The Automed HDM Data Store

Dean Williams
dean@dcs.bbk.ac.uk

School of Computer Science and Information Systems,
Birkbeck College, University of London

1 Introduction

AutoMed is a data integration system which supports a hypergraph-based data
model, the HDM, as its common data model. Constructs of higher-level data
models are defined in terms of the HDM, as are sets of primitive schema trans-
formations. In this way collections of schemas, with each schema based on one
of a variety of data models, can be transformed into their HDM representation
and subsequently integrated into a global schema by means of reversible trans-
formation pathways. The global schema can then be queried using a functional
query language, IQL, with queries being passed to wrappers to interrogate the
actual data sources and return results to the query processor.

Previous technical reports and published work describe the repositories for data
models (the MDR) and schema definitions (the STR), the IQL query language
and methods of modelling ER, relational, XML, flat file and RDF data in Au-
tomed.

Applications which make use of the Automed infrastructure, such as the ES-
TEST [5] software, often reason with data in its HDM form and need to store
results as HDM. This report describes a data store for HDM instance data.

The store is implemented using Postgres relational tables (as are the Automed
Model and Schema Repositories). A Java API allows the store to be populated
and queried, alternatively a parser reads a text file description of the data and
uses this to populates the store. An Automed wrapper exists to enable the IQL
query processor to query this store as it would any other data source.

2 Characteristics of HDM instance data

The HDM data model is described elsewhere [2—4], however the following char-
acteristics of HDM instance data are highlighted:

— Data in the HDM consists of nodes and edges e.g.{(person)) is a node and
{(worksIn,person,room)) is an edge.

— Edges can be of any length e.g. ((address,houseNumber,road,town,postCode)).
— Edges can be named or unnamed e.g. (-,person,room)) or {(worksln,person,room)).

— Edges are treated the same whether they are named or unnamed - unnamed
edges just happen to have a name _.

— Each span on an edge can be either a nodes or edges e.g.
((livesAt,person, {(address,houseNumber,road,town,postCode))))

— Edge names only unique for type signature e.g. can have both:
{(workslIn,person,project)) and {(worksln,person,room))

— Nodes have an associated data type e.g. integer, string, date etc.

3 An Example

Throughout this report the following sample instance data will be used to illus-
trate the contents of the HDM store tables and in code fragments:

— Dean, Mat, Hao and Edgar are people.

Hao, Edgar and Dean work on the Automed project.
— Dean and Mat work on the Tristarp project

Mat and Dean sit in room B34E.

— Edgar and Hao sit in room BG26.

— Dean lives at 64, Northdown Street, London N1 9BS

This data will be placed in HDM store conforming to the following ’personnel’
schema:

Nodes:
((person))
(project)
{room)
{(houseNumber))
(road)
({town)
((postCode))

Edges:
{(worksln,person,project))
{(worksln,person,room))
{((address,houseNumber,road,town,postCode})
((livesAt,person,((address,houseNumber,road,town,postCode))))

Note that there are two edges named ’worksIn’ and that the second span in the
edge livesAt’ is itself an edge. For the purposes of this example it is assumed

that all the data types of the nodes are string except for ((houseNumber)) which
is an integer.

Throughout the Automed project double chevrons are used to indicate a node
or edge. In the HDM Store and this report, we enclose instance data in square
brackets. These instance data specifications are tuples so it may seem appropriate
to use single chevrons, however as the instance data can be nested it can be
confusing as to whether single or double chevrons are being used in a particular
example.

To illustrate: [dean,[64,Northdown Street,London,N1 9BS]] is an instance of:
((livesAt,person, ((address,houseNumber,road,town,postCode))))

4 HDM Store Tables

The following Postgres tables are used to store the HDM data:

— hdm_store links an hdm store to the schema in the STR repository to which
the data must conform.

— node_datatype gives the data type of each node in the schema.

— node stores the details of an instance of a node.

— edge stores details of each edge instance.

— edge_span stores the value of one span of one edge instance.

