
Inter model data integration in a P2P environment

Duc Minh Le and Andrew Smith

Imperial College London

Abstract. The wide range of data sources available today mean that the integra-
tion of heterogeneous data sources is now a common and important problem. It is
even more challenging in a P2P environment, peers often do not know in advance
which schemas of other peers will suit their information needs and there is po-
tentially a greater diversity of data modelling languages in use. In this paper, we
propose a new approach to P2P inter model data integration which supports data
model diversity whilst allowing peers to have the flexibility of choosing how to
integrate their schemas. We will show how this approach can be used to integrate
multiple heterogeneous data sources (CSV text files, XML andSQL) and how
the metadata of the (partially) integrated schemas can be distributed and made
available for discovery by other peers. We also briefly describe a system being
developed by our group that has the discussed features.

1 Introduction

P2P inter model data integration is the process whereby data stored in autonomous
heterogeneous data sources under different data models is made accessible to everyone
on a P2P network.

There are three main aspects to this. The first is how to express represent schemas from
different data models in acommon data model (CDM)[1] in which all the constructs
of the various data models in the integration can be represented. In this paper we make
use of the HDM, a graph based model which can represent a wide range of higher level
data constructs making it a good choice as a CDM in an inter model integration. It has
been used to model XML, UML, SQL [2] and RDF [3] amongst others.

The second aspect of the problem is how to enable peers to find the schemas created
in the previous step. The difficulty in distributed schema metadata management lies
in the ability to effectively handle a potential explosion in the number of schemas on
the network as the network size increases and peers integrate their schemas in add-
hoc fashion. Further, as the number of schemas on the networkincrease, searching for
relevant schemas desires more rigorous selection criteria.

Finally, once we have found the relevant schemas we need to integrate them to provide
a unified view of the relevant data sources to users of the P2P network. We use the both-
as-view (BAV) [4] data integration technique which provides good support for schema
evolution [5], an important advantage in a dynamic P2P environment.

Existing P2P data sharing systems such as PeerDB [6] addressthis problem by defining
some form of metadata using the constructs of the local data source model. Further,



these systems assume the use of a single data model across thenetwork and do not
tackle the issue of integrating different data models as with our approach. On the other
hand, existing P2P data integration systems either do not address the schema metadata
management (e.g. Piazza [7] and CoDB(z) [8]) or concentratethis functionality as part
of query processing in certain fast nodes (e.g. Edutella [9]) which can lead to the over-
loading of those nodes.

In this paper we propose a method of effectively performing inter model data integration
in a P2P environment by using a generic CDM capable of representing a wide range of
data models and a schema metadata management method based onthis generic model.
To the best of our knowledge this has not been attempted before. In particular we make
the following contributions:

– we show how the combination of the HDM and the BAV data integration method
are particularly suited to integrating schemas represented in different data mod-
elling languages in a P2P environment

– we define a general framework, independent of the data modelsof the peer data
sources, for representing schema metadata and for managingthese metadata on the
P2P network. We use a DHT-based repository as this scales well with the network,
and focus on load fairness amongst peers

– we formally define the schema search problem and propose an algorithm for finding
the relevant schemas on the P2P network based on schema object scheme matching
and satisfiability check of predicate-based queries against the schema metadata

The rest of the paper is structured as follows: Section 2 presents an example scenario
and briefly describes our CDM. Section 3 describes our approach to schema metadata
management. Section 4 describes our data integration technique. Section 5 describes
the related work and Section 6 gives conclusions and directions for future work.

2 Representing different data models in a CDM

Consider a group of colleagues at different research institutions connected via a P2P
network collaborating on a research project into the correlation between blood sugar
level (BSL) and body mass index (BMI). They wish to share their data but each re-
searcher stores their data in a different way. Researcher A uses an SQL database, re-
searcher B an XML file and C stores her results in a spreadsheetthat she exports as a
CSV text file. Figures 1, 2 and 3 show fragments of the data sources provided by the
three researchers.

