
1

A Tutorial on the IQL Query Language

AutoMed Technical Report No. 28, Version 1.2

Alex Poulovassilis and Lucas Zamboulis, July 2008

1 Introduction

IQL is a typed, functional language. It supports strings (e.g. ’Computer Science’, ’Fred”s car’),
booleans (True, False), real numbers (e.g. 10.51) and integers. It also supports tuples (e.g.
{1,2,3}), enumerated lists (e.g. [5, 5, 6, 7, 7, 7]), bags (e.g. B[5, 5, 6, 7, 7, 7]) and
sets (e.g. S[5, 6, 7]) of homogeneous values (i.e. values of the same type). Tuples, lists, sets and
bags can be arbitrarily nested, e.g. [{[1,2,3],[4,5]}, {[3,4],[1,2,5]}, {[],[6,7,8]}] is a
list of pairs, each of whose components is a list of numbers.

A number of built-in functions and operators are provided e.g. (+), (-), (*), (/), (=), (!=), (<),
(>), (<=), (>=), and, or, not — see Appendix B for a list of these and a description of each one.

The binary built-in operators are supported both in prefix form, where they need to be enclosed
in round brackets as shown above, and in infix form, where they are used without round brackets.
For example, the expressions (+) 5 6 and 5 + 6 are equivalent.

New, anonymous, functions can be defined by using lambda abstractions. For example:

lambda {x,y,z} ((x+y)*z)

defines a function which takes a triple, adds the first two components and multiplies by the third
one. So

(lambda {x,y,z} ((x+y)*z)) {3,4,5}

returns (3+4)*5 = 35

Also supported are ‘let’ expressions, of the form let v = e1 in e2, for any expressions e1 and
e2. These translate internally into an expression of the form

(lambda v e2) e1

For example, the query

let v = (200 + 500) in (v * v)

returns 700 * 700 = 490000, the query

let f = (lambda {x,y,z} ((x+y)*z)) in ((f {1,2,3}) + (f {3,4,5}))

returns ((1+2)*3) + ((3+4)*5) = 44.

2

All IQL queries are expressed internally in the form of Abstract Syntax Graphs (ASGs) — for
details, see the AutoMed technical report by Jasper, Poulovassilis, Zamboulis et al. on “Processing
IQL Queries in the AutoMed Toolkit”.

As discussed earlier, IQL supports the list, bag and set collection types. To remove duplicates
from lists and bags, a function distinct is provided. We give some examples of IQL queries below,
which illustrate the use of most of its features.

2 Expressing the Relational Algebra in IQL

Consider two collections R and S both consisting of 3-tuples of numeric values. We can compute
the union of R and S by:

R ++ S

If R and S are lists, then ++ simply appends S to the end of R.

The operator ++ does not eliminate duplicates from its result if R and S are bags or lists. To do
so, we can use the distinct function:

distinct (R ++ S)

or, equivalently, we can use the union function:

R union S

We can compute the difference of R and S by:

R -- S

For each member r of R, this operator returns max(0,occurs(r,R) – occurs(r,S)) instances of r in
the result (where occurs(r,R) denotes the number of instances of r in R). If R and S are lists, then
the result is produced in ascending sorted order. If R and S are sets, the result is just ordinary set
difference.

To return members of R which do not appear in S, we can use

[r | r <- R; not (member S r)]

if R and S are lists. This is an example of a list comprehension.

3

If R and S are bags, the same expression is used but starting with “B[” instead of “[”. If R and
S are sets, then “S[” is used instead of “[”1.

We can compute the intersection of R and S by:

R intersect S

For any value v, this returns min(occurs(v,R),occurs(v,S)) instances of v in the result. If R and
S are lists, then the result is produced in ascending sorted order. If R and S are sets, the result is
just ordinary set intersection.

Henceforth in this tutorial, we will assume that R and S are lists, but our examples generalise, as
illustrated above, to the cases of bag and set collections.

To return members of R which also appear in S, we use:

[r | r <- R; member S r]

1The general syntax of list comprehensions is

[e | Q1; . . . ; Qn]

Here, e is an expression, termed the head of the comprehension, and Q1 to Qn are qualifiers, where n ≥ 0. Each
qualifier is either a filter or a generator. Generators have syntax p ← s, where p is a pattern and s is a list-valued
expression. A pattern is an expression consisting of constructors and variables only (no functions or lambda
abstractions). The variables of p are successively bound by iterating through s. Any variables appearing in the head
e inherit these bindings. A filter is a boolean-valued expression, which must be satisfied by the values generated by
the generators in order for these values to contribute to the final result of the comprehension. Comprehensions are a
convenient syntax and add no extra expressiveness to languages such as IQL since they translate into applications
of the flatmap and if functions:

[e | p ← s; Q] ≡ flatmap (lambda p [e | Q]) s
[e | e′; Q] ≡ if e′ [e | Q] []
[e |] ≡ [e]

Bag comprehensions similarly have the syntax

B[e | Q1; . . . ; Qn]

and in this case any generators within the Qi are of the form p ← s where s is a bag. They also translate into
applications of flatmap and if internally:

B[e | p ← s; Q] ≡ flatmap (lambda p B[e | Q]) s
B[e | e′; Q] ≡ if e′ B[e | Q] BNil
B[e |] ≡ (BConseBNil)

Similarly, set comprehensions have the syntax

S[e | Q1; . . . ; Qn]

and any generators within the Qi are of the form p ← s where s is a set. They also translate into applications of
flatmap and if , as follows:

S[e | p ← s; Q] ≡ flatmap (lambda p S[e | Q]) s
S[e | e′; Q] ≡ if e′ S[e | Q] SNil
S[e |] ≡ (SConseSNil)

4

We can also use comprehension syntax to express projection. For example, we can project the
first and third components of tuples in R by:

[{x,z} | {x,y,z} <- R]

This query can be read as stating:

for every 3-tuple {x,y,z} in R do
return {x,z}

We can also use comprehension syntax to express selection. For example, to return tuples of R
whose second component is greater than 10:

[{x,y,z} | {x,y,z} <- R; y > 10]

This query can be read as stating:

for every 3-tuple {x,y,z} in R do
if y > 10
then return {x,z}

We can also use comprehension syntax to express cartesian product. For example to return the
cartesian product of R, S and a third relation T consisting of 1-tuples:

[{x1,y1,z1,x2,y2,z2,x3} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; {x3} <- T]

This query can be read as stating:

for every 3-tuple {x1,y1,z1} in R do
for every 3-tuple {x2,y2,z2} in S do

for every 1-tuple {x3} in T do
return {x1,y1,z1,x2,y2,z2,x3}

Finally, we can use comprehension syntax to express joins. For example, to join R and S over their
second column and return a set of 6-tuples:

[{x1,y1,z1,x2,y2,z2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; y1 = y2]

This query can be read as stating:

for every 3-tuple {x1,y1,z1} in R do
for every 3-tuple {x2,y2,z2} in S do

if y1 = y2
then return {x1,y1,z1,x2,y2,z2}

To eliminate the duplicated join column from the above result and return a set of 5-tuples:

5

[{x1,y1,z1,x2,z2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; y1 = y2]

To join R and S over their second and third columns, eliminating the duplicated join columns from
the result:

[{x1,y1,z1,x2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; y1 = y2; z1 = z2]

To perform a theta-join of R and S such that the first component of tuples of R is less than the
third component of tuples of S:

[{x1,y1,z1,x2,y2,z2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; x1 < z2]

To perform a more complex theta-join of R and S, illustrating the use of the and, or and not
functions:

[{x1,y1,z1,x2,y2,z2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S;
not (((x1 < z2) or (x1 > z2)) and (y1 = y2))]

2.1 Support for variable unification

IQL allows the same variable to appear within more than one pattern within a comprehension. It
automatically renames such duplicate variable occurrences into unique variable names and adds the
necessary equality constraints between the new variables. This makes writing IQL queries simpler
and quicker. For example, the following list comprehension queries given earlier:

[{x1,y1,z1,x2,y2,z2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; y1 = y2]
[{x1,y1,z1,x2,z2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; y1 = y2]
[{x1,y1,z1,x2} | {x1,y1,z1} <- R; {x2,y2,z2} <- S; y1 = y2; z1 = z2]

can be written, equivalently, as follows by the user, and IQL will translate them automatically into
the above longer forms for evaluation:

[{x1,y,z1,x2,y,z2} | {x1,y,z1} <- R; {x2,y,z2} <- S]
[{x1,y,z1,x2,z2} | {x1,y,z1} <- R; {x2,y,z2} <- S]
[{x1,y,z,x2} | {x1,y,z} <- R; {x2,y,z} <- S]

2.2 Support for nested queries

IQL queries can be arbitrarily nested, so the collections resulting from any of the above operations
can form the input of another operation.

For example, suppose that R and S both have scheme (Name,Gender,Age). The IQL query corre-
sponding to the following relational algebra expression:

σAge>25(πName,Age((σGender=′Male′R) − (σGender=′Male′S)))

is:

6

[{n,a} | {n,a}<-[{n,a} | {n,g,a} <- [{n,g,a}|{n,g,a}<-R; g = ’Male’] --
[{n,g,a}|{n,g,a}<-S; g = ’Male’]

];
a > 25]

We can simplify this by merging the outermost selection and projection operations:

[{n,a} | {n,g,a} <- [{n,g,a}|{n,g,a}<-R; g = ’Male’] --
[{n,g,a}|{n,g,a}<-S; g = ’Male’];

a > 25]

This optimisation is known as loop fusion.

