Discovery of Semantic Relationships between
Schema Elements

AutoMed Technical Report 23, Version 1

Nikolaos Rizopoulos

Monday 182 August 2003

Abstract

This report describes an approach to semi-automatically discover semantic relation-
ships between schema elements. Based on these relationships data sources can be inte-
grated as it has been previously shown in [14]. A bidirectional comparison of the schema
elements is performed which enables the discovery of equivalent, subset, disjoint, overlap-
ping and incompatible elements. We present a novel composite approach which includes
different modules for semantic relationship identification and relationship clarification.

1 Introduction

Performing the data integration process manually is extremely time-consuming and consid-
ering the usefullness of this process, it is essential to be automated as much as possible.
Several approaches can be found in the literature, dealing with automating data integration
[5, 11, 2, 16, 10, 9, 15, 4, 3]. Most of them are focused on schema matching, i.e. identifying
equivalent schema elements [12]. The discovery of other types of relationships, like sub-
sumption, has been based either on a linguistic comparison of the elements or on the user’s
domain knowledge. This fact has motivated us in discovering such semantic relationships
not only based on linguistic information but also utilizing metadata about elements, element
instances and schema structure.

In order to achieve our goal, we perform a bidirectional comparison between schema ele-
ments. This approach allows the use of several kinds of information in the automatic iden-
tification of equivalence, subsumption, overlappingness, disjointness and incompatibility re-
lationships . Except from the innovative bidirectional comparison methodology to differen-
tiate between each type of semantic relationship, our architecture is also novel. We apply
different algorithms for the identification of related elements and different algorithms for
the clarification of the type of their relationship.

The outline of this report is as follows. First, we show that even a brute-force algorithm
cannot accurately discover semantic relationships between elements. In Section 3, we ex-
plain the bidirectional comparison approach and how it can be used to differentiate between
each type of semantic relationship. Then, in Section 4, we present the architecture of our
composite data integration approach. Section 5 explains in detail each component that has
been implemented and illustrates the results of our prototype tool on real-world databases.
Finally, we give our concluding remarks and directions of further work.

1Based on the definitions in [14].

2 Brute Force

The definitions of the semantic relationships in [14] indicate that the element entities need to
be compared in order to determine semantic associations. Therefore, a brute-force approach,
where the the element instances are compared, seems highly appropriate.

The implemented brute-force tool performs an exhaustive case-insensitive comparison of the
elements’ set of instances, called extensions Val..:(x). An element instance is represented as
a string, thus an element’s extension is a set of strings. For each pair of elements, a simple
set-comparison operation is performed that examines if the elements’ sets of instances are
equivalent, if one set is a subset of the other, if the sets overlap or if the sets are disjoint.
Based on the relationships identified between the extensions, the brute-force tool determines
whether the elements are equivalent, subsets, overlapping or incompatible, respectively. Es-
sentially, in the semantic relationships definitions the function Dom;,:(z) is replaced by
Valezt(z). The set comparison is performed with the help of a hash table to reduce the
complexity of the algorithm.

As it would have been expected the brute-force tool isn’t accurate in discovering semantic re-
lationships between schema elements. One reason is that different real-world entities might
have the same representation. This problem may lead to producing false positive results,
i.e. identifying compatibility relationships (equivalence, subsumption, overlappingness, dis-
jointness) between incompatible schema elements. Additionally, when different representa-
tions are used for the same real-world entities, false negative results may be produced, i.e.
identifying incompatibility between compatible elements. This can be partially solved by
using more intelligent and complex techniques to compare instances, like string matching
algorithms. However, such approaches lead to further time consumption, especially in an
exhaustive comparison approach.

It is interesting to examine if the brute-force approach can provide an indication of the un-
derlying relationships and assist in the data integration process when real-world entities
have a unique representation. This assumption resolves the problem of false negative re-
sults, but false positives can still be produced. However, false positives are bearable because
no compatibility relationships are lost.

Even with this assumption, one of the main problems that arise is the inability to detect
disjoint schema elements. For example, if the sets of instances of two elements are disjoint
then the approach is not able to identify whether the two elements are semantically disjoint
or incompatible. This is due to the lack of knowledge about the semantics of the elements.
Therefore, the brute-force approach can still produce false negative results and miss existing
semantic relationships even if real-world entities have unique representations.

