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Abstract. The wide range of data sources available today mean thattigra-
tion of heterogeneous data sources is now a common and iamp@roblem. It is
even more challenging in a P2P environment, peers often tknowv in advance
which schemas of other peers will suit their information sdeand there is po-
tentially a greater diversity of data modelling languagesse. In this paper, we
propose a new approach to P2P inter model data integraticchwghipports data
model diversity whilst allowing peers to have the flexilyildf choosing how to
integrate their schemas. We will show how this approach eamsied to integrate
multiple heterogeneous data sources (CSV text files, XML &@dl) and how
the metadata of the (partially) integrated schemas can dighiited and made
available for discovery by other peers. We also briefly désca system being
developed by our group that has the discussed features.

1 Introduction

P2P inter model data integrationis the process whereby data stored in autonomous
heterogeneous data sources under different data modetsiis atcessible to everyone
on a P2P network.

There are three main aspects to this. The first is how to egpeggesent schemas from
different data models in @ommon data model (CDM)[1] in which all the constructs
of the various data models in the integration can be reptedem this paper we make
use of the HDM, a graph based model which can represent a atdgerof higher level
data constructs making it a good choice as a CDM in an interefiategration. It has
been used to model XML, UML, SQL [2] and RDF [3] amongst others

The second aspect of the problem is how to enable peers tohfindchemas created
in the previous step. The difficulty in distributed schematadata management lies
in the ability to effectively handle a potential explosionthe number of schemas on
the network as the network size increases and peers ingetireir schemas in add-
hoc fashion. Further, as the number of schemas on the netnandase, searching for
relevant schemas desires more rigorous selection criteria

Finally, once we have found the relevant schemas we needetgrate them to provide
a unified view of the relevant data sources to users of the Bg#onk. We use the both-
as-view (BAV) [4] data integration technique which provédgood support for schema
evolution [5], an important advantage in a dynamic P2P enwvirent.

Existing P2P data sharing systems such as PeerDB [6] adtiegsoblem by defining
some form of metadata using the constructs of the local datece model. Further,



these systems assume the use of a single data model acrasstwogk and do not
tackle the issue of integrating different data models ahk witr approach. On the other
hand, existing P2P data integration systems either do riread the schema metadata
management (e.g. Piazza [7] and CoDB(z) [8]) or concenthégefunctionality as part
of query processing in certain fast nodes (e.g. Edutellaj@jch can lead to the over-
loading of those nodes.

In this paper we propose a method of effectively performinigii model data integration
in a P2P environment by using a generic CDM capable of reptigpa wide range of
data models and a schema metadata management method baisiscoemeric model.
To the best of our knowledge this has not been attemptedéadfoparticular we make
the following contributions:

— we show how the combination of the HDM and the BAV data intégramethod
are particularly suited to integrating schemas represemtalifferent data mod-
elling languages in a P2P environment

— we define a general framework, independent of the data madete peer data
sources, for representing schema metadata and for manhgisg metadata on the
P2P network. We use a DHT-based repository as this scaléswtlethe network,
and focus on load fairness amongst peers

— we formally define the schema search problem and proposegaritaim for finding
the relevant schemas on the P2P network based on schemasabjeme matching
and satisfiability check of predicate-based queries agtirschema metadata

The rest of the paper is structured as follows: Section 2qussan example scenario
and briefly describes our CDM. Section 3 describes our ampro@schema metadata
management. Section 4 describes our data integrationitpeanSection 5 describes
the related work and Section 6 gives conclusions and diestior future work.

2 Representing different data models in a CDM

Consider a group of colleagues at different research ut&iiis connected via a P2P
network collaborating on a research project into the catieh between blood sugar
level (BSL) and body mass index (BMI). They wish to sharertldeita but each re-
searcher stores their data in a different way. Researchese& an SQL database, re-
searcher B an XML file and C stores her results in a spreadsha&ieshe exports as a
CSV text file. Figures 1, 2 and 3 show fragments of the datacesuprovided by the
three researchers.

