An Overview of The AutoMed Repository
AutoMed Technical Report 26, Draft

Michael Boyd, Charalambos Lazanitis, Sasivimol Kittivoravitkul,
Peter MBrien and Nikos Rizopoulos
Dept. of Computing, Imperial College, London SW7 2AZ
email: {mboyd,cl201,sk297,pjm,nr600}Q@doc.ic.ac.uk

Friday 13 February 2004

Abstract

This paper describes the AutoMed repository and some associated tools, which provide the
first implementation of the both as view (BAV) approach to data integration. Apart from
being a highly expressive data integration approach, BAV has the additional advantages that
it provides a method to support a wide range of data modelling languages, and to describe
transformations between those data modelling languages. This paper documents how BAV
can be implemented, including how the approach can scale up to handle large and evolving
systems, by (1) breaking down the system into well defined units called subnets that may be
edited independently of each other, (2) providing a template definition system to automate the
production of common mappings between data sources, and (3) providing a schema-matching
tool that assists in the identification of which transformations should apply. We illustrate the
implementation with examples in the relational, ER data models, and semi-structured text
files.

1 Introduction

The AutoMed project! has developed the first implementation of a data integration technique
called both-as-view (BAV) [17], which subsumes the expressive power of other published data in-
tegration techniques global-as-view (GAV), local-as-view (LAV), and global-local-as-view
(GLAV) [9]. BAV also distinguishes itself in being the approach which has a clear methodology
for handling a wide range of data models in the integration process, as opposed to the other
approaches that assume integration is always performed in a single common data model.

In this paper we describe the core repository of the AutoMed toolkit, and several packages
that make use of this repository. Apart from giving an overview of this freely available software
product, we describe the solutions to practical problems of using the BAV approach to integrate
large schemas from heterogeneous and evolving data sources.

The paper is structured as follows. Section 2 reviews the BAV approach and demonstrates how
it models a relational data source, and introduces a new method that allows BAV to handle semi
structured text file data sources. Section 3 then describes how the AutoMed system handles the
BAV description of such data modelling languages and their integration. We show how to divide a
large integration of data sources into a set of well defined subnetworks. Details of how we approach
the transformation between modelling languages are given in Section 4, and the description of how
to program higher level transformations as sequences of primitive transformations in a template

1The AutoMed project was an British EPSRC funded research project, jointly run by Birkbeck and Im-
perial Colleges, in the University of London. The Imperial College group implemented the data integration
toolkit described here, with the the exception of the query processing component based on the IQL language,
which was developed at Birkbeck College. Software and documentation are available from the AutoMed website
http://www.doc.ic.ac.uk/automed/.

language are given in Section 5. Finally Section 6 addresses the problem of automating the schema
matching process in the AutoMed framework.

2 BAYV Data Integration

Data integration is the process of combining several data sources such that they may be queried
and updated via some common interface. This requires that each local schema of each data
source be mapped to the global schema of the common interface. In the GAV approach [9], this
mapping is specified by writing a definition of each global schema construct as a view over local
schema constructs. In LAV [9], this mapping is specified by defining each local schema construct
as a view over global schema constructs. GLAV [13] is a variant of LAV that allows the head of
the view definition to contain any query on the local schema.

In the BAV approach, each construct of a modelling language is mapped to the nodes, edges
and constraints of the hypergraph data model (HDM) [19]. Using this nested hypergraph
as the underlying model makes it straightforward to represent any data modelling language. For
example, in [15, 17], is was shown that to model a relational model we:

e represent each relation r by the Table construct scheme ((r)), which takes as instances the
primary key values of the relation. For example, the relation result in Fig. 3(a) has primary
key attributes code and name, and hence instances [(‘DB’,'Mary'), (‘Fin’, Jane’),..] for a
scheme ((result)).

e represent each attribute a of r by the Column construct scheme ((r,a,c)), which takes as
instances the primary key values of the relation and the associated value of the attribute,
where ¢ may be null or notnull. For example, the attribute grade of relation result in Fig. 3(a)
has scheme ((result, grade, notnull)) and instances [(‘DB’, ‘Mary’, A), (‘Fin’, ‘Jane’, C), .. .].

e represent the primary key integrity constraint named pk on relation r by the PK construct
scheme (pk,r,a1,...,a,)), where aq,...,a, are the primary key attributes. For example,
the primary key of the result table would be ((result_pk, result, {{result, code)), {(result, name))))
(assuming that result_pk was the name given in the database; and using the abbreviated
form of attribute naming omitting the null constraint that shall be explained later). Since
this is a constraint, is takes no instances.

Once the constructs of the data modelling language have been defined in this manner, the
mapping between schemas can be described as a pathway of primitive transformation steps
applied in sequence, each adding, deleting, or renaming the basic constructs of the schema mod-
elling language being used. For each construct type in the modelling language C, there exists five
primitive transformations:

1. addC({(s)),q) applied to a schema S produces a new schema S’ that differs from S in having
a new construct of type C detailed by the scheme (s)). The extent of ((s)) is given by the
query g on schema S.

2. extendC({(s).ql,qu) applied to a schema S produces a new schema S’ that differs from S in
having a new construct of type C detailed by the scheme ((s)). The minimum extent of ((s))
is given by query ql, which may take the special value Void if no values of this extent may
be derived from S. The maximum extent of ((s)) is given by qu, which may take the special
value Any if no limit on this extent may be derived from S.

3. deleteC({(s)),q) applied to a schema S produces a new schema S’ that differs from S in not
having a construct of type C detailed by ((s)). The extent of {(s)) may be restored by q on
schema S’

Note that deleteC({(s)),q) applied to a schema S producing schema S’ is equivalent to
addC'({(s)),q) applied to S’ producing S.

4. contractC({(s)),ql,qu) applied to a schema S produces a new schema S’ that differs from S
in not having a construct of type C detailed by ((s)). The lower bound query gl and upper
bound query qu on schema S’ have the same semantics as for extend.