Another problem is the assignment of the wrong type of compatibility relationship between
two compatible elements. This case is encountered when the data sources in their current
state (when the data integration process is taking place) do not contain all the possible
instances for their elements. For example, two data sources in their current state might
indicate that two elements are equivalent because currently the elements have the same
instances. However, semantically those two elements could be subsets or overlapping, a re-
lationship which would be obvious if the elements in both data sources were populated with
all their possible instances.

Thus, a brute-force approach except from exhibiting low efficiency and great time consump-
tion, it is also not able to identify correctly all the existing semantic relationships. False
negative results may be produced and compatibility relationships might be lost. However,
the identified relationships could be helpful even if the type of the relationship is not always
correct.

d(AB)

1--

equivalence_| _
threshold

overlappingness | _
threshold

disjointness _|
threshold
|
) .) 1 d(BA)
disjointness overlappiness equivalence
threshold threshold threshold

Figure 1: Bidirectional Similarity Comparison
3 Bidirectional Comparison

Most of the existing approaches that attempt to automate data integration discover equiv-
alent schema elements and unify them. They perform a uni-directional comparison of the
schemas by producing a similarity degree for each pair of elements. If this degree is above a
pre-defined threshold then the elements are considered to be equivalent. The uni-directional
comparison usually arises from the fact that the global schema is already known and it is
attempted to match elements of the local schemas to the global schema.

In our approach, there is a bidirectional comparison of the schema elements which en-
ables not only the identification of equivalence between elements, but also the discovery
of subsumption, overlappingness, disjointness and incompatibility relationships. GLUE [1]
is the only methodology, as far as we know, that performs a bidirectional comparison of the
schemas, but only identifies disjoint (actually incompatible) and equivalent elements.

The idea behind the bidirectional comparison of schema elements comes from the fact that
the size of the similarity degree between two schema elements indicates their similarity
or dissimilarity. Supposing that there are two schema elements A and B in schemas S4
and Sp respectively, we define as d(A, B) the similarity degree produced by the comparison
of element A against B and d(B,A) the similarity degree produced by the comparison of B
against A. Intuitively, the more similar A is to B, the higher the similarity degree d(A, B) will
be. The same reasoning applies for the reverse comparison of B against A. Figure 1 illustrates
an insight on the way the bidirectional comparison can be applied in the identification of
semantic relationships between schema elements.

Essentially, d(A,B) indicates to what extent A is a subset of B ranging from 0, if none of
the entities of A are entities of B, to 1, if the set of entities of A is a proper subset (C) of
the entities of B. When elements A and B are equivalent both similarity degrees d(A, B) and
d(B, A) will be high. If A subsumes B, then d(B, A) will be high since all the entities of B are
also entities of A, but d(A,B) will be low since A includes entities that do not appear in B. In
the reverse case where B subsumes A, d(A,B) is high and d(B,A) is low. When A and B are
overlapping both similarity degrees are considerably high since entities of A appear in B and
entities of B appear in A. On the other hand, when A and B are disjoint then the degrees are
considerably low, since no common entities exist. Finally, if A and B are incompatible, the
similarity degrees are close to 0.

The disjointness, overlappingness and equivalence thresholds in Figure 1 roughly define the

areas that specify each type of semantic relationship. Two schema elements with bidirec-
tional similarity degrees below the disjointness threshold are probably incompatible. If the
similarity degrees are inside the range of the disjointness and overlappingness thresholds
then the elements are probably disjoint. The area between the overlappingness and equiva-
lence thresholds defines overlapping elements and the area above the equivalence threshold
defines equivalent elements. Finally, the subsumption relationship is identified when one
similarity degree is above the equivalence theshold and the other is below it.

4 Architecture

Existing data integration methodologies adopt either a hybrid or a composite approach to
identify relationships between schema elements. In the hybrid approach, one module, using
a single algorithm, combines several criteria, e.g. structure, names, constraints etc, to com-
pare schema elements. We are going to adopt the composite approach in our architecture,
where several different modules, that work independently and produce separate results, are
combined to provide the final relationships between schema elements. Our composite archi-
tecture is illustrated in Figure 2.