In this case there is no obvious candidate model to use as a CDM. One option is to use
one of the local schema models and transform the other schemas into that model. This
is often the approach taken when there are only 2 different data models involved [10].
A more flexible approach, when the participating data sources use more than 2 different
data modelling languages, is to use a generic model that is capable of easily expressing
all the constructs of the different local schemas [11, 2, 12]. This is the approach we
adopt, using theHypergraph Data Model (HDM) [13] as a CDM.



nhs num
id
100
101
102
103
104

blood
idblood bsl
100 3
101 3
103 5
104 4

weight
idweight bmi
100 17
102 22
103 17

blood.idblood← nhs num.id
weight.idweight← nhsnum.id

Fig. 1.SQL tables

<results>
<result id = "102">

<bsl>4</bsl>
<bmi>17</bmi>

</result>
<result id = "103">

<bsl>5</bsl>
<bmi>19</bmi>

</result>
<result id = "104">

<bsl>5</bsl>
<bmi>18</bmi>

</result>
</results>

Fig. 2.XML

id bsl bmi
105 4 19
106 3 17
108 3 15
109 5 22
110 4 14

Fig. 3.Spreadsheet

The HDM is a graph based generic data model that makes use of 3 simple constructs:
nodes, edges and constraints. It has been used to represent awide variety of data models
making it particularly suited as a CDM in inter model data integration. The fact that it
is graph based offers the added advantages of easy visual comparison of data structures
and the ability to represent all schemas in an irreducible form [14]. RDF is another graph
based modelling language which has been used as a CDM in P2P applications [12] but
HDM’s simple semantics and compact syntax make it more flexible than RDF and thus
more suitable to an inter model data integration scenario.

Figure 4 shows the data sources from the example representedin the HDM. In Fig-
ure 4(a) the database tablesnhs num, blood andweight are represented by nodes and
their columns by nodes linked to the respective ’table’ nodes by an edge. Theextent
of a node or edge is the set of values from the data source that the node or edge rep-
resents. For example theextent of the ’column’ node〈〈bmi〉〉 1 is {17, 22, 17} and of
〈〈 , weight, bmi〉〉, the edge linking〈〈weight〉〉 to 〈〈bmi〉〉 is{〈100, 17〉, 〈102, 22〉, 〈103, 17〉}

The HDM constraint constructs are shown in the grey boxes in the diagram. HDM sup-
ports six distinct primitive constraint operators: union,inclusion, exclusion, mandatory,
unique and reflexive that can be used to model the constraint constructs of higher level
languages [2]. For example we use the unique (⊳), mandatory (⊲) and reflexive (

id
→)

constraints to model the primary key constraint from thenhs num table. The fact that
a primary key column cannot be null is represented by the mandatory constraint from
nhs num to the edge. This means that any value in the extent ofnhs num must appear
in the edge, it’s uniqueness is represented by theunique constraint. Thereflexive
constraint ensures that any tuple in the extent of the edge isan identity tuple.

The structure and semantics of the other two data sources arerepresented in the HDM
in a similar way. In Figure 4(b) the XML elements and attributes become nodes in the
HDM and the hierarchical structure is represented by edges linking parent elements to
their children. For example the parent elementresults is linked to its childresult by
an edge. The associations betweenresult and its attributes are also shown as edges. In
Figure 4(c) the first column in the CSV file is represented by two nodes one acting as

1 We use double angle brackets〈〈〉〉 to denote the schema objects in a schema



the root node of the and the other acting as a key node linked tothe root by an edge.
The other columns in the file become nodes also linked to the root node by edges.

(a) HDM representation of SQL data-
source

(b) HDM representation of
XML datasource

(c) HDM representation of
spreadsheet datasource

(d) The public schema

Fig. 4. HDM representation of the data sources

In a P2P setting peers initially do not know which schemas on the network would be rel-
evant to their needs. Representing all the data models in a CDM as we have done makes
it possible for the schema search to work across different data models rather than a sin-
gle model as in PeerDB. In the next section, we present a schema metadata management
method which allows peers to efficiently find the public schemas and transformation
pathways they need by making effective use of schema metadata.

3 Schema Metadata Management

To store and maintain schema metadata, peers in a data integration domain form a dis-
tributed schema metadata repository (SMR). We will first give the formal definitions of
schema metadata based on our HDM data model before discussing the semantics of an
SMR and its key functions.

Summary query A summary queryq of a schema objectso of a schemaS is an ex-
tended query extent of theso’s BAV transformation which considers the values range
r = [min(Vals(so)), max(Vals(so))]. Vals(so) represents the set of actual data values of
the schema objectso.