In this case there is no obvious candidate model to use as a. CDBl option is to use
one of the local schema models and transform the other schierttethat model. This
is often the approach taken when there are only 2 differetat otendels involved [10].
A more flexible approach, when the participating data saiuse more than 2 different
data modelling languages, is to use a generic model thapahba of easily expressing
all the constructs of the different local schemas [11, 2, T2jis is the approach we
adopt, using thélypergraph Data Model (HDM) [13] as a CDM.



<resul t s>
<result id = "102">

nhsnum  blood weight <bsl >4</ bsl >

id idblood bsl| idweight bmi <bmi >17</ bmi >

100 100 3 100 17 </resul t> id |bslbmi
101 101 3 102 22 <result id ="103"> 105(4 |19
102 103 5 103 17 <bsl >5</ bs| > 106(3 |17
103 104 4 <bni >19</ bni > 1083 |15
104 </result> 109/5 |22
blood.idblood— nhsnum.id <result id ="104"> 110[4 |14
weight.idweight— nhsnum.id <bsl >5</bsl >

<bm >18</ bni > .
</resul t> Fig. 3. Spreadsheet

</resul ts>

Fig. 1. SQL tables
Fig. 2. XML

The HDM is a graph based generic data model that makes useimipBsconstructs:
nodes, edges and constraints. It has been used to repregeet\ariety of data models
making it particularly suited as a CDM in inter model dateegnation. The fact that it
is graph based offers the added advantages of easy visupbtimon of data structures
and the ability to represent all schemas in an irreducibi@fid4]. RDF is another graph
based modelling language which has been used as a CDM in PAPatipns [12] but
HDM'’s simple semantics and compact syntax make it more flexitan RDF and thus
more suitable to an inter model data integration scenario.

Figure 4 shows the data sources from the example represented HDM. In Fig-
ure 4(a) the database tablgss_num, blood andweight are represented by nodes and
their columns by nodes linked to the respective 'table’ roblg an edge. Thextent

of a node or edge is the set of values from the data sourcehtbatdde or edge rep-
resents. For example thextent of the 'column’ node((bmi)) 1 is {17,22, 17} and of
(-, weight, bmi)), the edge linking(weight)) to ((bmi)) is {(100, 17), (102, 22), (103, 17)}

The HDM constraint constructs are shown in the grey boxelserdiagram. HDM sup-
ports six distinct primitive constraint operators: uniorglusion, exclusion, mandatory,
unique and reflexive that can be used to model the constranstiicts of higher level
languages [2]. For example we use the unigqule fhandatory ) and reflexive {&)
constraints to model the primary key constraint from tis_num table. The fact that
a primary key column cannot be null is represented by the ratamg constraint from
nhs_num to the edge. This means that any value in the extenhefnum must appear
in the edge, it's uniqueness is represented byithieque constraint. The ef | exi ve
constraint ensures that any tuple in the extent of the edage identity tuple.

The structure and semantics of the other two data sourcespresented in the HDM

in a similar way. In Figure 4(b) the XML elements and attrdgsibecome nodes in the
HDM and the hierarchical structure is represented by edgkmb parent elements to
their children. For example the parent elemssgults is linked to its childresult by

an edge. The associations betweesult and its attributes are also shown as edges. In
Figure 4(c) the first column in the CSV file is represented by twdes one acting as

! We use double angle brackety to denote the schema objects in a schema



the root node of the and the other acting as a key node linkélgetooot by an edge.
The other columns in the file become nodes also linked to therrade by edges.

@

(@) HDM representation of SQL dath) HDM representation of
source XML datasource

o5 /\ g > >o5 /\ g >
bsl r bmi bsl result bmi

(c) HDM representation of (d) The public schema
spreadsheet datasource

Fig. 4. HDM representation of the data sources

In a P2P setting peers initially do not know which schemasemetwork would be rel-
evant to their needs. Representing all the data models inM &bwe have done makes
it possible for the schema search to work across differetat s@dels rather than a sin-
gle model as in PeerDB. In the next section, we present a sthetadata management
method which allows peers to efficiently find the public sclhemnd transformation
pathways they need by making effective use of schema metadat

3 Schema Metadata Management

To store and maintain schema metadata, peers in a datadtitegdomain form a dis-
tributed schema metadata repository (SMR). We will firsegive formal definitions of
schema metadata based on our HDM data model before disguksisemantics of an
SMR and its key functions.

Summary query A summary queryy of a schema objecb of a schemd is an ex-
tended query extent of the’s BAV transformation which considers the values range
r = [min(Vals(so)), max(Vals(so))]. Vals(so) represents the set of actual data values of
the schema objeeb.



Schema object metadataA schema object metadata™ of a schema objecto of

a public schem& is a tuple(peer, schema, scheme, q), wherepeer is the URL of
the peer implementing schen$a schema is the name of the schenfg scheme is

the string representation of the HDM-construct instaneg tefinesso, andq is the
summary query ofo. In HDM, ascheme is a list of elementge;, e, ..., en} where

e; are names of the HDM nodes that are referred tasdayWe call two schema ob-
jectsso]' andsof' k-factor matchable w.r.t searching if their schemes share a con-
tinuous sequence df scheme elements starting from the first scheme position, i.e
31 <k < m : so".scheme N sof".scheme = {e1, ..., ex}. We contend that for schema
metadata management purposes schema object schemes deeddbrbe exact but
must be matchable. We den&€® andSO* be the set of all schema object metadata
of a schema and on the network respectively.

Schema metadatad schema metadat&™ of a schem# is the set of all schema object
metadata defined f&. The metadata of a schema is defined either when the schema is
defined from the data source or when it is integrated fromratbkemas.

Example As shown in Figure 4(d), the public schema has four nodes e tedges.
Taking the XML public schem&,, with identifier bys,, (lower cases) as an exam-
ple, it is implemented by peét, and its schema metadata contains the schema object
metadata in Table 1. We use the notatiyn(capitalisedP) to refer to the URL (e.g.

IP address) of a peer. Note from this table that although the extents of the three
schema objectgresult)), ((id), and {(_, result,id)) are same we still define for each
of them a separate schema object metadata. There are imptvtareasons for this.
First, because these metadata entries are registeredfdcedif SMR peers it will be
easier to search for the associated schéma Second, although the extents of these
three objects are initially the same, when schéma is integrated with other schemas
by different peer applications these extents would be wgatet different ways. This
would then lead to different summary queries be generateldse applications for the
schema object metadata.

Schema Objects Schema object metadata
Peel Schem: Schemes Summary queries
((result)) Pa Suml {result} [{x}[{x} < ((result)); x > 100;x < 107]
((bsl)_) Pa  Symi {bsl}_» {xH{x} < ((bsl)_); x> 3;x < 5]
((bmi) Po s {bmi}  [{xH{x} — (bmijix > 17:x < 19]
((ic) Py s {id} [{x}{x} — (id))ix > 100;x < 107]
{(-, result,id))  Ps syl {result,id}  [{x}|{y,x} < ((, result,id)); x > 100;x < 107]
(-, result, bsl)) Ps  syml {result, bsl} [{x}|{y,x} < ((-, result, bsl)); x > 3;x < 5]
(-, result, bmi)) Py symi {result, bmi} [{x}|{y,x} < ((-, result, bmi)); x > 17;x < 19]

Table 1. Schema object metadata example

The schema metadata of the other two schefgasandS., can be defined in similar
manner.



3.1 Schema Metadata Repository

A schema metadata repository is a distributed data stoneddiby a set of peef8in a

data integration domai® for indexing and searching schema metadata contributed by
peers inD. Each peeP is assigned a unique identifigx (lower casep) by a mapping
function MP. Likewise a schema object metadata is given an identifien fianapping
function M°. The domain of functionM® is taken from the value domains of the
elements of the schema object metadata. To ensure thaidladweys at least one peer
found for a schema object metadata, héttt and M° map to the same identifier range.
We will refer to bothMP and M° as mapping functions.

Another essential component of the SMR is a routing strafégyecuted on every peer
to determine for a schema object metadata identi@irthe next hop pegs, which is
either the peer responsible fes™ or the most favourable neighbour for forwarding
so™. Different routing strategies use different cost factargletermine what is meant
by the most favourable neighbour of a peer.

In addition, we introduce to the SMR usage statisticabout the associated schema
objects. These statistics are gathered and registerecetS8 MR by peers when they
use a schema for integration and/or query processing. Ampbaof usage statistics
of a schema objecto of a schemé would be aquality factor which is measured
from the transformation pathway &f As so is used by peers, its usage statistics are
updated to take into consideration, for example, how fretjyeand accurately it is
used for answering queries and/or how popular is its useteggmting peers schemas.
The schema search function of the SMR discussed later chseutiese statistics to
improve the search result.

Therefore we define an SMR as a tuple:
SMR =(D,P,SO*, MP, M° R, U)

Note that by defining a SMR along the boundary of a data integraomain, we can
more effectively manage the schema search space whilst aathe time allowing the
system to easily scale to accommodate other related domains

A peer participating in a SMR performs three high-level flios: (1)register schema
metadata indexes and registers a schema object metadata in SMR arskdfch
schema searches for the relevant schemas matching some criteda(3 update
schema metadataupdates the definition of a schema object metadata. Schegra r
istration directly uses the mapping and routing functiohshe SMR whilst schema
search uses more sophisticated techniques from databdsefarmation retrieval. A
formal treatment of the update function is outside the saafphis paper. Therefore,
we will assume a naive update approach which deploys a tinrtige mechanism for
automatically ageing out outdated metadata entries frenSR.

Before explaining functions 1 and 2 in details, we first gineeaample of a DHT-based
SMR and uses it as the basis for further discussion. The pyitenefits of using DHT-
based techniques are that they scale gracefdljog(N)) with the network size and



they guarantee with high probability a random distribut@fithe value objects [15].
The latter focuses on load fairness among peers.

A DHT-based SMR uses DHT-based hashing and routing techniques [15] foxinde
and organising schema metadata. The mapping fungtiSris a family hash function
H which maps for eacko™ € SMR an identifierso™ = h(so™.scheme) (h € H).
To preserve the structure of the schema object scheme thitwaghing, we would en-
force thatH be order-preserving (e.g. [16]). This gives us the flexipibf indexing
and searching schema object metadata based on the maitghaltiler than the exact
equality of schema object schemes.

In fact, a number of DHT-based techniques, such as P-Grijj {5 a prefix-based
routing strategy which naturally supports the matchabpitoperty of our schema ob-
ject schemes. For example in a P-Grid network, each peesjmresible for storing a
pool of value objects which share a common prefix. Furtheeex'p decision to serve
(or forward) a search request of a value object is based ohehthere exists a com-
mon prefix between its identifier (or its neighbours’) and tiogect key. Therefore, by
our definition when two schema object schemes are matchiaisléiighly likely that
they share a common prefix and would therefore be locateckaine peer.

The concept of a DHT-based SMR will become clearer when weudssthe schema
metadata registration function with an example from P-@rithe next section.

3.2 Schema Metadata Registration

In principle, to register a schema object metadataof a public schem& to the SMR,
a peelP first generates an identifiss” = M°(so™.scheme). After that, peeP applies
the routing strateg§k to forwardso™ to a destination peqsi. Figure 5 illustrates this
using P-Grid to index and organise the schema object metaddie example in Sec-
tion 2. We will assume the general case in which there arenga®ers named arbitrarily
as shown. Three of these seven peers are the peers of theagheaech groups in our
example.

object
hashing

peers p !

routing

Fig. 5. An SMR example using P-Grid

Using P-Grid, we would initially distribute the schema diijmetadata when peers first
joininto the network. A peer and its neighbour divide the-poastructed key space into
halves starting from a common prefix of the peers’ identifi@sce these peers have



arranged the key distribution among them, they can starthaxging schema object
metadata accordingly. Figure 5 shows, for example, howtherma object metadata of
schema,, would be registered. The schema object metafi@talt} and{result, id}
are both located at the peers responsible for the tree palthpréfix 01 because they
share the first scheme element. On the other hgsstl; and{id} do not share acommon
prefix and are pushed to two separate paths 11 and 00 resggods shown in Figure 5
the peerg,s andp,3 are responsible for paths 10 and 00 respectively. Furtbefafilt
tolerance, peeg,; is also assigned to the tree path 00.

Each peer keeps in its routing table the identifier of its fieighbour and the identifiers
of one or more peers at the same level but on the other sideadémntifier tree. These
peers act as next hops for keys that do not map to the tree patber. In our example,
peerp,; keeps a reference to pegy for routing objects with key prefix 1 while peer
px7 keeps a reference to pgggs for routing objects with key prefix 0.

3.3 Search Schema

Intuitively, searching for schemas comes down to lookingtie relevant schema object
metadata in the SMR that satisfy a predicate-based seaecth Quwhich is formulated
from a set of schema object schen8€ghemes and their predicateSPreds. The search
scheme predicatésPreds are used for filtering schema object metadata based on the
satisfiability of their summary queries. To further reduee humber of schema objects
returned from search, we introduce an optional qualitydaga’ which asks the search
algorithm to rank the result set based on the schema objegeustatistics and to re-
turn only those above the specified threshold. With this indnive define the general
schema search problem as follows:

Definition Given a search quer@® = (SSchemes, SPreds) and a quality factotja’
retrieve the set of schema object metade®' such thatvso™ € SOM the followings
are true: (1L sc € SSchemes and its predicatps. € SPreds: match(so™.scheme, sc) A
checkSatisfiability(so™.q, psc); (2) so™.schema is fully complied; (3) rank(so™) > qa*

Property 1 states that the schema metadata oj&cinust match with at least one of
the searched schemes and also satisfy all the predicamesass with the matched
schemes. Property 2 ensures that the schema to wbiitbelongs is fully compliant,
i.e. none of its schema metadata objects which match withyddfeand yet violates the
checkSatisfiability condition of Property 1.

The match function lexically compares two schemes for eitherexact or a partial
match. We use exact matching if search schemes predicatespecified and partial
matching when there are no predicates. In the later case,illvallaw the searching
application to specify a custokifactor value with thematch function through which
to fine-tune the search results.

The checkSatisfiability function is a special case of the query answering using views
problem [18]. For example, in the context of the MiniCon [E3§orithm which we
implemented for query processing our search schema algogan be considered as a
distributed form of the first phase in which the MiniCon degstions are formed. There-



fore,checkSatisfiability runs faster than a general-purpose query answering usagvi
algorithm because we omit the final phase in which the salisfiews are combined
into the final rewritings.

Property 3 ranks and compares the result schemas based guatity factorqa’. The
ranking algorithm needs to consider usage statistics adsdcto the schema object
metadata in order to measure the schema object quality. ®etpltackle the search
problem with property 3 as part of our future work.

We outline in Algorithm 1 the basic search schema algoritbmaf DHT-based SMR
which supports Properties 1 and 2.

Algorithm 1 p,,.searchSchema(Q*®)

Require: queryQ® = (SSchemes, SPreds)
Ensure: setSOM to contain all schema object metadata that both match aisfys@f
1 setS™ to contain identifiers of all schemas that are not fully cdegplvith Q°.
2 for search schemsx € Q°.SSchemes and its predicate € Q°.SPreds do
3 Generate search ké&y= h(sc) and look up peepy for k
Forward sub-query® = ({sc}, {p}) to px and execut@y.checkSatisfiability(q*) — (SOM,S.")
AddSO}Y toSOM, S to S~
6 end for
7 Remove fron50M all schema object metadata whose schemadsin

4
5

8 pk.checkSatis fiability(q®):

9 setSO} to contain resulted schema metadata objects
10 setS, " to contain identifiers of all schemas that do not satisfy tleeljsates of®
11 Retrieve the 560&"/ of all schema metadata objects matchsng
12 Add '[OSO’Q/| onlyso™ € SOC/'/ which (1)so™.q satisfiesp and (2)so™.schema ¢ S
13 Add toS, " the identifiers of schemas of all metadata entries which deaiisfy condition (1)

14 return(SOY', S,7)

Note that because of the final filtering step (line 7), the bofithe search loop (lines
3, 4 and 5) can be executed in parallel for all search schefméswould significantly
reduce the time delay of the overall execution. Furtherh ¢ase of a partial match
at line 11 the ses5,” will be empty because the condition (1) on line 12 will not be
checked.