Our approach differs from previous ones on the fact that there are two types of individual
modules. There are modules that identify semantically related schema elements and mod-
ules that clarify the type of the semantic relationship, like in the Interschema Relationship
Identification (IRI) approach, where first is the identification of related elements and then
the classification of the relationships amongst these elements [13]. Using this kind of archi-
tecture and exploiting the bidirectional comparison as explained in the previous section, has
the advantage of identifying the five types of semantic relationship between schema elements
and directly integrating the input schemas as explained in [14].

Individual modules of both types perform a bidirectional comparison of the elements of the
input schemas and produce the two similarity degrees, d(A,B) and d(B,A), for each pair of
elements A, B in S4 and Sp respectively. Their results are combined in the Aggr egat or
component, which can apply different aggregation algorithms. The Degr ee Conbi nat or
can refine existing similarity degrees or produce new degrees based on the results from the
Aggr egat or . For example, if elements A,B and B,C are identified as similar in the form of
similarity degrees d(A,B),d(B,C) then it can be deduced that elements A,C are also similar.
If similarity degrees have not been previously produced for A,C then new degrees can be
defined based on the degrees between A,B and B,C. If similarity degrees already exist then
they can be refined based on the new degree. Optionally, the similarity degrees can be used as
feedback for the individual modules, which can detect the incompatible elements with very
low similarity degrees, remove the incompatible pairs and perform the same bidirectional
comparison, producing more accurate results. The Degr ee Combi nat or outputs the final
similarity degrees.

The final degrees are essential for the identification of the semantic relationships between
schema elements. The Rel ati onshi p Extractor component uses the final degrees with
the graph in Figure 1 and the user-supplied disjointness, overlappingness and equivalence
thresholds to produce proposed semantic relationships.

For each pair of elements that a semantic relationship has been identified by the Rel a-
tionshi p Extractor other than incompatibility, the br ut e-f or ce component produces
its own semantic relationship as explained in Section 2. The relationships of the br ut e-
f or ce component are useful because they can be contradicted with the ones produced by the
Rel ati onshi p Extractor, thus providing an insight on the accuracy of the Rel ati on-
shi p Extractor’s results. Based on this information, the user can validate the semantic
relationships that the Rel ati onshi p Extractor correctly identified and invalidate the

module for relationship identification — similarity degrees output

IEI module for relationship clarification s semantic relationships output
id brute
force
m P, r
R R
e e
mTd A C il 1| |1
0 E I
g m a x n aD a
g D t ot t t €
m e b t
d T . 1T U e i d S e
Sa— g i a r u c
e — rn —= 0 C > S —> 0 cC g —S
g d a dl N rl e f r| N ~1 h r 9
Sp— e s t r a s t e g
m a et h © c h © m {
0 ¢ 0 . T e A & a
0 r 1 1 (4]
o 0 P P r
d
m
’ T h Th 1d T T
thresholds
Tr method Sa Sg

Figure 2: Architecture

false relationships.

The Rel at i onshi p Deduct or component can combine the user-validated relationships and
deduce new logically-implied relationships that haven’t been previously identified. For ex-
ample, if the user has identified that A = B and C C A then logically it is implied that C C B.
Finally, the user-validated relationships and the relationships deduced by the Rel ati on-
shi p Deduct or can be used by the Schena | nt egr at or to perform the appropriate trans-
formations and integrate the input schemas. Additionally, the final semantic relationships
can be used as feedback by the individual modules that can learn from these examples to
alter their behaviour and produce more accurate results.

The Schena | nt egr at or based on the identified relationships checks the conditions defined
in [14] and performs the corresponding transformations. First the schemas are conformed,
then they are superimposed producing an intermediate schema, and then the intermediate
schema is restructured to produce the final schema.

5 Prototype

5.1 Implemented Modules

The prototype tool consists of eight modules that attempt to find similarity relationships
and clarify the type of each relationship, and the Aggregator, which combines the modules’
results. In this section, we explain in detail each of these components and illustrate their
results on two real-world databases that come from the Department of Computing in the
Imperial College of London: CATE and DEPT.

CATE vs DEPT

exercise.type = xhelperstaff.roletype
attendancepmtppt.type = xhelperstaff.roletype
markspmtppt.type = xhelperstaff.roletype

Table 1: Equivalence relationships between attributes in CATE and DEPT

5.1.1 Linguistic Comparison Module

A very simple linguistic module has been implemented that performs a case insensitive
comparison of element names. When element A has exactly the same name with B then
d(A,B) = d(B,A) = 1 and if A’s name is a substring of B’s then d(A,B) = 0.2 and d(B,A) =1, i.e.
the similarity degrees are predefined.

CATE-DEPT

1 AR

o -

.8 [l cquivalent pair
Na [subset pair

61 overlapping pair
5 @ disjoint pair

4 O incompatible pair
3

2

ﬁl 5 3455867891 peercae

Figure 3: Linguistic Comparison Results on CATE-DEPT

Figure 3 illustrates the results of the linguistic comparison. Equivalent pair of elements
are represented as squares, subset elements as rectangles, overlapping elements as ellipses,
disjoint elements as filled circles and incompatible elements as empty circles. The size of
each shape increases with the number of pairs of elements represented in each position
of the graph. As it can be seen in the figure, the equivalent pairs of attributes type and
roletype (Table 1) are not given the highest bidirectional similarity degrees (1.0, 1.0) because
their names are substrings. Additionally, subset attributes are assigned the lowest degrees
(0.0, 0.0). The module, also, incorrectly identifies disjoint, overlapping and incompatible
attributes as equivalent (top-right corner) because they share the same names.

Also, there have been implemented four non-structural metadata-based modules that com-
pare data types, length, statistics about numeric instances and statistics about the existence
of special characters.

5.1.2 Data Type and Length Comparison Modules

The data type module compares element data types, using a 3-dimensional vector. The first
two positions in the vector represent the character and numeric data types while the third
position represents all other types. Each position’s value is either 0 or 1 to represent true
and false, respectively. For example, a character schema element which includes numerical
instances (represented as strings) will have the first two positions in the vector equal to 1,
i.e. true. The elements of each schema are clustered based on their data-type vector using
the Self-Organizing Map [8] algorithm. The module can learn the clusters using a neural

network, as done in Semint, and then classify the elements of one schema to the clusters of
elements in the other schema. In our current implementation, similarity degrees between
elements are computed by comparing the euclidean distances between each element and the
clusters of the counter schema. Both absolute and relative similarity degrees can be pro-
duced. Absolute degrees are computed by comparing the distances between each element
and the clusters against the maximum possible distance. However, if the distance between
the clusters is relatively small then all absolute similarity degrees will be approximately
equivalent. In this case, relative similarity degrees are useful. These are produced by com-
paring the euclidean distance between each element and the clusters against the maximum
distance of the element from the clusters.

;o
HOEC LS E

>
N 234586.7891

.

1/2 34587891

(a) absolute comparison (b) relative comparison

Figure 4: Data Type Comparison Results on CATE-DEPT

Figure 4 illustrates the results of the data type comparison using both absolute and rela-
tive similarity degrees. In this case, the results do not differ significantly, except that the
absolute comparison assigns higher similarity degrees to all pairs of elements, both incom-
patible and similar pairs. The equivalent pairs, which consist of character attributes, are
not assigned the maximum bidirectional similarity degrees because of incorrectly clustering
character elements with numerical elements in the y-axis (DEPT-CATE comparison direc-
tion). Ideally, the implementation should create four clusters in each axis: one cluster for
character elements, one for numerical elements, one cluster for character elements that con-
tain numerical instances and a final cluster for all other types.

The length module uses the same vector-and-cluster technique to compare elements and
produce bidirectional similarity degrees. In this case, each element is represented by a 5-
dimensional vector. The positions in the vector correspond to the metadata length of each
element, i.e. the length as provided by the DBMS, the maximum and minumum length of
the element’s instances, the average length of the instances and the average length of the
distinct set of instances, i.e. when duplicates are removed, all of them compared against a
maximum predefined length. The results of the length module, shown in Figure 5, are not
very useful because similar pairs are not differentiated from incompatible pairs. In addition,
there are incompatible pairs that have even higher similarity degrees than similar pairs.

5.1.3 Statistics-based Modules

The numeric metadata module is a hybrid module because it compares schema elements
based both on their data type and on statistical information over their instances. Numerical
elements are compared on their average value, the medium value and the standard devia-

g

W %

W kGt e

o & b G

L

D
T2 34 50 P8 b1

(a) absolute comparison (b) relative comparison

Figure 5: Length Comparison Results on CATE-DEPT

tion of their instances. In the character metadata module, elements are compared on their
average number of appearances of special characters, like @, $, etc. Both of the modules use
the vector-and-cluster approach to produce bidirectional similarity degrees. As it can be seen
in Figure 6 , there are not any similarity relationships between numerical elements. Their
similarity degrees imply incompatibility. Some incompatible elements are assigned a higher
similarity degree because they have similar average, medium, etc. values. In the character
module, elements are assigned high similarity degrees because most of the special characters
searched for do not appear in the elements. Therefore, incompatible and similar elements
are not easily distinguishable.

]:
RY
.8 ~
©
.61
.o
4
.3
2
1
1234587801 12345867 .8@
(a) numeric module (b) character module

Figure 6: Instances Statistic Comparison Results on CATE-DEPT

5.1.4 Instances Comparison Module

In the prototype tool, an instance comparison module has been implemented that uses the
Naive Bayes technique to compare elements. The instances of each element are used as
training data and the module learns each element using these instances. Similarity degrees
are produced between each instance of the element and each learned element, i.e. an esti-
mate of how likely is for each instance to belong to the learned element. Then, the average
similarity degree of the instances is computed and this determines the overall similarity de-

gree of the element and the learned element. In the reverse direction, the similarity degree
is similarly computed.

Figure 7: Instances Comparison Results on CATE-DEPT

5.1.5 Relationship Clarification Modules

Finally, two more modules have been implemented that rely on content-level metadata to
perform the bidirectional comparison. These modules are more suitable for relationship clar-
ification, because implicitly they assume that the elements being compared are similar ele-
ments. The precision module is hybrid because it differentiates between numerical elements
and non-numerical elements. It examines the range of the element instances by comparing
the maximum and minimum values for numerical elements and the maximum and mini-
mum lengths for non-numerical elements. The bidirectional similarity degrees are computed
based on the overlapping fraction of the elements’ ranges and lengths. If the range of ele-
ment A is within the range of element B, or the length of A is within the length of B, then B
is considered to subsume A, producing similarity degree d(A, B) = 1. The reverse similarity
degree, d(B, A), is computed based on the overlapping fraction. If the ranges or lengths are
distinct then the bidirectional similarity degrees are equal to zero.

1@

) @ O

Figure 8: Precision Comparison Results on CATE-DEPT

The second relationship clarification is the #instances module, which is more naive. It com-
pares the number of distinct instances of each element. If element A has i4 instances and
element B has ip instances with i 4 < ip, then A is considered to be subsumed by B. The bidi-
rectional similarity degrees will be d(A4, B) = 1 and d(B, A) = i4/ip that show the percentage
of the instances of B that is covered by A, i.e. the extent that B subsumes A.

o & b G S ot

L

123458738
Figure 9: Number of Instances Comparison Results on CATE-DEPT

5.2 Aggregation

Different techniques can be adopted to combine the similarity degrees produced by the bidi-
rectional comparison modules and compute the final bidirectional similarity degrees between
each pair of elements. The average and weighted average strategies, adopted in COMA, can
be used. In the latter approach, the weights are predefined by the user according to the
importance of each module. More important modules have higher weights in order to have
a greater impact on the final similarity degrees. Additionally, weight assignment is useful
to minimize the effect of one type of information in the similarity degrees, when multiple
modules comparing the same type of information exist. In LSD [5] weights are learned by
the tool based on the ability of the modules to discover pre-defined relationships between
elements.

In the prototype tool, the weighted average aggregation strategy has not been implemented
because there are not multiple modules that exploit the same type of information and in
order not to make any assumptions about the importance of the comparison modules. The
average strategy has been implemented. Additionally, the product strategy is used, where
the similarity degrees for each pair of elements and in each direction are multiplied to pro-
duce the final similarity degrees in that direction. Figure 10 illustrates the results of the two
aggregation strategies.