Schema object metadataA schema object metadatasom of a schema objectso of
a public schemaS is a tuple〈peer, schema, scheme, q〉, wherepeer is the URL of
the peer implementing schemaS, schema is the name of the schemaS, scheme is
the string representation of the HDM-construct instance that definesso, andq is the
summary query ofso. In HDM, a scheme is a list of elements{e1, e2, . . . , em} where
ei are names of the HDM nodes that are referred to byso. We call two schema ob-
jects som

a and som
b k-factor matchable w.r.t searching if their schemes share a con-

tinuous sequence ofk scheme elements starting from the first scheme position, i.e.
∃1 ≤ k ≤ m : som

a .scheme ∩ som
b .scheme = {e1, ..., ek}. We contend that for schema

metadata management purposes schema object schemes do not need to be exact but
must be matchable. We denoteSO andSO⋆ be the set of all schema object metadata
of a schema and on the network respectively.

Schema metadataA schema metadataSm of a schemaS is the set of all schema object
metadata defined forS. The metadata of a schema is defined either when the schema is
defined from the data source or when it is integrated from other schemas.

Example As shown in Figure 4(d), the public schema has four nodes and three edges.
Taking the XML public schemaSxml with identifier bysxml (lower cases) as an exam-
ple, it is implemented by peerPa and its schema metadata contains the schema object
metadata in Table 1. We use the notationPa (capitalisedP) to refer to the URL (e.g.
IP address) of a peera. Note from this table that although the extents of the three
schema objects〈〈result〉〉, 〈〈id〉〉, and 〈〈 , result, id〉〉 are same we still define for each
of them a separate schema object metadata. There are important two reasons for this.
First, because these metadata entries are registered to different SMR peers it will be
easier to search for the associated schemaSxml. Second, although the extents of these
three objects are initially the same, when schemaSxml is integrated with other schemas
by different peer applications these extents would be updated in different ways. This
would then lead to different summary queries be generated bythese applications for the
schema object metadata.

Schema Objects Schema object metadata
PeerSchemaSchemes Summary queries

〈〈result〉〉 Pa sxml {result} [{x}|{x} ← 〈〈result〉〉; x ≥ 100; x ≤ 107]
〈〈bsl〉〉 Pa sxml {bsl} [{x}|{x} ← 〈〈bsl〉〉; x ≥ 3; x ≤ 5]
〈〈bmi〉〉 Pa sxml {bmi} [{x}|{x} ← 〈〈bmi〉〉; x ≥ 17; x ≤ 19]
〈〈id〉〉 Pa sxml {id} [{x}|{x} ← 〈〈id〉〉; x ≥ 100; x ≤ 107]
〈〈 , result, id〉〉 Pa sxml {result, id} [{x}|{y, x} ← 〈〈 , result, id〉〉; x ≥ 100; x ≤ 107]
〈〈 , result, bsl〉〉 Pa sxml {result, bsl} [{x}|{y, x} ← 〈〈 , result, bsl〉〉; x ≥ 3; x ≤ 5]
〈〈 , result, bmi〉〉 Pa sxml {result, bmi} [{x}|{y, x} ← 〈〈 , result, bmi〉〉; x ≥ 17; x ≤ 19]

Table 1.Schema object metadata example

The schema metadata of the other two schemasSsql andScsv can be defined in similar
manner.



3.1 Schema Metadata Repository

A schema metadata repository is a distributed data store formed by a set of peersP in a
data integration domainD for indexing and searching schema metadata contributed by
peers inD. Each peerP is assigned a unique identifierpk (lower casep) by a mapping
functionMp. Likewise a schema object metadata is given an identifier from a mapping
function Mo. The domain of functionMo is taken from the value domains of the
elements of the schema object metadata. To ensure that thereis always at least one peer
found for a schema object metadata, bothMp andMo map to the same identifier range.
We will refer to bothMp andMo as mapping functions.

Another essential component of the SMR is a routing strategyR executed on every peer
to determine for a schema object metadata identifiersom

i the next hop peerpk which is
either the peer responsible forsom

i or the most favourable neighbour for forwarding
som. Different routing strategies use different cost factors to determine what is meant
by the most favourable neighbour of a peer.