To illustrate this let us suppogegs is asked to search for all schemas containing schema
objects about BSL and NHS id and that the NHS id values aretkess 104. The
formulated search query to ask pexg is Q° = ({id, bsl}, {(id < 104)}). Using P-
Grid as the underlying DHT protocol of the SMR in our exampdergrio,p,s first
determines that its tree pathH@oes not share a common prefix with keybQsf id

nor does it fully match the prefix blof bsl. Thus, peemp,s looks up in its routing
table to identify neighbour peet,; responsible for prefix 11 and the next hop peer
px2 to the path prefix 00. NexQ® is reformulated into two sub-queries: query =
({id}, {(id < 104)}) to be forwarded tp., and queryys = ({bsl}) be forwarded to
Px7-

At peerp,7, the same prefix-checking process is repeated but this teeepp; is in
fact responsible fobsl. However, becausg; does not contain any predicates, all three
metadata entries matchingl are returned to pees,s. Peerp,, only shares the first
bit 0 with the searched key eésult, thus, proceeds with looking up its routing table



for the neighboup,; to forward queryqs;. At peerp,,, three exact matches are found
for schemad but only the metadata entries from two sche®ag andS.q satisfy the
predicate(id < 104). Therefore, peep,; returns to peep,s two metadatad entries
and one unsatisfied schema identifigy.

Finally, peem,s aggregates all search results it has received from pgeendp,; and
based on it remove the metadata emiiyof the unsatisfied schensg, . As a result, the
execution ofp,s.searchSchema(Q?®) gives the schema object metadata of two schemas
with identifiers{sumi, Ssqi }-

Extension to the basic search algorithmA limitation of Algorithm 1 is that it does

not require the searched schemas to support all search ssh&hich may result in

irrelevant schemas being found. However, this situationldmot necessary happen if
we take the view that all SMR peers are in the same domain argldbntain related

schemas. But even if there are irrelevant schemas it islpledsi filter them through a

schema matching process [20] which is part of schema intiegra

Itis possible to extend Algorithm 1 to support a sub-set ailbschemes in the search.
To do this, we first represeq®.SSchemes as a set of scheme sets. We then generalise
the definition of the sub-query® in line 4 to contain a set of schemes and a set of
associated predicates. Finally, we extend the checkingwodlition (1) in line 12 to
support conjunctive query rewriting similar to the first gkeaf MiniCon.

The URLs of the peers where the schemas are located can bd fiouhe schema
object metadata and we can wrap the definitions of sché&gaandS,y, from these
peers ontg,s. Now that we have the necessary schemag,gnve can integrate them
to create the public schema.

4 Schema Integration

We use the BAV data integration approach [4] which providesaliernative to the
more commonly used GAV and LAV [21] approaches. In BAV, schsrare mapped to
each other using a sequencebafirectional schema transformations callegathway.
The technique readily supports schema evolutions [5] wb@hbe expressed as exten-
sions to existing pathways. This feature makes BAV welleslitb P2P data integration,
where peers may join or leave the network at any time, or maygé their set of local
schemas, published schemas, or pathways between schemas.

A BAV pathway is created by the repeated application of onthef5 primitive BAV
transformationsadd and its inversalelete extend and its inversecontract andre-
name Theadd anddeletetransformations include a query that defines the extent of
the new or removed schema object in terms of the extents sfiegischema objects.
extendandcontract are used when it is not possible to define the extent of the mew o
removed schema object in terms of existing schema objects.

The public schema we create in this way is shown in Figure.Hgample 1 shows
some of the BAV transformations needed to transfSggninto the public schema. Fig-
ure 6 shows a intermediate HDM graph after transformafion At the moment our



technique requires the manual creation of a public schentlacatjuery peer but we
hope in future to add some automation to the process. Somke iwdhis regard has
already been done in our group [20].

These transformations create the pathway shown on thedefi kide ofp,s. We can
now extend this pathway by transformifg,, in the public schema using a similar set
of transformations. The bidirectional nature of BAV meahnattwe now not only have
a pathway from the data sources to the public schema but akseesse pathway that
gives us a view of both relevant data sources from the publiema. This is shown in
Figure 7. We use this view to answer our query and return tbelt:g 3,3,4,5.