@ O

=@
T

)
67891

T 53 0

(a) Modules used in Aver- (b) Modules used in Product:
age: linguistic, data-type numerical (relative), charac-
(absolute), numerical (rela- ter (relative), instances#, pre-
tive), character (absolute), in- cision

stances, precision, instances#

Figure 10: Average and Product aggregation strategies

10

The experiments show that the average and product aggregation strategies can be comple-
mentary. The average strategy is useful to distinguish similar pairs of elements from in-
compatible pairs. The incompatible pairs should be located in the bottom-left corner of the
graphs, because their average bidirectional similarity degrees should be close to 0, and the
similar pairs should be located in the top-right corner with bidirectional similarity degrees
close to 1. Ideally, all the incompatible pairs of elements should be below a user-defined sim-
ilarity threshold, and therefore, they could be discarded. The product strategy is then able
to determine the type of the semantic relationship between the pairs of elements that have
remained. Figure 11 shows the results of Figure 10 for the product strategy with all the
incompatible pairs of elements removed.

o O

RS

.

t? 3 .4.56.7805-H

Figure 11: Product Strategy with incompatible pairs removed by the average strategy

~

Another idea for the aggregation of similarity degrees, which has not been considered in the
literature previously, is the auxiliary role of particular modules. For example, the linguis-
tic comparison modules can have an auxiliary role by only increasing and not decreasing
the similarity degrees produced by other modules. In this way, they do not affect the sim-
ilarity degrees of the elements whose names are not related according to the used dictio-
nary/ontology, but only increase the similarity degrees of the elements who are linguistically
similar. Depending on the overall aggregation strategy, average or product, the similarity de-
gree produced by an auxiliary module can increase the current aggregated similarity degree
according to the following formulae:

average aggregation:

. _ currentSimAvg+(1—currentSimAvg)*moduleSimDegree
auxSimDegree = rrumO f Modules

product aggregation:
currentSimProduct+(currentSimProduct+(1—currentSimProduct)*moduleSimDegree))

auxSimDegree =

In both cases, the similarity degree produced by the aggregation of the rest of the mod-
ules (currentSimAvg or currentSimProduct) is increased by a percentage of the fraction
(1 — currentSimAvg or 1 — currentSim Product) remaining for the current aggregated similar-
ity degree to become equal to 1. This percentage is based on the auxiliar module’s similarity
degree (moduleSimDegree). In the average aggregation strategy, the result of the above pro-
cedure is considered to be the new similarity degree for the auxiliar module and therefore it
is treated like the similarity degrees of all the other modules, i.e. the sum of the similarity
degrees is computed and then it is divided by the number of the modules participating in the
sum. In the product aggregation strategy, the average of the current aggregated similarity
degree and the auxiliar module’s new similarity degree is computed. Figure 12 shows the
results of the average and product aggregation strategies when the linguistic module is not
included in the aggregation and when it is included either as an auxiliar module or as any
other module.

11

(a) Average aggregation: (b) Average aggregation: data (c) Average aggregation: data

data type (absolute), nu- type (absolute), numerical type (absolute), numerical

merical (relative), character (relative), character (rela- (relative), character (rela-

(relative), instances, precision tive), instances, precision, tive), instances, precision,
linguistic linguistic (auxiliary role)

(d) Product aggregation: nu- (e) Product aggregation: nu- (f) Product aggregation: nu-
merical (relative), character merical (relative), character merical (relative), character
(absolute), instances#, preci- (absolute), instances#, preci- (absolute), instances#, preci-
sion sion, linguistic sion, linguistic (auxiliary role)

Figure 12: The auxiliary role of the linguistic module

The figure shows that using the linguistic module in an auxiliary role is not appropriate in
the average aggregation strategy, because the degrees of incompatible but linguistically simi-
lar elements are also increased, making the distinction of incompatible and similar elements
more difficult. On the other hand, in the product aggregation strategy, the linguistic module

is more useful as an auxiliary module, because it makes the similarity relationships clearer
2

For auxiliar modules, more formulae can be used to increase the aggregated results. For
example, in the product aggregation strategy the new similarity degree computed for the
auxiliar module can be used as the new aggregated similarity degree without computing the
average with the current aggregated degree.

