
SQOWL: Performing
OWL-DL type inference in SQL

P.J. McBrien, N. Rizopoulos, and A.C. Smith
Imperial College London

th November 2009

Abstract

In this report we describe a method to perform type
inference over data stored in an RDBMS, where rules over
the data are specified using OWL-DL. Since OWL-DL
is an implementation of the Description Logic (DL)
SHOIN (D), we are in effect implementing a method for
SHOIN (D) reasoning in relational databases. Reasoning
make be broken down into two processes of classification
and type inference. Classification may be performed
efficiently by a number of existing reasoners, and since
classification alters the schema, it need only be performed
once for any given relational schema as a preprocessor
of the schema before creation of a database schema.
However, type inference needs to be performed for each
data value added to the database, and hence needs to be
more tightly coupled with the database system. Previ-
ously, no technique has been proposed that implements
SHOIN (D) type inference within an RDBMS. We
propose such a technique, involving the use of triggers to
perform reasoning over the data values as they inserted
into the database. We demonstrate the soundness and
performance of our approach by comparing an implemen-
tation of our technique against other existing approaches
for less powerful reasoning over data in an RDBMS. The
results show we provide the fastest query processing of
any technique, despite having a more powerful reasoner.

1 Introduction

There is currently a growing interest in the development
of systems that store and process large amounts of
Semantic Web knowledge [9, 16, 19]. A common approach
is to represent such knowledge as data in RDF tuples [7],
together with rules in OWL-DL [1]. When large quan-
tities of individuals in a ontology need to be processed
efficiently, it is natural to consider that the individuals
are held in a relational database management system
(RDBMS), in which case we refer to the individuals as
data, and make the unique name assumption. Hence, the
question arises of how knowledge expressed in OWL-DL
can be deployed in a relational database context, and
take advantage of the RDBMS platforms in use today to
process data in an ontology.

To illustrate the issues we address in this report,
consider a fragment from the terminology box (TBox)
of the Wine Ontology [2] expressed in DL:

Loire ≡ Wine ⊓ locatedIn : {LoireRegion} (1)
WhiteLoire ≡ Loire ⊓ WhiteWine (2)
WhiteLoire ⊑ ∀madeFromGrape.{CheninBlanc,

PinotBlanc,SauvignonBlanc} (3)
⊤ ⊑ ∀locatedIn−.Region (4)
⊤ ⊑ ∀madeFromGrape.Wine (5)
⊤ ⊑ ∀madeFromGrape−.WineGrape (6)

To differentiate between classes and properties, classes
start with an upper case letter, e.g. Wine. Properties start
with a lower case letter, e.g. madeFromGrape. Individuals
start with an upper case letter and appear inside curly
brackets, e.g. {LoireRegion}.

Obviously, there is a simple mapping from classes and
properties in DL to unary and binary relations in an
RDBMS. Thus, from the above DL statements we can
infer a relational schema:

Wine(id) WineGrape(id)
Loire(id) Region(id)
WhiteWine(id) WhiteLoire(id)
madeFromGrape(domain,range)
locatedIn(domain,range)

Furthermore, each property has a domain and a range
which can be restricted. The restrictions on the domain
and range of locatedIn and madeFromGrape above allow
us to infer foreign key constraints:

locatedIn.range → Region.id
madeFromGrape.domain → Wine.id
madeFromGrape.range → Grape.id

However, as it stands, the relational schema, with its
closed world semantics, does not behave in the same man-
ner to the open world semantics of the DL. For example,
we can insert into the database the following facts (which
in DL would be called the assertion box (ABox):

Loire(SevreEtMaineMuscadet) (7)
WhiteWine(SevreEtMaineMuscadet) (8)
madeFromGrape(SevreEtMaineMuscadet,

PinotBlancGrape) (9)
Based on these rules, SevreEtMaineMuscadet would still

not be a member of Wine, despite that being implied by
TBox rule (1) from ABox rule (7) and by (5) from (9), nor
is it a member of WhiteLoire, despite that being implied
by TBox rule (2) from ABox rule (7) and (8) together.
Performing classification using a reasoner on the TBox
can partially solve these inconsistencies. In particular,
classification would infer the following additional rules:

Loire ⊑ Wine (10)
Loire ⊑ locatedIn.{LoireRegion} (11)
WhiteLoire ⊑ Loire (12)
WhiteLoire ⊑ WhiteWine (13)

which will then infer additional foreign key constraints:
Loire.id → Wine.id
WhiteLoire.id → Loire.id
WhiteLoire.id → WhiteWine.id

Now, the insert of data value SevreEtMaineMuscadet
into Loire would be disallowed unless the data value was
already in Wine. However, this does not capture the open
world semantics of the DL statement, which in type
inference performed by a reasoner on the ABox would al-
ways allow you to insert SevreEtMaineMuscadet into Loire
provided that data value was either a member of Wine
already, or it could be inserted into Wine. Furthermore,
we still do not have inferred that SevreEtMaineMuscadet
should be a member of WhiteLoire, which again type
inference would give us.

When performing type inference over data in an
RDBMS, we must first decide if the reasoning should be
performed by a separate application outside the database,
or within the database system. Taking the former ap-
proach has the disadvantage that each change to the data
will require the external application to reload the data
and recompute type inference, and so clearly is unsuited
to applications where data is frequently updated. Thus
we will study in this report performing the type inference
within the RDBMS.

One previously studied approach is to use views to com-
pute inferred types, and for each relation have an inten-
tional definition based on rules and extensional definition
with stored values. An alternative approach studied in this
report is to use triggers to perform type inference as data

1

values are inserted into the database. This approach has
the advantage that since the classes are all materialised,
query processing is much faster than when using the view
based approach, at the cost of additional data storage for
the materialised views, and additional time taken to insert
data into the database. However, since most database
applications are query intensive rather than update in-
tensive, there will be a greater range of applications that
would benefit from approaches that use triggers to materi-
alise the instances of classes and properties. The SQOWL
approach presented in this report is the first complete
implementation of type inference for OWL-DL on data
held in an RDBMS that uses the trigger based approach.

Compared to previous reasoners for use on ontologies
with large numbers of individuals, our approach has the
following advantages:

• In common with other rule based approaches [14, 9],
our approach to type inference is much more efficient
than tableaux based reasoners [3], since we do not need
to use a process of refutation to infer instances as being
members of classes.

• Apart from SOR [10], we are the only rule based
approach implementing the full SHOIN (D) DL [3]
of OWL-DL, in particular supporting oneOf and
hasValue restrictions.

• Apart from DLDB2 [16], we are the only approach
of any type where all type inference is performed
within the RDBMS, and hence we allow RDBMS
based applications to incorporate OWL-DL knowledge
without alteration to the RDBMS platform.

• Since we materialise the data instances of classes,
we support faster query processing than any other
approach.

The remainder of this report is structured as follows.
Section 2 gives an outline of how the SQOWL approach
works, describing the basic technique for implementing
type inference implied by OWL-DL constructs using
relational schemas and triggers on the schema. The set of
production rules for mapping all OWL-DL constructs to
relational schemas with triggers is presented in Section 3.
Section 4 runs a number of previously published bench-
marks on our prototype implementation of SQOWL,
and compares the performance of SQOWL to other
approaches for type inference over large datasets. We give
a more detailed description of related work in Section 5,
and give our summary and conclusions in Section 6.

2 The SQOWL Approach

Our approach to reasoning over large volumes of data is
based on a three stage approach to building the reasoning
system, which we describe below, together with some
technical details of the prototype implementation of the
SQOWL approach that we developed into order to run
the benchmark tests.

1. Classification and consistency checking of the TBox of
an OWL-DL ontology is performed with any suitable
reasoner to produce the inferred closure of the TBox.
In our prototype system, we load an OWL-DL ontology
as a Jena OWL model using the Protege-OWL API,
and use Pellet [17], a tableaux based reasoner.

2. From the TBox we produce an SQL schema, that
can store the classes and properties of the TBox. In
our prototype system, we take the simple approach
of implementing each class as a unary relation, each
property as a binary relation, which generates a set
of ANSI SQL CREATE TABLE statements, with foreign
key declarations implementing the domain, range and
subclass rules such as (4),(5),(6),(10),(12), and (13).

3. We use a set of production rules, that generate SQL
trigger statements that perform the type inference
and ABox consistency checking. The production rules
map statements in OWL-DL to triggers in an abstract
syntax. In our prototype system, the production rules
are programmed in Java, and produce the concrete
syntax of PostgreSQL function definitions and trigger
definitions.

Note that once steps (1)–(3) have been performed, the
database is ready to accept ABox rules such as (7),(8)
and (9) implemented as insertions to the corresponding
relations in the database.

We have already illustrated in the introduction how
steps (1) and (2) of the above process work to produce
a set of SQL tables. However, one detail omitted in
the introduction is that anonymous classes such
as that for the enumeration of individuals in TBox
rule (3) will also cause a table to be created for the
anonymous class (which in the example would be named
cheninblanc pinotblanc sauvignonblanc).

Now we shall introduce the abstract trigger syntax
we use in step (3) above, and how the triggers serve to
perform type inference within the RDBMS. The triggers
are ECA rules in the standard when event if condition
then action form, where:

• event will always be some insertion of a tuple to a
table, prefixed with a ‘−’ if the condition and action is
to execute before the insertion of the tuple is applied
to the table, or prefixed with a ‘+’ if the condition and
action is to execute after the insertion of the tuple to
the table is applied.

• condition is some Datalog query over the database.
Each comma in the condition specifies a logical AND
operator.

• action is one of

– some list of tuple(s) to insert into the database, or
– reject if the whole transaction involving the event

is to be aborted, or
– exit if the event can be completed normally, but

nothing else done, or
– false if the event is to be ignored. This action may

only be used if event is prefixed by −, i.e. is a
before trigger.

In order to perform type inference within the RDBMS,
we require that we have a trigger for each table that
appears in the left-hand side (LHS) of a sufficient (⊑) DL
rule, with that table as the event. The remainder of the
LHS is re-evaluated in the condition, and if it holds, then
the changes to the right-hand side (RHS) of the DL rule
made as the action. These actions must be made before
changes to the table are applied in the database, and
hence we must have a ‘before trigger’.

For instance, for TBox rule (12), we can identify a
trigger rule:

when −WhiteLoire(x) if true then Loire(x)
This in turn may be implemented by an SQL trigger,

the implementation on which in PostgreSQL is presented
in Figure 1(a). Due to the design of PostgreSQL, the
trigger has to call a function that implements the actions
of the trigger. The function insert Loire() first checks
whether the new tuple (NEW.id) already exists in Loire,
and if not, then inserts the new tuple.

For each necessary and sufficient (≡) TBox rule, we
require a trigger on any table appearing in the RHS of the
rule to reevaluate the RHS and then assert the LHS after
the RHS is inserted into the database. Thus the trigger
will have the table in the RHS as the action, the remain-
der of the RHS in the condition, and the tables of the LHS

2

CREATE FUNCTION insert Loire()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(SELECT id FROM Loire

WHERE id = NEW.id)
INSERT INTO Loire(id) VALUES(NEW.id);
END IF;

RETURN NEW;
END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER propagateTo Loire
BEFORE INSERT ON WhiteLoire
FOR EACH ROW EXECUTE PROCEDURE
insert Loire();