Exercise

Given that R and S both have scheme (Name,Gender,Age), construct an IQL query corresponding
to the following relational algebra expression:

σName=′Jones′ AND Gender=′Female′(πName,Gender((σAge>50R) ∩ (σAge<50S)))

Hint: start from the innermost sub-queries and construct the IQL query outwards.

3 Grouping and Aggregation Operations in IQL

IQL supports the expected grouping and aggregation operations. For example, to count the number
of elements in R:

count R

to sort R:

sort R

to remove duplicates from R:

distinct R

To return the maximum value in R’s second column:

max [y | {x,y,z} <- R]

and the minimum:

min [y | {x,y,z} <- R]

To return the sum over R’s third column:

7

sum [z | {x,y,z} <- R]

and the average:

avg [z | {x,y,z} <- R]

To group R on its first column:

group [{x,{y,z}} | {x,y,z} <- R]

on its second column:

group [{y,{x,z}} | {x,y,z} <- R]

and on its second and third columns:

group [{{y,z},x} | {x,y,z} <- R]

Generally, we observe that group expects as an argument a collection of pairs, and groups them
on their first component. If the result needs to be reordered, then this can be done using a
comprehension. For example, to group R on its second and third column, and present the results
with the original ordering of the tuple components:

[{x,y,z} | {y,z,x} <- group [{{y,z},x} | {x,y,z} <- R]]

To group a collection and apply an aggregation function to each group, we can use the function gc.
In general, gc agFun xs groups a collection of pairs xs on their first component, and then applies
the aggregation function agFun to their second components. For example, to group R on its first
and second columns and return the maximum of the values in the third column for each group:

gc max [{{x,y},z} | {x,y,z} <- R]

to group R on its second and third column and return the total value of the values in the first
column for each group:

gc sum [{{y,z},x} | {x,y,z} <- R]

to group R on its first column and return the minimum of the values in the third column for each
group:

gc min [{x,z} | {x,y,z} <- R]

to group R on its third column and return the average of the values in the first column for each
group:

gc avg [{z,x} | {x,y,z} <- R]

8

gc is an example of a higher-order function (a function is ‘higher-order’ if it takes another function
as an argument). Two other higher-order functions that IQL supports are map and flatmap.

map f xs applies a function f to each member of a collection xs. For example, to add 10 to the
first component of each tuple of R:

map (lambda {x,y,z} {10 + x, y, z}) R

We can always use comprehension syntax instead of using map e.g.

[{10 + x, y, z} | {x,y,z} <- R]

More generally, map f xs is equivalent to [f x | x <- xs]

flatmap f xs applies a collection-valued function f to each member of a collection xs and applies
++ to the resulting collections. For example:

flatmap (lambda {x,y,z} [{10 + x, y, z}]) R

gives the same result as the previous two queries.

4 Using IQL in AutoMed

Currently IQL is used in AutoMed in two ways: to express the queries within add, delete, extend
and contract transformations, and to express queries on schemas defined within AutoMed’s Schemas
and Transformations Repository (STR). Such schemas may be data source schemas, intermediate
schemas or global schemas. In all cases, the individual constructs of a schema are identified by
their scheme within IQL queries, and they return lists of values2.

For example, consider a schema construct <<Student,name>> representing the attribute name of a
table Student, which has a single-attribute primary key studentId, say. The following IQL query
counts the number of distinct students’ names and sees if this equals the number of student id
values:

(count (distinct [n | {s,n} <- <<Student,name>>])) = (count <<Student>>)

Note that this is how a primary key constraint could be specified using IQL.

As another example, suppose we have in a global relational schema attributes <<Student,address>>
and <<Student,age>> possibly sourced from different databases, and we want to return the set of
all known students with all their known address and age information. Here is a query that does
this:

[{s,a,g} | {s}<-<<Student>>;
{s,a}<-<<Student,address>>;

2Generally, the extent of a scheme may also be a bag or a set. Currently, all the AutoMed wrappers return
list-valued extents for data source schemes. This may shortly be changing!

9

{s,g}<-<<Student,age>>]
++
[{s,UnknownAddress,g} | {s}<-<<Student>>;

{s,g}<-<<Student,age>>;
not (member [s1 | {s1,a} <- <<Student,address>>] s)]

++
[{s,a,UnknownAge} | {s}<-<<Student>>;

{s,a}<-<<Student,address>>;
not (member [s1 | {s1,g} <- <<Student,age>>] s)]

++
[{s,UnknownAddress,UnknownAge} | {s}<-<<Student>>;

not (member [s1 | {s1,a} <- <<Student,address>>] s);
not (member [s2 | {s2,g} <- <<Student,age>>] s)]

We observe that this query is expressing an outerjoin of <<Student>>, <<Student,address>> and
<<Student,age>> over their common studentId component.