Each of these tables is now described in turn, together with the rows that would
be required to store the example data given in section 3 above.
4.1 The ’hdm store’ Table

This table links an HDM store to the schema defining the HDM database, which
must already exists in the schema repository. A name for the repository is also
defined which can be used to reference the store instead of the id number.

| hdm_store |

hid integer
sid integer
hdm _store_name varchar
schema name integer

e.g.
hdm _store
hid sid hdm _store_name schema_name
1 16 bbkdata personnel

In the example a single hdm store has been defined with id 1. This store is linked
to schema 16 in the STR which has the schema name ’personnel’. The hdm store
has the name ’bbkdata’.

4.2 The 'node_datatype’ Table

The metadata for the schema, is stored in the STR with the exception of the data
type information which is only required by the HDM store. When the HDM store
is created a row is inserted into the node_datatype table for each node in the
schema with a default datatype of ’string’.

The default datatype can be overridden at any time providing no instances of
the node have previously been stored.

| node_datatype |

hid integer
node_type string
datatype string

e.g.

node_datatype

hid node_type datatype
1 person string

1 project string

1 room string

1 road string

1 town string

1 postCode string

1 houseNumber integer

In this example all the nodes have the default data type of ’string’ apart from
the houseNumber which is ’integer’.

The datatypes supported are the standard set for Automed wrappers i.e. date,
string, integer, float and boolean.

4.3 node

The node table has a row for each instance of a node in the database. The HDM
store identifier and the node identifier are the key of the table and the row also
contains the node_type, which must exist in the linked schema and the value as
a string.

When the row is inserted the value is checked to ensure that it is a valid string
representation of whatever the node_datatype of the node_type is set to.

| node |
hid integer
nid integer

node_type string
node_value string

e.g.

node_datatype

hid nid node_type node_value
1 1 person dean

1 2 person hao

1 3 person mat

1 4 person edgar

1 5 room NG26

1 6 room B34E

1 7 project automed

1 8 project tristarp

1 9 houseNumber 64

1 10 road Northdown Street
1 11 town London

1 12 postCode N1 9BS

The rows for the example data can be seen above, the first row shows that 'dean’
is an instance of ((person)).

4.4 The ’edge’ Table

There is one row in the edge table for each instance of an edge in the HDM
store. The values of each span are held in the edge_span table. The minimum
information that needs to be stored at the edge level is the edge_name - the types
of the edge spans could be derived from lookups based on the edge_span table.
For efficient processing a number of derivable columns are stored at the edge
level, the edge type and a representation of the edge value as a string.

| edge |
hid integer
eid integer
edge_name string
edge_type string
edge_value_as_string string

e.g. for the data in the example:

edge
hid eid edge_-name edge_type edge_value_as_string
1 1 worksin ((worksin,person,project)) dean,tristarp]
1 2 worksin ((worksin,person,project)) mat,tristarp]
1 3 worksin ((worksin,person,project)) hao,automed]
1 4 worksin ((worksin,person,project)) edgar,automed]
1 5 worksin ((worksin,person,project)) dean,automed]
1 6 worksin ((worksin,person,room)) mat,B34E]
1 7 worksin ((worksin,person,room)) dean,B34E]
1 8 worksin ((worksin,person,room)) hao,NG26]
1 9 worksin ((worksin,person,room)) edgar,NG26]
1 10 address ((address,houseNumber,road,town,postCode)) 64,Northdown Street,London,N1 9BS]
1 11 livesAt ((livesAt,person, ((address,houseNumber,road,town,postCode)))) [dean,[64,Northdown Street,London,N1 9BS]]

4.5 The ’edge_span’ Table

The edge_span table has a row for each span on the edge e.g. an edge ((worksin,person,project))
will have one row on the edge table and two rows on the edge_span table, one

to identify which instance of the ((person)) node is in the edge and one similarly

for the ((project)) node.