Note that contractC({(s)),ql,qu) applied to a schema S producing schema S’ is equivalent to
extendC'({(s)),ql,qu) applied to S’ producing S.

5. renameC({(s)),{(s"))) applied to a schema S produces a new schema S’ that differs from S in
not having a construct of type C detailed by ((s)) and instead having {s')), differing from
{(s) only in its textual naming.

Note that contractC({(s)),{(s'))) applied to a schema S producing schema S’ is equivalent to
renameC({(s')),{(s))) applied to S’ producing S.

Since transformations mapping between schemas describe both how to add and delete con-
structs means that it is possible to extract GAV, LAV, and GLAV rules from a BAV pathway
[5]. The BAV approach allows any query language to be used in the transformation rules, but
the current AutoMed implementation uses the IQL language [18, 4] together with GAV query
processing. The IQL language is a list comprehensions [1] based language able to describe the
behaviour of a wide range of database query languages, including SQL and XQuery.

To demonstrate the approach in use, suppose we want to transform the relational S; in Fig. 3(a)
into the relational version of the global schema S,g in Fig. 4(a). The level attribute in S3 may be
used to divide students into those that belong to the ug table, created by transformations (1) -(3) ,
and those the belong to the pg table by transformations (4) <) . The IQL query in (1) finds
in the generator (x,y) « ((student, level)) the tuples (‘Mary’, ‘ug’), (‘John’, ‘pg’}), ... and then the
filter y = ‘ug’ restricts the x values returned to be only those that had ‘ug' in the second argument.
Other IQL queries in square brackets may be read in a similar manner. Once the specialisation
tables have been created, transformation (7) removes the level attribute from student, since it
may be recovered from the ug and pg tables (the IQL ++ operator appends two lists together).
Finally —(9) moves the ppt attribute from student to ug, since it only takes non-null values for
undergraduate students.

Sz — Sig
(D addTable({(ug)), [(x) | {x,y) — {student, level));y = ‘ug'])
(2 addColumn({{ug, name, notnull)),
[<x y) | {x,y) < {(student, name)); (x,z) — ((student, level));z = ‘ug’])
3 addPK({ ug pk, ug, ((ug, name)))
@ addTabIe pg), [(X) | (x,y) « ((student, level);y = ‘pg'])
® addCqumn(({pg7 name, notnull)),
[(x y) | (x,y) < {(student, name)); (x,z) < ((student, level)); z = ‘pg'])
(® addPK(((pg-pk, pg, ((pg, name))))
@ eIeteCqumn(((student level, notnull}),

[, y) | () < (ughiy = "ug’] ++ [(x,y) | (x) < (pe):y = 'Pg’])
addColumn({{ug, ppt)), [(x,y) | (x) < (ug)); (x) < ((student)); (x,y) < ((student, ppt))]
@ deleteColumn({(student, ppt)), [(x,y) | {(X) < ((student)); (x,y) < (ug, ppt))])

2.1 Handling Semi-Structured Data

YATTA (YAT for Transformation-based Approach) is a variation of the YAT model [2] to support
the handling of semistructured data in AutoMed. YATTA extends YAT to distinguish between
ordered and unordered data. YATTA simplifies YAT to allow only two levels of abstraction: the
schema level where the structure of data is defined, and the data level where actual data is
presented. Fig. 1(b) shows a semistructured text file, containing data about the undergraduate
students in Fig. 3(a). Fig. 1(a) gives a schema level YATTA model, and Fig 1(c) gives a data level
YATTA model, for that file.

In the YATTA model, schemas and data are both represented by rooted labelled trees. In a
YATTA schema, each node is labelled by a tuple (name, type), where name is a string describing
what a node represents and type is the data type of a node. Type can be either atomic e.g. string,

+ ‘ name = Mary name = Jane
tutor = PJM tutor = AP
ppt = NR ppt = SK
course = DB course = Fin
dept = CS dept = CS

name tutor year = 1 year = 3
grade = A grade = C
code dept year grade
(a) YATTA schema (b) text file

root &0

student &3

course &2 course &4

name tutor ppt
‘Mary’ ‘PJM' ‘NR’

name tutor ppt
‘Jane’ ‘AP’ ‘SK’

code dept Y€ar grade code dept Y€3ar grade
‘DB’ xcsv]_ AAV ‘Fin’ xcsr 3 AC!
(c) YATTA data

Figure 1: S;: Semi-structured text file of undergraduates

[Fin,CS]
Fred,PJM,4,A
[Geo,Maths]
Fred,PJM,4,A
John,AP,4 A

name tutor year grade

(a) YATTA schema (b) text file

Figure 2: Sy: Semi-structured text file of postgraduates

integer, etc., or compound i.e. list (marked ‘[]’), set (marked ‘{}’), or bag (marked ‘()’).
node in a YATTA data tree is labelled by a triple (name, type, value), where value is the value
associated with the node. If the node is of atomic type, the value is a data value of that type.
If the node is of compound type, the value is an integer identifier. Outgoing edges of list nodes
are ordered from left to right; the edges of set and bag are unordered. The edges of a schema are
labelled with cardinality constraints which determine the number of times corresponding edges may
occur in a data tree: ‘x’ indicates zero or more occurrences, ‘+’ indicates one or more occurrences,
?” indicates zero or one occurrence, and no label indicates exactly one occurrence. A ‘k’ is used to
identify the subset of child nodes, called the key nodes, which uniquely identify the complex node
with respect to its parent, all other nodes are non key nodes, which in the schemes we identify by

writing ‘nk’, but in the diagrams simply leave the edge unlabelled.

The YATTA model can be represented as BAV schemes in the following way:

result

student
name tutor ppt level SORIEC code name year grade
Mary PJM NR ZC DB May 1 A
Johrzl AP null . DB Cs Fin Jane 3 C
Jane AP SK P Fin cs Fin Fred 4 null
Frgd PJIM null ve Geo Maths Geo Fred 4 A

) P Geo John 4 B

(a) Relational database schema and data

level year Q () grade code
name O—— /O =
student course
tutor O—
dept
o7 T—0Odep

(b) ER model used to design relational database

Figure 3: S3: relational database covering both undergraduates and MSc students

student result
name tutor ug pg course code name year grade
i Gl G ee g
John AP Mary NR Fred i X
Jane AP Jane SK John Fin G5 Fin Fred 4 null
Fred PJM Geo Maths Geo Fred 4 A
Geo John 4 B
(a) Srg: Global schema in the relational model
@ course

name ppt name name tutor code name year grade code dept
(b) Syg: Global schema in the YATTA model

Figure 4: Global Schema

e a root node r is represented as a RootNode construct with scheme ((r,¢)) where ¢ is one of
the YATTA types.

e a non-root node n is represented as a YattaNode construct with scheme ((n,,n,t,c)) where
nyp is a parent node that may be a RootNode or YattaNode, ¢ is the type of a node and c is
a cardinality constraint.

To integrate S; with Sz, we need to transform S; to have the same structure as S,z. As will
be seen in Section 4, it is straightforward to derive the YATTA schema Sy, shown in Figure 4(b)
that is equivalent to Sz. Now the task is to transform S; to Syz. To determine the pathway from
one YATTA model Y to another one Y’, the following methodology can be used.

1. Use rename transformations to conform the schemas, such that if objects have the same
name, then they also have the same extent. In Sy, the student node matches the ug node in
Syg, and therefore we should execute:

S1 — Syg (conform phase)
@0 renameYattaNode(({(root, student, set, +)), {(root, ug, set, +))

2. Conduct a breadth first iteration over the nodes n’ of Y’, and for each node n’ not found in
Y create transformations in a growth phase to add each n’ to Y:

(a) If n’ is of complex type, determine if there is a query ¢ on Y such that there is a one
to one mapping between values returned by g and values associated to n/. If there is,
then a new node n’ is added into Y by applying a rule addYattaNode, with the special
function generateld used on the values returned by ¢ to generate the identifiers of the
complex node. This function always returns the same identifier for the same input
values, and distinct identifiers for distinct input values.

(b) If n’ is of simple type, determine if there is a query ¢ on Y such that the values
returned by ¢ are equal to the values associated with n’. If there is, then a new node
n' is added into Y by applying a rule addYattaNode, with ¢ placed as the query part of
the transformation.

In either case, if the query only returns some of the values of n’, then instead use extendYattaNode,
with the queries set to ¢, Any, and if no query can be determined, then use extendYattaNode
with the queries Void, Any which states that there is no method to determine anything about
the instances of n’ in Y’ from the information in Y.

For example, we would find that result node of S,z does not appear in S;, and we are able
to derive some instances in @1 -@9 from Sy, since that contains the results of undergrad-
uates. Step @1 generates identifiers for the new result node by finding (&0, &1), (&0, &3)
from (r,u) < ((root,ug)), then (&1, 'Mary’), (&3, 'Jane’) from (u,n) « {({root,ug)), name)),
then (&1, &2), (&3, &4) from (u,c) « {({(root, ug)), course)), and (&2, ‘DB, (&4, ‘Fin") from
(c,co) «— {({(course, {{root, ug)), code)). This causes generateld to receive the pairs Mary DB
and Jane Fin, and generate &5 and &6 as new identifiers for result. Note that the same
identifiers will now be created in @12 -@5) .

S1 — Syg (growth phase)
@D extendYattaNode(({root, result, set, +)),
[(r;re) | (r,u) — (root, ug)); (u, n) < (((root, ug)), name));
(u,c) < (({(root, ug)), course)); (c, co) « (({(course, ((root, ug)))), code));
re < [generateld co n]], Any)
@D extendYattaNode(({{(root, result)), code, string, k),
[(re,co) | {(u,n) — (({(root, ug)), name)); (u, c) — (({(root, ug)), course));
(c, co) «— {({(course, {(root, ug)))), code)); re < [generateld co n]], Any)
@3 extendYattaNode(({{(root, result)), name, string, k}),
[(re,n) | (u,n) — (((root, ug)). name): (u, c) — (((root, ug)), course):
(c, co) «— {({(course, {(root, ug)))), code)); re «— [generateld co n]], Any)
@4 extendYattaNode((({{root, result)), year, integer, nk)),
[(re,y) | (u,n) — {({root, ug)), name)); (u, c) — {({(root, ug)), course));
(¢, c0) <= {({(course, ((root, ug)))), code)); (c,y) < (({(course, ((root, ug)))), year));
re < [generateld co n]], Any)
@9 extendYattaNode((({(root, result)), grade, string, 7)),
[(re,g) | (u,n) — ((({root, ug)), name)); (u, c) — (((root, ug)), course));

(¢, c0) <= (({(course, ((root, ug)))), code)); (c, g) (({course, (root, ug)))), grade));
re < [generateld co n]], Any)

=

3. Conduct a breadth first search over the nodes n of Y, and for each node n which do not
appear in Y’ create transformations in a shrinking phase to remove n from Y:

(a) If n is of complex type, determine if there is a query ¢ on the constructs of Y’ in Y such
that there is a one to one mapping between values returned by ¢ and values associated
to n. If there is, then the node n is deleted by applying a rule deleteYattaNode, with
the function generateld used on the values returned by ¢ to restore the values of n.

(b) If n is of simple type, determine if there is a query ¢ on the constructs of Y/ in Y such
that the values returned by ¢ are equal to the values associated with n. If there is, then
the node n is deleted from Y by applying a rule deleteYattaNode, with ¢ to restore the
values of n.

In a similar manner to step(2), if the query returns partial results, then use contractYattaNode
with queries ¢, Any, and if no query exists use queries Void, Any. In the fragment of the
shrinking phase below, we are able to entirely reconstruct the ug node of S; from the data
in Syg.
S1 — Syg (shrink phase)
@6 deleteYattaNode({{({({(root, ug)), course)), grade, string, ?)),
[(c,g) | (re,co) — {({(root, result)), code)); (re, n) — (({(root, result)), name));
(re, g) «— {({root, result)), grade)); c < [generateld co n]])
@7 deleteYattaNode({({({(root, ug)), course)), year, integer, nk)),
[(c,y) | (re,co) « {({(root, result)), code)); (re, n) « {({(root, result)), name));
(re,y) «— {({{root, result)), year)); c < [generateld co n]])
@8 deleteYattaNode((((({(root, ug)), course)), dept, string, nk)),
[{c,d) | (re,co) « {{{(root, result)), code)); (re, n) « {({(root, result)), name));
(x, co) « {{{(root, course)), code)); (x,d) — ({(root, course)), dept));
c < [generateld co n]])
@9 deleteYattaNode(((({({(root, ug)), course)), code, string, k),
[{c, co) | (re,co) «— ({(root, result)), code)); (re,n) «— (({(root, result)), name));
¢ < [generateld co nJ])
@0 deleteYattaNode({({(root, ug)), course, set, +),
[(u,c) | (r,re) «— ((root, result)); (re, co) « ({{(root, result)), code));
(re,n) «— {({root, result)), name)); (ug, n) — (({(root, ug)), name));
¢ < [generateld co nJ])

A complete set of transformations S; — Syg is available from the AutoMed web site, as is the
similar pathway to translate Sp — Syg.

3 The AutoMed Repository for BAV Data Integration

The AutoMed repository has at its core the reps Java package which forms a platform for other
components of the AutoMed to be implemented upon (such as the template language and schema
matching system that we describe later). The current implementation of the reps API uses a
RDBMS to provide persistent storage for data modelling language descriptions in the HDM,
database schemas, and transformations between those schemas. The repository also provides
some of the shared functionality that tools accessing the repository may require.

The AutoMed repository has two logical components, assessed via the reps API. The model
definitions repository (MDR) allows for the description of how a data modelling language is
represented as combinations of nodes, edges and constraints in the HDM. It is used by AutoMed
‘experts’ to configure AutoMed so that it can handle a particular data modelling language. The
schema transformation repository (STR) allows for schemas to be defined in terms of the
data modelling concepts in the MDR. It also allows for transformations to be specified between
those schemas. Most AutoMed tools and users will be concerned with editing this repository, as
new databases are added to the AutoMed repository, or those databases evolve [16]. The MDR
and STR may be held in the same persistent storage, or separate persistent storage. The latter
approach allows many AutoMed users to share a single MDR repository, which once correctly

STR
Access 0:N Schema
Method |71:1

2:2

Transforma
tion

1:2
Object
Scheme [1:1

1
Scheme Construct Model
1:1 0:N
MDR

Figure 5: Repository Schema

configured, should not need to be update when integrating data sources that conform to a certain
set of data modelling languages.

Figure 5 gives a overview of the key objects in the repository. The STR contains a set of
descriptions of Schemas, each of which contains a set of SchemaObject instances, each of which
must be based on a Construct instance that exists in the MDR, which in effect is the type of the
construct. This Construct describes how the SchemaObject can be constructed in terms of strings
and references to other schema objects, as well as the relationship of each of these strings and
references to the HDM. Schemas are therefore readily translatable into HDM.

It should be noted that there is no direct restriction between Model and Schema, allowing each
Schema to contain SchemaObjects from more that one data modelling language. This allows us to
describe within AutoMed the mapping between different data modelling languages. Schemas may
be related to each other using instances of Transformation. Each BAV transformation may only
alter at most one SchemaObject in each Schema it is associated to.

We now describe in detail how the MDR may be programmed to describe a modelling language,
and then describe some features of the STR that allow it manage large and evolving schema
integrations.

3.1 Describing a Data Modelling Language in the MDR

In [15] we proposed a general technique for the modelling of any structured data modelling language
in the HDM, which was used as the basis for the design of the MDR. The premise of this approach
is that in any data modelling language, the various constructs of the language can be viewed as
describing sets, bags and lists of values (which henceforth we refer to just as lists since lists can
be used to model sets and bags), and constraints between these lists. In HDM we can represent
a construct that takes a list of values by with a graph node, and when the construct models
a data source, the values in the data source are called the extent of the node. As constraints
describing relationships between extents of constructs are so common (for example instance of an
ER relationship would imply instances of the ER entities it connects) we use edges to represent
constructs where the extent contains a list of tuples of values, and where every member of the
tuple must appear in the extent of the nodes or edges which the edge connects.

The description of the construct that a schema object is a instance of is in effect a type
definition of the schema object, and thus constrains which schemes are valid for a construct. In
particular, when a SchemaObject is created, and its scheme details are entered into ObjectScheme,
then they are checked against the type definition of the corresponding Construct held in Scheme.

Each construct must be classified as being one of six types: nodal, link, link-nodal, constraint,
alternation and sequence. Each type restricts what may appear in Scheme, as described below.

A nodal construct represents a simple list of values. Exactly one element of the construct
scheme must be identified as the name of the resulting HDM node and be of type node_name (i.e.
a scheme would have to be supplied with the name of the node). Often a nodal construct has
just this one scheme element, for example in an ER model, the construct for an entity would be
defined by:

(nodal)er:entity ::= (((node_name)hdm_node_name))

The brackets contain an indication of the type being used, so we read the above as stating that
the entity construct in the er modelling language has a scheme that contains a single string, which
is the name of the HDM node. Hence the schema objects representing entities student and course
in Fig. 3(b) would have the schemes ((student)) and {(course}).

A link construct is one that can only be instantiated (i.e. a schema object of its type be
constructed) by referring to other schema objects. One scheme element may be identified as the
resulting HDM edge’s name and at least two of the instance scheme’s elements must refer to other
schema objects that have resulting HDM nodes or edges. For example we may express ER binary
relationships with mandatory names using the following construct scheme:

(link)er:relationship ::=

{((edge-name)name, (reference,2:2)er:entity, (constraint,2:2,nonkey)card))

The scheme has first a edge_name representing the name of the underlying HDM edge, followed by
exactly two references to a schema object of construct type entity. The ‘exactly two’ is implied by
the 2:2 after reference, and gives a cardinality constraint on the occurrences of the argument. Note
that where no explicit cardinality constraint is given for any scheme position then 1:1 is implied.
The constraint element card is used to denote the use of a constraint expression in the scheme, that
may be used to lookup a macro that expresses the constraint in terms of the underlying HDM node
and edges associated with this construct. The scheme instance for the relationship in Fig. 3(b)
would be ((result, student, course, 0:N, 0:N)). The use of nonkey in the definition of the card element
means that this element only has to appear in the definition of this schema object (as it appears
in the first argument of a transformation) and need not appear in queries. Hence in a query one
may also use the abbreviation ((result, student, course)) for the result relationship.

A link-nodal construct is a combination of a link and a node. It models a node type which
cannot exist in isolation but requires another construct with which to be associated. The construct
scheme must contain one string element for the name of the new HDM node, an optional name
for the HDM edge name, and a mandatory reference to an existing construct. For example, an
ER attribute can be defined by:

(link)er:attribute ::=

{((reference)er:entity, (node_name)new_node_name, (constraint,nonkey)card))
where the last element card corresponds to macros constraining the attribute instances. The
attributes of student in Fig. 3(b) would then be {(student, name, notnull)), {(student, tutor, notnull)),
{(student, ppt, null)), and {(student, level, notnull)).

A constraint construct has no extent, and must be associated with at least one other construct
on which it places a constraint on its extent. For example, a subset relationship in a ER model
places a restriction on two entities such that the extent of one is a subnet of the extent of another.
This would be defined by:

(constraint)er:subset ::= {((reference)er:entity, (reference)er:entity))
which would allow the scheme {(student, ug)) to exist. Again there is an associated macro for the
constraint.

An alternation does not correspond to a modelling language construct (and hence no schema
object can be created of this type), but is used to create a construct to be referenced by other
constructs, where those other constructs may be related to alternative constructs. In Fig. 3(b)
we have two non-key attributes on the relationship result. If we allow attributes on relationships,
and do not want to have two different constructs for attributes on relationships and attributes on
entities, then we could define an alternation:

(alternation)er:attribute_target ::= (((reference)er:entity, (reference)er:relationship))

10

and redefine attribute as:
(link-nodal)er:attribute ::= {((reference)er:attribute_target,

(node_name)new_node_name, (constraint,nonkey)card)))

Now the first position in an attribute scheme may reference either an entity or relationship. At-
tributes on student have the same schemes as before, and the attributes on result have the schemes
{({(result, student, course)), year, 1 : N)) and {({(result, student, course)), grade, 1 : N)).

Like an alternation, a sequence does not have any corresponding modelling language con-
struct, but is used to create a construct to be referenced by other constructs that need a repeat-
able sequence of construct types. For example, to provide n-ary ER relationships (rather than
just binary relationships above), we could not write:

(link)er:relationship ::=

{((string)name, (reference,2:N)er:entity, (constraint,2:N,nonkey)card))
since this would allow a relationship to have a different number of entity associations from the
number of card constraints on those associations. We could however construct an entity-constraint
sequence and give that the required cardinality:

(sequence)er:entity_role ::= (((reference)er:entity, (string,nonkey)cardinality))

(link)er:relationship ::= {((string)name, (reference,2:N)er:entity_role))

Now we can use this definition to create our results relationship as the scheme ((result, {(student, 1 : N)), {(course, 1 : N)))),
and can add additional entity and cardinality pairs as required.

The definitions for the other models we have used in this paper are much simpler than the ER
model. For example, the YATTA model is defined by:

(alternation)yatta:yattanode_target ::=

{((reference)yatta:yattanode, (reference)yatta:rootnode))

(link-nodal)yatta:yattanode ::= ({(reference)yatta:yattanode _target,

(node_name)new_node_name,(constraint,nonkey)type, (constraint,nonkey)card)))
(nodal)yatta:rootnode ::= ({(node_name)new_node_name, (constraint,nonkey)type)))

The relational model is defined by the following rules (note how the primary key definition
uses a label type to denote a string that is used just as a label in the modelling language, and does
not correspond to any HDM construct):

(nodal)rel:table ::= {{(node_name)new_node_name))
(link-nodal)rel:column ::=

{((reference)rel:table, (node_name)new_node_name,(constraint,nonkey)card)))
(constraint)rel:pk ::=

{((label)pk_name, (reference,1:N)rel:table, (reference,1:N)rel:column))

3.2 Describing Schemas and Transformations in the STR

In a large data integration, there will be many schemas produced as intermediate steps in the
process of mapping one data source to another. At first this would appear to make the BAV
approach unworkable, since there are so many versions of schemas being kept. The AutoMed
approach addresses this issue by distinguishing between extensional and intensional represen-
tations of schemas. Each data source will be represented in the AutoMed repository by describing
its schema as a set of schema objects, which is the extensional representation of schemas. Ex-
tensional Schemas may be associated with an AccessMethod to describe the driver, username,
password and URL of how a data source may be accessed. Transformations applied to the exten-
sional schema produce new intensional schemas, for which the schema objects are not stored, but
which can be derived when required by applying transformation rules in sequence to an extensional
schema.

Furthermore, a special transformation called ident is introduced, which states that two schemas
have the same logical set of schema objects, but that they are derived from distinct extensional
schemas. For example, in Fig. 6, the schema Sy, is derived from S;, and schema Sy, (identical to
Syg) is derived from S,. The identity of these two schemas may then be stated by adding an ident
transformation between them, which query processing can use to retrieve data from alternative

11

|:| extensional intensional non ident
schema schema transformation
subnet3

B Ss. —{Ss - ------------ooo-oo-- — Sq

* S2a — Sop — - ---— Sy subnet2 ident

ident

* Sta — Sib — -~~~ — Syg 7Sygal***7'3rg/

subnetl

Figure 6: Overview of Schemas held in AutoMed

data sources. The YATTA model S,z is then translated to its relational equivalent S,y which can
then be idented with the corresponding S,z derived from S3

The set of schemas connected together by transformations other than ident is called a subnet.
By the nature of this arrangement, each subnet can exist independently of other subnets. This
means that a subnet can be created, edited, connected to other subnets via ident transformations,
and deleted all without changing anything in another subnet. It also allows for the schema evo-
lution techniques in [16] to be supported. If say S; has been found to evolve to Sy/, then a new
subnet 4 can be created for S;/, with transformations to describe Sy — S;. Then S; may have
its AccessMethod removed, and query processing will be directed to the new version of the data
source.

4 Inter Model Transformations

With there being a wide range of data modelling languages in use, a common task in data inte-
gration methodologies is to implement a wrapper to translate all the component schemas into a
common data model. In AutoMed, this wrapping step can be formalised within the data integra-
tion methodology if the data modelling languages used for the component schemas are described
in the MDR. In addition, this translation process may occur in the middle of the data integration
(as illustrated by pathway S,z — Sy in Fig. 6), allowing a mixture of data modelling languages
to be used in a large integration.

To illustrate this process, consider the following rules that map relational constructs to YATTA
constructs:

1. a YATTA complex node n of set type with “*’ cardinality is created under the root of the
YATTA model for each table, and

2. a YATTA atomic node is created under this complex node for each column of the table,
where the cardinality of the column is ‘7’ if it is a nullable column in the relational model,
and ‘k’ if it is a primary key column in the relational model.

For S, this would generate a pathway that starts:
Srg = Syg’

12

@1 addYattaNode(((root, student, set, *)),
[(r,s) | {n) < {(student)); (r) < ((root)); s « [generateld r n]])
@2 addYattaNode((({(root, student)), name, string, k}),
[(s,n) | {n) « {(student)); (r) «— ((root)); s < [generateld r n]])
@3 addYattaNode(((({(root, student)), tutor, string, nk)),
[(s,t) | (n,t) « ((student, tutor)); (r) < ((root)); s « [generateld r n]])
@4 deleteColumn(((student, tutor)), [(n,t) | (s,n) « (({{root, student)), name));
(s, t) — {({root, student)), tutor))])
@9 deleteColumn({(student, name)), [(n,n) | (s,n) < ({{root, student)), name)])
@0 deleteTable({student)), [(n) | (s, n) «— {({{root, student)), name))])
Note that this pathway may be used in reverse to generate Syg — Sygr as shown in Figure 6.
In general, translating a schema from a source to a target modelling langauge involves using
the MDR definitions to convert constructs in the source and target langauge to HDM, analysing
the constraint information, and building an association between the two. A common aspect of
this analysis is that constraint information will involve the cardinality constraints on edges in the
HDM, which can be represented by just two constraint templates:

S

1. N> E states that there must be at least one tuple in the edge E for each value in the extent
of node N to which is is associated.

2. N < E states that there must not be more than one tuple in the edge E for each value in
the extent of node NN.

Combining these rules gives the following cardinality constriaints on the node N’s role in the

edge E:
None — N has 0:N occurances in F
N> FE — N has 1:N occurances in F
N<aFE — N has 0:1 occurances in E
N> EANJE — N has 1:1 occurances in F

Now we are in a position to more formally analyse the relational to YATTA mapping. In
the relational model, a column L of table T' is represented by the scheme (T, L,CY, which in
Section 3.1 we modelled as a link-nodal construct that references an existing nodal construct
which has HDM node E,., and has a new edge E and node N to represent the column’s association
with the table. Now the macros for C' can be expressed over those HDM constructs: the macro
notnull=Nt> EAFE, > FE A FE,. <1 FE, and the macro null=N> EFAE, <1 E.

In the YATTA model, a node N is represented by the scheme (P, N, T, C)), which is again a
link-nodal construct, that references a parent node P that may be either another YATTA node,
or a root node. In the latter case P will be nodal, and in the former case, if P is attached to
the root, then that association can be ignored since it is made to the constant value &0 stored
in the root node. If in addition N does not appear as the parent of any other YATTA node, we
have a match between the YATTA node and the concept of an column in the relational model. In
particular, we find that the YATTA nk constraint C' corresponds to N> EAE,. > FEANE, < FE,
and the 7 constraint corresponds to N> E A E,. < E.

5 Template Transformations

Schema integration in the AutoMed framework frequently relies on the reuse of specific sequences
of primitive transformations. These sequences are called composite transformations and resemble
well-known equivalences between schemas [7, 14]. For example, the equivalence between a relation
with a mandatory attribute and a relation with specializations for each instance of the mandatory
attribute is found in transformations (1) ~(7) in Section 2, where the ((student, level)) attribute is
used to generate new relations ((ug)) and {{pg).