User-specified identifiers such as UnknownAge and UnknownAddress above are treated as constants
by the IQL evaluator, i.e. they are returned as-is within query results. However, at present there
is no type-checking in IQL (either static or dynamic), and so queries such as 1 + UnknownAge
will generate a run-time exception. It is currently up to the programmer to guard against such
type-incorrect expressions being passed to the IQL evaluator for evaluation.

A Syntax for IQL End-User Queries

query ::= expr
| Let VarToken Equal query In query
| query OpToken query
| query Equal query
| query expr

expr ::= IntToken
| FloatToken
| DateTimeToken
| StrToken
| VarToken
| ConsToken
| scheme
| LSB query Bar quals RSB
| LLSB query Bar quals LRSB
| SLSB query Bar quals SRSB
| BLSB query Bar quals BRSB
| LSB RSB
| LLSB LRSB
| SLSB SRSB
| BLSB BRSB
| LSB seq RSB

10

| LCB seq RCB
| LRB query RRB
| Lambda expr expr
| prefix op

prefix op ::= LRB OpToken RRB
| LRB Equal RRB

seq ::= seq Comma query
| query

quals ::= qual SemiColon quals
| qual

qual ::= query
| expr LArrow query

scheme ::= LDAB scheme seq RDAB

scheme seq ::= scheme element
| scheme seq Comma scheme element

scheme element ::= UnderScore
| VarToken
| StrToken
| IntToken
| ConsToken
| scheme

StrToken = ’([^’]|"’’")*’

IntToken = [-]?[0-9]*

FloatToken = [-]?([0-9]+)(".")([0-9]+)

DateTimeToken = ("dt ’")([1-9])([0-9])([0-9])([0-9])("-")
([0-1])([0-9])("-")([0-3])([0-9])(" ")
([0-2])([0-9])(":")([0-5])([0-9])(":")([0-5])([0-9])("’")

OpToken = "<>"|"<="|">="|"++"|"--"|"+"|"-"|"*"|"/"|"<"|">"|
"div"|"mod"|"and"|"or"

VarToken = [a-z][A-Za-z0-9 $.]*

ConsToken = [A-Z][A-Za-z0-9 $.]*

Let = "let"
In = "in"

11

Equal = "="
SemiColon = ";"
LArrow = "<-"
Comma = ","
Bar = "|"
LSB = "["
RSB = "]"
LRB = "("
RRB = ")"
LCB = "{"
RCB = "}"
Lambda = "lambda"
LDAB = "<<"
RDAB = ">>"
Colon = ":"
BLSB = "B["
SLSB = "S["
LLSB = "L["
UnderScore = " "

B Built-In IQL Functions

B.1 Unary Functions

not /* (not e) returns the negation of e */
count /* (count xs) returns the cardinality of the collection xs */
sort /* (sort xs) sorts the collection xs */
distinct /* (distinct xs) removes duplicates from the list or bag xs */
group /* (group xs) groups a collection of pairs xs on their first component */

/* and returns a collection of pairs whose second components are collections */
max /* (max xs) returns the maximum of a collection of numbers xs */
min /* (min xs) returns the minimum of xs */
sum /* (sum xs) returns the sum of xs */
avg /* (avg xs) returns the average of xs */

B.2 Binary Infix Operators

++ /* (xs ++ ys) appends the collections xs and ys */
-- /* (xs -- ys) returns the monus (bag difference) of xs and ys */
union /* (xs union ys) returns the set-union of xs and ys */
intersect /* (xs intersect ys) returns the intersection of xs and ys */
+, -, *, /, div, mod /* arithmetic operators */
=, !=, >, <, >=, <=, <> /* comparison operators */
and, or /* logical operators */

12

B.3 Binary Prefix Functions

sub /* (sub xs ys) returns whether xs is a sub-collection of ys */
member /* (member xs x) returns whether x is a member of a collection xs */
map /* (map f xs) applies a function f to each member of a collection xs */
flatmap /* (flatmap f xs) applies a collection-valued function f to each member */

/* of a collection xs and then applies ++ to the resulting collections */
gc /* (gc agFun xs) groups the collection of pairs xs on their first */

/* component, and then applies the aggregation function agFun */
/* to the second components of the resulting pairs */

B.4 3-ary Function

if /* (if e1 e2 e3) returns e2 if e1 is True, e3 if e1 is False,
and Null otherwise */

