BAV Transformations on Relational Schemas
Based on Semantic Relationships between Attributes

AutoMed Technical Report 22, Version 1

Nikolaos Rizopoulos

Monday 182 August 2003

Abstract

This report describes semantic relationships between schema elements and defines the
integration of relational schemas based on the semantic relationships between their at-
tributes using the Both-As-View integration approach. In the Both-As-View approach, data
integration is based on the use of reversible schema transformation sequences that define
the data mapping between schema elements. We define such sequences of transforma-
tions that could be performed on relational schemas and integrate the corresponding data
sources based on the existing semantic relationships between the schemas’ attributes.

1 Introduction

There have been two main approaches used in data integration methodologies to define the
data mapping between the local schemas, representing the local data sources, and the global
schema, defining the single integrated virtual data source. These approaches are Global-As-
View (GAV) and Local-As-View (LLAV). In GAYV, the global schema elements are defined in
terms of the local schema elements. In LAV, local elements are defined based on the global
ones. One disadvantage in both of these approaches is that they don’t readily support the
evolution, i.e. change, of the local and global schemas. In GAV, if local schemas change then
the data mapping has to be redefined, while in LAV the data mapping has to be redefined if
the global schema changes.

In [2], a new integration approach is proposed, named Both-As-View (BAV), which is based
on reversible sequences of schema transformation, called transformation pathways. It has
been shown that using BAV it is possible to extract both GAV and LAV data mappings. In
addition, BAV allows the evolution of both local and global schemas, because pathways can
be incrementally modified.

In this report, we are going to use the BAV framework to define how relational databases
can be integrated. Transformations are defined to be performed on the schemas based on the
semantic relationships between their attributes, which are the lowest level of granularity on
the relational model.

The outline of this report is as follows. We briefly talk about the existing definitions of se-
mantic relationship between schema elements found in the literature and present our formal
definitions of five types of semantic relationships in Section 2. In Section 3, we show, based
on the semantic relationships between attributes, the BAV transformations that could be
performed on the local, relational schemas to integrate them and produce a global relational
schema. Based on the definitions in this section, Section 4 gives an example of an integra-
tion of two schemas. Finally, Section 5 gives our concluding remarks and directions of further

work.

2 Semantic Relationships

Various types of semantic relationships have been defined in the literature. Existing defini-
tions are based on schema structure, e.g. generalization, on semantic conflicts, e.g. naming
conflicts, and on real-world semantics comparison.

In [6], several types of generalization and aggregation have been defined. There are four
kinds of generalization:

1. disjoint, when each object of the general element belongs to at most one specialized
element

2. complementary, when each object of the general element belongs to at least one special-
ized element

3. alternative, when each object of the general element belongs to one and only specialized
element

4. general, when there are no restrictions.
In the case of aggregation, there have been defined in [6]:

1. simple aggregation, which exists between elements that express properties of another
element, e.g. attributes of ER entities

2. collection aggregation, when a collection of elements gives rise to a new element

3. association aggregation, when the collection of elements does not just define properties
of the new element, but also their association.

In [3], semantic relationships are defined between elements by comparing their names. The
generalization relationship is informally defined as the relationship between two elements
A, B when A comprises B in a taxonomic sense, e.g. a generalization relationship is iden-
tified between the elements Person, Student. Negative association is identified between el-
ements whose names are complementary, e.g. the elements male and female, incompatible
or antonyms. Positive association is defined as the semantic relationship between elements
that have synonymous names in some context or they are just frequently used in the same
context.

In [7], naming conflicts are used to define semantic relationships in combination with equiv-
alence, generalization and aggregation. Thus, two elements can be synonym or homonym
(depending on the naming conflict) equivalents, generalizations or aggregations.

In [4], semantic relationship are defined based on the elements’ context, their domain, i.e.
the set of possible values, their extent, i.e. their current values, as well as the mapping
between their domains and their extents. Five types of relationship are defined:

e semantic equivalence between two elements is established when there is a total 1-1
mapping between the element domains in any known and coherent context

e semantic relationship is established when there exists a partial many-one value map-
ping, or a generalization, or an aggregation abstraction ! between the element domains

10ne domain generalizes the other or both are generalized to a third domain. Also, one domain can be an
aggregation, i.e. a collection, of the other domain.

e semantic relevance is defined when two elements are semantically related in one context
but not in another

e semantic resemblance exists when the elements cannot be related but they have the
same role, e.g. they are both entity identifiers

e semantic incompatibility is defined between two elements when no contexts exist asso-
ciated with these elements such that the elements could have the same role.