(a) WhiteLoire ⊑ Loire

CREATE FUNCTION skip insert Loire()
RETURNS OPAQUE AS ’BEGIN
IF EXISTS(SELECT id FROM Loire
WHERE id = NEW.id)

THEN RETURN NULL;
END IF;
RETURN NEW;

END;’ LANGUAGE ’plpgsql’;

CREATE TRIGGER skipinsert
BEFORE INSERT ON Loire
FOR EACH ROW EXECUTE
PROCEDURE skip insert Loire();

(b) Loire is open world

CREATE FUNCTION reject insert cps()
RETURNS OPAQUE AS ’BEGIN
IF NOT EXISTS(SELECT id

FROM cheninblanc pinotblanc sauvignonblanc
WHERE id = NEW.id)

THEN RAISE EXCEPTION ’Unable to change enumeration’;
END IF;
RETURN NULL;
END; ’
LANGUAGE ’plpgsql’;

CREATE TRIGGER rejectinsert
BEFORE INSERT ON
cheninblanc pinotblanc sauvignonblanc
FOR EACH ROW EXECUTE PROCEDURE
reject insert cps();

(c) {CheninBlanc, PinotBlanc, SauvignonBlanc}

Figure 1: Some examples of Postgres triggers implement-
ing type inference for DL statements

in the action. The trigger is an ‘after trigger’ since we are
asserting facts equivalent to the originally asserted facts.

For example, for TBox rule (2), we have two triggers,
one for each table in the RHS:

when +Loire(x)
if WhiteWine(x) then WhiteLoire(x)

when +WhiteWine(x)
if Loire(x) then WhiteLoire(x)

3 Production Rules

In this section we will describe how we translate an
OWL-DL KB into ECA rules introduced in the previous
section, which in turn may be easily translated into any
specific implementation of SQL triggers that supports
both BEFORE and AFTER triggers. Table 1 lists the OWL-

DL constructs, and their equivalents in DL and FOL [6].
The following subsections describe how each of those con-
structs may be mapped to triggers in our abstract syntax.

There are two main constructs in OWL-DL: classes
and properties. First we examine how OWL-DL classes
and semantic relationships between OWL-DL classes are
translated into our ECA rules, then we consider OWL-DL
properties and semantic relationships between properties,
and finally we examine restrictions on properties.

3.1 OWL-DL classes and individuals

An OWL-DL ontology contains declarations of classes. In
our translation to SQL, each class declaration C maps to
an SQL table C. The production rule is:

Class : C Ã create table(C),
when −C(x) if C(x) then false

The semantics of the production rule is that any class C
found in OWL-DL causes two additions to the relational
schema. The first is described by the create table macro,
defined as follows:

create table(C) := CREATE TABLE C (id VARCHAR
PRIMARY KEY)

The second is an SQL trigger on table C to ignore any
insertions of a tuple value x where x already exists in C:

when −C(x) if C(x) then false
Note that the trigger is fired before x is actually inserted
into C. If x has already been inserted, then C(x) will
evaluate to true, and the trigger returns false (meaning
that the insertion is ignored).

Note that C(x) has different translations depending on
whether it appears as an event, as a condition or as an
action:

when −C(x) := BEFORE INSERT ON C
when +C(x) := AFTER INSERT ON C
if C(x) := EXISTS(SELECT id FROM C

WHERE id=x)
then C(x) := IF NOT EXISTS (SELECT id

FROM C
WHERE id=x) THEN
INSERT INTO C(id) VALUES(x)
END IF;

Additionally, the SQL translation of the action false is:
false := RETURN NULL

For example, the declaration of class Loire in TBox rule
(1) produces:

create table(Loire)
when −Loire(x) if Loire(x) then false

which in SQL creates a table Loire(id) and a trigger
illustrated in Figure 1(b). The trigger executes the
function skip insert Loire() before an insertion on
table Loire. The function checks whether the value to
be inserted already exists. If it exists, then the function
returns NULL, which corresponds to ignoring the insert. If
it does not exist, then the function returns NEW, which is
the value to be inserted.

