. [13,3,16].
However, again these are focussed on properties of the data (dimensionality, de-
pendent/independent variables, discrete/continuous, ordered/unordered) rather
than capturing different visualisations as instances of a conceptual visualisation
schema.

Finally, languages that have been proposed for manipulating graphical data
(e.g. Tableau’s VizQL [14], Wilkinson’s Grammar of Graphics [19], R’s Tidyr
package [10]) require programmers to manually select data, apply transforma-
tions, and select appropriate visual encodings. For example, in the Grammar of
Graphics, Wilkinson defines three algebraic operators operating on relations —
cross join, nest, blend, while the Tidyr package supports operators such as
spread for pivoting a column, gather for un-pivoting a column, split for splitting
a column into two, and unite for combining two columns into one. These kinds
of algebras operate at a lower-level of abstraction compared to the transforma-
tions we have illustrated in Section 4. However, such algebras could be used
to implement our conceptual-level transformations e.g. as a target language for
compilation of our conceptual-level transformations.

14 P.J. Mc.Brien and A. Poulovassilis

6 Summary and Conclusions

In this paper we propose, for the first time, a conceptual modelling approach to
matching data and visualisations. We do this by making use of the conceptual
schema that is associated with the data and automatically matching it against a
set of visualisation schema patterns (expressed in the same ER formalism) each
of which characterises a group of potential visualisation alternatives. We also
propose the use of well-known schema transformations in order to transform the
database schema to that required for matching particular visualisation patterns.

With this approach, domain experts can interact with conceptual models of
their data, rather than lower-level tabular representations. By providing a set
of visualisation schema patterns, each of which captures the data representation
capabilities of a set of common data visualisations, we make it easier for the
user to select a visualisation that is meaningful in relation to their data and
their information seeking requirements; and to select from a more focussed set
of visualisations. By matching between the visualisation schema patterns and the
conceptual database schema, full schema knowledge can be used to automatically
map between the data and a range of possible visualisations. By applying, again
at the level of the conceptual database schema, a set of well-known schema
transformations, it is possible to generate additional matchings between the
transformed database schema and the set of visualisation schema patterns.

Future work includes undertaking an exhaustive analysis of the full range
of visualisations that are supported by state-of-the art tools, and extending the
indicative lists given in Section 3; this analysis may give rise to additional vi-
sualisation schema patterns. An implementation of the approach would include
also data analysis capabilities to determine whether a dimension is scalar or
discrete (or both), and to determine appropriate scaling of numeric dimensions
(e.g. linear, logarithmic) by supporting an additional dimension characteristic
of ‘skew’. Also important is extension of our visualisation schema patterns to
include descriptive elements (also populated from attributes of the database
schema). Finally, a full implementation would include a second stage of map-
ping, from a visualisation schema pattern to an actual physical visualisation
representation rendered by a target data visualisation tool.

References

1. N. Andrienko, G. Andrienko, and P. Gatalsky. Exploratory spatio-temporal vi-
sualization: an analytical review. Journal of Visual Languages & Computing,
14(6):503–541, 2003.

2. C. Batini and M. Lenzerini. A methodology for data schema integration in the
entity relationship model. Trans. Software Engineering, 10(6):650–664, 1984.

3. S.K. Card and J. Mackinlay. The structure of the information visualization design
space. In Proc. Information Visualization, pages 92–99. IEEE, 1997.

4. O. Gilson, N. Silva, P.W. Grant, and M. Chen. From web data to visualization via
ontology mapping. 27(3):959–966, 2008.

Data Visualisation based on Conceptual Modelling 15

5. E.Y. Gorodov and V.V. Gubarev. Analytical review of data visualization meth-
ods in application to big data. Journal of Electrical and Computer Engineering,
2013:22, 2013.

6. J.Mackinlay. Automating the design of graphical presentations of relational infor-
mation. Trans. On Graphics, 5(2):110–141, 1986.

7. J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic presentation for
visual analysis. Trans. Visualization and Computer Graphics, 13(6), 2007.

8. W. May. Information extraction and integration with Florid: The Mondial case
study. Technical Report 131, Universität Freiburg, Institut für Informatik, 1999.

9. R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. Schema equivalence in hetero-
geneous systems: Bridging theory and practice. Inf. Systems, 19(1):3–31, 1994.

10. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, 2013.

11. X. Ren and J. Wang. Exploiting vertex relationships in speeding up subgraph
isomorphism over large graphs. Proc. VLDB Endowment, 8(5):617–628, 2015.

12. S.F. Roth, J. Kolojejchick, J. Mattis, and J. Goldstein. Interactive graphic design
using automatic presentation knowledge. In Proc. CHI, pages 112–117. ACM, 1994.

13. B. Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In The Craft of Information Visualization, pages 364–371. 2003.

14. C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and
visualization of multidimensional relational databases. Trans. Visualization and

Computer Graphics, 8(1):52–65, 2002.
15. A.C. Telea. Data visualization: principles and practice. CRC Press, 2014.
16. M. Tory and T. Moller. Rethinking visualization: A high-level taxonomy. In Proc.

Information Visualization, pages 151–158. IEEE, 2004.
17. M.O. Ward, G. Grinstein, and D. Keim. Interactive data visualization: foundations,

techniques, and applications. CRC Press, 2010.
18. C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann,

3rd edition, 2013.
19. L. Wilkinson. The Grammar of Graphics. Springer, 2005.
20. G. Wills and L. Wilkinson. Autovis: automatic visualization. Information Visual-

ization, 9(1):47–69, 2010.
21. K. Wongsuphasawat et al . Voyager: Exploratory analysis via faceted browsing

of visualization recommendations. Trans. Visualization and Computer Graphics,
22(1):649–658, 2016.

	Towards Data Visualisation based onConceptual Modelling and Schema Transformations[2em]AutoMed Technical Report Number 39