Example 1 Creating the public schema from the SQL schema

D addNode ({(result)), [{x}|{x} « {nhs_num))])

@ addNode ()., [{x} | {x} — (id)])

(3 addNode({(bsl)), [{x}| {x} — (bsi)))

@ addNode {(bmi), [{x}[{x} — (bmi)])

© addEdge({(, result,id), [{x, v} {x,y} (., nhs.num, id))])
© addEdge({( result, bsl), [{x, v}| {x, v} — (- blood, bsh)])

(@ addEdge( (. result, bmi)), [{x, v} {x, v} — (L, weight, bmi))})
(@ moveDependents ({(-, nhs_num, id)), (-, result, id)))

(9@ moveDependents (((-, weight, bmi)), ((_, result, bmi)))
(OmoveDependents (((-, blood, bsl)), (-, result, bsl)))

L deleteEdge( (-, nhs.num, id)), [{x, v} | {x, v} — (-, result, id)])
2 deleteEdge (-, weight, bmi)). [{x,y}H{x,y} — (- result, bmi))])
C3deleteEdge (- blood, bsl), [{x, y} [ {x, v} — (- result, bsl)))
(4 deleteCons(C, ((idblood)), ((id)))

(5deleteCons(C, {(idweight)), ((id)))

(B contractEdge ({(-, weight, idweight)), Void, All)
(F contractEdge ({(-, blood, idblood)), Void, All)
(
(

A~~~
PN
RN

o~
ESSS

(8 contractNode ( {(weight)), Void, All)
{9contractNode ({(blood)), Void, All)

D0 deleteNode ((weight)), [{x}|{x} «— ((idweight))])
2 deleteNode ({(blood), [{x}|{x} « (idblood))])

Fig. 6. Intermediate HDM graph

5 Related Work

We have identified the following research areas as releeethetwork presented in this
paper.
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Fig. 7. Extending a Transformation Pathway between Peers

Model ManagementA central theme in the current P2P schema integration system
such as Piazza [7] and Edutella [9] is the use of a common datkehfior defining the
mappings between schemas represented in different lotalndadels. These systems
both use RDF [23] to describe both query and peer correspmedeA limited number

of data models now have representations in RDF but theretithheavide support that
HDM provides. The languages used to transform RDF [12] ave labt as flexible or as
well suited to the P2P environment as BAV.

Schema Metadata ManagementThese aforementioned systems only consider direct
mappings between peers. The underlying assumption in Hyssems is that there is an
implicit global knowledge about peer schemas on the netwoitkat a peer can contact
any other peers for any schemas that meet its informatiodsnées such, these systems
do not address the issue of schema metadata distributiodisoavery which we feel

is essential for add-hoc data integration and query praogés P2P environment.

We use an information retrieval technique for distributargl searching schemas simi-
lar in spirit to PeerDB [6]. However, PeerDB does not tackle data integration prob-
lem as with our approach. It also relies on a simple desonif a schema metadata us-
ing relation and attribute constructs from the relation elo@he keyword-based search
used by PeerDB may return schemas which do not actually icoswtg data satisfying
the user’s requirement. Edutella is better at data integrdtut restricts the reusability
of schema metadata on the P2P network by coupling distdbgery processing with
schema metadata management at super peers. This can |ledwhtanced load distri-
bution among the super peers whereby certain popular swgees fare always busier
than less popular peers.

The HDM data model allows us to have a generic graph-basedseptation of any

integrated schemas on the network. As a result we have a sametadata model which
is independent of the underlying data models of the peemsakeFurther, to improve

the quality of schema search, we define in each schema meefatition of a schema
object a query that summarises the extent of that schematolbjeis enables the use
of a predicate-based search query to more efficiently filteumsatisfactory schemas.
We also decouple query processing and schema metadathwdistr to reduce the

likelihood of overloading specific peers.



6 Conclusion

In this paper, we have described a method for performing mtedel data integration in
a P2P environment by using a generic CDM and a bidirectioatal thtegration method.
We formally defined schema metadata management as a disttibamponent which
enables peers to effectively organises schema metadataakes them available for
discovery on the P2P network. We are implementing the featdiscussed in this paper
on top of an integration system called AutoMed (http://wdec.ic.ac.uk/automed). We
plan to extend the schema search algorithm to take into atamage statistics for
ranking schemas and their objects.
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