
The Automed HDM Data Store

Dean Williams
dean�dcs�bbk�ac�uk

School of Computer Science and Information Systems�

Birkbeck College� University of London

� Introduction

AutoMed is a data integration system which supports a hypergraph�based data
model� the HDM� as its common data model� Constructs of higher�level data
models are de�ned in terms of the HDM� as are sets of primitive schema trans�
formations� In this way collections of schemas� with each schema based on one
of a variety of data models� can be transformed into their HDM representation
and subsequently integrated into a global schema by means of reversible trans�
formation pathways� The global schema can then be queried using a functional
query language� IQL� with queries being passed to wrappers to interrogate the
actual data sources and return results to the query processor�

Previous technical reports and published work describe the repositories for data
models �the MDR� and schema de�nitions �the STR�� the IQL query language
and methods of modelling ER� relational� XML� �at �le and RDF data in Au�
tomed�

Applications which make use of the Automed infrastructure� such as the ES�
TEST �	
 software� often reason with data in its HDM form and need to store
results as HDM� This report describes a data store for HDM instance data�

The store is implemented using Postgres relational tables �as are the Automed
Model and Schema Repositories�� A Java API allows the store to be populated
and queried� alternatively a parser reads a text �le description of the data and
uses this to populates the store� An Automed wrapper exists to enable the IQL
query processor to query this store as it would any other data source�

� Characteristics of HDM instance data

The HDM data model is described elsewhere ���

� however the following char�
acteristics of HDM instance data are highlighted�

� Data in the HDM consists of nodes and edges e�g�hhpersonii is a node and
hhworksIn�person�roomii is an edge�



� Edges can be of any length e�g� hhaddress�houseNumber�road�town�postCodeii�

� Edges can be named or unnamed e�g� hh �person�roomii or hhworksIn�person�roomii�

� Edges are treated the same whether they are named or unnamed � unnamed
edges just happen to have a name �

� Each span on an edge can be either a nodes or edges e�g�
hhlivesAt�person�hhaddress�houseNumber�road�town�postCodeiiii

� Edge names only unique for type signature e�g� can have both�
hhworksIn�person�projectii and hhworksIn�person�roomii

� Nodes have an associated data type e�g� integer� string� date etc�

� An Example

Throughout this report the following sample instance data will be used to illus�
trate the contents of the HDM store tables and in code fragments�

� Dean� Mat� Hao and Edgar are people�
� Hao� Edgar and Dean work on the Automed project�
� Dean and Mat work on the Tristarp project
� Mat and Dean sit in room B�
E�
� Edgar and Hao sit in room BG���
� Dean lives at �
� Northdown Street� London N� �BS

This data will be placed in HDM store conforming to the following �personnel�
schema�

Nodes�
hhpersonii
hhprojectii
hhroomii
hhhouseNumberii
hhroadii
hhtownii
hhpostCodeii

Edges�
hhworksIn�person�projectii
hhworksIn�person�roomii
hhaddress�houseNumber�road�town�postCodeii
hhlivesAt�person�hhaddress�houseNumber�road�town�postCodeiiii

Note that there are two edges named �worksIn� and that the second span in the
edge �livesAt� is itself an edge� For the purposes of this example it is assumed

�



that all the data types of the nodes are string except for hhhouseNumberii which
is an integer�
Throughout the Automed project double chevrons are used to indicate a node
or edge� In the HDM Store and this report� we enclose instance data in square
brackets� These instance data speci�cations are tuples so it may seem appropriate
to use single chevrons� however as the instance data can be nested it can be
confusing as to whether single or double chevrons are being used in a particular
example�
To illustrate� �dean���
�Northdown Street�London�N� �BS

 is an instance of�
hhlivesAt�person�hhaddress�houseNumber�road�town�postCodeiiii

� HDM Store Tables

The following Postgres tables are used to store the HDM data�

� hdm store links an hdm store to the schema in the STR repository to which
the data must conform�

� node datatype gives the data type of each node in the schema�
� node stores the details of an instance of a node�
� edge stores details of each edge instance�
� edge span stores the value of one span of one edge instance�

Each of these tables is now described in turn� together with the rows that would
be required to store the example data given in section � above�

��� The �hdm store� Table

This table links an HDM store to the schema de�ning the HDM database� which
must already exists in the schema repository� A name for the repository is also
de�ned which can be used to reference the store instead of the id number�

hdm store

hid integer
sid integer
hdm store name varchar
schema name integer

e�g�

hdm store

hid sid hdm store name schema name

� �� bbkdata personnel

In the example a single hdm store has been de�ned with id �� This store is linked
to schema �� in the STR which has the schema name �personnel�� The hdm store
has the name �bbkdata��

�



��� The �node datatype� Table

The metadata for the schema is stored in the STR with the exception of the data
type information which is only required by the HDM store� When the HDM store
is created a row is inserted into the node datatype table for each node in the
schema with a default datatype of �string��
The default datatype can be overridden at any time providing no instances of
the node have previously been stored�

node datatype

hid integer
node type string
datatype string

e�g�

node datatype

hid node type datatype

� person string

� project string

� room string

� road string

� town string

� postCode string

� houseNumber integer

In this example all the nodes have the default data type of �string� apart from
the houseNumber which is �integer��
The datatypes supported are the standard set for Automed wrappers i�e� date�
string� integer� �oat and boolean�

��� node

The node table has a row for each instance of a node in the database� The HDM
store identi�er and the node identi�er are the key of the table and the row also
contains the node type� which must exist in the linked schema and the value as
a string�
When the row is inserted the value is checked to ensure that it is a valid string
representation of whatever the node datatype of the node type is set to�

node

hid integer
nid integer
node type string
node value string

e�g�






node datatype

hid nid node type node value

� � person dean

� � person hao

� � person mat

� � person edgar

� � room NG��

� � room B��E

� � project automed

� 	 project tristarp

� 
 houseNumber ��

� �� road Northdown Street

� �� town London

� �� postCode N� 
BS

The rows for the example data can be seen above� the �rst row shows that �dean�
is an instance of hhpersonii�

��� The �edge� Table

There is one row in the edge table for each instance of an edge in the HDM
store� The values of each span are held in the edge span table� The minimum
information that needs to be stored at the edge level is the edge name � the types
of the edge spans could be derived from lookups based on the edge span table�

For e�cient processing a number of derivable columns are stored at the edge
level� the edge type and a representation of the edge value as a string�

edge

hid integer
eid integer
edge name string
edge type string
edge value as string string

e�g� for the data in the example�

edge
hid eid edge name edge type edge value as string
� � worksin hhworksin�person�projectii �dean�tristarp�
� � worksin hhworksin�person�projectii �mat�tristarp�
� � worksin hhworksin�person�projectii �hao�automed�
� � worksin hhworksin�person�projectii �edgar�automed�
� � worksin hhworksin�person�projectii �dean�automed�
� 	 worksin hhworksin�person�roomii �mat�B��E�
� 
 worksin hhworksin�person�roomii �dean�B��E�
� � worksin hhworksin�person�roomii �hao�NG�	�
� � worksin hhworksin�person�roomii �edgar�NG�	�
� �
 address hhaddress�houseNumber�road�town�postCodeii �	��Northdown Street�London�N� �BS�
� �� livesAt hhlivesAt�person�hhaddress�houseNumber�road�town�postCodeiiii �dean��	��Northdown Street�London�N� �BS��

	



��	 The �edge span� Table

The edge span table has a row for each span on the edge e�g� an edge hhworksin�person�projectii
will have one row on the edge table and two rows on the edge span table� one
to identify which instance of the hhpersonii node is in the edge and one similarly
for the hhprojectii node�

edge span

hid integer
eid integer
span number integer
edge or node character
id string

and so or for the example data�

edge span

hid eid span number edge or node id

� � � n �

� � � n 	

� � � n �

� � � n 	

� � � n �

� � � n �

� � � n �

� � � n �

� � � n �

� � � n �

� � � n �

� � � n �

� � � n �

� � � n �

� 	 � n �

� 	 � n �

� 
 � n �

� 
 � n �

� �� � n 


� �� � n ��

� �� � n ��

� �� � n ��

� �� � n �

� �� � e ��

The edge or node column indicates id the span is an edge or an node� The id
column then points to either the node id �nid� in the node table or the edge id
�eid� in the edge table�

In the example above all of the id�s point to entries of the node table �they are
nid�s� except for the last row which points to an edge �it is an eid��

�



� Using The API

To illustrate the how to create data stores using Java code� an example program
is available at http���www�dcs�bbk�ac�uk� dean�HDMStoreDemo�java
This program is run without arguments and has three methods�

buildModel
� this builds the standard repository HDM model and is the same
as in other Automed example programs�

buildPersonnelSchema
� creates a schema in the STR which complies with
the example �personnel� HDM schema�

populatePersonnelSchema
� populates the example schema with the exam�
ple data�

The following fragment of code from the populatePersonnelSchema
�method
shows how the API is used�

HDMStoreDemo�java

HdmStore hdmStore � new HdmStore�debug��

hdmStore�createDBtables���

hdmStore�createHdmStore��personnel���bbkdata���

hdmStore�use��bbkdata���

hdmStore�setDatatype��		HouseNumber

���integer���

hdmStore�addNode��		person

����dean����

hdmStore�addNode��		person

����hao����

edge � new Edge��		worksin�person�room

��new String�� 
��edgar�����NG�������

hdmStore�addEdge�edge��

edge � new Edge��		livesAt�person�		address�houseNumber�road�town�postCode



�

�new String�� 
��dean��������Northdown Street�London�N� �BS�����

hdmStore�addEdge�edge��

The createDBtables
� method will create the Postgres tables used by the
HDM store �after dropping them if any already exist��
The the createHdmStore
� method creates a new HDM store by passing the
STR schema name to which the data in this HDM store must conform� together
with the name for the HDM store�
As the new HDM store has not yet been populated it is possible to use the
setDatatype
� method to de�ne the data type of hhHouseNumberii to be integer�
Then the use
� method indicates we wish to use the �bbkdata� store�
Next nodes are added through the addNode
� method which requires both the
node type and the value to be passed� as strings�
The addEdge
� method takes a Edge class as its argument� The Edge class is
created by passing the constructor the string representing the full type descrip�
tion of the edge �e�g� hhlivesAt�person�hhaddress�houseNumber�road�town�postCodeiiii�

�



followed by an array of strings� each string in the array representing the value
of a single span in the edge�

� Using The Parser

As alternative a parser HdmStoreCmd exists which takes in a text �le with
database commands and runs each command in turn� This provided is to remove
the necessity to write new code each time an HDM store is required or amended�
The usage is�

Usage� hdmStoreCmd ��options� 	db commands filename


�drop � drop � recreate tables first

�usage or �help � this message

To illustrate the format of the text �le the commands for the personnel example
would be�

createdb�

newstore personnel birkbeck�

use birkbeck�

settype houseNumber integer�

add 		person

 �dean��

add 		person

 �hao��

add 		person

 �mat��

add 		person

 �edgar��

add 		room

 �NG����

add 		room

 �B��E��

add 		project

 �automed��

add 		project

 �tristarp��

add 		houseNumber

 �����

add 		road

 �Northdown Street��

add 		town

 �London��

add 		postCode

 �N� �BS��

add 		worksIn�person�project

 �dean�tristarp��

add 		worksIn�person�project

 �mat�tristarp��

add 		worksIn�person�project

 �hao�automed��

add 		worksIn�person�project

 �edgar�automed��

add 		worksIn�person�project

 �dean�automed��

add 		worksIn�person�room

 �mat�B��E��

add 		worksIn�person�room

 �dean�B��E��

add 		worksIn�person�room

 �hao�NG����

add 		worksIn�person�room

 �edgar�NG����

�



add 		address�houseNumber�road�town�postCode



����Northdown Street�London�N� �BS��

add 		livesAt�person�		address�houseNumber�road�town�postCode





�dean�����Northdown Street�London�N� �BS���

These commands map on to the API methods described in Section 	 above�

��� Shortcuts

If creating the text �le of commands by hand then the syntax as described above
will lead to lengthy �les even for reasonably small databases� To make this more
manageable a number of syntax shortcuts are provided which the parser converts
into the full commands before execution� Each of these shortcuts is described
with an example�

Multiple Instances Of The Same Node� Typically it will be required to
add many instances of the same type e�g�

add 		person

 �dean��

add 		person

 �hao��

add 		person

 �mat��

add 		person

 �edgar��

add 		worksIn�person�project

 �dean�tristarp��

add 		worksIn�person�project

 �mat�tristarp��

add 		worksIn�person�project

 �hao�automed��

add 		worksIn�person�project

 �edgar�automed��

add 		worksIn�person�project

 �dean�automed��

this can be speci�ed in the text �le by giving the node once and following this
by any number of instances e�g�

add 		person

 �dean� �mat� �hao� �edgar�

add 		worksIn�person�project

 �dean�tristarp� �mat�tristarp� �hao�automed�

�edgar�automed� �dean�automed��

Missing Nodes On An Edge� An optional additional parser command ad

dmissingnodes instructs the parser to insert into the database any nodes men�
tioned in edge de�nitions which do not themselves currently exist in the database�
Instead of�

add 		person

 �dean� �mat� �hao� �edgar�

add 		worksIn�person�project

 �dean�tristarp� �mat�tristarp� �hao�automed�

�edgar�automed� �dean�automed��

�



it is possible to specify�

addmissingnodes�

add 		worksIn�person�project

 �dean�tristarp� �mat�tristarp� �hao�automed�

�edgar�automed� �dean�automed��

Edge Names� As mentioned in section � above� edge names do not have to be
unique in a schema� However in practice they probably will be� the parser allows
for the edge name to be used and not the full type description in cases where
there is not more than one edge with the same name�
so it is possible to state�

add 		livesAt

 �dean�����Northdown Street�London�N� �BS���

instead of�

add 		livesAt�person�		address�houseNumber�road�town�postCode





�dean�����Northdown Street�London�N� �BS���

but not�

add 		worksIn

 �mat�B��E��

as there are two edges de�ned in the schema with the name worksIn�

Typing Macros� If something needs to be retyped it can be �agged and the label
used for future use e�g�

add 		address

 ����Northdown Street�London�N� �BS� ���

add 		livesAt

 �dean�����

is equivalent to�

add 		address

 ����Northdown Street�London�N� �BS� ���

add 		livesAt

 �dean�����Northdown Street�London�N� �BS���

��� Shorthand Version Of The Example

Using the quick syntax the example commands can be replaced with�

createdb�

newstore personnel birkbeck��

use birkbeck��

addmissingnodes�

settype houseNumber integer�

add 		worksIn�person�project



�dean�tristarp� �mat�tristarp� �hao�automed� �edgar�automed� �dean�automed��

add 		worksIn�person�room



�mat�B��E� �dean�B��E� �hao�NG��� �edgar�NG����

add 		address

 ����Northdown Street�London�N� �BS� ���

add 		address

 ����Malet Street�London�WC�E �HX� ���

add 		livesAt

 �dean�����

add 		livesAt

 �edgar�����

��



� The Automed Wrapper

Wrappers for the various physical data sources in AutoMed implement the abstract
AutoMedWrapper class and are built by a class implementing keywordAutoMed�
WrapperFactory� Documentation for these classes can be found in the API repository
documentation �http���www�doc�ic�ac�uk�automed�resources�apidocs�index�html��
however the key methods are described below�
The data structure used to pass and return queries is the Abstract Syntax Graph
and these are described� together with an explanation of IQL query processing in
Automed in �	
�
The HdmWrapperFactory class has a method�

HdmWrapper build�String schemaName�

Which returns a HdmWrapper when passed the name of a schema�The key methods
of the HdmWrapper are those for passing select� update and delete queries

ASG executeIQL�ASG q�

boolean insertIQL�ASG q�

boolean deleteIQL�ASG q�

The HdmWrapper makes use of a keywordLowLevelWrapperHdm class which uses
data structures more closely tied to the HDM data model� in particular the Edge and
EdgeElement classes� The EdgeElement class includes a static method for converting
from these structures back to the ASG structure used to return query results� An
example of a query using the low level wrapper is�

LinkedList resultList�

LowLevelWrapperHdm lowLevelWrapperHdm�

lowLevelWrapperHdm � new LowLevelWrapperHdm���

�� Example Query �

resultList � lowLevelWrapperHdm�query��personnel��

�		livesAt�person�		address�houseNumber�road�town�postCode



���

EdgeElement�display�resultList��

which returns the results�

Edge� 		livesAt�person�		address�houseNumber�road�town�postCode





Node� 		person

 dean string

Edge� 		address�houseNumber�road�town�postCode



Node� 		houseNumber

 �� integer

Node� 		road

 Northdown Street string

Node� 		town

 London string

Node� 		postCode

 N� �BS string

��



� The Demonstration Programs

A number of demonstration programs are contained in the hdmstore package and
each of these is now described�

� DemoHdmStoreApi This program�
� Builds the HDM Automed Model
� Build the personnel department schema used in the demo programs� This
includes building an access method for the schema which will need to be
amended for the local postgres system� In particular the url for a hdm store
is of the form PROTOCOL�DBMS�DATABASE�HDMSTORE
e�g� �jdbc�postgresql�dwAutomed�bbkdata� i�e� its the same as for a postgres
database but with the name of the hdm store added at the end�

� Populates the hdm store with example data using the api�
Running this program will also create the hdm store tables if required�

� HdmStoreCmd is the command line processor for the HDM store and two exam�
ple text �les are included which make use of the personnel department schema�
� DemoHdmStoreCmdLong�txt is the longhand version of the �le from Sec�
tion 
�

� DemoHdmStoreCmdShort�txt is the shorter version� which makes use of
shortcuts� from Section 
���

� DemoHdmStoreWrapper shows the use of the IQL wrapper with the HDM store
including�
� Queries against existing data
� Insert and Delete queries for nodes
� Insert and Delete queries for edges

References

�� E� Jasper and A�Poulovassilis� Processing iql queries and migrating data in the automed

toolkit� Technical report� Automed Project� �����

�� P�J� McBrien and A� Poulovassilis� A uniform approach to inter�model transformations�

In Proc� CAiSE���� LNCS ����� pages �����	
� �����

�� P�J� McBrien and A� Poulovassilis� A semantic approach to integrating XML and struc�

tured data sources� In Proc� CAiSE���� LNCS ���	� pages �����	�� �����

	� P�J� McBrien and A� Poulovassilis� Schema evolution in heterogeneous database archi�

tectures� a schema transformation approach� In Proc� CAiSE���� LNCS �
�	� pages

	
	�	��� �����

�� D� Williams� Combining database and information extraction techniques to discover

structure from partially structered data� Technical report� Automed Project� �����

��


