
Towards a Semi-Automated Approach to

Intermodel Transformation

AutoMed Technical Report No. 29, Version 2

Michael Boyd

PSA Parts Ltd

London SW19 3UA

mb@psaparts.co.uk

Peter Mc.Brien

Imperial College London

London SW7 2AZ

pjm@doc.ic.ac.uk

3rd December 2004

Abstract

Data integration is frequently performed between heterogeneous data sources, requiring
that not only the structure of the data, but also the data modelling language in which that
structure is represented must be transformed between one data source and another data
source.

This paper describes an extension to the hypergraph data model (HDM), used in the
AutoMed data integration approach, that allows constraint constructs found in static data
modelling languages to be represented by a small set of primitive constraint operators in the
HDM. In addition, a set of five equivalence preserving transformation rules are defined that
operate over this extended HDM and are demonstrated to allow a mapping between equivalent
relational, ER, UML and ORM models to be defined.

The approach we propose provides a precise framework in which to compare data mod-
elling languages, and precisely identifies what semantics of a particular domain one data
model may express that another data model may not express. The approach also forms the
platform for further work in automating the process of transforming between different data
modelling languages. The use of the both-as-view approach to data integration means that
a bidirectional association is produced between data models. Hence a further advantage of
the approach is that closure of data mappings may be performed such that mapping two data
models to one common data model will produce a bidirectional mapping between the original
two data sources.

keywords: conceptual data modelling, mappings, transformations, multiple representa-
tions.

1 Introduction

The AutoMed project has developed the first implementation [2, 12] of a data integration technique
called both-as-view (BAV) [16], which subsumes the expressive power of other published data
integration techniques such as global-as-view (GAV), local-as-view (LAV), and global-local-

as-view (GLAV) [14].
The AutoMed system also distinguishes itself in being an approach which has a clear methodol-

ogy for handling a wide range of static data modelling languages in the integration process [15], as
opposed to the other approaches that assume integration is always performed in a single common
data model. This is achieved by allowing a user to relate the modelling constructs of a higher level
modelling language such as ER, relational, UML, or ORM, to the constructs in a single lower level
common data modelling language called the hypergraph data model (HDM) [21]. Figure 1

1



2

illustrates this concept being applied to four higher level models, all of which are related to the
same underlying HDM graph.

Shdm

A

E

B

Sorm

E

A

B
-¾

-¾ -¾

Srel

E(A,B)

E.A → E.B

Suml

E

A
B

Ser

E
A
B

Figure 1: Conceptual modelling languages represented in the HDM

In [15] a general approach was proposed showing how the data aspects of the higher level
modelling languages were modelled as nodes and edges in the HDM, with the constraints of the
higher level modelling language being represented by writing constraint formulae over the HDM.
This approach was implemented in AutoMed [2]. This paper extends that approach to represent
the high level modelling language constraints using a proposed set of primitive constraint operators
on the HDM. This paper also shows how we may relate the ER, relational, UML and ORM higher
level modelling languages – perform intermodel transformations – by the application of five
types of equivalence rules on the HDM and its primitive constraint operators. This work is a
considerable enhancement of our earlier work presented in [3].

To date, work on intermodel transformations has normally defined the conversion between
specific pairs of modelling languages. For example, there have been proposals for relational to
ER conversion [1, 19], ORM to UML and relational conversion [11], and relational to generic
object oriented conversion [6]. Our approach differs from this previous work in that it uses the
semantic definition of each modelling language in the HDM as a basis for equivalence rules on the
HDM to perform the conversion. Thus we provide a platform for the conversion between any data
modelling language, provided that we can represent that modelling language in the HDM with
the proposed primitive constraints defined in this paper. This paper demonstrates the approach
being applied by converting between the major constructs of ER, relational, UML class and ORM
modelling languages.

In addition to providing a mechanism for comparing the expressiveness of modelling languages,
the proposed primitive constraints and set of equivalence rules also forms the basis for a method of
automating the translation between modelling languages, based on descriptions of their constructs.
This would involve further development of an algorithm that would determine which equivalence
rules need to be applied to the HDM graph of one higher level model to form a valid HDM graph
of another higher level model.

The paper is structured as follows. Section 2 reviews how to describe higher level data modelling
languages by relating them to the graph structure. The graph language is extended with a set
of constraint operators that form a language used to model the constraints in higher level data
modelling languages. Section 3 details how we approach the transformation between modelling
languages by applying equivalence rules to the graph, thereby relating basic constructs of the higher
level modelling languages with each other. Section 4 considers how some extended operators of
these languages are related.



3

2 Describing a Data Modelling Language

When modelling a data model in HDM one is often faced with choices when deciding how to
represent the data model with a set of constructs. Ideally the chosen constructs will map directly
to the data model’s constructs and constrain the construction process such that only valid schemas
of the data model can be constructed.

In [15] a general technique was proposed for the modelling of any structured data modelling
language in the HDM. The premise of this approach is that in any data modelling language, the
various constructs of the language can be viewed as being a combination of sets of values, and
constraints between those sets, in a graph based model. This concept has been used in modelling
relational models [24], and for OO and ER models [23], and we argue is an intuitive assumption
to make. It also reduces all models to an irreducible form [10], and in the context of relational
databases has recently been identified as a sixth normal form [8, 7].

A HDM model M consists of a tuple 〈Nodes,Edges,Cons〉, where Nodes is a set of nodes of
a graph, Edges is a set of nested hyperedges, and Cons is a set of constraint expressions over
the Nodes and Edges. A hyperedge is an edge that connects more than two nodes in a graph,
and a nested edge is one which connects to another edge rather than just nodes. When used to
describe a data source, each node has an extent that represents the set of values from the data
source that are associated with the node, and each edge also has an extent, where the values the
edge extent contains must also appear in the extent of the nodes and edges that the edge connects.
Details of the HDM are found in [21]. The HDM is a simplification of the hypergraph model in
[20], which allowed nodes to contain complete graphs.

We now introduce to the HDM a set of six primitive constraints that may be used to model the
constraints of the higher level modelling language in an analogous manner to how the nodes and
edges of the HDM model other features of the higher level modelling language. In the following
descriptions, N denotes any node, E any edge, NE any node or edge, and ~NE any set of nodes
or edges.

• inclusion ~NE1 ⊆ ~NE2: The extent of tuples in ~NE1 is a subset of the extent of tuples
~NE2. If ~NE is more that one construct, then the various members of the set must be related

via some edge.

• exclusion 6∩(NE1 . . . NEn): For every x, y for which 1 ≤ x < y ≤ n, the extent of NEx

does not intersect with the extent of NEy.

• union NE =
⋃

~NEs: The extent of NE is the union of the extents of ~NEs.

• mandatory ~NE
n
¤ E: every node or edge in ~NE is connected by edge E, and every

combination of instances in the extents of ~NE must appear at least n times in the extent of
E.

• unique ~NE
n
¢ E: every node or edge of ~NE is connected by edge E, every combination of

instances in the extents of ~NE must appear no more than n times in the extent of E.

• reflexive ~NE
id

→E: If an instance of ~NE appears in E, then one of the instances of E must
be an identity tuple: i.e. if 〈a1, . . . , am〉 of NE appears in a tuple of E, then one of those
tuples in E is 〈〈a1, . . . , am〉, a1, . . . , am〉.

We will abbreviate
1

¤ as ¤ and
1

¢ as ¢. Combinations of these constraints may be used to rep-
resent constraints in the higher level modelling language. For example, cardinality constraints

may be represented by a combination of mandatory and unique as follows:
None → NE has 0:N occurrences in E

NE ¤ E → NE has 1:N occurrences in E

NE ¢ E → NE has 0:1 occurrences in E

NE ¤ E ∧ NE ¢E → NE has 1:1 occurrences in E



4

Most of these constraint operators have been used before in the context of modelling sin-
gle modelling languages. In particular, mandatory and unique constraints have been used in a
hypergraph model for relational schemas in [24], and inclusion constraints appear in [22]. The
appearance of the reflexive constraint might be surprising. However, reflexive in combination with
mandatory and unique, allows for the description of natural keys to be used in a data modelling lan-

guage. For example, the relational model in Figure 3(a) uses ¤, ¢ and
id

→ between node 〈〈student〉〉
(representing the table student) and edge 〈〈 ,student,student:name〉〉 to state that 〈〈student:name〉〉
(representing the column name) is the key for 〈〈student〉〉. This is because the combination of ¤
and ¢ mean there is only one instance in the edge’s extent for each instance of 〈〈student〉〉, and

the
id

→ forces the value of 〈〈student:name〉〉 to be the same since the edge is reflexive.
It should be also noted that [23] argues for simplicity in modelling languages, and so using the

simple HDM as the common data modelling language is an approach that has been argued for
before. However, it should be noted that what we are arguing for in this paper is to use the HDM
as a method for comparing and transforming between various other data modelling languages, and
not for using HDM as a modelling language for new applications.

Figures 2(a), 3(a), 4(a) and 5(a) show four data models, in ER, relational, UML and ORM
data modelling languages. These are designed to cover the same universe of discourse (UoD),
and as will be shown later, three of them have the same information capacity [17]. The schemas
represent a record of students, the courses that they sit, and the grades they obtain for those
courses. Some students are undergraduates, and each ug has an associated personal programming
tutor ppt that other students do not have. The use of underlining in the relational and ER
models indicates what are key attributes, and a question mark follows a nullable attribute in
those models. In the relational model, foreign keys are shown by using an implication between
the foreign key columns and the referenced table columns. In the ER model this foreign key may
either be represented by a relationship (for example the foreign keys result.name → student.name
and result.code → course.code are represented in the ER result relationship) or by a subset (for
example the foreign key ug.name → student.name is represented by a subset between the student
and ug entities).

2.1 Describing an ER Model Language in the HDM

When the HDM is used to model a higher level modelling language, each construct in that language
must be classified as being one of four types, each of which imply a different representation
in the HDM. We explain how this methodology (first presented in [15]) is applied to an ER
modelling language (which we describe here, see [18] for a survey of variations of ER modelling
languages), and illustrate our discussions by showing how the methodology may take the ER model
of Figure 2(a) and produce the HDM model of Figure 2(b). Note that in the HDM diagrams, HDM
nodes are represented by white circles with thick outlines, and HDM edges are represented by thick
black lines. The HDM constraint language is represented by grey dashed boxes connected by grey
lines to the nodes and edges to which the constraint applies.

2.1.1 Nodal

A nodal construct is one that may appear in isolation in a model, such as an ER model entity.
Using the AutoMed data integration system [2], such constructs are defined by giving a prototype
scheme that must contain the name of a HDM node used to represent that construct. Hence we
represent the ER entity student by the schema 〈〈student〉〉. In this paper we introduce a method
to translate the higher level constructs in the HDM by use of simple production rules. The rules
give a pattern of a higher level modelling language scheme, which when matched, will produce the
HDM nodes and edges listed after the; symbol. There may follow a number of guarded auxiliary
rules.

The production rule for an ER entity 〈〈E〉〉 is very simple, since it states that each entity with
scheme 〈〈E〉〉 maps to a single HDM node 〈〈E〉〉, and has no constraints:
entity 〈〈E〉〉; 〈〈E〉〉



5

ugppt

6

student

name

sid

course

code

dept

grade?

result
0:N

0:N

(a) An ER model of the student-course database

ug

ug:
ppt

¤

¢

¤

student:
name

¤

student

id
→

¤¢

student:
sid

¤

¢

¤

⊆

result:
grade

¤

¢

result

course:
code

¤

course

id
→

¤¢

course:
dept

¤

¢

¤

(b) HDM representation of the ER model

Figure 2: An ER model and its equivalent HDM model

2.1.2 Link

A link construct is one that associates other constructs with each other, and which has an ex-
tent which is drawn from those constructs, such as an ER relationship construct. In AutoMed,
we represent ER relationships by the scheme made up of the of the name of the HDM edge
used to represent the construct, together with pairs of the entity names and cardinality con-
straints. For example, we represent the ER relationship result in Figure 2(a) by the scheme
〈〈result, student, 0:N, course, 0:N〉〉. The production rule uses auxiliary rules to generate the con-
straints in the HDM necessary to represent the cardinality constraints in the ER model.
relationship 〈〈R,E1, L1:U1, . . . , En, Ln:Un〉〉; 〈〈R,E1, . . . , En〉〉

true → generate card(E1, 〈〈R,E1, . . . , En〉〉, L1, U1)
...

true → generate card(En, 〈〈R,E1, . . . , En〉〉, Ln, Un)
The cardinality constraints are produced by a function which shall be used for all the modelling

languages we consider, and translates their cardinality constraints into applications of ¤ and ¢ in
the HDM.



6

generate card (NE,E,L:U); ⊥

L > 0 → NE
L
¤ E

U < * → NE
U
¢ E

Thus the production rule when applied to 〈〈result, student, 0:N, course, 0:N〉〉 produces an edge
〈〈 , result, student〉〉 to represent its extent. The auxiliary constraint rules will produce no con-
straints, since neither of the guards within the definition of generate id will match L = 0 or U = *.

2.1.3 Link-Nodal

A link-nodal construct is one that has associated values, but may only exist when associated with
some other construct. They are represented in the HDM by an edge associating a new node with
some existing node or edge. For example, ER attributes are link-nodal constructs, and the name
attribute of the entity student is represented in AutoMed by the scheme 〈〈student, name, notnull〉〉.
The production rule for ER attributes creates a node and edge, the last construct listed after the
; being the extent of the higher level rule.
attribute 〈〈E,A,N〉〉; 〈〈E:A〉〉, 〈〈 , E,E:A〉〉

true → generate card(〈〈E:A〉〉, 〈〈 , E,E:A〉〉, 1, *)
N = notnull → generate card(〈〈E〉〉, 〈〈 , E,E:A〉〉, 1, 1)
N = null → generate card(〈〈E〉〉, 〈〈 , E,E:A〉〉, 0, 1)

Thus the production rule when applied to the ER attribute 〈〈course,dept,notnull〉〉 produces the
node 〈〈course:dept〉〉 and the edge 〈〈 ,course,course:dept〉〉 to represent the extent of the attribute.
The first auxiliary constraint rule produces 〈〈course:dept〉〉¤〈〈 ,course,course:dept〉〉, the second pro-
duces 〈〈course〉〉¤ 〈〈 ,course,course:dept〉〉 and 〈〈course〉〉¢ 〈〈 ,course,course:dept〉〉 (since both guards
in the generate card are met), and then the last rule fails to match in the guard.

Note that since the grade attribute is optional, we obtain just two constraints when the pro-
duction rule is used on 〈〈result,grade,null〉〉:
〈〈result:grade〉〉¤ 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉
〈〈result,student,course〉〉¢ 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉

Note that in our modelling of the ER model (and relational and UML languages), the fact
that attribute names are prefixed by the associated entity name reflects a deliberate choice
made when defining the construct. One could alternatively say that attribute names are glob-
ally unique, which would change the HDM graph to have just one node 〈〈name〉〉 to represent both
the 〈〈student, name, notnull〉〉 and 〈〈ug, name, notnull〉〉 relational columns, but this would not give
the correct semantics for a normal ER model. The alternative global naming choice will be used
in modelling the value types of ORM models.

In Figure 2(b) it should be noted that the syntax is not ambiguous, but needs careful reading.
Each ¤ or ¢ always has a node or edge on its left hand side that appears in the edge on the
right hand side. We use this fact to ignore which ‘side’ we connect ¤ and ¢ constraints to in the
diagram. This makes the diagrams more tidy in appearance. (Note that this is different from the
approach we followed in our earlier work [3]). Therefore the 〈〈course:dept〉〉 to 〈〈 ,course,course:dept〉〉
mandatory constraint is drawn using ¤ in the constraint box.

2.1.4 Constraint

A constraint construct is one that has no associated extent, but instead limits the extent of
the constructs it connects to. An example of a constraint construct is the ER model subset

relationship. For example, the subset between ug and student is represented in AutoMed by the
scheme 〈〈student, ug〉〉.
subset 〈〈E,Es〉〉; ⊥

true → 〈〈Es〉〉 ⊆ 〈〈E〉〉
ER generalisations are another example of constraint constructs. For example, a generalisa-

tion that specified the children entities 〈〈E1〉〉, . . . , 〈〈En〉〉 are disjoint subsets of some parent entity
〈〈E〉〉 could be defined by the following rule:



7

generalisation 〈〈E,E1, . . . , En〉〉; ⊥
true → 〈〈E1〉〉 ⊆ 〈〈E〉〉, . . . , 〈〈En〉〉 ⊆ 〈〈E〉〉
true → 6∩(〈〈E1〉〉, . . . , 〈〈En〉〉)

Our example ER model in Figure 2(a) contains no generalisations, but we will discuss and
compare advanced modelling constructs of various data modelling languages in Section 4.

The final constraint in our ER model is the definition of the key of an entity, which servers to
denote the set of its attributes that may be used to identify instances of the attribute.
key 〈〈E,A1〉〉, . . . , 〈〈E,An〉〉; ⊥

true → 〈〈E〉〉
id

→ 1 (〈〈 , E,E:A1〉〉, . . . , 〈〈 , E,E:An〉〉)
The constraint limits the instances of the entity to be an identity with the join of its key

attributes (we will give an example of how this type of constraint works when looking at the
relational result table in the next section).

2.2 Describing the relational model in the HDM

ug
name ppt
Mary NR
Jane SK

student
name sid
Mary 1
John 2
Jane 3
Fred 4

course
code dept
DB CS
Fin CS
Geo Maths

result
code name grade?
DB Mary A
Fin Jane C
Fin Fred null
Geo Fred A
Geo John B

ug.name →

student.name
result.name →

student.name
result.code →

course.code

(a) Relational database schema and data

ug:
name

¤

ug

id
→

¤¢

ug:
ppt

¤

¢

¤

student:
name

¤

student

id
→

¤¢

student:
sid

¤

¢

¤

⊆

id
→

¤¢

1

result:
name

¤

¢

result

result:
grade

¤

⊇ result:
code

¤

⊆
course:
code

¤

course

id
→

¤¢

course:
dept

¤

¢

¤

(b) HDM representation of relational database schema

Figure 3: A relational model for the student-course database

Having reviewed the general methodology for representing higher level modelling languages
in the HDM in the previous subsection, we will now apply the methodology to the relational



8

model. Relational model tables are nodal constructs, and hence we represent the table student by
the scheme 〈〈student〉〉, and the table result by 〈〈result〉〉. The production rule for translating such
schemes into the HDM is as follows.
table 〈〈T 〉〉; 〈〈T 〉〉

Relational model columns are link-nodal constructs, and hence are modelled by a scheme
containing a HDM node that represents the construct it depends on, followed by the name
of the HDM node that represents the column, followed by the constraint on whether the at-
tribute may be null. For example, the name column of table student is represented by the scheme
〈〈student, name, notnull〉〉. In the HDM, this becomes a node 〈〈student:name〉〉 to represent values of
the column/attribute, and the nameless edge 〈〈 ,student,student:name〉〉 to represent the association
of these values to table/entity 〈〈student〉〉.
column 〈〈T,C,N〉〉; 〈〈T :C〉〉, 〈〈 , T, T :C〉〉

true → generate card(〈〈T :C〉〉, 〈〈 , T, T :C〉〉, 1, *)
N = notnull → generate card(〈〈T 〉〉, 〈〈 , T, T :C〉〉, 1, 1)
N = null → generate card(〈〈T 〉〉, 〈〈 , T, T :C〉〉, 0, 1)

The definition of relational columns and ER attributes are very similar, and as can be seen by
comparing Figures 3 and 2, produce similar results in the HDM.

The primary key construct of the relational modal is a constraint construct. The constraint
specifies that the natural join between its key columns gives the extent of the table. The schema of a
constraint simply needs to list the table and the columns. For example, the primary key of 〈〈result〉〉

would be represented in the HDM by 〈〈result〉〉
id

→ (〈〈 ,result,result:code〉〉 1 〈〈 ,result,result:name〉〉).
The production rule to produce the HDM constraints is as follows:
primary key 〈〈T,C1, . . . , Cn〉〉; ⊥

true → 〈〈T 〉〉
id

→ 1 (〈〈 , T, T :C1〉〉, . . . , 〈〈 , T, T :Cn〉〉)
Since any key column must also be a notnull column in a valid relational model, this rule need

only add the fact that the join of the key columns is reflexive. Since each column is individually
mandatory and unique w.r.t the table, it follows that the join is also mandatory and unique, as
shown for the result node in Figure 3(b). For the primary key scheme 〈〈result,name,code〉〉 for the re-

sult table, the production rule generates the reflexive constraint 〈〈result〉〉
id

→ 1 (〈〈 ,result,result:code〉〉,
〈〈 ,result,result:name〉〉). For example with the relation data shown in Figure 3(a), this constraint
along with the already stated mandatory and unique constraints enforce the following type of
instantiation of the 〈〈result〉〉 node and key edges:

〈〈result〉〉 = [{DB,Mary}, {Fin, Jane}, {Fin,Fred}, . . .]
〈〈 ,result,result:name〉〉 =

[{{DB,Mary},Mary}, {{Fin, Jane}, Jane}, {{Fin,Fred},Fred}, . . .]
〈〈 ,result,result:code〉〉 =

[{{DB,Mary},DB}, {{Fin, Jane},Fin}, {{Fin,Fred},Fin}, . . .]
We represent the foreign key constraint by the scheme made up of a name for the constraint,

the table and column(s) that are the foreign key, and the table and column(s) of the referenced
table.
foreign key 〈〈FK, T,C1, . . . , Cn, Tf , Cf1

, . . . , Cfn
〉〉; ⊥

true → π〈〈T :C1〉〉,...,〈〈T :Cn〉〉
1 (〈〈 , T, T :C1〉〉, . . . , 〈〈 , T, T :Cn〉〉) ⊆

π〈〈Tf :Cf1
〉〉,...,〈〈Tf :Cfn〉〉

1 (〈〈 , Tf , Tf :Cf1
〉〉, . . . , 〈〈 , Tf , Tf :Cf1

〉〉)

The somewhat complex constraint simply states that the join of the columns listed in T is a
subset of the join of the columns in Tf . For the common case where foreign keys are not compound
keys (i.e. n = 1), the constraint would simplify to 〈〈T :C1〉〉 ⊆ 〈〈Tf :Cf1

〉〉 For example, the foreign
key between ug and student is represented by the scheme 〈〈ug fk, ug, name, student, name〉〉. Using
the production rule, this scheme becomes 〈〈ug:name〉〉 ⊆ 〈〈student:name〉〉 in the HDM.

Finally, the relational candidate key takes a similar definition to primary key, except that
all that is established is a mandatory and a unique association between the table and a join of the
candidate key columns.



9

candidate key 〈〈T,C1, . . . , Cn〉〉; ⊥
true → 〈〈T 〉〉¢ 1 (〈〈 , T, T :C1〉〉, . . . , 〈〈 , T, T :Cn〉〉)
true → 〈〈T 〉〉¤ 1 (〈〈 , T, T :C1〉〉, . . . , 〈〈 , T, T :Cn〉〉)
true → (π〈〈T :C1〉〉,...,〈〈T :Cn〉〉

1 (〈〈 , T, T :C1〉〉, . . . , 〈〈 , T, T :Cn〉〉))¢

1 (〈〈 , T, T :C1〉〉, . . . , 〈〈 , T, T :Cn〉〉)
The last line ensures that the combination of columns in the candidate key appears just once

in the edge formed by the join of the candidate key column edges. In the common case where the
candidate key is not compound (i.e. n = 1), the last constraint simplifies to 〈〈T :C1〉〉¢〈〈 , T, T :C1〉〉.
Thus if we added the new candidate key 〈〈student,sid〉〉 to the example relational model, then we
would add to our existing relation HDM a 〈〈student:sid〉〉¢ 〈〈 ,student,student:sid〉〉 constraint.

2.3 Describing UML in the HDM

name
sid

student
ppt

ug

grade[0..1]

result

code
dept

course
has

* result

exam

*

(a) A UML class model of the student-course database

ug

ug:
ppt

¤

¢

¤

student:
name

¤

student

¤

¢

student:
sid

¤

¢

¤

⊆

¢

result:
grade

¤

result:has:exam

course:
code

¤

course

¤

¢

course:
dept

¤

¢

¤

(b) HDM representation of the UML Model

Figure 4: A UML model and its equivalent HDM model

UML classes are nodal constructs, and hence each UML class scheme 〈〈C〉〉 maps to a single
node 〈〈C〉〉. The extent of 〈〈C〉〉 is the set of unique object identifiers (OID) of the class.
class 〈〈C〉〉; 〈〈C〉〉

The definition of n-ary associations in UML states that the multiplicity, L..U , of a role, R,



10

defines the number of instances of the class C that are associated with a particular set of values of
the other classes in the association A. Hence the generation of constraints for UML associations
takes all the classes except the role class when calling generate card on a role. We also make the
assumption that * is simply a shorthand for 0..*, and any single number n is a shorthand for n..n.
association 〈〈A,R1, C1, L1..U1, . . . , Rn, Cn, Ln..Un〉〉; 〈〈A,C1, . . . , Cn〉〉

true → generate card({C2, . . . , Cn}, 〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉, L1, U1)
...

true → generate card({C1, . . . , Cn−1}, 〈〈A:R1: . . . :Rn, C1, . . . , Cn〉〉, Ln, Un)
For example, the scheme 〈〈result,has,student,0..*,exam,course,0..*〉〉 models the UML associa-

tion between student and course, and the production rule maps this scheme to the HDM edge
〈〈result:has:exam,student,course〉〉, with no constraints. Note that the label of the HDM edge is
A:R1: . . . :Rn, which encodes the various labels HDM gives the association in a single HDM iden-
tifier. Thus the result association with role names has and exam gets the HDM edge name re-
sult:has:exam.

UML attributes are link-nodal constructs attached to the UML class, and hence the produc-
tion rule takes a similar form to that for ER attributes or relational columns. We make the same
assumptions about shorthands for the attribute multiplicity as we did for association multiplicity,
as well as noting that the absence of explicit multiplicity means that 1..1 is assumed. Thus the
sid attribute of student has the scheme 〈〈student,sid,1..1〉〉.
attribute 〈〈C,A,L..U〉〉; 〈〈C:A〉〉, 〈〈 , C, C:A〉〉

true → generate card(〈〈C:A〉〉, 〈〈 , C, C:A〉〉, 1, *)
L..U → generate card(〈〈C〉〉, 〈〈 , C, C:A〉〉, L, U)

UML generalisations have a sophisticated constraint system that specifies that the various
classes or associations that are children of a parent class or association are overlapping, disjoint,
complete or incomplete. The first and last of these keywords are ‘noise’ in the sense that they add
nothing in addition to an unlabelled generalisation. The other two add an exclusion constraint
and a union constraint.
generalisation 〈〈C,C1, . . . , Cn, D〉〉; ⊥

true → 〈〈C1〉〉 ⊆ 〈〈C〉〉, . . . , 〈〈Cn〉〉 ⊆ 〈〈C〉〉
disjoint ∈ D → 6∩(〈〈C1〉〉, . . . , 〈〈Cn〉〉)
complete ∈ D → 〈〈C〉〉 =

⋃
(〈〈C1〉〉 . . . 〈〈Cn〉〉)

2.4 Describing the ORM in the HDM

From our analysis of the ER, relational and UML modelling languages, it may seem ‘obvious’ that
ORM entity types should be modelled as nodal constructs while value types should be modelled
as link-nodal constructs. However, due to ORM’s rich semantics, the similarity of value type and
entity type roles in fact types, and a value-type’s ability to play multiple roles in fact types, it is
correct to model both value types and entity types using a single HDM nodal construct type.

Each entity type 〈〈E〉〉 maps to a single node 〈〈E〉〉. The extent of entity type 〈〈E〉〉 is the
extent of its primary reference mode while the extent of a value type 〈〈V 〉〉 is just the ORM value
type’s set of values. Hence we have the simple definitions:
entity type 〈〈E〉〉; 〈〈E〉〉
value type 〈〈V 〉〉; 〈〈V 〉〉

An ORM n-ary fact type is an association between n objects where each object is an entity
type, value type, or objectified fact type. A fact type’s extent is drawn from the objects it associates
and is hence modelled in the HDM as a link construct. The scheme for the ORM fact type should
describe the name of the fact type (if any) along with the role name (if any), role object, and
the mandatory nature of the object type in the role. Hence the fact type between 〈〈student〉〉 and
〈〈course〉〉 has the scheme 〈〈result,has,student, ,exam,course, 〉〉 and the fact type between 〈〈student〉〉
and 〈〈sid〉〉 has scheme 〈〈 ,student, ,•,sid, , 〉〉. These then map into the HDM using the following
production rule:



11

ppt

-¾
ug

6

student
(name)

-¾
sid has exam

-¾
result

-¾
grade

course
(code)

-¾
dept

(a) An ORM model of the student-course database

ug

ppt

¤

¢

¤

name

¤

student

id
→

¤¢

sid

¤

¢

¤

⊆

grade

¤

¢

result:has:exam

code

¤

course

id
→

¤¢

dept

¤

¢

¤

(b) HDM representation of the ORM model

Figure 5: An ORM model of the student-course database

fact type 〈〈FT,N1, R1,M1, . . . , Nn, Rn,Mn〉〉; 〈〈〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉〉〉
M1 = • → generate card(R1, 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 1, ∗)

...
Mn = • → generate card(Rn, 〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉, 1, ∗)

The names of fact types and roles are encoded into a single HDM edge label in a similar manner
to that used to encode UML association and role names into a single HDM edge label. Note that
all fact types have an implied uniqueness constraint across all n roles, and HDM has a similar edge
constraint because the extent of an edge is a set of tuples. In ORM one can specify uniqueness
constraints across n − 1 roles of an n role fact type. Hence we define the scheme of uniqueness

to take both a fact type and the role that is uniquely identified by the other roles:
uniqueness 〈〈〈〈FT,N1, R1,M1, . . . , Nn, Rn,Mn〉〉, Rx〉〉; ⊥

true → generate card({R1, . . . , Rx−1, Rx+1, . . . , Rn},
〈〈〈〈FT :N1: . . . :Nn, R1, . . . , Rn〉〉〉〉, 0, 1 )

We note in passing that ORM also has a general frequency constraint type across any



12

number of roles. We have not needed this in our examples, but could have modelled the mandatory
and unique constraints using the more general frequency constraint; but as there are implicit unique
and mandatory constraints in an ORM schema and these constraints are used heavily in the rules
regarding a schema’s well formedness, it is useful to model mandatory and unique as we have here.

ORM can express subtype relationships between fact roles as well as entity types. We only use
subtyping between entity types in our examples, hence we shall restrict ourselves to just defining
that below, together with the notion of disjointness and totality of such subtypes which ORM also
supports:
subset 〈〈EV,EVs〉〉; ⊥

true → 〈〈EVs〉〉 ⊆ 〈〈EV 〉〉

disjoint 〈〈EV1〉〉, 〈〈EV2〉〉; ⊥
true → 〈〈EV1〉〉 6∩ 〈〈EV2〉〉

total 〈〈EV,EV1〉〉, 〈〈EV,EV2〉〉; ⊥
true → 〈〈EV 〉〉 ∪ {〈〈EV1〉〉, 〈〈EV2〉〉}

Applying the above definitions to the ORM diagram in Figure 5(a) produces the HDM in
Figure 5(b), almost same HDM we arrived at using the ER model bar some trivial renaming
of nodes and edges. Note that we have assumed that the value classes implied by the primary
reference modes for each entity class have been made explicit before applying the definitions.

3 Inter Model Transformations

We now introduce five general purpose equivalence mappings that may be used on our HDM
constraint operators, and which allow us to transform between different modelling languages.
In particular, the relational HDM model in Figure 3(b) may be transformed into the ER HDM
model in Figure 2(b) by applying a sequence of transformations using the equivalence relationships
presented in the following four subsections. Since the ORM HDM model in Figure 5(b) is the same
as the ER HDM model in Figure 2(b), except for trivial renaming of constructs, then if we apply
rename transformations to make the ORM HDM model match those in the ER HDM model, the
same sequence of transformations may describe the mapping from relational to ORM models.
Section 3.5 describes the fifth general purpose equivalent rule, and shows how it is used as part of
the transformation of the UML HDM model in Figure 4(b) to the ER HDM model. However, the
UML to ER transformation as a whole will be demonstrated to be non-equivalence preserving.

primitive transformation reverse transformation
addNode(〈〈N〉〉,q) deleteNode(〈〈N〉〉,q)
addEdge(〈〈E,N1, . . . , Nm〉〉,q) deleteEdge(〈〈E,N1, . . . , Nm〉〉,q)
addConstraint(〈〈NE〉〉 op 〈〈NE〉〉) deleteConstraint(〈〈NE1〉〉 op 〈〈NE2〉〉)
renameNode(〈〈N1〉〉,〈〈N2〉〉) renameNode(〈〈N2〉〉,〈〈N1〉〉)
renameEdge(〈〈E1〉〉,〈〈E2〉〉) renameEdge(〈〈E2〉〉,〈〈E1〉〉)
extendNode(〈〈N〉〉) contractNode(〈〈N〉〉)
extendEdge(〈〈E,N1, . . . , Nm〉〉) contractEdge(〈〈E,N1, . . . , Nm〉〉)
extendConstraint(〈〈NE〉〉 op 〈〈NE〉〉) contractConstraint(〈〈NE1〉〉 op 〈〈NE2〉〉)

Table 1: Primitive transformations on the HDM

In order to give our mappings a rigorous basis, we define them around a HDM transformation
language [21, 15] which allows the specification of bidirectional mappings between equivalent data
sources, and also the specification of where one data source has greater information capacity than
another. Table 1 lists those primitive transformations of the language that we use in this paper,
and we now briefly review their semantics.

The first three rows of the table list add transformations, which have the semantics that the
construct they add to the model is fully derivable from the existing model. In the case of nodes
and edges, this means there is a query q supplied that gives the extent of the node or edge derived



13

from the extent of nodes and edges already in the model. Use of these transformations therefore
preserves information; there is no new information introduced by their use, the reverse delete
transformations do not loose information from the model.

The next two rows of Table 1 describe how nodes or edges may be renamed, whilst preserving
all their associations, and preserving their extent. The final three rows list extend transformations,
which have the semantics that what they add to the model is not derivable from the existing model.
Use of these transformations do not preserve information; and what they introduce to the new
model is specific to that model.

3.1 Inclusion Merge

A⊇B

Cm

...

C1

E

¤

≡ B

Cm

...

C1

E

Figure 6: Equivalence Relationships: Inclusion Merge

The Inclusion Merge equivalence in Figure 6 allows us to merge the two nodes 〈〈A〉〉 and
〈〈B〉〉 together because 〈〈A〉〉 is a subset of 〈〈B〉〉 and there is a mandatory constraint from 〈〈A〉〉 to

an edge 〈〈E,A, ~C〉〉. The mandatory constraint is dropped as we merge 〈〈A〉〉 and 〈〈B〉〉 and the

edge 〈〈E,A, ~C〉〉 now identifies the elements of 〈〈B〉〉 that were in 〈〈A〉〉. Any edges or constraints
that applied to 〈〈B〉〉 remain, and any other edges on 〈〈A〉〉 are redirected to 〈〈B〉〉. Definition 3.1
gives a pseudo code definition of this equivalence, that generates primitive transformations on the

HDM. The pseudo code first iterates over all edges that link node 〈〈A〉〉 with a set of nodes ~〈〈C〉〉,

and creates a new edge e′ that links ~〈〈C〉〉 with 〈〈B〉〉 instead of 〈〈A〉〉. For each of these new edges,
all the constraints of the old edge e are copied across by the move dependents function (defined in
Definition 3.2), except before calling that function we delete all the mandatory constraints from
〈〈A〉〉 to e to prevent them being copied. The final two lines of Definition 3.1 delete the constraint
between 〈〈A〉〉 and 〈〈B〉〉, and then deletes 〈〈A〉〉, giving a list comprehension that can restore the

values of 〈〈A〉〉 from the non-mandatory edge 〈〈E,B, ~C〉〉.

Definition 3.1 Inclusion Merge

inclusion merge(〈〈B〉〉,〈〈E,A, ~C〉〉)

foreach e ∈ Edges forwhich e = 〈〈Ea, A, ~N〉〉
deleteConstraint(〈〈A〉〉¤ e)

endforeach;
move dependents(〈〈A〉〉,〈〈B〉〉,id 〈〈A〉〉);
deleteConstraint(〈〈A〉〉 ⊆ 〈〈B〉〉);

deleteNode(〈〈A〉〉,[{x} | {x, y} <− 〈〈E,B, ~C〉〉]);

2

The last line of the inclusion merge makes use of the intermediate query language (IQL)
[12, 13] of the AutoMed system, which is an implementation of list comprehensions [4]. The query

produces a list of single arity tuples {x} from a generator {x, y} <− 〈〈E,B, ~C〉〉 that iterates over

the members of the list of binary tuples in the scheme 〈〈E,B, ~C〉〉.
The definition of move dependents takes three arguments, the first two (a, b) of which must

be a node or edge, and the third a mapping list that maps instances of a to instances of b.



14

For use in inclusion merge, the third argument should be an identity function id, definited as
id(〈〈A〉〉) = [{a, a} | a <− 〈〈A〉〉].

Definition 3.2 Move Dependents

move dependents(a,b,map)
foreach (a op d) ∈ Cons forwhich b 6= d

addConstraint(b op d); deleteConstraint(a op d) endif
endforeach;
foreach (d op a) ∈ Cons forwhich b 6= d

addConstraint(d op b); deleteConstraint(d op a) endif
endforeach;

foreach e ∈ Edges forwhich e = 〈〈F, a, ~N〉〉

let e′=〈〈F, b, ~N〉〉;
addEdge(e′,[{b, c} | {a, c} <− e; {a, b} <− map]);
move dependents(e,e′, [{{a, c}, {b, c}} | {a, b} <− map; {a, c} <− e]);
deleteEdge(e,[{a, c} | {b, c} <− e′; {a, b} <− map]);

endforeach;

2

In Example 3.1, the series of transformations that will convert the HDM model in Figure 3(b)
into that in Figure 2(b) are listed. The first two steps in the series are applications of inclusion
merge, which after 2 result in the intermediate HDM model shown in Figure 7.

Example 3.1 Transforming between relational and ER HDM models

1 inclusion merge(〈〈student:name〉〉, 〈〈 ,result:name,result〉〉)
2 inclusion merge(〈〈course:code〉〉, 〈〈 ,result:code,result〉〉)
3 identity node merge(〈〈 ,ug:name,ug〉〉)
4 unique mandatory redirection(〈〈 ,student:name,result〉〉, 〈〈 ,student:name,student〉〉)
5 unique mandatory redirection(〈〈 ,course:text,result〉〉, 〈〈 ,course,result〉〉)
6 inclusion edge merge(〈〈 .result,student〉〉, 〈〈 .result,course〉〉)
7 move dependents(〈〈 ,student,student:name〉〉, 〈〈student〉〉, 〈〈 ,student,student:name〉〉)

2

Taking transformation step 1 and applying Definition 3.1, we may expand the steps into a
series of primitive transformation steps shown in Example 3.2. Step 1.1 is a result of the first
foreach loop in Definition 3.1, Steps 1.2 and 1.3 result from the call to move dependents, and 1.4

and 1.5 result from the last two lines of Definition 3.1.

Example 3.2 Primitive steps associated with transformation 1

1.1 deleteConstraint(〈〈result:name〉〉¤ 〈〈 ,result:name,result〉〉)
1.2 addEdge(〈〈 ,student:name,result〉〉,

[{b, c} | {a, c} <− 〈〈 ,result:name,result〉〉; {a, b} <− id〈〈result:name〉〉]
1.3 deleteEdge(〈〈 ,result:name,result〉〉,

[{a, c} | {b, c} <− 〈〈 ,student:name,result〉〉; {a, b} <− id〈〈result:name〉〉]
1.4 deleteConstraint(〈〈result:name〉〉 ⊆ 〈〈student:name〉〉)
1.5 deleteNode(〈〈result:name〉〉,

[{b} | {b, c} <− 〈〈 ,student:name,result〉〉]

2

The expansion of transformations 1 illustrates that inclusion merge is a data preserving
transformation, since the edge 〈〈 ,result,student:name〉〉 may be recovered by the query in 1.3

(which in turn uses the query of 1.5 to find the extent of 〈〈result:name〉〉), and the new edge
〈〈 ,result,student:name〉〉 may be derived from existing data in 1.2. A very similar expansion into
primitive steps may be performed for 2 , with a similar argument about data preservation.



15

ug:
name

¤

ug

id
→

¤¢

ug:
ppt

¤

¢

¤

student:
name

¤

student

id
→

¤¢

student:
sid

¤

¢

¤

⊆

id
→

¤¢

1

result

¢

result:
grade

¤

course:
code

¤

course

id
→

¤¢

course:
dept

¤

¢

¤

Figure 7: Intermediate HDM model in relational to ER conversion, after steps 1 and 2

3.2 Identity Node Merge

A B
E

id
→

¤¢
¤

≡ B

Figure 8: Equivalence Relationships: Identity Node Merge

The Identity Node Merge in Figure 8 allows us to merge the two nodes 〈〈A〉〉 and 〈〈B〉〉

together because they are identical. The constraints 〈〈A〉〉
id

→ 〈〈E,A,B〉〉, 〈〈A〉〉 ¤ 〈〈E,A,B〉〉, and
〈〈A〉〉 ¢ 〈〈E,A,B〉〉 taken together mean that every instance of the edge 〈〈E,A,B〉〉 is an identity
mapping for 〈〈A〉〉, and there is exactly one such mapping in 〈〈E,A,B〉〉 for every element of 〈〈A〉〉.
As each element in 〈〈E,A,B〉〉 is an identity mapping, each element in 〈〈A〉〉 must be in 〈〈B〉〉.
Conversely because we also have 〈〈B〉〉¤ 〈〈E,A,B〉〉, each element in 〈〈B〉〉 must be in 〈〈A〉〉, and so

〈〈A〉〉 = 〈〈B〉〉. This implies both 〈〈B〉〉
id

→〈〈E,A,B〉〉 and 〈〈B〉〉¢〈〈E,A,B〉〉, and thus the equivalences
illustrated in Figure 9(a) hold. Because we have identified them as equal, nodes 〈〈A〉〉 and 〈〈B〉〉
can be merged together and the edge 〈〈E,A,B〉〉 dropped, using Definition 3.3. Note any node can
have this transformation applied in reverse, copying instances into a new node and linking the old
node to the new node via an edge containing the identity instances.

Definition 3.3 Identity Node Merge

identity node merge(〈〈E,A,B〉〉)
let e=〈〈E,A,B〉〉;
move dependents(〈〈A〉〉,〈〈B〉〉,e);
foreach c ∈ Cons forwhich contains(e,c)

deleteConstraint(c);
endforeach;



16

A B
E

id
→

¤¢
¤

≡ A B
E

id
→

¤¢

id
→

¤¢

≡ A B
E

¤
id
→

¤¢

(a) Transposing identity constraint

A

Bm

...

B1

E1

Em

id

→ 1

¤

¢

¤

¢

≡ A

Bm

...

B1

E1

Em

id
→

¤¢

1

(b) Mandatory-unique constraints in joins

Figure 9: Fundamental equivalences on HDM constraints

delEdge(e,[{x, x} | {x} <− 〈〈B〉〉]);
deleteNode(〈〈A〉〉,〈〈B〉〉);

2

This identity mapping comes about by the way some modelling languages specify a certain
attribute as being an entity’s identifying attribute (such as the primary key constraint in the
relational model).

In Figure 7 we can use identity node merge to merge nodes 〈〈ug:name〉〉 and 〈〈ug〉〉 by step 3

in Example 3.1. Note that the constraint 〈〈ug:name〉〉 ⊆ 〈〈student:name〉〉 is not lost, but becomes
〈〈ug〉〉 ⊆ 〈〈student:name〉〉. Figure 11 is partially derived by applying this merge.

3.3 Unique-Mandatory Redirection

A

C

B
EAB

¤

¢

¤

¢

E

≡

A

C

B
EAB

¤

¢

¤

¢

E

Figure 10: Equivalence Relationships: Unique-Mandatory Redirection



17

The Unique-Mandatory Redirection equivalence in Figure 10 allows us to move an edge
〈〈E,A, ~C〉〉 from node 〈〈A〉〉 to node 〈〈B〉〉 because both 〈〈A〉〉 and 〈〈B〉〉 have a unique and mandatory
constraint on the common edge 〈〈EAB , A,B〉〉. These constraints together are equivalent to stating
that there is a one to one correspondence between the elements of 〈〈A〉〉 and 〈〈B〉〉 so whatever is

related to an element of 〈〈A〉〉 through 〈〈E,A, ~C〉〉 is equally related to the corresponding element
in 〈〈B〉〉. Moving the edge requires us to rewrite the elements of the edge, replacing in each the
value that came from 〈〈A〉〉 with the corresponding value from 〈〈B〉〉 (via 〈〈EAB , A,B〉〉).

Definition 3.4 Unique-Mandatory Redirection

unique mandatory redirection(〈〈E,A, ~C〉〉,〈〈EAB , A,B〉〉)

let e = 〈〈E,A, ~C〉〉;
let map = 〈〈EAB , A,B〉〉;

if (A
id

→ e) ∈ Cons then exception endif;

let e′ = 〈〈E,B, ~C〉〉;
addEdge(e′,[{b, c} | {a, c} <− e; {a, b} <− map]);
move dependents(e,e′,map)
deleteEdge(e′,[{a, c} | {b, c} <− e′; {a, b} <− map]);

2

For the HDM model in Figure 7, 4 in Example 3.1 moves the edge 〈〈 ,result,student:name〉〉 from
node 〈〈student:name〉〉 to node 〈〈student〉〉, becoming edge 〈〈 ,result,student〉〉. This transformation
does not loose information, because of the constraints on the edge 〈〈 ,student:name,student〉〉 (note
that 〈〈student:name〉〉¢ 〈〈 ,student,student:name〉〉 is implied by the other constraints present on the
edge; as illustrated in Figure 9(a)). Similarly we can apply 5 to move edge 〈〈 ,result,course:text〉〉 to
become 〈〈 ,result,course〉〉 Applying these two edge redirections in addition to the previous identity
node merge results in Figure 11.

ug

ug:
ppt

¤

¢

¤

student:
name

¤

student

id
→

¤¢

student:
sid

¤

¢

¤

⊆

id
→

¤¢

1

¢

¤

result

result:
grade

course:
code

¤

course

id
→

¤¢

course:
dept

¤

¢

¤

Figure 11: Intermediate HDM model in relational to ER conversion, after steps 1 – 5



18

A

Bm

...

B1

E1

Em

id
→

¤¢

1 ≡

Bm

...

B1

A

Figure 12: Equivalence Relationships: Identity Edge Merge

3.4 Identity Edge Merge

The Identity Edge Merge in Figure 12 allows us to replace a node 〈〈A〉〉 with associated edges

〈〈E1, A,B1〉〉 . . . 〈〈Em, A,Bm〉〉 with a single edge 〈〈A,B1 . . . Bm〉〉. The constraints
id

→, ¤, and ¢
between 〈〈A〉〉 and the natural join of 〈〈E1, A,B1〉〉 . . . 〈〈Em, A,Bm〉〉 mean that for each instance
of node 〈〈A〉〉 there is exactly one instance of the join of edges 〈〈E1, A,B1〉〉 . . . 〈〈Em, A,Bm〉〉. We
populate the new hyper edge 〈〈A,B1 . . . Bm〉〉 using the corresponding values in 〈〈B1〉〉 . . . 〈〈Bm〉〉
from each instance of the node 〈〈A〉〉. Because of the identity mapping there is no information in
the node 〈〈A〉〉 that is not in this new edge.

Definition 3.5 Identity Edge Merge

inclusion edge merge(〈〈E1, A,B1〉〉, . . . , 〈〈Em, A,Bm〉〉)
let a = 〈〈A,B1, . . . , Bm〉〉;
addEdge(a,

[{b1, . . . , bm} | {a, b1} <− 〈〈E1, A,B1〉〉; . . . ; {a, bm} <− 〈〈Em, A,Bm〉〉]);
foreach (A op e) ∈ Cons forwhich e ∈ {〈〈E1, A,B1〉〉, . . . , 〈〈Em, A,Bm〉〉}

deleteConstraint(A op e)
endforeach;
move dependents(〈〈A〉〉,a,id 〈〈A〉〉);
deleteNode(〈〈A〉〉,a)

2

In Figure 11 we can use identity node merge to replace the node 〈〈result〉〉 with the edge
〈〈result,student,course〉〉, in step 6 of Example 3.1. In this case the new edge is binary be-
cause the natural join was between two edges. Note that as part of this process, the edge
〈〈 ,result,result:grade〉〉 from 〈〈result〉〉 to 〈〈result:grade〉〉 becomes 〈〈 ,〈〈result,student,course〉〉,result:grade〉〉.

All that is left for us to do in order to obtain the HDM ER model is to move 〈〈ug〉〉 ⊆
〈〈student:name〉〉 to 〈〈ug〉〉 ⊆ 〈〈student〉〉. This is correct to do for similar reasons to the unique-
mandatory redirection being correct for edges, but here we are moving a constraint between two
nodes for which, in addition, we know the extent to be identical. This redirection is achieved by
using the move dependents subroutine in 7 , and the result is Figure 2(b).

3.5 Node Reidentify

Object orientation introduces the concept of there being an unique object identifier (OID) that
is associated to instances of a class, and that OID is not represented as an attribute. Thus when
we look at the HDM representation of the UML shown in Figure 4, although similar to those for

the relational, ER and ORM models, there is no use of the
id

→ constraint made between nodes
representing the UML class, such as 〈〈student〉〉, and 〈〈 ,student,student:name〉〉. This is because
〈〈student〉〉 has as its extent the object identifiers of the student UML class, whilst 〈〈student:name〉〉
has as its extent the names of students.



19

Definition 3.6 Node Reidentify

node reidentify(〈〈A〉〉,map)
addNode(〈〈A′〉〉,[{b} | {a} <− 〈〈A〉〉; {a, b} <− map]);
foreach (〈〈As〉〉 ⊆ 〈〈A〉〉) ∈ Cons

node reidentify(〈〈As〉〉,map)
endforeach
move dependents(〈〈A〉〉,〈〈A′〉〉,map);
deleteNode(〈〈A〉〉,[{a} | {b} <− 〈〈A′〉〉; {a, b} <− map])
renameNode(〈〈A′〉〉,〈〈A〉〉)

2

Example 3.3 Transforming between UML and ER HDM models

8 extendConstraint(〈〈student:name〉〉¢ 〈〈 ,student,student:name〉〉)
9 inverse identity node merge(〈〈student〉〉, 〈〈student:oid〉〉)
10 node reidentify(〈〈student〉〉, [{x, y} |

{o, x} <− 〈〈 ,student,student:oid〉〉; {o, y} <− 〈〈 ,student,student:name〉〉])
11 extendConstraint(〈〈course:code〉〉¢ 〈〈 ,course,course:code〉〉)
12 inverse identity node merge(〈〈course〉〉, 〈〈course:oid〉〉)
13 node reidentify(〈〈course〉〉, [{x, y} |

{o, x} <− 〈〈 ,course,course:oid〉〉; {o, y} <− 〈〈 ,course,course:code〉〉])
14 renameEdge(〈〈:has:exam,student,course〉〉, 〈〈result,student,course〉〉)

2

When transforming between between an OO model such as UML, and key based models such
as ORM, ER or relational, we must overcome the fundamental difference in data modelling based
on OIDs and natural keys. This will require us finding attributes or associations of the UML class
that can be used to identify instances of the UML class.

Comparing the UML model in Figure 4 with the ER model in Figure 2, the HDM models of the
two appear similar. One difference is trivial, in that the edge between 〈〈student〉〉 and 〈〈course〉〉 has a
different name in the two models. The other difference is between the use of OIDs and natural keys,

ER HDM model, using natural keys, has 〈〈student〉〉
id

→ 〈〈 ,student,student:name〉〉 and 〈〈course〉〉
id

→
〈〈 ,course,course:code〉〉, whereas the UML HDM does not have these constraints. Example 3.3
lists a sequence of transformations that converts the UML model into an ‘ER compatible’ HDM
model that has explicit attributes for the OIDs, and uses a natural key to identify the ER entity
instances. The following steps explain the example:

1. Missing from the UML model is any definition of natural keys for the UML classes. Hence
step 8 introduces a new constraint that indicates that name is a candidate key for student.

2. The inverse of identity node merge in step 9 generates a new node 〈〈student:oid〉〉, connected
to 〈〈student〉〉 by a new edge 〈〈 ,student,student:oid〉〉. If for example the node 〈〈student〉〉 had
the extent [{&1}, {&2}, {&3}, {&4}] before this step, then after this step this edge will have
as its extent [{&1,&1}, {&2,&2}, {&3,&3}, {&4,&4}].

3. Step 10 then has the net effect of repopulating the 〈〈student〉〉 node with values of the
〈〈student:name〉〉 attribute. If, before this step 〈〈 ,student,student:name〉〉 had as its extent
[{&1, ‘Mary’}, {&2, ‘John’}, {&3, ‘Jane’}, {&4, ‘Fred’}], then the map generated would be the
same list, and hence after 10 , 〈〈 ,student,student:oid〉〉 would have the same list of values as
its extent. The result of this step is shown in Figure 13

4. Steps 11–13 perform a similar conversion to the 〈〈course〉〉 node into a natural key based
construct.



20

5. Step 14 deals with the trivial problem of renaming the edge between 〈〈student〉〉 and 〈〈course〉〉
to match the name in the ER model.

Note that at the end of this process, the 〈〈student:oid〉〉 and 〈〈course:oid〉〉 nodes can be discarded
using contract transformations, to symbolise that the ER model looses the OID values of the UML
model, or the ER model could be enhanced with oid attributes, if it was intended to use the ER
model to fully represent the UML model.

ug

ug:
ppt

¤

¢

¤

student:
sid

¤

student:
name

¤

student

¤

¢

id
→

¤¢

student:
oid

¤

¢

¤

¢

⊆

¢

result:
grade

¤

:has:exam

course:
code

¤

course

¤

¢

course:
dept

¤

¢

¤

Figure 13: UML to ER mapping after 10

3.6 Non-Equivalent Models

The examples in Figures 2–5 were deliberately chosen to illustrate how we could draw an equiva-
lence between models with the same information capacity. In practice, modelling languages have
different expressive powers, and hence there may be no equivalent model.

For example, changing the cardinality constraint in Figure 2(a) of student being associated with
result from 0:N to 1:N would result in a¤ being added between 〈〈student〉〉 and 〈〈result,student,course〉〉
in Figure 2(b). If we were to reverse the process outlined in section 4 with this extra constraint in
place then we would run into a problem. The reversed edge redirection from 〈〈 ,result,student〉〉 in
Figure 11 to 〈〈 ,result,student:name〉〉 in Figure 7 carries the mandatory constraint introduced by
1:N. When we come to reverse the inclusion merge that merged 〈〈result:name〉〉 ⊆ 〈〈student:name〉〉
to enable the relationship between 〈〈result〉〉 and 〈〈student:name〉〉 to be represented as a foreign key
we loose 〈〈student:name〉〉 ¤ 〈〈result〉〉. This is precisely because the relational schema in Figure 3(a)
does not express the fact that every student.name must be referenced by at least one result.name.
This lost constraint is, therefore, not a weakness in the approach, but an example of the approach
formally identifying what information from the ER schema cannot be represented in the relational
model. In this particular case, it might appear that we could repair the relational model by the
addition of the foreign key constraint student.name → result.name, but this would not be legal
since result.name is not a candidate key of result.

4 Handling Additional Modelling Concepts

Figure 14(a) illustrates an ORM model of an extended version of the student-course database
where, as we will show, the ORM model is able to represent some aspect of the UoD that one or



21

more of our other data models is unable to represent. The additions made to the ORM model of
Figure 5 are as follows:

ppt

-¾
ug pg

¸ K

student
(name)

-¾ -¾
sid

-¾

-¾
result

position

(no)

-¾
grade

course
(code)

-¾
dept

(a) ORM model of extend student-course database

ug

ug:
ppt

¤

¢

¤

6∩

pg

student:
name

¤

student

id
→

¤¢

student:
sid

¤

¢

¤

¢

⊆

⊆

∪

result:
grade

¤

¢

result:::

position

id
→

¤¢

¢¢

position:
no

¤

course:
code

¤

course

id
→

¤¢

course:
dept

¤

¢

¤

(b) HDM representation of the ORM model

Figure 14: An ORM model of an extended student-course database

• The reference/predicate between value 〈〈sid〉〉 and entity 〈〈student〉〉 now has both roles as
being key.

This concept can be represented in a relational model with the 〈〈student,sid〉〉 attribute being



22

a candidate key. Neither the ER nor UML models have a method of representing this concept
however.

Typically, ER models do not make explicit the relationships between an entity and its at-
tributes, but instead use some sort of syntax with an attribute’s name to indicate that it is
(or is part of) the primary identifier: no other uniqueness constraints can be expressed. With
the more elaborate ER syntax where attribute/entity cardinality constraints are explicit, a
one-to-one relationship is synonymous with the primary identifier and therefore can only be
expressed once per entity.

Because of UML’s reliance on object identifiers, it does not require classes to have value-based
reference schemes and indeed requires nonstandard extensions to its notation to express an
attribute’s uniqueness in its association with its class.

Note that in our HDM production rules for UML there is no rule that generates a uniqueness
constraint from an attribute to the edge associating it to its class. In our HDM production
rules for ER the only way to generate this constraint is in conjunction with a reflexive
constraint.

If we were to convert our extended ORM model into an HDM model that could have been
produced by an equivalent ER schema, we would have to drop the uniqueness constraint
from either 〈〈sid〉〉 or 〈〈student〉〉, or extend the ER language to handle candidate keys. For
UML, both uniqueness constraints must be dropped, since it has no support for any keys.

• There is an additional subclass entity 〈〈pg〉〉 that is disjoint from 〈〈ug〉〉, and in addition, 〈〈pg〉〉
and 〈〈ug〉〉 are total w.r.t. entity 〈〈student〉〉.

The disjointness and totality can not be represented in the relational model, since the rela-
tional model has no constructs that make use of either the HDM disjoint or union constraints.
If we wanted to model our extended ORM example using a relational schema we would have
to drop the exclusion constraint between 〈〈ug〉〉 and 〈〈pg〉〉 as well as the union constraint
between these subsets and 〈〈student〉〉.

There are several ways we may attempt to model the total partition.

– We could represent each subset with a table containing the attributes common to just
that subset, and a primary key that is also a foreign key to the supertype 〈〈student〉〉.
The problem is that there is no way to enforce that at least (or at most) one instance
of some referring foreign key exists for each instance of a primary key.

– With some more elaborate transformations we could change the subclass identification
into an attribute of the superclass telling us which subclass table we should join each
instance to. This would enforce the exclusion constraint, and if we made the attribute
mandatory it would also enforce the union constraint. The problem is that the relational
model has no way of specifying this dynamic join constraint.

– With yet more transformations we could use the subclass-identifying attribute as above
and make each attribute of each subtype an optional attribute of the supertype where it
is set to null when not applicable. Again, the relational model has no way of specifying
that certain attributes must, or must not, be null depending on another attribute.

Despite there being several ways to model subclasses in the relational model we can not
retain exclusion and union constraints involving 〈〈ug〉〉 and 〈〈pg〉〉.

• The fact/predicate between entities 〈〈student〉〉, 〈〈course〉〉, and 〈〈position〉〉 has two overlapping
keys, which states that any pair of 〈〈student〉〉 and 〈〈course〉〉 instances may appear at most
once in the fact, and also that any pair of 〈〈position〉〉 and 〈〈course〉〉 instances may appear at
most once in the fact.

This concept of overlapping keys is not representable in the ER modelling language as we
defined it in Section 2.1, since we choose to use cardinalities to denote number of occurrences



23

of a single entity in the relationship. The UML model is capable of describing this concept,
since it uses multiplicity to denote the number of occurrences of n − 1 classes in an n-ary
association.

5 Future Work

Currently we are compiling the minimal list of atomic constraints needed to represent all the
constructs in all the common modelling languages, and the minimal set of equivalence rules that
will allow us to manually convert a schema from one modelling language to another. The work
reported to date results from our examination of relational, UML, ER and ORM models, and
this will be extended to cover YAT [5] (semi-structured), XML Schema data models, and those
features of ORM and UML not covered in this paper.

Once this work is complete, we will develop an algorithm to automate the conversion process, by
searching for constructs in the target modelling language that can be constructed from the source
schema’s HDM in such a way as to minimise the number of constraints left in the HDM that have
no corresponding target language construct. When there are no constraints left, the resulting
target schema should be equivalent to the source schema. Otherwise semantic information is lost
in the conversion, and the unmatchable constraints will tell us precisely what information has been
lost.

We believe that the framework we have presented in this paper will be of use in formally com-
paring modelling languages and their expressibility, and that the proposed algorithm development
will be of use in data integration.

References

[1] M. Andersson. Extracting an entity relationship schema from a relational database through
reverse engineering. In Proc. ER’94, LNCS, pages 403–419. Springer, 1994.

[2] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Rizopoulos. AutoMed: A
BAV data integration system for heterogeneous data sources. In Proc. CAiSE2004, volume
3084 of LNCS, pages 82–97. Springer-Verlag, 2004.

[3] M. Boyd and P.J. McBrien. Towards a semi-automated approach to intermodel transfor-
mations. In Proc. EMMSAD 04, CAiSE Workshop Proceedings Volume 1, pages 175–188,
2004.

[4] P. Buneman et al. Comprehension syntax. SIGMOD Record, 23(1):87–96, 1994.

[5] S. Cluet, C. Delobel, J. Siméon, and K. Smaga. Your mediators need data conversion! SIG-

MOD Record, 27(2):177–188, 1998.

[6] C.J. Date. Object indentifiers vs. relational keys. In Relational Database: Selected Writings

1994–1997 [9].

[7] C.J. Date. An Introduction to Database Systems. Addison-Wesley, 8th edition edition, 2004.

[8] C.J. Date, H. Darwen, and N.A. Lorentzos. Tempora Data and the Relational Model. 2003,
2003.

[9] C.J. Date, H. Darwen, and D. McGoveran. Relational Database: Selected Writings 1994–1997.
Addison-Wesley, 1998.

[10] P. Hall, J. Owlett, and S.J.P. Todd. Relations and entities. In G.M. Nijssen, editor, Modelling

in Data Base Management Systems. North-Holland, 1975.

[11] T. Halpin. Information Modeling and Relational Databases. Academic Press, 2001.



24

[12] E. Jasper, A. Poulovassilis, and L. Zamboulis. Processing IQL queries and migrating data in
the AutoMed toolkit. Technical Report No. 20, AutoMed, 2003.

[13] E. Jasper, N. Tong, P.J. McBrien, and A. Poulovassilis. View generation and optimisation in
the AutoMed data integration framework. In Proc. Baltic DB&IS04, volume 672 of Scientific

Papers, pages 13–30. Univ. Latvia, 2004.

[14] M. Lenzerini. Data integration: A theoretical perspective. In Proc. PODS’02, pages 233–246.
ACM, 2002.

[15] P.J. McBrien and A. Poulovassilis. A uniform approach to inter-model transformations. In
Proc. CAiSE’99, volume 1626 of LNCS, pages 333–348. Springer, 1999.

[16] P.J. McBrien and A. Poulovassilis. Data integration by bi-directional schema transformation
rules. In Proc. ICDE’03, pages 227–238. IEEE, 2003.

[17] R.J. Miller, Y.E. Ioannidis, and R. Ramakrishnan. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Information Systems, 19(1):3–31, 1994.

[18] S. Patig. Measuring expressiveness in conceptual modeling. In Proc. CAiSE2004, volume
3084 of LNCS, pages 127–141. Springer-Verlag, 2004.

[19] J-M. Petit, F. Toumani, J-F. Boulicaut, and J. Kouloumdjian. Towards the reverse engineer-
ing of denormalized relational databases. In Proc. ICDE’96, pages 218–227, 1996.

[20] A. Poulovassilis and M. Levene. A nested-graph model for the representation and manipula-
tion of complex objects. ACM Trans. on Information Systems, 12(1):35–68, 1994.

[21] A. Poulovassilis and P.J. McBrien. A general formal framework for schema transformation.
Data and Knowledge Engineering, 28(1):47–71, 1998.

[22] K. Schewe. Design theory for advanced datamodels. In Proc. 12th Australasian Conf. on

Database Technologies, pages 3–9, 2001.

[23] R. Wieringa. A survey of structured and object-oriented software specification methods and
techniques. ACM Computing Surveys, 30(4):459–527, 1998.

[24] C. Zaniolo and M. Melkanoff. A formal approach to the definition and the design of conceptual
schemata for database systems. ACM TODS, 1982.