In [5], a comparison on the set of real-world entitses that the elements represent is per-
formed, i.e. a comparison on the real-world level and not the data-source representation. Five
types of semantic relationships are specified between two relational entities/relationships A
and B: A is equal to B, A contains B, A is contained-in B, A, B overlap, and A, B are dis-
joint. The relationships of [5] are identified by comparing the real-world states (RWS) of
the elements, i.e. the sets of real-world entities that are represented by the elements at a
given moment in time. For example, if the real-world states are equivalent then the ele-
ments are semantically equivalent. Disjointness is defined when the real-world states of the
elements are disjoint and the elements have the same role. The equality, containment and
disjointness relationships of [5] are the real-world level correspondences of semantic equiv-
alence, semantic relationship and semantic resemblance of [4] respectively. In [8] the same
kinds of relationships are identified between any two types of elements using correspondence
assertions.

In our framework we are using the same definitions of relationships with [5], except from
disjointness, and extend them with the definition of the incompatibility relationship. We
define as Valg,¢(z) the values of an element z that are currently stored in a data source and
as Domyi(z) the domain of values of the element, i.e. all the possible valid values of z. We
also define as Ent;,:(z) the real-world entities of z that are represented by Val..,:(z) and as
Domni(x) the real-world entities represented by Domey¢(z). Function Dom;,:(x) is similar
to RW S in [5]. Five types of semantic relationship between schema elements are identified
based on the comparison of their intensional domains (Dom;,;(z)). These relationships are:

1. equivalence: Two schema elements A and B are equivalent, A = B, iff
Domini(A) = Domiint (B)

2. subsumption: Schema element A subsumes schema element B, B C A, iff
Domini(B) C Domyni(A)

3. overlappingness: Two schema elements A and B are overlapping, A ~ B, iff
Domnt(A) N Domin:(B) # 0

4. disjointness: Two schema elements A and B are disjoint, A % B, iff
Domiint(A) N Domini(B) = 0,3C : Domint(A) U Domiins(B) € Domint(C)

5. incompatibility: Two schema elements A and B are incompatible, A # B, iff
Domiini(A) N Domin(B) = 0, AC : Doming(A) U Domiini(B) € Domiing(C)

It is important to notice that element C in the definition of disjointness may or may not exist
in the existing schemas. The notation 3C : condition means that there is a real-world concept
that can be represented by an existing or non-existing schema element C that satisfies the
condition. The notation AC : condition in the definition of incompatibility means that there
is no real-world concept represented by a schema element C to satisfy the specified condition.

Throughout this report, we are going to use the term semantically compatible schema el-
ements to specify that the elements are related with a semantic relationship other than
incompatibility.

3 Transformations of Relational Schemas

The identification of the aforementioned semantic relationships makes the integration of
two data source schemas straightforward. For each relationship there are specific transfor-
mations that can be applied. Our integration approach is similar to the four-step process
described in [1]. Initially, the schemas are compared to identify the five aforementioned se-
mantic relationships between their elements. Then, follows the schema conforming phase
where naming conflicts are resolved by BAV rename transformations. Then schemas are su-
perimposed by separately transforming them and producing two union-compatible schemas,
which are defined to be identical by a sequence of BAV id transformations. One of the union-
schemas is arbitrarily chosen to be the intermediate schema, which in the final schema merg-
ing phase is transformed based on the subsumption, overlappingness and disjointness rela-
tionships to produce the final integrated schema.

In the relational model, semantic relationships are identified between attributes. Attributes
A in relation R4 of schema S, are compared against the attributes B in relation Rp of
schema Sg. As the input schemas evolve, the names of the attributes and relations change.
Therefore, conditions and transformations operate on the renamed elements, which are how-
ever identified in the below definitions with their initial name. It is important to notice that
in the below definitions except from the semantic relationship existing between the elements
we also demand their extensional values (Val..;) to display the relationship, e.g. if the ele-
ments are equivalent then their sets of extensional values must be equal as well. This is not
necessary if we are certain about the semantic relationship between the elements.

The notation z,, is used as an abbreviation for the sequence of attributes z1, .. .,, and the
notation z,, 0p ¢, to mean Vi € {1,...,n} : z; op y;. The function Attr(X) returns all the
attributes z,, of relation X and function Name(Y) returns the name of the element Y, which

—
can be either an attribute or a relation. N ames(m_;) returns a sequence /,, of all the names
of the attributes z,,. The predicate unique defines that the element’s name does not conflict
with the name of any element in S4 or Sg and the predicate max(m) identifies the maximum

m for which a relationship holds, e.g. max(m), Ay = b—:n Finally, in the rules that follow,
the predicate match({Rx,Z1,- - »%n),{ Ry ,¥1,- - -,yn)) defines that there is a 1-1 mapping be-
tween the aggregated instances of the attributes z1,...,z, in relation Rx and the attributes
Y1,-..,Yn in Ry, or formally:

(@) | Gk 01) € (R, 21) A A (imy0n) € (B,)}
= {(on) | (b, 1) € (B, yr) A A (i, 0n) € (B, yn)}

N
where k,, represents the primary keys of the relations.

In the schema conforming phase, based on the existence and lack of equivalence relation-
ships between attributes the following conditions must be satisfied and the corresponding
transformations should be performed on the schemas:

— —
1. lack of equivalence: Am, A, = Bp,:

condition:
Name({R4))) = Name({Rg)))
A unique({Rc))

transformations on Sy4 :
rename({Ra)), (Rc))

This rule shows that relations that are not equivalent and share the same name should
be renamed. The lack of any equivalence relationships between the relations’ attributes
determines the non-equivalence of the relations. Even if the attributes have some other
type of semantic similarity relationship, the relations should still be differentiated be-
cause they remain non-equivalent and therefore should not be merged when schemas
are superimposed. In this case only one relation needs to be renamed and therefore
only one schema is transformed.

. — —
. equivalence, max(m), A,, = B,

condition:

EIE,; candidate key in R4, Elb_;C candidate key in Rp : E;’c = b_;
AVi e {1, - ,m} : matCh(«RA,al, . ,ak,Ai)), «RB, bl, P 7bk,Bi»)
A (Name({Rc))) = Name({Rp))) v unique({Rc})))

transformations on Sy, Sp :

Vo € Attr((Rg) — Bun, Name(z) € Names(Ay,), unique(z’) -
renameAtt((Rz, z), (Rs, ')

Vi€ {1,...,m} : renameAtt({Ra, A;)), (R4, Bi))

renameRel((R.), (Rc)

renameRel((Rz, (Rc))

This rule shows that two relations that are equivalent (this is determined by the equiv-
alence of their candidate keys) should have identical names and their equivalent at-
tributes should share the same names.

The first condition on this rule performs a first check on the equivalence of the relations,
by comparing possible candidate keys. For example, relations person and place with

candidate keys a_,;, b_; respectively, might have equivalent attributes 4; = B; = address
but they are not semantically equivalent since they do not represent the same real-
world concepts. The second condition on this rule performs a second test on the equiv-
alence of the relations and the instance mapplng between the candidate keys and the

equivalent attributes. The attributes ak, bk and Am, B might be equivalent when con-
sidered separately (a;, b;) but they might not be equlvalent When they are aggregated.

For example, two person relations with candidate keys a; = = {name, surname}
might have equivalent name and surname attributes but their mappings between these
attributes’ instances might differ, which makes the candidate keys not equivalent. The
third condition assures that no naming conflicts will be produced by the transforma-
tions

If the conditions are satisfied, the transformations are performed on the schemas. The
first renameAtt transformations remame the attributes of Rg that have identical names
with existing attributes of R4 but are not equivalent with these attributes. This as-
sures that these attributes are not going to be merged when the schemas are superim-
posed. The second renameAtt transformations assign identical names to the equivalent
attributes in order to merge when schemas are superimposed. The renameRel transfor-
mations show that the relations are equivalent by assigning to them identical names.

All of these transformation have to be executed on each schema, only if the necessary
elements exist. This is in order to preserve any transformations caused by other se-
mantic relationships. For example, assume there is relation R; in S4 and relations R,
Rs in S with Ry = R, and Ry = Rs. The first semantic relationship would rename
relations R; and R, to R . The second relationship would have to rename R; (which
now has name R; ») and Rj3 into Ry 3. However, if R, i.e. R, is renamed in schema
S4, then the same rename transformation should be performed in Sg.

X — —
3. equivalence, max(m), A, = Bp,:

condition:
—

—
—(EIE;; candidate key in R 4, 3b;, candidate key in Rp : E;Z = by
AVi € {1, .. .,m} : match(((RA,al, . ,ak,Ai)), <<RB,b1, ceey bk,B,»)

)
A Name({Ra))) = Name({Rg)))

A unique({Rc)

transformations on Sy :
rename({Ra)), (Rc))

This is another case where the relations are not equivalent and have to be renamed
because they share the same names. The non-equivalence of the relations is determined
by the fact that the candidate key and match conditions in the previous rule are not

= —
satisfied even though attributes A,, and B,, are equivalent.

After the schemas are conformed, they are superimposed, i.e. the local schemas are trans-
formed using extend transformations, which add the missing elements? to each schema and
produce an intermediate schema Sj.

The following rules define the transformations on the intermediate schema S;:

. — —
1. subsumption, max(m), A, C By,:
condition :

B_;ncandidate keyin Rp
A match({Ra, A1,..., An), {RB,B1,...,Bn))

transformations on Sy :
addFK(«RA»a «RA, Al»a cey «RAa Am»a «RB»a «RB, Bl»a ceey «RB, Bm»)

This rule creates a foreign key constraint between the two relation because the in-
— —
stances of A,,, can always be deduced from the candidate key B,, of Rp.

In this case, the candidate key condition is necessary for foreign key constraints in
relational models. The match condition is based on the same idea as the conditions on

the second conforming rule. Here, the attributes A,, might be subsets of the attributes
B—:n when examined individually, so the conditions establish that the aggregation of A_:n
is also a subset of the aggregation of B_:n
— —
2. overlappingness, max(m), A,, ~ B,:

condition:
Jay, candidate key in RA, Elbk candidate key inRp:

Q& =bVa Cb Vb Ca,Va,~b.
AYie{l,...,m}:
2| (nsn) € (Basar) Ao A (nsgi) € (R, ak) A (o 2) € (Ra, 4i)
!

A (@, y1) € (Rp, b)) Ao Aah, yk) € (B, ar) Az, 2) € (BB, Bi)} # 0

2Missing elements are the ones that exist in one schema but not in the other

transformations on Sy :
ddReI((C), {5 | (73 91) € (B @) A (] 1) € (Ris,)
A AN Znyyr) € (Ra,ar) Azl ye) € (R, bi))
A, 21) € (Ra, A1) Azl 21) < (Rp,B1)

AN A <$_;,,,Zm> S «RA;Am» A <m417ZW«) € «RB;Bm»})
Vie{l,...,k}:

addAtt({(C, ab;)), notnull, {gx, v: | (yr) € (CH})
addPK({C), {(C,ab1)), ..., {C,abi)})

Vie{l,....,m},A; & {a1,...,ar}:
addATH((C, i) il (5 21 | (1) € (Roas00) A (ol 1) € (R, o)
A AT, k) € (Bay ax) A (et uk) € (R, bi)
Aons21) € (Ra, i) A (e 21) € (B, Br)
Ao N@ny zm) € (Ras Am) A (2h, 2m) € (Re, Bm)})

This rule identifies two relations that overlap and creates a new relation that repre-
sents the overlapping part.

i&ﬁ

~

The conditions of this rule define that the relations R4, Rp are semantically similar
since their candidate keys are similar, and actually overlap in the same manner as

- =
the overlapping attributes A,,, B,,. The transformations first create the relation that

represents the common part of R4, Rp, then add its primary key azk, which is the
overlapping set of R4, Rp candidate keys, and finally add the overlapping attributes
without including the candidate key attributes which have been already dealt with in
the relation’s primary key.

. — —
3. disjointness, max(m), A, % Bp,:

condition:
N

35,; candidate key in R 4, 3b; candidate key in Rp :

N —

ay, % by,

transformations on Sy
addRel((C), {9 | (2n,91) € (Rarar) A A(@n, k) € (Ba,ax)
V ((zh, 1) € (BB, i) A ... A{zyy,uk) € (R, b)) })

Vie{l,...,k}:
addAtt((&C, aby), notnull, {yx, w | (Zn,y1) € (Ra,a1) A ... A {Zn,yx) € (Ra,ar)
A(zn, w) € (Ra,a:))
V ((#hy 1) € (R, b A A (@l i) € (R, i)
A (zp,,w) € (Rp,bi))})

addPK({(C), (C,ab1)), ..., (C,ab)})
Vie {1,...,m}, A ¢{ak}

addAtt(g i)l (G w | (1) € (Rt an) A oA () € (Rasai)
Noww) € (RaA))
Vi) € i) A o) € e
A b € (Ro, B

In this rule, disjoint relations are unified into a new, general relation that subsumes
both of the existing ones. The condition specifies that the candidate keys and therefore

S1 ug(ug-login,ugname)
phd(phd-login,pname)
staff(staff-login,sname)
tutors(staff-login,ug-login)
supervises(staff-login,phd-login)
course(course-id,cname)
teaches(staff-login,course-id)
registered(ug-login,course-id)

S> phd(phd-login)
staff(staff-login,sname)
course(course-id,cname)
assistance(phd-login,course-id,staff-login,activity,date, hours)

Figure 1: Example local and global relational schemas

the relations are disjoint. The transformations create a relation which is the union of
R1, Ry and add to it the primary keys and the disjoint attributes, similarly to the second
merging rule.

In all of the above definitions, we require the maximum m (max(m)) for which the relation-

— —
ships A,, op B,, hold and the corresponding conditions are satisfied. This is necessary in
order to perform less transformations on the existing schemas.

4 Example

In order to give an example of the process, we are going to use the data sources, whose
relational schemas are illustrated in Figure 1. In the figure, primary keys are underlined
and foreign keys are in italics. The figure shows slightly different and cut down represen-
tations of two databases of the Computing Department at Imperial College, London. Some
constraints have been defined on these schemas to make the example more illustrative of our
data integration approach.

Schema S; shows that members of staff tutor undergraduate students and supervise PhD
students. In Si, the relation course represents all the non-laboratory courses, i.e. all the
courses that have lectures in theatres. Undergraduate students register on these courses
and members of staff teach them. In the college, PhD students assist in both tutorials and
lab demonstrations. This is depicted in schema S5, where course describes both courses that
have tutorials in the lecture theatres and laboratory courses. Relation staff in S, represents
the members of staff that supervise the tutorials and laboratory demonstrations and can be
both lecturers or teaching associates.

We have asserted the constraints that each PhD student has to assist in at least one course
and each lecturer has to teach at least one non-laboratory course. Also, non-laboratory
courses might not have any tutorials nor lab demonstrations. These constraints implicitly
express that the phd relations in S; and S, represent identical sets of PhD students and that
staff in S, represents a concept that subsumes the concept of staff in S;. In addition, the two
course relations have a common set of courses, which is the courses that are teached in lec-
ture theatres and have tutorials. Table 2 shows the existing semantic relationships between
the attributes of S; and S, and the transformations that are going to be performed on the
schemas based on the discussion in the previous section.

Initially, in the schema conforming phase, the naming conflicts are resolved. Schema S is

S1 vs S transformations
phd.phd-login = phd.phd-login - @, 5B
ug.ug-login % phd.phd-login - @9
staff.staff-login C staff.staff-login @), 60
staff.sname C staff.sname ’
course.course-id ~ course.course-id
course.cname ~ course.cname @), @- 24

Table 1: Semantic relationships between attributes in S; and S»

tranformed to Si:

(D renameAtt({phd, phd-login), {(phd, phd-login}))
(2) renameRel({phd), (phd))

(3) renameRel({(staff)), (S; .staff)))

(4) renameRel({(course)), {(S;.course)))

and schema S5 to S:

(8 renameRel({(phd), {phd))

Transformations (1), (2) and (5) are performed because of the equivalence relationship be-
tween the key attributes phd-login in the phd relations, i.e. the second conforming rule in
Section 3 . Transformations (3) and (4) are caused by the lack of equivalence relationships
between the attributes of the staff and the course relations, respectively.