To describe such equivalences between schemas, we have created a package around the Au-
toMed reps package that enables the definition of template transformations [20, 8] which are

13

schema and data independent and can therefore be reused in different situations. Based on this
framework, a template transformation is a parameterised definition of a composite transforma-
tion. These parameters are instantiated in each template transformation execution based on the
schema that the template is performed upon, the underlying data and the desired outcome. Thus,
a template transformation can be applied on any schema by appropriately setting its parameters.
In our example, the parameters of the template transformation that decomposes a relation to
its specializations are: (a) the schema that the template transformation is going to be performed
upon, (b) the existing relation, (c) its mandatory attribute, (d) the specialisation relations that are
going to be added to the schema and (e) the instances of the mandatory attribute that correspond
to the specializations. These are specified as follows:

INPUTS Q) ;
OBJECT parentTable=askForObject("Existing parent relation",table);
OBJECT mandatoryColumn=askForObject("Mandatory attribute",column);
OBJECT parentPrimaryKey=askForObject("Primary key of parent relation",column);
NAMELIST specializationTableNames=askForNameList("Names of specializations");
NAMELIST descriptiveInstances=askForNameList("Values of the attribute ...",
SIZEOF (specializationTableNames)) ;

Note that each parameter has a description and a type associated with it. The example template
transformation has been defined in the relational data model, where relations are of type Table
and attributes of type Column. Also, note that the initial schema parameter is always implicitly
defined in every template transformation, so it does not appear in the INPUTS.

Except from the parameters, the number of statements that the template consists of must be
defined. In our example, since in general there are n different specialisation relations to create, we
require to put statements in a loop which iterate over the LIST we have specified in the INPUTS:

FOREACHQ) ;
NAME specializationTableName=IN(specializationTableNames)
NAME descriptivelnstance=IN(descriptivelInstances);
OBJECT parentcolumn = VARIES_WITH(mandatoryColumn) ;
OBJECT parent = VARIES_WITH(parentTable);
OBJECT primaryKey = VARIES_WITH(parentPrimaryKey) ;
DOQ);

This loop may contain the instructions to create each specialisation relation. For example, the
transformations (1) and (4) that create the specialisation Table constructs are produced by the
following template definition:

FUNCTION tableExtent=DEFINE_FUNCTION("[{x} |
{x,y} <- @parentcolumn?scheme; y=’@descriptiveInstance’]");
OBJECT newSpecialization=ADD(CONSTRUCT.IS(table),
SCHEME. IS(new Object[]{my(specializationTableName)}),
FUNCTION.IS(tableExtent));

Similar definitions can create the Column transformations (2) and (5) and the PK transfor-
mations 3) and (6) .

Note that the rest of the transformations -(9) in Sz — Sig can be produced by another
template transformation that removes an attribute from a relation and moves it down to its
specialisation relations.

Our template transformation framework is not only schema and data independent, it is addi-
tionally model-independent. Template transformations can be written for any modelling language
by specifying the correct types for the template parameters. For example, a template transfor-
mation can be written for YATTA schemas, e.g. flattening YATTA subtrees by moving complex
nodes one level up in the YATTA hierarchy, as illustrated in the pathway S; — Syg in Section 2.1.

14

6 Schema Matching

In all the examples seen so far, an expert user specifies the primitive transformations to be applied
on the available schemas and integrate the underlying data sources. The key issue, as in every
manual data integration framework, is the identification of the existing semantic relationships
between the schema objects [6]. Based on these relationships the appropriate primitive or template
transformations can be performed.

The process of discovering semantic relationships between schema objects is called schema
matching. Most of the existing methodologies are focused on discovering equivalence relation-
ships between schema objects [3, 10, 12], or direct matches, but in many cases more expressive
relationships exist between schema objects, which yield indirect matches [11].

In our framework, we define five types of semantic relationships between schema objects based
on the comparison of their intentional domains, i.e. the sets of real-world entities represented by
the schema objects. Our relationships are similar to the ones described in [7] but our definitions
differ:

1. equivalence: Two schema objects A and B are equivalent, A = B, iff
Domint (A) = Dommt(B)

2. subsumption: Schema object A subsumes schema object B, B C A, iff
Domip(B) C Dompi(A)

3. overlapness: Two schema objects A and B are overlapping, A ~ B, iff

Doming(A) N Domny (B) # 0,
3C : Domint(A) N Domnt(B) = Dompne(C)

4. disjointness: Two schema objects A and B are disjoint, A % B, iff

Domni(A) N Domint(B) = 0,
3C: Dommt (A) U Dommt(B) Q Dommt(C)

5. incompatibility: Two schema objects A and B are incompatible, A # B, iff

Domni(A) N Domins(B) = 0,
=3C : Domn (A) U Domn (B) € Domn(C)

It is important to notice that schema object C in the definition of overlapness and disjointness
may or may not exist in the existing schemas. The notation 3C : condition means that there is
a real-world concept that can be represented by an existing or non-existing schema object C that
satisfies the condition. The notation —3C : condition in the definition of incompatibility means
that there is no real-world concept that would be represented by a schema object C to satisfy the
specified condition.

In our example schemas in Figs. 1 and 2, an indirect match exists between the disjoint
student nodes in S; and S,. These nodes should be renamed in order to be distinguished, therefore
transformation renames student in S; to ug and an equivalent transformation renames student
in S to pg. These are equivalent to the ug and pg nodes in Syg respectively, and can therefore
be unified using ident transformations. Other indirect matches exist between the overlapping
course nodes and between ug,pg and the subsumming student node.

In our automatic schema matching approach to automatically discover these semantic relation-
ships, a bidirectional comparison of schema objects is performed, which has been motivated by
the fact that a bidirectional comparison of the schema objects’ intentional domains can be used to
identify equivalence, subsumption and overlapness relationships. This is depicted by the following

formula: | x))|
Dominie(X)NDomin: (Y
d()(7 Y) = ‘Domz‘nt(X)l bl

where X,Y are schema objects and |Z| defines the number of entities in set Z. This formula
gives d(X,Y) =d(Y, X) = 1 when X,Y are equivalent, d(X,Y) =1and 0 < d(Y,X) <1 when Y

15

semantic relationships

f

Degree Combinator

thresholds
—

aggregated bidirectional clarification
similarity degrees similarity degrees
] Aggregator ‘

I =]

bidirectional similarity degrees of compatible objects
| | | |
’ Filter ‘

partial bidirectional similarity degrees

| | | |

2l EINE

relationship identification modules relationship clarification modules

Figure 7: Architecture

subsumes X, and 0 < d(X,Y) < 1,0 < d(Y, X) < 1 when X,Y are overlapping. The problems with
this approach are that the disjointness and incompatibility relationships cannot be distinguished,
and that the bidirectional similarity degrees d(X,Y),d(Y,X) cannot be automatically computed
since a comparison of the schema objects’ real-world entities is required.