| edge_span |
hid integer
eid integer

span_number integer
edge_or_node character
id string

and so or for the example data:

edge_span
hid eid span_number edge_or_node id
1 1 1 n 1
1 1 2 n 8
1 2 1 n 3
1 2 2 n 8
1 3 1 n 2
1 3 2 n 7
1 4 1 n 4
1 4 2 n 7
1 5 1 n 1
1 5 2 n 7
1 6 1 n 3
1 6 2 n 6
1 7 1 n 1
1 7 2 n 6
1 8 1 n 2
1 8 2 n 5
1 9 1 n 4
1 9 2 n 5
1 10 1 n 9
1 10 2 n 10
1 10 3 n 11
1 10 4 n 12
1 11 1 n 1
1 11 2 e 10

The edge_or_node column indicates id the span is an edge or an node. The id
column then points to either the node id (nid) in the node table or the edge id
(eid) in the edge table.

In the example above all of the id’s point to entries of the node table (they are
nid’s) except for the last row which points to an edge (it is an eid).

5 Using The API

To illustrate the how to create data stores using Java code, an example program
is available at http://www.dcs.bbk.ac.uk/ dean/HDMStoreDemo.java
This program is run without arguments and has three methods:

buildModel() this builds the standard repository HDM model and is the same
as in other Automed example programs.

buildPersonnelSchema() creates a schema in the STR which complies with
the example "personnel’ HDM schema.

populatePersonnelSchema() populates the example schema with the exam-
ple data.

The following fragment of code from the populatePersonnelSchema() method
shows how the API is used.

HDMStoreDemo. java
HdmStore hdmStore = new HdmStore(debug) ;

hdmStore.createDBtables() ;

hdmStore.createHdmStore ("personnel","bbkdata") ;
hdmStore.use("bbkdata") ;

hdmStore.setDatatype ("<<HouseNumber>>","integer") ;
hdmStore.addNode ("<<person>>","[dean]");
hdmStore.addNode ("<<person>>","[hao]") ;

edge = new Edge("<<worksin,person,room>>",new String[] {"[edgar]","[NG26]"});
hdmStore.addEdge (edge) ;

edge = new Edge ("<<livesAt,person,<<address,houseNumber,road,town,postCode>>>>"
,new String[] {"[dean]","[64,Northdown Street,London,N1 9BS]"});
hdmStore.addEdge (edge) ;

The createDBtables() method will create the Postgres tables used by the
HDM store (after dropping them if any already exist).

The the createHdmStore() method creates a new HDM store by passing the
STR schema name to which the data in this HDM store must conform, together
with the name for the HDM store.

As the new HDM store has not yet been populated it is possible to use the
setDatatype() method to define the data type of ((HouseNumber)) to be integer.
Then the use() method indicates we wish to use the 'bbkdata’ store.

Next nodes are added through the addNode() method which requires both the
node type and the value to be passed, as strings.

The addEdge() method takes a Edge class as its argument. The Edge class is
created by passing the constructor the string representing the full type descrip-
tion of the edge (e.g. ((livesAt,person,{(address,houseNumber,road,town,postCode)))))

followed by an array of strings, each string in the array representing the value
of a single span in the edge.

6 Using The Parser

As alternative a parser HdmStoreCmd exists which takes in a text file with
database commands and runs each command in turn. This provided is to remove
the necessity to write new code each time an HDM store is required or amended.
The usage is:

Usage: hdmStoreCmd [-options] <db commands filename>
-drop = drop & recreate tables first
-usage or -help = this message