In the schema merging phase, S| and S, are superimposed and a intermediate union schema,
S, 1s produced. Schema S} is going to be extended with elements that exist in S) but not in S
and schema S} is going to be extended similarly. The composite transformation extendTable
can be used as an abbreviation in this phase:

extendTable({R, a1, ---,a.), (R, k1,-- -, km),
(KRN, (B, fR1), - -, (R, fRa)),
(R'), (R',ck1)), ..., (R, cki))) = extRel((R))
extAtt({(R, a1)), null, void)

extAtt({(R, a,), null, void)

addPK({R, k1, -- -, km))

addFK(«R»a «R; fkl»a trey «Ra fkl»;
(R), (R, k), ..., (R, ki)

Schema 5] is extended to S; by the following transformations:

(&) extendTable(((staff,staff-login,sname}), {(staff,staff-login)))

(7) extendTable(({(course,course-id,cname)), {course, course-id)))

extendTable({(assistance,phd-login,course-id,staff-login,activity,date,hours)),
{(assistance, phd-login,course-id,staff-login,activity,date)),
{({assistance)),{{assistance,phd-login)), {phd)),{phd-login)}),
{({assistance)),{assistance,course-id)), {course)),{{course-id))),
{((assistance)),{{assistance,staff-login)), {(staff)),{(staff-login))))

and schema S} is extended to S;:

(9) extAtt({(phd,pname)))
@0 extendTable({ug,ug-login,ugname), {(ug,ug-login}))

@2 extendTable(((S; .staff,staff-login,sname}), (S, .staff,staff-login)))

12 extendTable({(tutors,staff-login,ug-login)), {(tutors,staff-login,ug-login}),
{({tutors), {tutors,staff-loginy, (S .staff)), (S;.staff, staff-login)))),

{{tutors), (tutors,ug-login)), (ug). (ug, ug-login)))

@3 extendTable({(supervises,staff-login,phd-login)), {(supervises,staff-login,phd-login}),
{({supervises)),{supervises,staff-login)), (S;.staff)), {S;.staff, staff-login)))),
{(phd),{supervises,phd-login)), {(phd)), {phd, phd-login))))

@4 extendTable({(S;.course,course-id,cname), {(S; .course,course-id)))

@9 extendTable(((teaches,staff-login,course-id)), ((teaches,staff-login,course-id)),
{({teaches)),((teaches,staff-login)), {(S;.staff)), (S;.staff, staff-login))})),
{({teaches)),{(teaches,course-id)), (S1.course), {S;.course, course-id)))

16 extendTable(({(registered,ug-login,course-id)), {registered, ug-loginY,
{((registered)),{registered,ug-login)), {ug), {ug, ug-login)),

{({registered)),{(registered,course-id), {S;.course)), {(S;.course, course-id)))

Finally, in the schema restructuring phase the final integrated schema is produced. For
the specific example, Table 2 shows the transformations steps from S; to Sg and Figure 2
illustrates the two schemas, Sy and S,,.