21t is assumed that the incompatible pairs of elements have already been identified during the average aggrega-
tion and removed for the product aggregation

12

6 Concluding Remarks

In this report, we have presented our composite approach to automatically discover seman-
tic relationships between schema elements. Based on a bidirectional comparison of the ele-
ments metadata and instances, we are able to discover equivalence, subsumption, overlap-
pingness, disjointness and incompatibility relationships. We have shown the architecture
and described the components that we have implemented in the prototype tool.

In our future work, we are going to focus in the implementation of all the mandatory com-
ponents of the architecture, which are the Relationship Extractor, the user-interface and the
Schema Integrator (all have been described in Section 4), making the tool fully capable of
integrating real data sources.

We are also going to examine ways of improving the current bidirectional comparison mod-
ules or building new ones. The length module, described in Section 5.1, must be improved
because the length information is very important in detecting compatibility relationships
and it is not exploited by our current implementation. A technique similar to the one used
in the precision module can be adopted, or a different clustering algorithm can be imple-
mented instead of SOM, e.g. the k-means algorithm [7]. Additionally, a decision tree or a
neural network can be used to classify elements, instead of examining euclidean distances.
These modification can also be useful in the other modules that use the vector-and-clustering
technique, e.g. the type module which does not cluster elements as expected.

A more intelligent name module should also be implemented using external knowledge from
dictionaries and ontologies. Additionally, different machine learning classification techniques
can be employed and tested for instance comparison modules and element classification, e.g.
the k-nearest neighbour technique [6]. Structural comparison modules can also be built in
order to exploit all the available information from the data sources. Finally, concerning tech-
niques for similarity degree aggregation, the weighted average strategy (Section 5.2) can be
tested as well as different formulae for auxiliary modules, to determine the most accurate
and useful approach.

References

[1] P. Domingos A. Doan, J. Madhavan and A. Halevy. Learning to map ontologies on the
Semantic Web. In Proceedings of the World-Wide Web Conference (WWW-02), pages 662—
673, 2002.

[2] Domenico Beneventano, Sonia Bergamaschi, Silvana Castano, Alberto Corni,
R. Guidetti, G. Malvezzi, Michele Melchiori, and Maurizio Vincini. Information inte-
gration: The MOMIS project demonstration. In The VLDB Journal, pages 611-614,
2000.

[3] Jacob Berlin and Amihai Motro. Database schema matching using machine learning
with feature selection. In Advanced Information Systems Engineering, 14th Interna-
tional Conference CAIiSE’02, pages 452—-466, 2002.

[4] H. Do and E. Rahm. Coma - a system for flexible combination of schema matching
approaches. In Proc. 28th VLDB Conference, pages 610-621, 2002.

[5] AnHai Doan, Pedro Domingos, and Alon Y. Levy. Learning source description for data
integration. In WebDB (Informal Proceedings), pages 81-86, 2000.

[6] K. Fukunaga and P. M. Narendra. A branch and bound algorithms for computing k-
nearest neighbors. IEEE Computer, 24(7):750-753, 1975.

13

[7] J. Hartigan and M. Wong. A k-means clustering algorithm. Applied Statistics,
28(1):100-108, 1979.

[8] T. Kohonen, J. Hynninen, J. Kangas, and J. Laaksonen. Som pak: The self-organizing
map program package, 1996.

[9] Wen-Syan Li and Chris Clifton. SEMINT: A tool for identifying attribute correspon-
dences in heterogeneous databases using neural networks. Data and Knowledge Engi-
neering, 33:49-84, 2000.

[10] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema matching
with cupid. In Proc. 27th VLDB Conference, pages 49-58, 2001.

[11] P. Mitra, G. Wiederhold, and J. Jannink. Semi-automatic integration of knowledge
sources, 1999.

[12] Erhard Rahm and Philip A. Bernstein. On matching schemas automatically. Report,
2001.

[13] S. Ram and V. Ramesh. Schema integration: Past, present, and future. Morgan-
Kaufmann, San Mateo, CA, 1998.

[14] N. Rizopoulos. BAV transformations on relational schemas based on semantic relation-
ships between attributes. Technical report, AutoMed Project, 2003.

[15] H. Garcia-Molina S. Mehiik and E. Rahm. Similarity flooding: A versatile graph match-
ing algorithm and its application to schema matching. In Proceedings of ICDE’02, 2002.

[16] Giorgio Terracina. Uniform management of heterogeneous semi-structured information
sources, 1999.

14