To illustrate the format of the text file the commands for the personnel example
would be:

createdb;
newstore personnel birkbeck;
use birkbeck;

settype houseNumber integer;

add <<person>> [dean];

add <<person>> [hao] ;

add <<person>> [mat];

add <<person>> [edgar];
add <<room>> [NG26] ;

add <<room>> [B34E] ;

add <<project>> [automed] ;
add <<project>> [tristarp];
add <<houseNumber>> [64];

add <<road>> [Northdown Street];
add <<town>> [London];

add <<postCode>> [N1 9BS];

add <<worksIn,person,project>> [dean,tristarp];
add <<worksIn,person,project>> [mat,tristarp];
add <<worksIn,person,project>> [hao,automed];

add <<worksIn,person,project>> [edgar,automed];
add <<worksIn,person,project>> [dean,automed];

add <<worksIn,person,room>> [mat,B34E];
add <<worksIn,person,room>> [dean,B34E];
add <<worksIn,person,room>> [hao,NG26];
add <<worksIn,person,room>> [edgar,NG26];

add <<address,houseNumber,road,town,postCode>>
[64,Northdown Street,London,N1 9BS];

add <<livesAt,person,<<address,houseNumber,road,town,postCode>>>>
[dean, [64,Northdown Street,London,N1 9BS]];

These commands map on to the API methods described in Section 5 above.

6.1 Shortcuts

If creating the text file of commands by hand then the syntax as described above
will lead to lengthy files even for reasonably small databases. To make this more
manageable a number of syntax shortcuts are provided which the parser converts
into the full commands before execution. Each of these shortcuts is described
with an example.

Multiple Instances Of The Same Node. Typically it will be required to
add many instances of the same type e.g.

add <<person>> [dean];
add <<person>> [hao] ;
add <<person>> [mat];
add <<person>> [edgar];

add <<worksIn,person,project>> [dean,tristarp];
add <<worksIn,person,project>> [mat,tristarp];
add <<worksIn,person,project>> [hao,automed];
add <<worksIn,person,project>> [edgar,automed];
add <<worksIn,person,project>> [dean,automed];

this can be specified in the text file by giving the node once and following this
by any number of instances e.g.

add <<person>> [dean] [mat] [hao] [edgar]
add <<worksIn,person,project>> [dean,tristarp] [mat,tristarp] [hao,automed]
[edgar,automed] [dean,automed];

Missing Nodes On An Edge. An optional additional parser command ad-
dmissingnodes instructs the parser to insert into the database any nodes men-
tioned in edge definitions which do not themselves currently exist in the database.
Instead of:

add <<person>> [dean] [mat] [hao] [edgar]
add <<worksIn,person,project>> [dean,tristarp] [mat,tristarp] [hao,automed]
[edgar,automed] [dean,automed];

it is possible to specify:

addmissingnodes;
add <<worksIn,person,project>> [dean,tristarp] [mat,tristarp] [hao,automed]
[edgar,automed] [dean,automed];

Edge Names. As mentioned in section 2 above, edge names do not have to be
unique in a schema. However in practice they probably will be, the parser allows
for the edge name to be used and not the full type description in cases where
there is not more than one edge with the same name.

so it is possible to state:

add <<1livesAt>> [dean, [64,Northdown Street,London,N1 9BS]];
instead of:

add <<livesAt,person,<<address,houseNumber,road,town,postCode>>>>
[dean, [64,Northdown Street,London,N1 9BS]];

but not:
add <<worksIn>> [mat,B34E];

as there are two edges defined in the schema with the name worksin.

Typing Macros. If something needs to be retyped it can be flagged and the label
used for future use e.g.

add <<address>> [64,Northdown Street,London,N1 9BS] &1;
add <<1livesAt>> [dean,&1];

is equivalent to:

add <<address>> [64,Northdown Street,London,Ni1 9BS] &1;
add <<1livesAt>> [dean, [64,Northdown Street,London,N1 9BS]];

6.2 Shorthand Version Of The Example
Using the quick syntax the example commands can be replaced with:

createdb;
newstore personnel birkbeck?2;
use birkbeck?2;
addmissingnodes;
settype houseNumber integer;
add <<worksIn,person,project>>
[dean,tristarp] [mat,tristarp] [hao,automed] [edgar,automed] [dean,automed];
add <<worksIn,person,room>>
[mat,B34E] [dean,B34E] [hao,NG26] [edgar,NG26];
add <<address>> [64,Northdown Street,London,N1 9BS] &1;
add <<address>> [12,Malet Street,London,WC1E 7HX] &2;
add <<1livesAt>> [dean,&1];
add <<livesAt>> [edgar,&2];

10

7 The Automed Wrapper

Wrappers for the various physical data sources in AutoMed implement the abstract
AutoMedWrapper class and are built by a class implementing keywordAutoMed-
WrapperFactory. Documentation for these classes can be found in the API repository
documentation (http://www.doc.ic.ac.uk/automed/resources/apidocs/index.html),
however the key methods are described below.