@7 addRel({student)), {z | {z,z) € (ug,ug-login) Vv (z',z) € {phd,phd-login)))})
@8 addAtt({student,login), notnull, {z,w | ({z,z) € {ug,ug-login}) A (z,w) € (ug,ug-login})
V ({2',3) € (phd,phd-login) A (2", w) € (phd,phd-login))})
@9 addPK(((student)), {student,login}))
@0 addFK(({(S, .staff)), (S, .staff,staff-login}), (S; .staff,sname)),
{staff)), (staff,staff-login)), (S, .staff,sname}))
@1 addRel({non-lab-assisted-course)), {z |
(y,x) € {S;1.course,course-id) A (z,z) € {{course,course-id))
A {y,w1) € {S1.course,course-id) A (z,w;) € {course,course-id))
A {y,wa2) € {(S1.course,cname)) A (z,w2) € {{course,cname))})
@2 addAtt({non-lab-assisted-course, course-id, notnull, {z,y | {(z) € {non-lab-assisted-course}))
@3 addPK({(non-lab-assisted-course)), {non-lab-assisted-course,course-id)))
@4 addAtt({non-lab-assisted-course, cname)), null, {z, w,
(y,z) € {S1.course,course-id) A (z,z) € {{course,course-id))
A {y,w1) € {{S1.course,course-id) A (z,w;) € {{course,course-id))
A (y,ws) € {{S1.course,cname)) A (z,w») € {(course,cname))})
A{z,y) € {(Si.course,cname) A (z,y) € {(course,cname)})

Table 2: Transformation pathway S; — Sg

5 Concluding Remarks

In this report, we have defined semantic relationships between schema elements and we have
shown how BAV transformation pathways can be automatically derived to integrate two
data sources and their schemas, when the semantic relationships between their elements
are known. We have focused on the relational model and semantic relationships between
attributes.

In the future, we are going to examine other modelling languages and define the transfor-
mations that should be performed on schemas of these languages. It would be very useful to
examine the HDM model and define the transformations that should be performed on HDM

10

St ug(ug-login,ugname)
phd(phd-login,pname)
staff(staff-login,sname)

S, .staff(staff-login,sname)

tutors(staff-login,ug-login)

supervises(staff-login,phd-login)

S1.course(course-id,cname)

course(course-id,cname)

teaches(staff-login,course-id)

registered(ug-login,course-id)
assistance(phd-login,course-id,staff-login,activity,date, hours)

S, student(login)
ug(ug-login,ugname)
phd(phd-login,pname)
staff(staff-login,sname)
S .staff(staff-login,sname)
tutors(staff-login,ug-login)
supervises(staff-login,phd-login)
S1.course(course-id,cname)
course(course-id,cname)
non-lab-assisted-course(course-id,cname)
teaches(staff-login,course-id)
registered(ug-login,course-id)
assistance(phd-login,course-id,staff-login,activity,date, hours)

Figure 2: Intermediate and global relational schemas

schemas based on semantic relationships between nodes and edges. High-level models, like
the relational model, and the primitive transformations on these models can be defined in

— —
terms of the HDM. Therefore, a relationship A,,0p,..;B,, between attributes in the relational

model maps to a relationship A_:nop HD MB_:n between elements in the HDM. If the first rela-
tionship defines a transformation pathway 7., and the second relationship defines Typ,
then the transformation pathways should agree, i.e. the schemas produced by the transfor-
mations should be equivalent. Thus, using the definitions of BAV transformations on HDM
schemas, we can examine the correctness of the transformations defined on other modelling
languages for each type of semantic relationship.

References
[1] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Computing Surveys, 18(4):323-364, 1986.

[2] P. McBrien E. Jasper, N. Tong and A.Poulovassilis. View generation and optimization in
AutoMed data integration framework. Technical report, AutoMed Project, 2003.

[3] P. Fankhauser, M. Kracker, and E. J. Neuhold. Semantics vs Structural Resemblance of
Classes. SIGMOD Record, 20(4):59-63, 1991.

[4] V. Kashyap and A. Sheth. Semantic and schematic similarities between database objects:
a context-based approach. VLDB Journal, 5(4):276-304, 1996.

11

[5] J.A. Larson, S.B. Navathe, and R. Elmasri. A theory of attribute equivalence in databases
with application to schema integration. IEEE Transactions on Software Engineering,
15(4):449-463, April 1989.

[6] M. Castellanos M. Garcia-Solaco and F. Saltor. Discovering Interdatabase Resemblance
of Classes for Interoperable Databases. In Proceedings of the RIDE-IMS, 1993.

[7]1 A. M. Ouksel and C. F. Naiman. Coordinating context building in heterogeneous infor-
mation systems. Journal of Intelligent Information Systems, 3(2):151-183, 1994.

[8] S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for integration
of heterogenous schemas. The VLDB Journal, 1(1):81-126, 1992.

12

