
Transforming OWL 2 RL Schemas to Relational Schemas
with Open-world or Closed-world Semantics

Lama Al Khuzayem
Data and Knowledge
Engineering Group

Department of Computing
Imperial College London

laa11@imperial.ac.uk

Yu Liu
Data and Knowledge
Engineering Group

Department of Computing
Imperial College London

yu.liu11@imperial.ac.uk

Peter McBrien
Data and Knowledge
Engineering Group

Department of Computing
Imperial College London

p.mcbrien@imperial.ac.uk

ABSTRACT

Storing and processing Semantic Web knowledge in rela-
tional database management systems (RDBMSs) is
currently a growing interest in both academia and industry.
In this paper, we present OWLRel, a database-driven ontol-
ogy reasoner that supports sound reasoning of OWL 2 RL
and can adhere to either the open-world assumption or the
closed-world assumption. This is achieved by regarding the
mapping of OWL 2 RL schemas to relational schemas as a
two-phase process: (1) Convert the OWL 2 RL model into a
logical relational model where the operational semantics of
constraints are not specified. (2) Implement the OWL 2 RL
constraints in the relational model either as triggers achiev-
ing an open-world semantics (OWS) approach, or as
constraints achieving a closed-world semantics (CWS)
approach.

Keywords

Ontologies, OWL 2 RL, Relational Databases, Database
Triggers, Transactional Reasoning, BAV Transformations.

1. INTRODUCTION
With the increasing number of ontologies available on the

web, a growing interest has arisen for developing systems
that not only store ontologies expressed in the web on-
tology language (OWL) [25] in a relational database
management system (RDBMS), but also perform rea-
soning over the instances to capture the open-world se-
mantics (OWS) characteristics of ontologies [8, 27, 18].
Hence, the problem which is the focus of this paper, can be
broken down into two parts. Firstly, how can we map the
OWL schemas to relational schemas, and secondly how to
perform reasoning over the instances held in this relational
schema.

Most of the state-of-the-art proposals perform the trans-
formation from knowledge model to data model at a high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

level, which is often referred to as direct mapping (DM).
This involves specifying specific mappings from constructs
in OWL to constructs in the relational model, or vice versa.
By contrast, in this paper, we show how to translate schemas
expressed in OWL 2 RL (a profile of the most recent version
of the web ontology language OWL 2 [26] which aims for
rule-based implementations) into relational schemas via an
intermediary low-level hypergraph data model (HDM)
[19].

Using the HDM as an intermediate language has several
advantages. First is the benefit of abstracting the high-level
constructs in OWL and the relational model to a set of core
low-level elemental modelling primitives (nodes, edges, and
constraints) [21], making apparent what are the precise dif-
ferences in the logical semantics of the OWL and relational
models. The second benfit is that it has already been shown
how to use the HDM to translate betweem ER, ORM, re-
lational, UML and XML modelling languages [4, 13], and
hence the work mapping OWL to relational models pre-
sented in this paper will transitivly also allow OWL to be
mapped to other data models. Thirdly, the intermodel
transformations described in [4] expressed as BAV map-
pings [14] are based on using five types of HDM equivalence
rules that transform one HDM schema into an equivalent
HDM schema, and these equivalence rules may be directly
applied to the new task of mapping between the OWL and
relational models.

RDBMSs provide a means of storage for ontologies that
is able to process ontologies with large number of individ-
uals in a manner more efficient than using Tableaux-based
reasoners such as Pellet [20] and Fact++ [23]. A drawback,
however, is that we are forced to make the unique name
assumption (UNA). A challange we meet in this paper
is that normal semantics of an RDBMS is closed-world
semantics (CWS), but that of OWL is OWS. We meet
this challange by building a single framework that maps the
OWL OWS to either an equivalent OWS in the RDBMS, or
a CWS in the RDBMS.

In general, the process of reasoning may be broken down
into: classification of the terminology box (T-Box) and
type-inference over the assertion box (A-Box). The clas-
sification of the T-Box is not the concern of this paper, and
our implementation work has relied on an OWL reasoner,
Pellet, to perform this task. Type-inference, in the context
of databases, is the process of relating values for tables/-
columns to values in other tables/columns. How this is ex-
ecuted will depend on the choice of OWS or CWS. Consid-

ering the description logic (DL) [3] rule Father ≡ Man ⊓
Parent, in an OWS, we could deduce the following inference
rules:

1. Inserting John as an instance of Father would then
cause John to be inserted into both Man and Parent
if not already present.

2. Inserting John into Man would also cause John to be
inserted into Father if John was already in Parent.

3. Inserting John into Parent would also cause John to be
inserted into Father if John was already in Man.

By contrast, in a CWS:

1. An insert of John into Father would fail unless John
was already an instance of both Man and Parent.

2. An insert of John into Man would fail if John was al-
ready present in Parent but not present in Father.

3. An insert of John into Parent would fail if John was
already present in Man but not present in Father.

A further objective of reasoning in an RDBMS is to achieve
transactional reasoning [16], where the results of reason-
ing derived from data changed by the database operations
should be available as part of the atomic action of the trans-
action. To achieve transactional reasoning, two approaches
were identified in [16]: view-based reasoning (VBR),
where rules are used to derive the result of reasoning as each
query is executed over the database, and trigger-based
reasoning (TBR) where triggers (active rules) are used to
materialise the result of reasoning at data insertion time,
and queries simply read the materialised views. The advan-
tages and disadvantages of using views or materialised views
are well known, and each serve different real world require-
ments. Specific advantages of the TBR approach include
that it is very fast at query processing, and that reason-
ing is incremental, since insertion of data only requires the
change to reasoned results to be computed.

To illustrate the concept of transactional reasoning, let us
consider again the DL rule Father ≡ Man ⊓ Parent. If John
was already recorded as a Man, then if a transaction added
that John was a Parent, then any query on the result of the
transaction should also be able to view that John is a Fa-
ther. However, most approaches for storing ontology data in
an RDBMS will make the process of reasoning be detached
from transaction processing of the data. Specifically, in our
example, after the transaction that added John was a Par-
ent, the database could be queried and find that he was not
a Father until a separate process of reasoning had derived
that fact. Hence, we would say that these approaches do
not support transactional reasoning.

The novelty of this paper, which distinguishes it from pre-
vious work in the area (reviewed in Section 11) can be sum-
marised as follows:

1. We represent OWL 2 RL axioms and constructs in the
HDM.

2. We produce lossless transformations of OWL 2 RL
knowledge bases to relational schemas. The trasnsfor-
mations are lossless in the sense that all the semantics
of the OWL 2 RL model are presented in the relational
model.

3. Expressing the transformations as BAVmappings means
we have a precise defintion of the equivalence between
schemas, and can map data back and forth between
the OWL 2 RL and relational schemas.

4. We provide a single mapping approach for handling
the axioms of OWL 2 RL schemas which can result in
either CWS or OWS in the RDBMS.

5. We support sound transactional reasoning of OWL 2
RL ontologies with large A-Boxes.

The remainder of this paper is structured as follows. In
Section 2 we detail OWLRel’s architecture and in Section 3
we review the HDM. In Section 4, we show the complete
representations of OWL 2 RL constructs in HDM and pro-
vide a transformation example followed by explaining the
intermodel transformations in Section 5. The process of
mapping the resulting HDM schema to an RDBMS is ex-
plained in Section 6. We present our novel approach of
transforming OWL 2 RL constructs to relational schemas
via the HDM under OWS and CWS in Sections 7 and 8
respectively. Section 9 highlights the operational semantics
differences between OWS and CWS. We show our system’s
evaluation results in Section 10 and review related work in
the area in Section 11. Finally, in Section 12, we state our
conclusions and elaborate on future directions.

2. OWLREL ARCHITECTURE
OWLRel exploits this division of the OWL reasoning pro-

cess: classification of the T-Box and type-inference of the A-
Box to build a reasoning system in several steps, for which
the overall design is illustrated in Figure 1. The process is
as follows:
1 OWLRel uses the OWLAPI [7] to load an OWL ontology
file and then separates the T-Box and the A-Box.

2 The T-Box is passed into a reasoner for classification.
Since this step is conducted only once as a process of building
up the database schema, the objective is to have as complete
reasoning results as possible. The OWLRel system supports
any reasoner that works with OWL API, and our evaluation
results in Section 10 are based on using Pellet.

3 The fully classified T-Box is mapped to a HDM schema
called the HDM-OWL2RL schema. The BAV mapping ap-
proach used in this transformation describes the the map-
pings between schemas on a construct by construct basis,
as a pathway of primitive transformation steps applied in
sequence. Details of this transformation are found in Sec-
tion 4.
circled4 OWLRel then applies BAV equivalence rules on
the HDM-OWL2RL schema to produce an equivalent HDM
schema called HDM-OWL2RL+rel. The purpose of this step
is to prepare the HDM schema which will be mapped to a
relational model. Details can be found in in Section 5.
5 A core relational database schema that resembles part
of the HDM-OWL2RL+rel schema is created in an RDBMS
which contains only tables, columns, and primary keys as
discussed in Section 6. The rest of the HDM constraints are
treated separately under OWS and CWS as in the following
two alternative steps.

6 Under OWS, OWLRel generates a set of SQL statements
to create triggers for the HDM constraints. The OWLRel
system uses an external file of template triggers to generate

Figure 1: OWL 2 RL to Relational Mapping Approaches

the SQL triggers from the logical triggers which are pre-
sented in Section 7.
7 Under CWS, OWLRel creates SQL constraints for those
unconverted constraints from HDM-OWL2RL+rel as explained
in Section 8.
8 Once the SQL schema plus triggers or constraints have
been created, the A-Box reasoning in an OWS context can
take place by inserting data using SQL statements, which re-
sults in invoking the triggers that perform type inference and
insert derived data into the database. If an inconsistency
arises from a particular reasoning step, the transaction in
which it occurs will be rolled back by removing any reasoned
data as well as the original inserted data. In a CWS scenario,
as the A-Box is being inserted to the database, constraints
will check the consistency of the database. Hence, any data
that violates these constraints will be rejected, rather than
performing type inference.

The result of these steps is a stand-alone fully type infer-
encing system in an RDBMS under OWS, which produces
sound reasoning for ontologies expressed in the OWL 2
RL profile or ensuring the consistency of the ontologies in
a CWS setting.

3. HDM OVERVIEW
In this Section, we provide a brief review of the HDM

defined in [4, 19]. An HDM schema S is a triple
〈Nodes,Edges,Cons〉 where:

• Nodes is a set of nodes in the graph such thatNodes ⊆
{node:〈〈nn〉〉 | nn ∈ Names}. Given data instance I of
the HDM schema, the function ExtI(node:〈〈nn〉〉) gives
the set of data values associated with node:〈〈nn〉〉.

• Schemes = Nodes ∪Edges

• Edges is a set of edges in the graph such that Edges ⊆
{edge:〈〈ne, s1, . . . , sn〉〉 | ne ∈ Names ∪ { } ∧ s1 ∈
Schemes∧ . . .∧sn ∈ Schemes}. Note that this defines
a hypergraph edge since edges can connect more than
two nodes, and also defines a nested graph, since edges
can also connect to other edges as follows:
∀I.ExtI(edge:〈〈ne, s1, . . . , sn〉〉) ⊆ ExtI(S1)×. . . ExtI(Sn)

• Cons ⊆ {c(s1, . . . , sn) | c ∈ Funcs ∧ s1 ∈ Schemes ∧
. . . ∧ sn ∈ Schemes} Cons is a set of boolean-valued
functions (constraints) whose variables are members of

Schemes and where the set of functions Funcs forms
the HDM constraint language. The set of constraints
used in this paper are as follows:

– cons:〈〈 ⊆, s1, s2〉〉 is the inclusion constraint which
states that scheme s1 is always a subset of scheme
s2: ∀I.ExtI(s1) ⊆ ExtI(s2)

– cons:〈〈6∩, s1, . . . , sn〉〉 is the exclusion constraint
which states that all the associate schemes are
disjoint from each other:
∀I.1 ≤ x ≤ n, 1 ≤ y ≤ n, x 6= y.ExtI(sx) ∩
ExtI(sy) = ∅

– cons:〈〈∪, s1, . . . , sn, s〉〉 is the union constraint stat-
ing scheme s is the union of schemes s1, . . . , sn:

∀I.ExtI(s) = ExtI(s1) ∪ . . . ∪ ExtI(sn)

– cons:〈〈�, s1, . . . , sm, s〉〉 is themandatory constraint
stating that every combination of values that ap-
pears in schemes s1, . . . , sm must appear in the
edge s connecting those schemes.

– cons:〈〈�, s1, . . . , sm, s〉〉 is the unique constraint stat-
ing that every combination of values that appears
in schemes s1, . . . , sm must appear no more than
once in the edge s connecting those schemes.

– cons:〈〈
id
→, s1, s〉〉 is the reflexive constraint, stat-

ing that for any value in s1 must appear reflex-
ivly in the edge s that connects to s1, so that
∀I.ExtI(s1)× ExtI(s1) ⊆ ExtI(s)

– cons:〈〈|1|, s〉〉 is the instance constraint, stating
that only one value may be stored in s such that
∀I.|ExtI(s)| = 1

In addition to referring to schemes directly, constraints
may also take joins and projections of schemes as ar-
guments.

To illustrate the use of HDM to describe the semantics
of high-level data models, consider the relational schema in
Example 3.1 (where primary keys are underlined, and nul-
lable column names are suffixed by a question mark). We
will later show how this schema can be derived from the
OWL 2 RL ontology listed in Figure 2.

Example 3.1. Family Relational Database Schema

Person(id, spouse?)
Man(id,wife?)
Woman(id, husband?)
Parent(id)
JohnsChildren(id)
hasChild(parent, child)
hasParent(child, parent)
hasGrandParent(grandchild, grandparent)
hasAncestor(descendant, ancestor)

2

Using the approach from [12], we can translate the rela-
tional schema into a HDM schema as follows. For each rela-
tional table we create a node, and connect it via HDM edges
to nodes created for each column. Hence for the Woman ta-
ble we create:

node:〈〈Woman〉〉 edge:〈〈 ,Woman,woman:id〉〉
node:〈〈woman:id〉〉 edge:〈〈 ,Woman,husband〉〉
node:〈〈husband〉〉

Since values in columns cannot exist in isolation from rows
in the table, we state that the nodes representing columns
have a mandatory association with the edge connecting them
to the nodes representing the table:

cons:〈〈�, node:〈〈woman:id〉〉, edge:〈〈 ,Woman,woman:id〉〉〉〉
cons:〈〈�, node:〈〈husband〉〉, edge:〈〈 ,Woman, husband〉〉〉〉

and since each column of a relation may take only one value,
it follows that the node representing table is connected to
the same edges by a unique constraint:

cons:〈〈�, node:〈〈Woman〉〉, edge:〈〈 ,Woman,woman:id〉〉〉〉
cons:〈〈�, node:〈〈Woman〉〉, edge:〈〈 ,Woman, husband〉〉〉〉
If columns are not nullable, such as woman.id, we also

state that the association of the table to the column edge is
mandatory:

cons:〈〈�, node:〈〈Woman〉〉, edge:〈〈 ,Woman,woman:id〉〉〉〉
and if the column is key, then we state that the same edge
is reflexive:

cons:〈〈
id
→, node:〈〈Woman〉〉, edge:〈〈 ,Woman,woman:id〉〉〉〉

which in combination with the unique and mandatory con-
straints has the consequence that the extent of the node
representing the table becomes the set of key values of the
table.

Note that you can view the HDM representation of the
relational model (HDM nodes connected by HDM edges) as
a forest of two-level trees, where the root of each tree is a
node representing a table, the leafs of the tree are nodes
representing columns, and HDM inclusion constraints exist
only between leaf nodes. Other types of HDM constraints
may be associated with the edges between nodes.

4. REPRESENTING OWL 2 RL IN HDM
OWL 2 RL is a syntactic subset of OWL 2 DL [26], and

OWL 2 DL is an implementation of the DL SROIQ(D) with
keys added. OWL 2 RL supports almost all OWL 2 axioms
except for reflexive object properties and disjoint union ex-
pressions, and restricts the usage of some class expressions
to make it possible to reason using rule-based engines with a
complexity of PTIME-complete. Thus, it is well suited for
applications that require scalable reasoning without loosing
too much expressivity.

We now discuss how OWL 2 RL constructs and axioms
may be represented in HDM which corresponds to Step 3

in Figure 1. For conciseness, we only discuss some of those
OWL 2 RL constructs listed in Tables 1 and 2, which are
sufficient to describe how the OWL 2 RL knowledge base
illustrated in Figure 2 can be translated into a HDM schema
depicted in Figure 3.

All OWL classes are represented as HDM nodes. For ex-
ample, class Person is represented as: node:〈〈Person〉〉

Object properties are represented as HDM edges with dif-
ferent HDM constraints depending on the type of the ob-
jectProperty. For example, the hasSpouse property is both
a symmetricProperty and a functionalProperty as denoted in
rules (26) and (27). In HDM we represent it as follows:
edge:〈〈hasSpouse,Person,Person〉〉
cons:〈〈 ⊆, π〈Person#2,Person#1〉〈〈hasSpouse,Person,Person〉〉,

〈〈hasSpouse,Person,Person〉〉〉〉
cons:〈〈�,Person#1, 〈〈hasSpouse,Person,Person〉〉〉〉

Note in the above rule, where the edge hasSpouse links
node 〈〈Person〉〉 with itself, we can disambiguate the first and
second occurrence of 〈〈Person〉〉 with #1 and #2.

All OWL 2 RL axioms are represented as HDM constraints.
For example, the subClassOf and subPropertyOf axioms de-
noted in rules (1) and (21) are represented as inclusion con-
straints (⊆) where the first element is subsumed by the sec-
ond as follows:
cons:〈〈 ⊆,Man,Person〉〉
cons:〈〈 ⊆, 〈〈hasHusband,Woman,Man〉〉,

〈〈hasSpouse,Person,Person〉〉〉〉
If a class is a complementOf another class as given in

rule (3) that is represented as an exclusion constraint (6∩)
between the two classes and the union (∪) of the two classes
gives you the class Thing as follows:
cons:〈〈6∩,Man,Woman〉〉
cons:〈〈∪,Thing,Man,Woman〉〉

The someValuesFrom construct denoted in rule (4) is re-
sembeled in HDM as a node connected to the filler node (i.e.
class Person) with an edge and a mandatory (�) constraint
and making the newly created edge subset of the edge re-
sembling the same property as follows:
node:〈〈∃hasChild.Person〉〉
edge:〈〈hasChildIE,∃hasChild.Person,Person〉〉
cons:〈〈�,∃hasChild.Person,

〈〈hasChildIE, ∃hasChild.Person,Person〉〉〉〉
cons:〈〈 ⊆, 〈〈hasChildIE, ∃hasChild.Person,Person〉〉,

〈〈hasChild,Person,Person〉〉〉〉
The hasValues construct denoted in rule (5) is represented

by a node for the individual John with an attached cardinal-
ity constraint to 1 as follows:
node:〈〈John〉〉
cons:〈〈|1|, John〉〉

Then, similar to representing ∃ hasChild.Person, we create
a node 〈〈∃hasParent.John〉〉 and connect it via an edge to the
node 〈〈John〉〉 and make it mandatory on the edge. We then
represent the equivalentClass construct denoted in the same
rule by two inclusion constraints (⊆) in both directions to
make the first class subset of the second, and the second
subset of the first as follows:
cons:〈〈 ⊆,∃hasParent.John, JohnsChildren〉〉
cons:〈〈 ⊆, JohnsChildren, ∃hasParent.John〉〉

The fact that one property is the inverseOf another as
shown in rule (24) is represented by an inclusion constraint
between the property and the projection (π) of its inverse
in the reverse order as follows:
cons:〈〈 ⊆, π〈hasHusband,Man,Woman〉 , 〈〈hasWife,Man,Woman〉〉〉〉

cons:〈〈 ⊆, π〈hasWife,Woman,Man〉, 〈〈hasHusband,Woman,Man〉〉〉〉

Man ⊑ Person (1)

Woman ⊑ Person (2)

Man ≡ ¬Woman (3)

∃ hasChild.Person ⊑ Parent (4)

JohnsChildren ≡ ∃ hasParent.{John} (5)

⊤ ⊑ ∀ hasChild.Person (6)

⊤ ⊑ ∀ hasChild−.Person (7)

⊤ ⊑ ∀ hasHusband.Man (8)

⊤ ⊑ ∀ hasHusband−.Woman (9)

⊤ ⊑ ∀ hasWife.Woman (10)

⊤ ⊑ ∀ hasWife−.Man (11)

⊤ ⊑ ∀ hasSpouse.Person (12)

⊤ ⊑ ∀ hasSpouse−.Person (13)

⊤ ⊑ ∀ hasParent.Person (14)

⊤ ⊑ ∀ hasParent−.Person (15)

⊤ ⊑ ∀ hasAncestor.Person (16)

⊤ ⊑ ∀ hasAncestor−.Person (17)

⊤ ⊑ ∀ hasGrandParent.Person (18)

⊤ ⊑ ∀ hasGrandParent−.Person (19)

hasWife ⊑ hasSpouse (20)

hasHusband ⊑ hasSpouse (21)

hasParent ⊑ hasGrandParent (22)

hasGrandParent ⊑ hasAncestor (23)

hasHusband ≡ hasWife− (24)

hasParent ◦ hasParent ≡ hasGrandParent (25)

hasSpouse− ⊑ hasSpouse (26)

⊤ ⊑≤ 1 hasSpouse (27)

⊤ ⊑≤ 1 hasHusband (28)

⊤ ⊑≤ 1 hasWife (29)

hasAncestor ◦ hasAncestor ⊑ hasAncestor (30)

(a) The T-Box of the OWL 2 RL Family Knowledge Base

Man(John) (31)

Woman(Mary) (32)

hasAncestor(Michael,Alex) (33)

hasHusband(Mary, John) (34)

hasParent(Lewis,Albert) (35)

hasParent(Albert,Alex) (36)
(b) The A-Box of the OWL 2 RL Family Knowledge Base

Figure 2: A Family Knowledge Base Expressed in OWL 2 RL

Man Woman

hasHusband

�hasWife

�

⊆

π ⊆

π

hasSpouse

�

⊆ π

⊆ ⊆

⊆ ⊆

hasParent 1

π

⊆hasGrandParent

hasAncestor1

π

⊆

⊆ ⊆

Person

Figure 3: HDM Representation of the OWL 2 RL Family T-Box Rules (1-2) & (8-30)

A propertyChain such as the one given in rule (25) is rep-
resented by making the projection (π) of joining (⊲⊳) the
subproperties subset of itself as follows:
edge:〈〈hasGrandParent,Person#1,Person#2〉〉
cons:〈〈 ⊆, π〈Person#1,Person#4〉〈〈hasParent,Person#1,Person#2〉〉

⊲⊳Person#2=Person#3 〈〈hasParent,Person#3,Person#4〉〉,
〈〈hasGrandParent,Person#1,Person#2〉〉〉〉

Similarly, a transitiveProperty such as the one denoted in
rule (30) is represented as follows:
edge:〈〈hasAncestor,Person#1,Person#2〉〉
cons:〈〈 ⊆, π〈Person#1,Person#4〉〈〈hasAncestor,Person#1,Person#2〉〉

⊲⊳Person#2=Person#3 〈〈hasAncestor,Person#3,Person#4〉〉,
〈〈hasAncestor,Person#1,Person#2〉〉〉〉

Note that in the HDM diagram, HDM nodes are repre-
sented by white circles with thick outlines, and HDM edges
are represented by thick black lines. The HDM constraint
language is represented by grey dashed boxes connected by
grey lines to the nodes and edges to which the constraint
applies. Edges pass through black circles in a straight line,
hence any edge or constraint applying to an edge meets that
edge at an angle.

5. HDM TRANSFORMATIONS
Step 4 in Figure 1 performs a type of normalisation

on the HDM-OWL2RL schema, to produce an equivalent
HDM-OWL2RL+rel schema that can be directly mapped
into a relational schema. This normalisation process is im-
portant to overcome the fundamental differences between
the two modelling languages. On the one hand, OWL 2 RL
is a knowledge model that has the notion of classes, prop-
erties. On the other hand, relational, is a key-based data
model that has tables, columns, primary key (PK) and for-
eign key (FK) constraints.

Our three step process converts the HDM graph repre-
senting OWL 2 RL into an equivalent graph (in terms of
information capacity) that can then be mapped into a rela-
tional schema. This uses a set of HDM equivalence mappings
presented in [4].

(A) Transform the implied object identifiers (OID) of OWL
classes into explicit keys to form PK columns for their
respective tables in the relational model.

This can be achieved using a HDM graph equivalence

Table 1: HDM Representations for OWL 2 RL Class Axioms
OWL 2 Construct DL Syntax HDM Representation
Class C node:〈〈C〉〉
subClassOf C ⊑ D cons:〈〈 ⊆,C,D〉〉
equivalentClass C ≡ D cons:〈〈 ⊆,C,D〉〉, cons:〈〈 ⊆,D,C〉〉
classDisjointWith C ⊓ D ⊑ ⊥ cons:〈〈6∩,C,D〉〉
complementOf C ≡ ¬D cons:〈〈6∩,C,D〉〉, cons:〈〈∪,C,D,Thing〉〉
allValuesFrom ∀P.D node:〈〈¬D〉〉, cons:〈〈6∩,D,¬D〉〉, cons:〈〈∪,D,¬D,Thing〉〉

node:〈〈∃P.¬D〉〉, edge:〈〈P IE, ∃P.¬D,¬D〉〉, cons:〈〈�,∃P.¬D, 〈〈P IE, ∃P.¬D,¬D〉〉〉〉
node:〈〈∀P.D〉〉, cons:〈〈6∩,∀P.D,∃P.¬D〉〉, cons:〈〈∪,∀P.D,∃P.¬D,Thing〉〉

someValuesFrom ∃P.D node:〈〈∃P.D〉〉, edge:〈〈P IE, ∃P.D,D〉〉
cons:〈〈�,∃P.D, 〈〈P IE,∃P.D,D〉〉〉〉, cons:〈〈 ⊆, 〈〈P IE, ∃P.D,D〉〉, 〈〈P,D,D〉〉〉〉

hasValue ∃P.{a} node:〈〈∃P.a〉〉, edge:〈〈P IE,∃P.a, a〉〉
cons:〈〈�,∃P.a, 〈〈P IE, ∃P.a, a〉〉〉〉, cons:〈〈 ⊆, 〈〈P IE, ∃P.a, a〉〉〈〈P,D,D〉〉〉〉

oneOf {a1, . . . , an} node:〈〈a1 ai an〉〉, cons:〈〈∪, a1, . . . , an, a1 ai an〉〉
maxCardinality ≤nP node:〈〈 ≤ nP〉〉, edge:〈〈P IE,≤ nP,D〉〉, cons:〈〈�n,≤ nP, 〈〈P IE,≤ nP,D〉〉〉〉
intersectionOf C ⊓ D node:〈〈C− D〉〉, cons:〈〈 ⊆,C− D,C〉〉, node:〈〈C ∪ D〉〉, cons:〈〈∪,C− D,D,C ∪ D〉〉

cons:〈〈∪,C,D,C ∪ D〉〉, cons:〈〈∪,C− D,D〉〉, node:〈〈C ∩ D〉〉, cons:〈〈 ⊆,C ∩ D,C〉〉
cons:〈〈6∩,C ∩ D,C− D〉〉, cons:〈〈∪,C ∩ D,C−D,C〉〉

namedIndividual a node:〈〈a〉〉, cons:〈〈|1|, a〉〉

transformation, where the function:
inverse identity node merge(〈〈T1〉〉, 〈〈Ck1〉〉) will take an exist-
ing node 〈〈T1〉〉, and creates a new node 〈〈Ck1〉〉 connected to
〈〈T1〉〉 by an edge. The edge has constraints that ensure that
each instance of 〈〈T1〉〉 appears at least once (�), at most

once (�) and reflexively (
id
→) in the edge, so that the con-

tents of 〈〈Ck1〉〉 must be identical to 〈〈T1〉〉. This is illustrated
by:

T1 ≡ T1 Ck1

E

id
→

��
�

Applying this step on the HDM OWL 2 RL schema in
Figure 3 would be achieved by:
inverse identity node merge(〈〈Person〉〉, 〈〈Person:id〉〉)
inverse identity node merge(〈〈Woman〉〉, 〈〈Woman:id〉〉)
inverse identity node merge(〈〈Man〉〉, 〈〈Man:id〉〉)
and would result in HDM constructs for tables and their
keys as described in Section 3.

(B) Convert HDM edges representing OWL properties be-
tween OWL classes into the HDM equivalent of a col-
umn with a foreign key.

This process involves using two HDM equivalences. The
first equivalence mapping:
inverse inclusion merge(〈〈E,T1,T2〉〉, 〈〈C1〉〉) uses the 〈〈E,T1,T2〉〉
edge to identify those members of 〈〈T1〉〉 that participate in
the edge, and put them in a new node 〈〈C1〉〉 that is a subset
of 〈〈T2〉〉 as illustrated below.

T1T2
E ≡ C1T2 ⊇ T1

E

�

Once this equivalence mapping has been performed, the
subset 〈〈⊆, 〈〈T1〉〉, 〈〈C1〉〉〉〉 is used in another mapping to be

redirected to node 〈〈Ck2 〉〉 representing the key of table rep-
resented by 〈〈T2〉〉. This is generated by a second equivalence
mapping redirect inclusion constraint(〈〈⊆, 〈〈T1〉〉, 〈〈C1〉〉〉〉, 〈〈Ck2〉〉)

T2 Ck2

C1

E

id
→

��
�

⊆

≡

C1

T2 Ck2

E

id
→
��

�

⊆

We can apply these two equivalences to the edge:
〈〈hasSpouse,Person,Person〉〉 as follows:
inverse inclusion merge(〈〈hasSpouse, Person,Person〉〉, 〈〈spouse〉〉)
redirect inclusion constraint(〈〈⊆,Person, spouse〉〉, 〈〈Person:id〉〉)

which would generate a new node 〈〈spouse〉〉 which has a
mandatory constraint between it and the edge
〈〈hasSpouse,Person,Person〉〉 and is a subset of the node
〈〈Person〉〉. Applying this process to both ends of the edge:
〈〈hasSpouse,Person,Person〉〉:
inverse inclusion merge(〈〈hasParent, Person#1,Person#2〉〉, 〈〈child〉〉)
redirect inclusion constraint(〈〈⊆,Person, child〉〉, 〈〈Person:id〉〉)
inverse inclusion merge(〈〈hasParent, Person#2,Person#1〉〉, 〈〈parent〉〉)
redirect inclusion constraint(〈〈⊆,Person, parent〉〉, 〈〈Person:id〉〉)

generates two new nodes node:〈〈parent〉〉 and node:〈〈child〉〉
each with a subset constraint with the node representing the
key of person.

(C) Represent non-functional properties in OWL as sepa-
rate tables in the relational model.

The HDM graph equivalence mapping:
identity edge merge(〈〈T,C1,C2〉〉), 〈〈ET〉〉 that replaces the edge
by a new node 〈〈T〉〉 connected to the two original nodes via

two edges where there are �, �, and
id
→ constraints between

the new node and the natural join of the two new edges.

Table 2: HDM Representations for OWL 2 RL Property Axioms
OWL 2 Construct DL Syntax HDM Representation
objectProperty P edge:〈〈P,C,D〉〉
dataProperty R 〈〈rdf:datatype〉〉, 〈〈R,C, rdf:datatype〉〉
subPropertyOf P ⊑ Q cons:〈〈 ⊆,P,Q〉〉
equivalentProperty P ≡ Q cons:〈〈 ⊆,P,Q〉〉, cons:〈〈 ⊆,Q,P〉〉
propertyDisjointWith P ⊓ Q ⊑ ⊥ cons:〈〈6∩,P,Q〉〉
inverseOf P ≡ Q− cons:〈〈 ⊆, π〈C2,C1〉

〈〈P,C1,C2〉〉, 〈〈Q,C2,C1〉〉〉〉

cons:〈〈 ⊆, π〈C1,C2〉
〈〈Q,C2,C1〉〉, 〈〈P,C1,C2〉〉〉〉

symmetricProperty P ≡ P− edge:〈〈P,C,D〉〉
cons:〈〈 ⊆, π〈D,C〉〈〈P,C,D〉〉, 〈〈P,C,D〉〉〉〉

transitiveProperty P ◦ P ⊑ P edge:〈〈P,C1,C2〉〉
cons:〈〈 ⊆, π〈P#1.C1,P#2.C2〉

P ⊲⊳ P, 〈〈P,C1,C2〉〉〉〉

propertyChain P1 ◦ . . . ◦ Pn ⊑ P edge:〈〈P1,C1,C2〉〉 , . . . , edge:〈〈Pn,Cn,Cn+1〉〉
edge:〈〈P,C1,Cn+1〉〉
cons:〈〈 ⊆, π〈C1,Cn+1〉

P1 ⊲⊳ . . . ⊲⊳ Pn, 〈〈P,C1,Cn+1〉〉〉〉

functionalProperty ⊤ ⊑≤ 1P edge:〈〈P,C1,C2〉〉, cons:〈〈�,C1, 〈〈P,C1,C2〉〉〉〉
inverseFunctionalProperty ⊤ ⊑≤ 1P− edge:〈〈P,C1,C2〉〉, cons:〈〈�,C2, 〈〈P,C1,C2〉〉〉〉
irreflexiveProperty ⊤ ⊑ ¬∃ P.self edge:〈〈P,C1,C2〉〉, edge:〈〈Q,D1,D2〉〉, cons:〈〈6∩,P,Q〉〉

cons:〈〈�,D1,Q〉〉, cons:〈〈�,D1,Q〉〉, cons:〈〈
id
→,D1,Q〉〉

selfRestriction ∃ P.self edge:〈〈P,C,D〉〉, cons:〈〈�,C,P〉〉, cons:〈〈�,C,P〉〉, cons:〈〈
id
→,C,P〉〉

key edge:〈〈P,C,D〉〉, cons:〈〈�,C,P〉〉, cons:〈〈�,C,P〉〉, cons:〈〈
id
→,C,P〉〉

T

C1

...

C2
E2

E1

id
→
��

1≡

C1

...

C2

ET

For example, applying the mapping to
edge:〈〈hasParent, child, parent〉〉 is done by:
inverse identity edge merge(〈〈hasParent, child, parent〉〉, 〈〈hasParent〉〉)

and would generate HDM objects equivalent to the hasPar-
ent table in Section 3.

The result of steps (A), (B) and (C) is an HDM graph
that is a forest of two-level trees, with subset constraints
linking the leaf nodes.

6. BUILDING AN RDB SCHEMA
Step 5 in Figure 1 builds a core relational database

schema from the HDM OWL2RL+rel schema. By core, we
mean it defines tables, columns, and primary keys that allow
data to be held, without defining any triggers or constraints
that would affect the open-world or closed-world interpreta-
tion of the data. In outline, the HDM OWL2RL+rel schema
is a forest of two level trees, where root nodes are connected
to a number of leaf nodes via edges.

From our methodology in previous section, we can derive
three production rules for building a relational schema of
the general form HDM patterns ; Relational construct. For
HDM nodes that are roots of the tree (and thus came from
OWL 2 RL classes), we map them into a table of the same
name:

Class: node:〈〈T〉〉 ; table:〈〈T〉〉
The leaf nodes that have been created by Steps (A) or (B)
of the previous section will be mapped into columns:

Property: edge:〈〈 ,T,C2〉〉, node:〈〈C2〉〉, cons:〈〈�,C, 〈〈 ,T,C〉〉〉〉
; column:〈〈T,C〉〉

Finally, for those edges for which we have defined sufficient
constraints to intrepret it as the key (i.e. resulting from Step
(A) above) we can define a primary key of the table.

edge:〈〈 ,T,C〉〉, cons:〈〈�,C, 〈〈 ,T,C〉〉〉〉, cons:〈〈�,T, 〈〈 ,T,C〉〉〉〉,

cons:〈〈�,T, 〈〈 ,T,C〉〉〉〉, cons:〈〈
id
→,T, 〈〈 ,T,C〉〉〉〉

; primary key:〈〈T,C〉〉
These rules will result in a relational schema identical to

the one shown in Example 3.1.

7. HANDLING CONSTRAINTS IN OWS
We now outline the process of handling the unconverted

HDM constraints under OWS which corresponds to Step 6
in Figure 1. The approach we follow was inspired by the
work of [15, 9] in which we first derive logical triggers over
the relational schema that is resulted from the previous sec-
tion and then implement those logical triggers as SQL phys-
ical triggers on a particular target DBMS as will be illus-
trated in Section 9. The logical triggers are translated from
the HDM constructors according to the general form:

HDM construct ; when event if condition then action.

where event is the insertion process of a data value into a
table. There are two types of event: if event is prefixed with
− then condition and action are executed before the inser-
tion, whilst if event is prefixed with + then condition and
action are executed after the insertion. SQL before triggers
(in pl/pgSQL) or instead of triggers (in Transact-SQL) are
used to implement − events, and after triggers, used for +

events. The condition is a Datalog query over the database,
and action is either a data tuple to insert, ignore (ignoring
this insertion that caused the trigger to execute) and roll-
back (rollback the transaction). The logical triggers can be
translated into SQL physical triggers following the approach
given in [15].

One basic rule deals with the notion that because of the
open world nature of reasoning, we might repeatedly infer

the same fact, and thus we have to prevent duplicate updates
to a table. This is implemented by the logical triggers:

class: node:〈〈C〉〉

; when −C(x) if C(x) then ignore
This means that when a value is inserted into a table, before
the actual insert is done, a check is made to determine if the
value is already present in the table, and if so, the insert is
ignored.

The logical trigger for subClassOf generates a trigger that
implies that each insertion to one class will automatically
generate the same insertion(s) to its super class(es). There-
fore, the consistency of the relations between classes is main-
tained.

subClassOf: cons:〈〈 ⊆,C,D〉〉

; when +C(x) if true then D(x)
A similar logical trigger for subPropertyOf is generated:
subPropertyOf: cons:〈〈 ⊆,P,Q〉〉

; when +P (x, y) if true then Q(x, y)
Thus, for rules (1) and (22) we can derive the following

logical triggers:
when +Man(x) then Person(x)
when +hasParent(x, y) then hasGrandParent(x, y)
The logical trigger for complementOf generates a trigger

which implies that individuals in class D should not appear
in class C and vice versa.

complementOf: cons:〈〈6∩,C,D〉〉
cons:〈〈∪,Thing,D,C〉〉

; when −C(x) if D(x) then rollback

; when −D(x) if C(x) then rollback

Thus, for rule (3) we can derive the following logical trig-
gers:

when −Man(x) if Woman(x) then rollback

when −Woman(x) if Man(x) then rollback

The logical trigger for equivalentClass generates a trigger
which implies that each insertion to one class will automat-
ically generate the same insertion(s) to the other class.

equivalentClass: cons:〈〈 ⊆,C,D〉〉
cons:〈〈 ⊆,D,C〉〉

; when +C(x) if true then D(x)
; when +D(x) if true then C(x)

The construct someValuesFrom ∃ P.D defines a set of in-
dividuals x that has atleast one tuple like (x,y) in P and y
is in D. OWL 2 RL restricts the appearance of a someVal-
uesFrom to be only in a subclass expression, so the logical
trigger only contains the situation ∃ P.D ⊑ C:

someValuesFrom: cons:〈〈 ⊆,∃P.D,C〉〉

; when +P (x, y) if D(y) then C(x)
; when +D(y) if P (x, y) then C(x)

The logical trigger generates a trigger that checks for in-
dividuals that satisfy the existensial restriction and inserts
them to table C. Thus, for rule (4) we can derive the follow-
ing logical triggers:

when +hasChild(x, y) if Person(y) then Parent(x)
when +Person(y) if hasChild(x, y) then Parent(x)

The hasValue construct has two situations in which it may
appear (subClass and a superClass) and consequently two
logical triggers are generated respectively as follows:

hasValue: cons:〈〈 ⊆,∃P.a,C〉〉

; when +P (x, a) if true then C(x)
hasValue: cons:〈〈 ⊆,C,∃P.a〉〉

; when +C(x) if true then P (x, a)
If a certain class was a subclass of a hasValue expression,

then we should insert (x,a) to the table P whenever there is
an insertion of x to C. On the other hand, if the expression is
a subset of a class, a tuple (x,a) inserted to P will invoke the
trigger which will insert x to the table C. Thus, for rule (5)
we can derive the following logical triggers:

when +hasParent(x, John) if true then JohnsChildren(x)
when +JohnsChildren(x) if true then hasChild(x, John)

The logical trigger for inverseOf keeps the relation of in-
verse properties which means if P1 and P2 are inverse prop-
erties and (x, y) is a property instance of property P1, then
(y, x) has to be an instance of property P2.

inverseOf: cons:〈〈 ⊆, π〈C2,C1〉
〈〈P1,C1,C2〉〉, 〈〈P2,C2,C1〉〉〉〉,

cons:〈〈 ⊆, π〈C1,C2〉
〈〈P2,C2,C1〉〉, 〈〈P1,C1,C2〉〉〉〉

; when +P1(x, y) if ¬P2(y, x) then P2(y, x)
In this case, a trigger in table P1 checks each of its inverse

tuples and inserts them to property table P2 if the inverse
tuples do not exist in P2.

For a symmetricProperty, after inserting a tuple (x, y) to
property P , the symmetric tuple (y, x) will be inserted to P

by a trigger.
symmetricProperty: cons:〈〈 ⊆, π〈C2,C1〉

〈〈P, C1,C2〉〉, 〈〈P, C1,C2〉〉〉〉

; when +P (x, y) if true then P (y, x)
For instance, for rule (26) we can derive the following

logical trigger:
when +hasSpouse(x, y) then hasSpouse(y, x)
For a transitiveProperty, after inserting a tuple (x, y), it

will try to find if tuple (y, z) exists. If so, it will then insert
tuple (x, z). Similarly, it will try to find if tuple (z, x) exists
and then insert tuple (z, y).

transitiveProperty: cons:〈〈 ⊆, π〈P#1.C1,P#2.C2〉
P ⊲⊳ P, 〈〈P, C1, C2〉〉〉〉

; when +P (x, y) if P (y, z) then P (x, z)
if P (z, x) then P (z, y)

For example, for rule (30) we can derive the following
logical trigger:
when +hasAncestor(x, y) if hasAncestor(y, z)

then hasAncestor(x, z)
if hasAncestor(z, x)
then hasAncestor(z, y)

propertyChain allows for a property to be defined from the
concatenation of two or more other properties. The logical
triggers are as follows:

propertyChain: cons:〈〈 ⊆, π〈C1,Cn+1〉
P1 ⊲⊳ . . . ⊲⊳ Pn, 〈〈P,C1,Cn+1〉〉〉〉

; when +P1(x, y) if P
′

2,n(y, z) then P (x, z)

; when +Pn(y, z) if P
′

1,n−1(x, y) then P (x, z)

; when +Pi(p, q) if P
′

1,i−1(x, p), P
′

i+1,n(q, z)
then P (x, z) 1<i<n

∗P
′

m,n(x, y) =
πPm.domain,Pn.range
σPj.range=Pj+1.domain

(Pm × . . . × Pn)m≤j<n

The first and second situations mean that if there is an in-
sertion to the first or last subchain, the trigger will treat the
remaining subchains as a join unit and search data matched
inside the unit. The third scenario handles the insertion to
the middle subchains by creating two join units and then
fetch matching data from them. For example, for rule (25)
we can derive the following logical triggers:
when +hasParent#1(x, y) if hasParent#2(y, z)

then hasGrandParent(x, z)
when +hasParent#2(y, z) if hasParent#1(x, y)

then hasGrandParent(x, z)

8. HANDLING CONSTRAINTS IN CWS
In this Section, we show an alternative way of handling

the unconverted HDM constraints under CWS which corre-
sponds to Step 7 in Figure 1.

The basic idea for handling constraints in CSW is we cre-
ate SQL constraints to check each HDM constraints after
data is inserted. We follow the same approach we have
used in OWS that, we first generate logical constraints and
then show their physical implementation (SQL physical con-
straints) in Section 9. Logical constraints are translated
from the HDM constructors according to productions rules
of the general form:

HDM construct ; when event if condition then action.

which is similar to the general form of logical triggers in
OWS. The event is always happened after the data inser-
tion (denoted by +), since SQL constraints cannot be ver-
ified with no data inserted. The condition is logical check
queries derived from an HDM constraint and the action is
automatically performed by SQL Server either to allow or to
rollback the insertions. Next, we demonstrate certain logical
constraints for handling constraints in CWS.

The logical constraint for subClassOf will verify that if the
data inserted to one class also in its super class(es).

subClassOf: cons:〈〈 ⊆,C,D〉〉

; when +C(x) if ¬D(x) then rollback
Similarly, the logical constraint for subPropertyOf is to

verify all tuples inserted to a property exist in its super
properties:

subPropertyOf: cons:〈〈 ⊆,P,Q〉〉

; when +P (x, y) if ¬Q(x, y) then rollback
For example, for rules (1) and (22) we can derive the fol-

lowing logical constraints:
when +Man(x) if ¬Person(x) then rollback
when +hasParent(x, y) if ¬hasGrandParent(x, y) then rollback
The logical constraints for complementOf (e.g. C ≡ ¬ D)

which are shown below only allow to insert data to the C if
the data is not in the table D, and vice versa:

complementOf: cons:〈〈6∩,C,D〉〉
cons:〈〈∪,Thing,D,C〉〉

; when +C(x) if D(x) then rollback

; when +D(x) if C(x) then rollback

Thus, for rule (3) we can derive the following logical con-
straints:

when −Man(x) if Woman(x) then rollback

when −Woman(x) if Man(x) then rollback

The logical constraint for equivalentClass generates a check
that verifies that if data is inserted to one table, it is also in
the equivalent table of this class.

equivalentClass: cons:〈〈 ⊆,C,D〉〉
cons:〈〈 ⊆,D,C〉〉

; when +C(x) if ¬D(x) then rollback

; when +D(x) if ¬C(x) then rollback

The expression of someValuesFrom (∃P.D) only appears in
a subclass expression in OWL 2 RL, and a constraint check
should be generated to verify x is in the table C, when there
are an insertion of (x, y) to the table P and another insertion
of y to the table D, of which the logical constraint is shown
below:

someValuesFrom: cons:〈〈 ⊆,∃P.D,C〉〉

; when +P (x, y), D(y) if ¬C(x) then rollback

For example, for rule (4) we can derive the following logical
constraint to check that whether the individuals that satisfy

the existential restriction also exist in the table Parent:
when +hasChild(x, y),Person(y) if ¬Parent(x) then rollback

The hasValue construct has two situations in which it may
appear and consequently two logical constraints are gener-
ated respectively as follows:

hasValue: cons:〈〈 ⊆,∃P.a,C〉〉

; when +P (x, a) if ¬C(x) then rollback

hasValue: cons:〈〈 ⊆,C, ∃P.a〉〉

; when +C(x) if ¬P (x, a) then rollback

In the first case, the logical constraint checks if a tuple (x, a)
is in the table P, then x should also appear in the table C
and vice versa for the second case. Thus, for rule (5) we can
derive the following logical constraints:

when +hasParent(x, John) if ¬JohnsChildren(x) then rollback

when +JohnsChildren(x) if ¬hasParent(x, John) then rollback

The logical constraint for inverseOf checks that if (x, y) is
a property instance of property P1 then (y, x) has to be an
instance of property P2.

inverseOf: cons:〈〈 ⊆, π〈C2,C1〉
〈〈P1,C1,C2〉〉, 〈〈P2,C2,C1〉〉〉〉,

cons:〈〈 ⊆, π〈C1,C2〉
〈〈P2,C2,C1〉〉, 〈〈P1,C1,C2〉〉〉〉

; when +P1(x, y) if ¬P2(y, x) then rollback

For a symmetricProperty, we create a similar check which
verifies that if a tuple (x, y) is inserted into the table P, its
symmetric tuple (y, x) is also in P.

symmetricProperty: cons:〈〈 ⊆, π〈C2,C1〉
〈〈P, C1,C2〉〉, 〈〈P, C1,C2〉〉〉〉

; when +P (x, y) if ¬P (y, x) then rollback

For instance, for rule (26) we can derive the following logical
constraint:
when +hasSpouse(x, y) if ¬hasSpouse(y, x) then rollback

For a transitiveProperty, a check will verify a tuple (x, z)
is in the table P, if there are tuples (x, y) and (y, z) in P:

transitiveProperty: cons:〈〈 ⊆, π〈P#1.C1,P#2.C2〉
P ⊲⊳ P, 〈〈P, C1, C2〉〉〉〉

; when+P (x, y), P (y, z) if ¬P (x, z) then rollback

For example, for rule (30) we can derive the following logical
rule:
when +hasAncestor(x, y),hasAncestor(y, z)

if ¬hasAncestor(x, z) then rollback

For a propertyChain, we generate the following logical con-
straint:

propertyChain: cons:〈〈 ⊆, π〈C1,Cn+1〉
P1 ⊲⊳ . . . ⊲⊳ Pn, 〈〈P,C1,Cn+1〉〉〉〉

; when +P1(x, y), P
′

2,n(y, z) if ¬P (x, z) then rollback

∗P
′

m,n(x, y) =
πPm.domain,Pn.range
σPj.range=Pj+1.domain

(Pm × . . . × Pn)m≤j<n

For example, for rule (25) we can derive the following logical
rule:
when +hasParent#1(x, y),hasParent#2(y, z)

if ¬hasGrandParent(x, z) then rollback

9. IMPLEMENTATION OF OWS & CWS
After generating logical triggers and constraints, SQL phys-

ical triggers and constraints can be implemented intuitively
by SQL statements. Physical trigger generation is based on
trigger translation rules introduced in [15].

The implementation from logical constraints to physical
constraints is slightly different. If a logical constraint is to
check the subsumption relationships between the value of
columns (such as subClassOf, subPropertyOf, symmetricProp-
erty and inverseOf), foreign keys are used to implement this
logical check. For example, For example, the HDM subclass
constraint cons:〈〈 ⊆,Man,Person〉〉 representing rule (1) can
be achieved using a FK, FK Man isa Person, between Man
and Person. Furthermore, HDM constraints resembling com-

plementOf, someValuesFrom, transitiveProperty, and proper-
tyChain can be implemented in a CWS approach by writing
functions that check if the constraint holds. Next, we show
examples of physical triggers and constraints translated from
several HDM constructs.

The first example could be a subsumption relationship
between properties, such as the rule (23). In the OWS im-
plementation, an after trigger called
hasGrandParent subOf hasAncestor shown in Figure 5(a) will
be created for the table hasGrandParent and it will insert to
the table hasAncestor the data inserted to hasGrandParent.
However, in a CWS implementation, we can use a constraint
of foreign key called FK hasGrandParent subOf hasAncestor
from the two columns of hasGrandParent to columns of the
table hasAncestor (shown in Figure 5(b)).

Figure 4: Triggers and Constraints for subPropertyOf.

CREATE TRIGGER hasGrandPa ren t subOf ha sAnces to r
ON hasGrandParent
AFTER INSERT AS BEGIN

INSERT INTO hasAnces to r
SELECT g r a nd ch i l d , g randpa ren t
FROM i n s e r t e d
EXCEPT SELECT descendant , a n c e s t o r
FROM hasAnces to r

END

(a) SQL Trigger for subPropertyOf.

ALTER TABLE hasGrandParent
ADD CONSTRAINT FK hasGrandPa ren t i s a ha sAnces t o r
FOREIGN KEY (g r a nd ch i l d , g randpa ren t)
REFERENCES ha sAnces to r (descendant , a n c e s t o r)
ALTER TABLE Man
NOCHECK CONSTRAINT FK hasGrandPa ren t i s a ha sAnces t o r

(b) SQL Constraint for subPropertyOf.

Figure 5: Triggers and Constraints for propertyChain.

CREATE TRIGGER hasPa ren t cha i n ha sGrandPa ren t
ON hasPa ren t
AFTER INSERT AS BEGIN

INSERT INTO hasGrandParent
SELECT p1 . ch i l d , p2 . pa r en t
FROM hasPa ren t AS p1 JOIN ha sPa ren t AS p2
ON p1 . pa r en t = p2 . c h i l d
EXCEPT SELECT ∗ FROM hasGrandParent

END

(a) SQL Trigger for propertyChain.

CREATE FUNCTION dbo . checkPrope r tyCha i n ()
RETURNS BIT AS BEGIN

DECLARE @Ex i s t s BIT
IF NOT EXISTS (

SELECT p1 . ch i l d , p2 . pa r en t
FROM hasPa ren t AS p1 JOIN ha sPa ren t AS p2
ON p1 . pa r en t = p2 . c h i l d
EXCEPT SELECT g r a nd ch i l d , g randpa ren t
FROM hasGrandParent)

BEGIN SET @Ex i s t s = 1 END
ELSE BEGIN SET @Ex i s t s = 0 END
RETURN @Ex i s t s

END
ALTER TABLE ha sPa ren t
ADD CONSTRAINT CK propertyCha in
CHECK (dbo . checkPrope r tyCha i n () = 1)

(b) SQL Constraint for propertyChain.

Note that, since the physical constraint check will be per-
formed after data insertions, so we will disable the constraint

check when loading the data and enable it after the update
transaction is committed.

Another example could be a new feature of OWL 2 RL
which is propertyChain, exemplified by the rule (25). In
OWS, we create a trigger to insert the self join values of
the table hasParent to the table hasGrandParent. However,
the physical constraint is more complex which cannot be
implemented by a foreign key. Therefore we create a check-
ing function which verifies the self-joint tuples of the table
hasParent (i.e. πhasParent#1Domain,hasParent#2RangehasParent#2 ⊲⊳

hasParent#1) are in the table hasGrandParent. The trigger
and constraint are shown in Figure 6(a) and Figure 6(b),
respectively (Note that in the physical constraint we use the
BIT value 1 to denote TRUE).

10. EVALUATION OF OWLREL
In this section, we show the evaluation of our system with

regards to OWS and CWS. For evaluating OWLRel under
OWS, we considered the completeness, efficiency, and scal-
ability metrics. For evaluating OWLRel’s completeness, we
have run the 14 queries of the well known Lehigh Uni-
versity Ontology Benchmark (LUBM) [6] with origi-
nal datasets generated from LUBM’s A-Box generator, and
also more exhaustive A-Boxes generated by SyGENiA [22].
For evaluating the efficiency and scalability, we have run
different sizes of LUBM and checked the scalability of the
system in terms of data loading and query processing, and
compared query processing time with another semantic rea-
soner, OWLIM-Lite [8]. Under a CWS setting, we ran some
checks to guarantee the soundness of our results. In Table 3,
we show the time required for processing each step of OWL-
Rel with a total time of 3.40 (min) in OWS and of 3.39 (min)
in CWS.

Table 3: OWLRel Performance Report of LUBM.
OWLRel Steps Time (s)

1 & 2 Loading and Classification Time: 10.48

3 HDM Transformation Time: 34.48

4 HDM InterModel Transformation Time: 120.92

5 Relational Transformation Time: 37.00

6 OWS Transformation Time: 0.84

7 CWS Transformation Time: 0.29

OWLRel and OWLIM-Lite were tested on a machine with
2 Intel Xeon E5345 with 2.33GHz CPUs and 8GB of mem-
ory, which runs a Microsoft SQL Server 2005 database.

10.1 Evaluation Data
LUBM. The LUBM ontology describes concepts in a uni-

versity domain. It comprises a T-Box which contains several
OWL classes, properties and a number of OWL features
such as, subClassOf, subPropertyOf, inverseOf, someValues-
From, intersectionOf and transitiveProperty. Although the T-
Box, is quite simple, LUBM contains a number of features
that are beyond those permitted by the OWL 2 RL profile.
Apart from the T-Box, LUBM contains 14 queries which we
number L1-L14 and an A-Box generator to produce A-Boxes
with different sizes. In our experiment, we use LUBM(n) to
denote the LUBMA-Boxes of n universities. Each university
contains about 100,000 individuals and property tuples.

SyGENiA.Only testing the original datasets of the LUBM
benchmark would be limited in terms of completeness, since
LUBM’s original A-Boxes are not general and exhaustive
enough. SyGENiA is able to generate a more complex A-Box
for a given query and a T-Box. Thus, we further evaluate
our system using another 14 A-Boxes generated by SyGE-
NiA for the 14 queries of LUBM. For each A-Box, we set the
number of assertions to be 1000.

10.2 Evaluation of OWLRel under OWS

10.2.1 Completeness of OWLRel

OWLRel shows a 100% completeness level over LUBM for
both, the original A-Boxes and the more exhaustive A-Boxes
generated by SyGENiA, which means that our system is the
better than OWLIM, Minerva [27], HAWK [17] and Sesame
[5] mentioned in [22]. Table 4 shows the completeness level
of each query processing compared with OWLIM-Lite (The
completeness results of OWLIM and Minerva are from [22]).
As can be seen, OWLIM cannot process L6, L8 and L10 com-
pletely. One reason for the more complete query processing
of OWLRel than OWLIM is that we are able to handle the
existential qualification, which is not completely supported
by OWLIM. Moreover, Minerva’s completeness level is not
that high, since it failed to provide complete answers for L5,
L6, L7, L8, L10, L12 and L13.

Table 4: Completeness level over SyGENiA LUBM
of OWLRel, OWLIM and Minerva.

System L5 L6 L7 L8 L10 L12 L13
OWLRel 1 1 1 1 1 1 1
OWLIM 1 0.96 1 0.93 0.96 1 1
Minerva 0.89 0.87 0.90 0.76 0.87 0.66 0.24

10.2.2 Efficiency and Scalability of OWLRel

In order to test the scalability of our system and the ef-
ficiency of our data loading and query processing, we com-
pared the execution time for answering each query of LUBM
and compare it to OWLIM-Lite.

Query Processing. As can be seen from Table 5, we
compared our system with OWLIM-Lite in terms of the
execution time for each query. The results show that on
average OWLRel was faster than OWLIM per query over
all different sizes in our experiment. Moreover, the average
query processing time of our system was roughly increased
linearly when we doubled the size of A-Boxes, which means
that OWLRel scaled over the experiment data.

Data Loading. The data loading time of OWLRel for
LUBM(5), LUBM(10), LUBM(20) and LUBM(40) is 15(min),
55(min), 97(min) and 187(min), respectively. OWLRel per-
formed quite fast data loading; for example, it was able to
insert approximate 356.5 tuples into the database per second
for LUBM(40). Moreover, the data loading time also was
increased almost linearly when the data size was doubled,
which means that OWLRel was also scalable for loading the
A-Boxes.

10.3 Evaluation of OWLRel under CWS
Since there is not a good benchmark for evaluating our

system in CWS, we just manually verified our constraint
checking. For example, considering the rule (3), inserting
John to table Woman has been rolled back, since John was

already in table Man. On the other hand, loading the com-
pletely reasoned data has not generated any violations.

11. RELATED WORK
In the context of mapping ontological models to the rela-

tional model, most proposals (e.g. [24, 2]) suffer from one of
these limitations: ignore OWL restrictions that do not have
correspondences in the relational model, store the ontology
in a fixed schema (adopting a meta-schema approach), not
support OWL 2 ontologies, or do not adhere to the OWS
characteristics of ontologies.

In the context of reasoning in an RDBMS, RDBMSs are
not only capable of processing ontologies with large num-
ber of individuals, but also provides many benefits, such
as transaction management, security, integrity control, and
scalability [1].

McBrien et al. [16], classified the existing methods that
support consistency checking over relational data into three
types: Application-based reasoners (ABR), VBR, and TBR.
VBR systems such as, DLDB2 uses SQL views to achieve
type inference, while SQOWL and its extension SQOWL2 [9]
are TBR systems like OWLRel that applies SQL triggers to
infer new knowledge. ABR systems such as, SOR [10] and
OWLIM rely on reasoners to perform type inference outside
an RDBMS.

SOR (previously called Minerva) uses a standard tableuax-
based DL reasoner to perform the classification of the T-Box.
Subsequently, it generates rules to perform type inference
outside the database then materialises the results of infer-
ences inside the RDBMS which makes query processing fast.
Since the type inference process, however, was implemented
outside the database, SOR does not support transactional
reasoning nor incremental reasoning in an RDBMS as op-
posed to OWLRel or SQOWL2. Moreover, the current ver-
sion of SOR only supports OWL 1 DL.

OWLIM-Lite, a sub system of OWLIM, does its reasoning
in memory. It performs materialisation while loading the A-
Box just like OWLRel and SQOWL2, however, it can not
handle existential quantifications which makes OWLRel and
SQOWL2 more complete.

DLDB2 and DBOWL store their rules inside the database
as views and do not materialise the infered closure at load-
ing time. This results in very fast loading time, but slow
query processing. On the other hand, SQOWL and more
recently SQOWL2 compile T-Box rules into DBMS before
and after trigger statements providing a forward chaining
materialisation approach.

12. CONCLUSIONS & FUTUREWORK
The mapping of ontologies to relational models has been

an active area of research during the past decade. In this pa-
per, we have given a complete, lossless transformation of an
OWL 2 RL ontology to a relational schema via a HDM un-
der two approaches; OWS using SQL triggers, and CWS us-
ing SQL constraints. So far, OWLRel provides faster query
processing time than OWLIM with respect to the LUBM
benchmark and shows promising scalability results. Future
works will be directed towards first, using other benchmarks
like UBOM [11] as well as real-world data for conducting
exhaustive experiments to assure the quality of our method
and improving the scalability of our system to handle bil-
lions of assertions. Finally, we will consider performing the

Table 5: LUBM Query Processing time (ms) of OWLRel and OWLIM.
Size System L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 Average

OWLRel 42 62 21 2 16 6 71 162 253 42 2 7 0 4 49.29
LUBM(5)

OWLIM 119 70 1 5 10 98 3 166 222 1 1 8 2 13 51.36
OWLRel 79 121 42 4 31 11 22 215 175 81 3 12 0 9 57.5

LUBM(10)
OWLIM 118 115 1 6 9 124 3 215 423 1 2 13 1 26 75.5
OWLRel 29 376 87 6 69 24 44 61 901 28 7 11 1 17 118.64

LUBM(20)
OWLIM 161 172 1 5 6 106 3 463 911 1 2 24 1 56 136.57
OWLRel 56 216 33 11 20 10 84 125 2391 55 12 23 2 35 219.5

LUBM(40)
OWLIM 246 450 1 5 7 199 2 847 1895 1 1 47 1 118 272.86

mappings as bidirectional i.e., from relational databases with
triggers or constraints to an ontology.

13. REFERENCES
[1] I. Astrova, N. Korda, and A. Kalja. Storing OWL

Ontologies in SQL Relational Databases. IJECSE,
1(4):242–247, 2007.

[2] P. Atzeni, P. Del Nostro, and S. Paolozzi. Ontologies
and Databases: Going Back and Forth. In Proceedings
of the 4th ODBIS. Citeseer, 2008.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi,
and P. Patel-Schneider. The Description Logic
Handbook. CUP, 2003.

[4] M. Boyd and P. McBrien. Comparing and
Transforming between Data Models via an
Intermediate Hypergraph Data Model. Journal on
Data Semantics, IV:69–109, 2005.

[5] J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: A generic architecture for storing and
querying rdf and rdf schema. In The Semantic
Web–ISWC 2002, pages 54–68. Springer, 2002.

[6] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Web Semantics:
Science, Services and Agents on the WWW,
3(2):158–182, 2005.

[7] M. Horridge and S. Bechhofer. The OWL API: A Java
API for Working with OWL 2 Ontologies. In OWLED,
volume 529, pages 11–21, 2009.

[8] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM–a
pragmatic semantic repository for OWL. In WISE
2005 Workshops, pages 182–192. Springer, 2005.

[9] Y. Liu and P. McBrien. SQOWL2: Transactional
Type Inference for OWL 2 DL in an RDBMS. In
Description Logics, pages 779–790, 2013.

[10] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang,
Y. Pan, and Y. Yu. SOR: a practical system for
ontology storage, reasoning and search. In Proceedings
of the 33rd VLDB, pages 1402–1405, 2007.

[11] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu.
Towards a Complete OWL Ontology Benchmark. In
ESWC, pages 125–139, 2006.

[12] P. McBrien and A. Poulovassilis. Automatic migration
and wrapping of database applications a schema
transformation approach. In Proceedings of ER, 1999.

[13] P. McBrien and A. Poulovassilis. A semantic approach
to integrating XML and structured data sources. In
Proc. CAiSE’01, volume 2068 of LNCS, pages
330–345. Springer, 2001.

[14] P. McBrien and A. Poulovassilis. Data integration by
bi-directional schema transformation rules. In Proc.
ICDE’03, pages 227–238. IEEE, 2003.

[15] P. McBrien, N. Rizopoulos, and A. Smith. SQOWL:
Type Inference in an RDBMS. ER, pages 362–376,
2010.

[16] P. McBrien, N. Rizopoulos, and A. Smith. Type
inference methods and performance for data in an
RDBMS. In Proceedings of the 4th International
Workshop on SWIM, SWIM ’12, pages 6:1–6:8, New
York, NY, USA, 2012. ACM.

[17] Z. Pan. HAWK: OWL Repository and Toolkit. Lehigh
University, Bethlehem, 2008.

[18] Z. Pan, X. Zhang, and J. Heflin. DLDB2: A scalable
multi-perspective semantic web repository. In Web
Intelligence and Intelligent Agent Technology, 2008.
WI-IAT’08. IEEE/WIC/ACM International
Conference on, volume 1, pages 489–495. IEEE, 2008.

[19] A. Poulovassilis and P. McBrien. A General Formal
Framework for Schema Transformation. DKE,
28(1):47–71, 1998.

[20] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A practical owl-dl reasoner. Web
Semantics: science, services and agents on the World
Wide Web, 5(2):51–53, 2007.

[21] A. Smith, N. Rizopoulos, and P. McBrien. Automed
Model Management. ER, pages 542–543, 2008.

[22] G. Stoilos, B. C. Grau, and I. Horrocks. How
Incomplete is Your Semantic Web Reasoner? In
AAAI, 2010.

[23] D. Tsarkov and I. Horrocks. FaCT++ description
logic reasoner: System description. In Automated
reasoning, pages 292–297. Springer, 2006.

[24] E. Vysniauskas, L. Nemuraite, R. Butleris, and
B. Paradauskas. Reversible Lossless Transformation
From OWL 2 Ontologies into Relational Databases.
IJITCA, 40(4):293–306, 2011.

[25] W3C. Web Ontology Language Guide, February 2004.
http://www.w3.org/TR/2004/REC-owl-guide-
20040210/.

[26] W3C. OWL 2 Web Ontology Language New Features
and Rationale, June 2009.
http://www.w3.org/TR/2009/WD-owl2-new-features-
20090611/.

[27] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan.
Minerva: A scalable OWL ontology storage and
inference system. In The Semantic Web–ASWC 2006,
pages 429–443. Springer, 2006.