We attempt to simulate the behaviour of the above formula by examining the schema objects
instances and their metadata. The equivalence, subsumption and overlapness relationships can
still be discovered as explained previously. Now, however, the similarity degrees are fuzzier, e.g.
d(X,Y) and d(Y, X) are unlikely to have values equal to 1 when X and Y are equivalent, but they
will be above an equivalence threshold. Disjointness can also be discovered since disjoint schema
objects will exhibit similarity in their instances and metadata, arising from their relationship with
the same super schema object. Thus, disjoint pairs of schema objects will have higher similarity
degrees than incompatible pairs.

This relationship discovery process is implemented by the architecture in Fig. 7, which consists
of several modules that exploit different types of information to compute bidirectional similarity
degrees of schema objects. Our currently implemented modules compare schema object names,
instances, statistical data over the instances, data types, value ranges and lengths. There are two
types of modules: relationship identification modules attempt to discover compatible pairs
of schema objects, and relationship clarification modules attempt to specify the type of the
semantic relationship in each compatible pair.

Initially in the schema matching process, the bidirectional similarity degrees produced by
the modules are combined by the Filter, using the average aggregation strategy, to separate the
compatible from the incompatible pairs of schema objects. Then, the Aggregator component
combines the similarity degrees of the compatible schema objects using the product aggregation
strategy and indicates their semantic relationships. The output of the Aggregator becomes the
input of the Degree Combinator, which based on (a) the relationship clarification modules, (b)
the fuzzy thresholds and (c) the previous discussion on the values of the similarity degrees, it
outputs the discovered semantic relationships. The user is then able to validate or reject these
relationships and proceed to the data integration process.

More details about the implemented tool and an evaluation of it can be found in [21].

16

7 Conclusions

This paper details the implementation of the BAV produced by the AutoMed project, and illus-
trates how the AutoMed system may be used to model a number of data modelling languages,
and in particular introduces the YATTA model as a method to handle semistructured text files in
the BAV approach. The paper also deals with practical issues concerned with data integration,
by providing a template system for defining common patterns of transformations, and a schema
matching system to help automate the generation of transformations. It also introduces the notion
of subnetworks into the BAV approach, which allows complex and large integrations to divided
into clearly identifiable independent units.

The AutoMed approach has the unique property that it does not insist that an entire data
integration system be conducted in a single data modelling language. This gives the flexibility
of integrating different domains in a modelling language suited to each domain, and then using
inter-model transformations to connect between the domains.

A complete version of the example presented in this paper, together with technical reports, API
document and the latest release of the AutoMed software may be downloaded from http://www.doc

References

[1] P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87-96, 1994.

[2] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conversion! SIG-
MOD Record, 27(2):177-188, 1998.

[3] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map ontologies on the
Semantic Web. In Proceedings of the World-Wide Web Conference (WWW-02), pages 662—
673, 2002.

[4] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL Queries and Migrating Data
in the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

[5] E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and optimisation
in the AutoMed data integration framework. Technical Report No. 16, Version 3, AutoMed,
2003.

[6] V. Kashyap and A. Sheth. Semantic and schematic similarities between database objects: a
context-based approach. VLDB Journal, 5(4):276-304, 1996.

[7] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449-463, April 1989.

[8] C. Lazanitis. Template transformations in automed. Technical report, AutoMed Project,
2003.

[9] M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages 233-246.
ACM, 2002.

[10) W.-S. Li and C. Clifton. SEMINT: A tool for identifying attribute correspondences in het-
erogeneous databases using neural networks. Data and Knowledge Engineering, 33:49-84,
2000.

[11] L.Xu and D.W. Embley. Discovering direct and indirect matches for schema elements. In
8th International Conference on Database Systems for Advanced Applications (DASFAA '03),
Kyoto, Japan, March 26-28, 2003, pages 39—46, 2003.

[12] J. Madhavan, P.A. Bernstein, and E. Rahm. Generic schema matching with Cupid. In Proc.
27th VLDB Conference, pages 49-58, 2001.

.dc.ac.uk/automed.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

17

J. Madhavan and A.Y. Halevy. Composing mappings among data sources. In Proc. VLDB’03,
pages 572-583, 2003.

P.J. McBrien and A. Poulovassilis. A formalisation of semantic schema integration. Informa-
tion Systems, 23(5):307-334, 1998.

P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, volume 1626 of LNCS, pages 333-348. Springer-Verlag, 1999.

P.J. McBrien and A. Poulovassilis. Schema evolution in heterogeneous database architectures,
a schema transformation approach. In Advanced Information Systems Engineering, 14th
International Conference CAiSE2002, volume 2348 of LNCS, pages 484-499. Springer-Verlag,
2002.

P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03. IEEE, 2003.

A. Poulovassilis. The automed intermediate query language. Technical Report No. 2, Au-
toMed, 2001.

A. Poulovassilis and P.J. McBrien. A general formal framework for schema transformation.
Data and Knowledge Engineering, 28(1):47-71, 1998.

N. Rizopoulos. A database integration tool. Technical report, Imperial College, 2001.

N. Rizopoulos. Discovery of semantic relationships between schema elements. Technical
Report No.23, AutoMed, 2003.