In addition, we introduce to the SMR usage statisticsU about the associated schema
objects. These statistics are gathered and registered to the SMR by peers when they
use a schema for integration and/or query processing. An example of usage statistics
of a schema objectso of a schemaS would be aquality factor which is measured
from the transformation pathway ofS. As so is used by peers, its usage statistics are
updated to take into consideration, for example, how frequently and accurately it is
used for answering queries and/or how popular is its use in integrating peers schemas.
The schema search function of the SMR discussed later can utilise these statistics to
improve the search result.

Therefore we define an SMR as a tuple:

SMR =〈D,P ,SO⋆,Mp,Mo,R,U〉

Note that by defining a SMR along the boundary of a data integration domain, we can
more effectively manage the schema search space whilst at the same time allowing the
system to easily scale to accommodate other related domains.

A peer participating in a SMR performs three high-level functions: (1)register schema
metadata: indexes and registers a schema object metadata in SMR and (2) search
schema: searches for the relevant schemas matching some criteria and (3) update
schema metadata: updates the definition of a schema object metadata. Schema reg-
istration directly uses the mapping and routing functions of the SMR whilst schema
search uses more sophisticated techniques from database and information retrieval. A
formal treatment of the update function is outside the scopeof this paper. Therefore,
we will assume a naive update approach which deploys a time-to-live mechanism for
automatically ageing out outdated metadata entries from the SMR.

Before explaining functions 1 and 2 in details, we first give an example of a DHT-based
SMR and uses it as the basis for further discussion. The primary benefits of using DHT-
based techniques are that they scale gracefully (O log(N)) with the network size and



they guarantee with high probability a random distributionof the value objects [15].
The latter focuses on load fairness among peers.

A DHT-based SMRuses DHT-based hashing and routing techniques [15] for indexing
and organising schema metadata. The mapping functionMo is a family hash function
H which maps for eachsom ∈ SMR an identifiersom

i = h(som.scheme) (h ∈ H).
To preserve the structure of the schema object scheme through hashing, we would en-
force thatH be order-preserving (e.g. [16]). This gives us the flexibility of indexing
and searching schema object metadata based on the matchability rather than the exact
equality of schema object schemes.

In fact, a number of DHT-based techniques, such as P-Grid [17], use a prefix-based
routing strategy which naturally supports the matchability property of our schema ob-
ject schemes. For example in a P-Grid network, each peer is responsible for storing a
pool of value objects which share a common prefix. Further, a peer’s decision to serve
(or forward) a search request of a value object is based on whether there exists a com-
mon prefix between its identifier (or its neighbours’) and theobject key. Therefore, by
our definition when two schema object schemes are matchable it is highly likely that
they share a common prefix and would therefore be located at the same peer.

The concept of a DHT-based SMR will become clearer when we discuss the schema
metadata registration function with an example from P-Gridin the next section.

3.2 Schema Metadata Registration

In principle, to register a schema object metadatasom of a public schemaS to the SMR,
a peerP first generates an identifiersom

i = Mo(som.scheme). After that, peerP applies
the routing strategyR to forwardsom to a destination peerpk. Figure 5 illustrates this
using P-Grid to index and organise the schema object metadata of the example in Sec-
tion 2. We will assume the general case in which there are seven peers named arbitrarily
as shown. Three of these seven peers are the peers of the threeresearch groups in our
example.

Fig. 5. An SMR example using P-Grid

Using P-Grid, we would initially distribute the schema object metadata when peers first
join into the network. A peer and its neighbour divide the pre-constructed key space into
halves starting from a common prefix of the peers’ identifiers. Once these peers have



arranged the key distribution among them, they can start exchanging schema object
metadata accordingly. Figure 5 shows, for example, how the schema object metadata of
schemaSxml would be registered. The schema object metadata{result} and{result, id}
are both located at the peers responsible for the tree path with prefix 01 because they
share the first scheme element. On the other hand,{bsl} and{id} do not share a common
prefix and are pushed to two separate paths 11 and 00 respectively. As shown in Figure 5
the peerspx5 andpx3 are responsible for paths 10 and 00 respectively. Further, for fault
tolerance, peerpx1 is also assigned to the tree path 00.

Each peer keeps in its routing table the identifier of its firstneighbour and the identifiers
of one or more peers at the same level but on the other side of the identifier tree. These
peers act as next hops for keys that do not map to the tree path of a peer. In our example,
peerpx1 keeps a reference to peerpx4 for routing objects with key prefix 1 while peer
px7 keeps a reference to peerpx3 for routing objects with key prefix 0.

3.3 Search Schema

Intuitively, searching for schemas comes down to looking for the relevant schema object
metadata in the SMR that satisfy a predicate-based search queryQs which is formulated
from a set of schema object schemesSSchemes and their predicatesSPreds. The search
scheme predicatesSPreds are used for filtering schema object metadata based on the
satisfiability of their summary queries. To further reduce the number of schema objects
returned from search, we introduce an optional quality factor qaℓ which asks the search
algorithm to rank the result set based on the schema object usage statistics and to re-
turn only those above the specified threshold. With this in mind, we define the general
schema search problem as follows:

Definition Given a search queryQs = 〈SSchemes, SPreds〉 and a quality factorqaℓ

retrieve the set of schema object metadataSOM such that∀som ∈ SOM the followings
are true: (1)∃ sc ∈ SSchemes and its predicateρsc ∈ SPreds: match(som.scheme, sc) ∧
checkSatisfiability(som.q, ρsc); (2) som.schema is fully complied; (3) rank(som) ≥ qaℓ

Property 1 states that the schema metadata objectsom must match with at least one of
the searched schemes and also satisfy all the predicates associated with the matched
schemes. Property 2 ensures that the schema to whichsom belongs is fully compliant,
i.e. none of its schema metadata objects which match with query Qs and yet violates the
checkSatisfiability condition of Property 1.

The match function lexically compares two schemes for either anexact or a partial
match. We use exact matching if search schemes predicates are specified and partial
matching when there are no predicates. In the later case, we will allow the searching
application to specify a customk-factor value with thematch function through which
to fine-tune the search results.

The checkSatisfiability function is a special case of the query answering using views
problem [18]. For example, in the context of the MiniCon [19]algorithm which we
implemented for query processing our search schema algorithm can be considered as a
distributed form of the first phase in which the MiniCon descriptions are formed. There-



fore,checkSatisfiability runs faster than a general-purpose query answering using views
algorithm because we omit the final phase in which the satisfied views are combined
into the final rewritings.

Property 3 ranks and compares the result schemas based on thequality factorqaℓ. The
ranking algorithm needs to consider usage statistics associated to the schema object
metadata in order to measure the schema object quality. We plan to tackle the search
problem with property 3 as part of our future work.

We outline in Algorithm 1 the basic search schema algorithm for a DHT-based SMR
which supports Properties 1 and 2.

Algorithm 1 pn.searchSchema(Qs)
Require: queryQs = 〈SSchemes, SPreds〉

Ensure: setSOM to contain all schema object metadata that both match and satisfy Qs

1 setS¬ to contain identifiers of all schemas that are not fully complied withQs.
2 for search schemesc ∈ Qs.SSchemes and its predicateρ ∈ Qs.SPreds do
3 Generate search keyk = h(sc) and look up peerpk for k

4 Forward sub-queryqs = 〈{sc} , {ρ}〉 to pk and executepk.checkSatisfiability(qs) → 〈SOM
k ,S¬

k 〉

5 AddSOM
k to SOM, S¬

k toS¬

6 end for
7 Remove fromSOM all schema object metadata whose schema is inS¬

8 pk.checkSatisfiability(qs):
9 setSOM

k to contain resulted schema metadata objects
10 setS¬

k to contain identifiers of all schemas that do not satisfy the predicates ofqs

11 Retrieve the setSOM′

k of all schema metadata objects matchingsc

12 Add toSOM
k only som ∈ SOM′

k which (1)som.q satisfiesρ and (2)som.schema /∈ S¬

13 Add toS¬

k the identifiers of schemas of all metadata entries which do not satisfy condition (1)
14 return〈SOM

k ,S¬

k 〉

Note that because of the final filtering step (line 7), the bodyof the search loop (lines
3, 4 and 5) can be executed in parallel for all search schemes.This would significantly
reduce the time delay of the overall execution. Further, in the case of a partial match
at line 11 the setS¬k will be empty because the condition (1) on line 12 will not be
checked.

To illustrate this let us supposepx5 is asked to search for all schemas containing schema
objects about BSL and NHS id and that the NHS id values are lessthan 104. The
formulated search query to ask peerpx5 is Qs = 〈{id, bsl} , {(id ≤ 104)}〉. Using P-
Grid as the underlying DHT protocol of the SMR in our example scenario,px5 first
determines that its tree path 10b does not share a common prefix with key 00b of id

nor does it fully match the prefix 11b of bsl. Thus, peerpx5 looks up in its routing
table to identify neighbour peerpx7 responsible for prefix 11 and the next hop peer
px2 to the path prefix 00. Next,Qs is reformulated into two sub-queries: queryqs

1 =
〈{id} , {(id ≤ 104)}〉 to be forwarded topx2 and queryqs

2 = 〈{bsl}〉 be forwarded to
px7.

At peerpx7, the same prefix-checking process is repeated but this time peerpx7 is in
fact responsible forbsl. However, becauseqs

2 does not contain any predicates, all three
metadata entries matchingbsl are returned to peerpx5. Peerpx2 only shares the first
bit 0 with the searched key ofresult, thus, proceeds with looking up its routing table



for the neighbourpx1 to forward queryqs
1. At peerpx1, three exact matches are found

for schemeid but only the metadata entries from two schemasSxml andSsql satisfy the
predicate(id ≤ 104). Therefore, peerpx1 returns to peerpx5 two metadataid entries
and one unsatisfied schema identifierscsv.

Finally, peerpx5 aggregates all search results it has received from peerspx2 andpx7 and
based on it remove the metadata entrybsl of the unsatisfied schemaSsql. As a result, the
execution ofpx5.searchSchema(Qs) gives the schema object metadata of two schemas
with identifiers{sxml, ssql}.

Extension to the basic search algorithmA limitation of Algorithm 1 is that it does
not require the searched schemas to support all search schemes which may result in
irrelevant schemas being found. However, this situation would not necessary happen if
we take the view that all SMR peers are in the same domain and thus contain related
schemas. But even if there are irrelevant schemas it is possible to filter them through a
schema matching process [20] which is part of schema integration.

It is possible to extend Algorithm 1 to support a sub-set of orall schemes in the search.
To do this, we first representQs.SSchemes as a set of scheme sets. We then generalise
the definition of the sub-queryqs in line 4 to contain a set of schemes and a set of
associated predicates. Finally, we extend the checking of condition (1) in line 12 to
support conjunctive query rewriting similar to the first phase of MiniCon.

The URLs of the peers where the schemas are located can be found in the schema
object metadata and we can wrap the definitions of schemasSsql andSxml from these
peers ontopx5. Now that we have the necessary schemas onpx5 we can integrate them
to create the public schema.

4 Schema Integration

We use the BAV data integration approach [4] which provides an alternative to the
more commonly used GAV and LAV [21] approaches. In BAV, schemas are mapped to
each other using a sequence ofbidirectional schema transformations called apathway.
The technique readily supports schema evolutions [5] whichcan be expressed as exten-
sions to existing pathways. This feature makes BAV well suited to P2P data integration,
where peers may join or leave the network at any time, or may change their set of local
schemas, published schemas, or pathways between schemas.

A BAV pathway is created by the repeated application of one ofthe 5 primitive BAV
transformations:add and its inversedelete, extend and its inversecontract and re-
name. Theadd anddelete transformations include a query that defines the extent of
the new or removed schema object in terms of the extents of existing schema objects.
extendandcontract are used when it is not possible to define the extent of the new or
removed schema object in terms of existing schema objects.

The public schema we create in this way is shown in Figure 4(d). Example 1 shows
some of the BAV transformations needed to transformSsql into the public schema. Fig-
ure 6 shows a intermediate HDM graph after transformation7 . At the moment our



technique requires the manual creation of a public schema atthe query peer but we
hope in future to add some automation to the process. Some work in this regard has
already been done in our group [20].

These transformations create the pathway shown on the left hand side ofpx5. We can
now extend this pathway by transformingSxml in the public schema using a similar set
of transformations. The bidirectional nature of BAV means that we now not only have
a pathway from the data sources to the public schema but also areverse pathway that
gives us a view of both relevant data sources from the public schema. This is shown in
Figure 7. We use this view to answer our query and return the result:{3,3,4,5}.

Example 1 Creating the public schema from the SQL schema

1 addNode(〈〈result〉〉, [{x}|{x} ← 〈〈nhs num〉〉])

2 addNode(〈〈id〉〉, [{x}|{x} ← 〈〈id〉〉])

3 addNode(〈〈bsl〉〉, [{x}|{x} ← 〈〈bsl〉〉])

4 addNode(〈〈bmi〉〉, [{x}|{x} ← 〈〈bmi〉〉])

5 addEdge(〈〈 , result, id〉〉, [{x, y}|{x, y} ← 〈〈 , nhs num, id〉〉])

6 addEdge(〈〈 , result, bsl〉〉, [{x, y}|{x, y} ← 〈〈 , blood, bsl〉〉])

7 addEdge(〈〈 , result, bmi〉〉, [{x, y}|{x, y} ← 〈〈 , weight, bmi〉〉])

8 moveDependents(〈〈 , nhs num, id〉〉, 〈〈 , result, id〉〉)

9 moveDependents(〈〈 , weight, bmi〉〉, 〈〈 , result, bmi〉〉)

10moveDependents(〈〈 , blood, bsl〉〉, 〈〈 , result, bsl〉〉)

11deleteEdge(〈〈 , nhs num, id〉〉, [{x, y}|{x, y} ← 〈〈 , result, id〉〉])

12deleteEdge(〈〈 , weight, bmi〉〉, [{x, y}|{x, y} ← 〈〈 , result, bmi〉〉])

13deleteEdge(〈〈 , blood, bsl〉〉, [{x, y}|{x, y} ← 〈〈 , result, bsl〉〉])

14deleteCons(⊆, 〈〈idblood〉〉, 〈〈id〉〉)

15deleteCons(⊆, 〈〈idweight〉〉, 〈〈id〉〉)

16contractEdge(〈〈 , weight, idweight〉〉, Void, All)

17contractEdge(〈〈 , blood, idblood〉〉, Void, All)

18contractNode(〈〈weight〉〉, Void, All)

19contractNode(〈〈blood〉〉, Void, All)

20deleteNode(〈〈weight〉〉, [{x}|{x} ← 〈〈idweight〉〉])

21deleteNode(〈〈blood〉〉, [{x}|{x} ← 〈〈idblood〉〉])
�

Fig. 6. Intermediate HDM graph

5 Related Work

We have identified the following research areas as relevant to the work presented in this
paper.



Fig. 7. Extending a Transformation Pathway between Peers

Model ManagementA central theme in the current P2P schema integration systems
such as Piazza [7] and Edutella [9] is the use of a common data model for defining the
mappings between schemas represented in different local data models. These systems
both use RDF [23] to describe both query and peer correspondences. A limited number
of data models now have representations in RDF but there is not the wide support that
HDM provides. The languages used to transform RDF [12] are also not as flexible or as
well suited to the P2P environment as BAV.

Schema Metadata ManagementThese aforementioned systems only consider direct
mappings between peers. The underlying assumption in thesesystems is that there is an
implicit global knowledge about peer schemas on the networkso that a peer can contact
any other peers for any schemas that meet its information needs. As such, these systems
do not address the issue of schema metadata distribution anddiscovery which we feel
is essential for add-hoc data integration and query processing in P2P environment.

We use an information retrieval technique for distributingand searching schemas simi-
lar in spirit to PeerDB [6]. However, PeerDB does not tackle the data integration prob-
lem as with our approach. It also relies on a simple description of a schema metadata us-
ing relation and attribute constructs from the relation model. The keyword-based search
used by PeerDB may return schemas which do not actually contain any data satisfying
the user’s requirement. Edutella is better at data integration but restricts the reusability
of schema metadata on the P2P network by coupling distributed query processing with
schema metadata management at super peers. This can lead to unbalanced load distri-
bution among the super peers whereby certain popular super peers are always busier
than less popular peers.

The HDM data model allows us to have a generic graph-based representation of any
integrated schemas on the network. As a result we have a schema metadata model which
is independent of the underlying data models of the peer schemas. Further, to improve
the quality of schema search, we define in each schema metadata definition of a schema
object a query that summarises the extent of that schema object. This enables the use
of a predicate-based search query to more efficiently filter out unsatisfactory schemas.
We also decouple query processing and schema metadata distribution to reduce the
likelihood of overloading specific peers.



6 Conclusion

In this paper, we have described a method for performing inter model data integration in
a P2P environment by using a generic CDM and a bidirectional data integration method.
We formally defined schema metadata management as a distributed component which
enables peers to effectively organises schema metadata andmakes them available for
discovery on the P2P network. We are implementing the features discussed in this paper
on top of an integration system called AutoMed (http://www.doc.ic.ac.uk/automed).We
plan to extend the schema search algorithm to take into account usage statistics for
ranking schemas and their objects.

References

1. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv.18(4) (1986) 323–364

2. M. Boyd, P.McBrien: Comparing and transforming between data models via an intermediate
hypergraph data model. To appear (2004)

3. Williams, D., Poulovassilis, A.: Combining data integration with natural language technol-
ogy for the semantic web. In: Proc. of Workshop on Human Language Technology for the
Semantic Web and Web Services, at ISWC’03. (2003)

4. McBrien, P., Poulovassilis, A.: Data integration by bi-directional schema transformation
rules. In: ICDE. (2003) 227–238

5. McBrien, P., Poulovassilis, A.: Schema evolution in heterogeneous database architectures, a
schema transformation approach. In: CAiSE. (2002) 484–499

6. Ng, W.S., Ooi, B.C., Tan, K.L., Zhou, A.: PeerDB: A P2P-based system for distributed data
sharing. In: Proc. of ICDE. (2003)

7. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Piazza: Data management infrastructure for
semantic web applications. In: Proc. of WWW2003, Budapest,Hungary (2003)

8. Franconi, E., Lopatenko, A.: The coDBz information integration system for autonomous data
sources. In: Proc. of Interop Workshop, Porto, Portugal (2005) http://www.inf.unibz.it/ fran-
coni/coDBz/.

9. Wolfgang Nejdlet al: EDUTELLA: A P2P networking infrastructure based on RDF. In:
Proc. of WWW2002. (2002)

10. Florescu, D., Kossman, D.: Storing and querying xml datausing an RDBMS. Bulletin of the
Technical Commitee on Data Engineering22(3) (1999) 27–34

11. Bowers, S., Delcambre, L.M.L.: The uni-level description: A uniform framework for repre-
senting information in multiple data models. In: ER. (2003)45–58

12. Sintek, M., Decker, S.: Triple - a query, inference, and transformation language for the
semantic web. In: International Semantic Web Conference. (2002) 364–378

13. McBrien, P., Poulovassilis, A.: A general formal framework for schema transformation. In:
Data and Knowledge Engineering. Volume 28. (1998) 47–71

14. Hall, P.A.V., Owlett, J., Todd, S.: Relations and entities. In: IFIP Working Conference on
Modelling in Data Base Management Systems. (1976) 201–220

15. Balakrishnan, H., Kaashoek, M.F., Karger, D., Morris, R., Stoica, I.: Looking up data in p2p
systems. In: Communications of ACM. (2003)

16. Fox, E.A., Chen, Q.F., Daoud, A.M., Heath, L.S.: Order preserving minimal perfect hash
functions and information retrieval. In: Proc. of SIGIR’90, New York, NY, USA, ACM
Press (1990) 279–311



17. Aberer, K.: P-Grid: A self-organizing access structurefor P2P information systems. Proc.
of CoopIS 20012172(2001) 179–194

18. Halevy, A.: Answering queries using views: A survey. VLDB Journal10(4) (2001) 270–294
19. Pottinger, R., Halevy, A.: MiniCon: A scalable algorithm for answering queries using views.

VLDB Journal10(2–3) (2001) 182–198
20. Rizopoulos, N., McBrien, P.: A general approach to the generation of conceptual model

transformations. In: CAiSE. (2005) 326–341
21. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS. (2002) 233–246
22. Smith, A., Le, D.M.: Inter model data integration in a p2penvironment - extended version.

Technical report : http://www.doc.ic.ac.uk/automed/techreports/index.html (2007)
23. Manola, F., Miller, E.: Rdf primer. W3C (2004) Availablefrom http://www.w3.org/TR/rdf-

primer/.