The data structure used to pass and return queries is the Abstract Syntax Graph

and these are described, together with an explanation of IQL query processing in

Automed in [1].

The HdmWrapperFactory class has a method:

HdmWrapper build(String schemaName)

Which returns a HdmWrapper when passed the name of a schema.The key methods
of the HdmWrapper are those for passing select, update and delete queries

ASG executeIQL(ASG q)
boolean insertIQL(ASG q)
boolean deleteIQL(ASG q)

The HdmWrapper makes use of a keywordLowlLevelWrapperHdm class which uses
data structures more closely tied to the HDM data model, in particular the Edge and
EdgeElement classes. The EdgeElement class includes a static method for converting
from these structures back to the ASG structure used to return query results. An
example of a query using the low level wrapper is:

LinkedList resultList;
LowLevelWrapperHdm lowLevelWrapperHdm;
lowLevelWrapperHdm = new LowLevelWrapperHdm() ;

// Example Query 3
resultList = lowLevelWrapperHdm.query("personnel",
"<<livesAt,person,<<address,houseNumber,road,town,postCode>>>>");

EdgeElement .display(resultList);
which returns the results:

Edge: <<livesAt,person,<<address,houseNumber,road,town,postCode>>>>

Node: <<person>> dean string

Edge: <<address,houseNumber,road,town,postCode>>
Node: <<houseNumber>> 64 integer
Node: <<road>> Northdown Street string
Node: <<town>> London string
Node: <<postCode>> N1 9BS string

11

8 The Demonstration Programs

A number of demonstration programs are contained in the hdmstore package and
each of these is now described:

— DemoHdmStoreApi This program:
e Builds the HDM Automed Model
e Build the personnel department schema used in the demo programs. This
includes building an access method for the schema which will need to be
amended for the local postgres system. In particular the url for a hdm store
is of the form PROTOCOL:DBMS:DATABASE:HDMSTORE
e.g. "jdbc:postgresql:dwAutomed:bbkdata” i.e. its the same as for a postgres
database but with the name of the hdm store added at the end.
e Populates the hdm store with example data using the api.
Running this program will also create the hdm store tables if required.
— HdmStoreCmd is the command line processor for the HDM store and two exam-
ple text files are included which make use of the personnel department schema.
e DemoHdmStoreCmdLong.txt is the longhand version of the file from Sec-
tion 6.
e DemoHdmStoreCmdShort.txt is the shorter version, which makes use of
shortcuts, from Section 6.2.
— DemoHdmStoreWrapper shows the use of the IQL wrapper with the HDM store
including:
e Queries against existing data
e Insert and Delete queries for nodes
e Insert and Delete queries for edges

References

1. E. Jasper and A.Poulovassilis. Processing iql queries and migrating data in the automed
toolkit. Technical report, Automed Project, 2003.

2. P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations.
In Proc. CAISE'99, LNCS 1626, pages 333-348, 1999.

3. P.J. McBrien and A. Poulovassilis. A semantic approach to integrating XML and struc-
tured data sources. In Proc. CAISE'01, LNCS 2068, pages 330-345, 2001.

4. P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database archi-
tectures, a schema transformation approach. In Proc. CAISE'02, LNCS 2348, pages
484-499, 2002.

5. D. Williams. Combining database and information extraction techniques to discover
structure from partially structered data. Technical report, Automed Project, 2003.

12