An OWL-DL class may contain individuals. Each
individual of class C will be inserted into table C with
the name of the individual as the id. The id of each
individual in our implementation is of type VARCHAR. The
production rule is:

individual : a : C Ã insert(C(a))
where insert(C(a)) is translated into SQL as follows:

insert(C(a)) := INSERT INTO C (id) VALUES(a)

3.2 Semantic relationships between OWL-DL
classes

In OWL-DL classes might be related to one another. A
class C might be declared to be a subclass of another
class D. In this case, the translation into SQL will create
a foreign key in table C that refers to table D. The

3

OWL Construct Name DL Syntax FOL
Class C ∀x.C(x)
Property P ∀x, y.P (x, y)
TransitiveProperty P ∈ P+ ∀x, y, z(P (x, y) ∧ P (y, z)) → P (x, z)
SymmetricProperty P ≡ P− ∀x, y(P (x, y) ⇔ P (y, x))
intersectionOf C ⊓ D C(x) ∧ D(x)
unionOf C ⊔ D S C(x) ∨ D(x)
complementOf ¬C ¬C(x)
someValuesFrom ∃P.C ∃y.(P (x, y) ∨ C(y))
allValuesFrom ∀P.C ∀y.(P (x, y) → C(y))
subPropertyOf P ⊑ Q H ∀x, y.P (x, y) → Q(x, y)
oneOf {a1, . . . , an} O x = a1 ∨ . . . ∨ x = an

hasValue P :{a} P (x, a)
inverseOf P ≡ Q− I ∀x, y.P (x, y) ⇔ Q(y, x)
FunctionalProperty ⊤ ⊑6 1P ∀x, y, z.(P (x, y) ∧ P (x, z)) → y = z
minCardinality > nP N ∃y1, . . . , yn.

∧
16i6n(P (x, yi)) ∧

∧
16i<n,i<j6n yi 6= yj

maxCardinality 6 nP ∀y1, . . . , yn+1.
∧

16i6n+1(P (x, yi)) → (
∨

16i<j6n+1 yi = yj)
subClassOf C ⊑ D ∀x.C(x) → D(x)
equivalentClass C ≡ D ∀x.C(x) → D(x) ∧ ∀x.D(x) → C(x)
range ⊤ ⊑ ∀P.C ∀x.P (x, y) → C(y)
domain ⊤ ⊑ ∀P−.C ∀x.P (y, x) → C(y)
Thing ⊤ ∀x.x ∈ D
Nothing ⊥ ∀x.x /∈ D
individual a:C C(a)
property of individual 〈a, b〉:P P (a, b)

Table 1: OWL constructors and their DL and FOL equivalents

foreign key macro that produces the SQL code is defined
as follows:

foreign key for class(C,D) := ALTER TABLE C
ADD FOREIGN KEY (id)
REFERENCES D (id).

Additionally, an SQL trigger is added on table C to
specify that before inserting any tuple x in C, the tuple
must be inserted in D. This trigger allows for forward
chaining inference. The production rule for the subclass
relationship is the following:

subClassOf : C ⊑ DÃ foreign key(C,D)
when −C(x) if true then D(x)

An example of the SQL code generated by the above
ECA rule is shown in Figure 1(a) for the TBox rule (10).

A class D might be declared to be the complement
of another class C. In this case, one trigger is created
that checks whether a tuple {x} exists in C, before x
is inserted in D. If it does exist, then the insertion is
rejected and the transaction that initiated it is rolled
back. Similarly, another trigger is created that checks
insertions in table C. The production rule is:

complementOf : D ≡ ¬C Ã

when −D(x) if C(x) then reject
when −C(x) if D(x) then reject

where reject in PostgreSQL is defined as:
reject := RAISE EXCEPTION ’error message’

Note that no tuples are inferred for any of the classes
based on this construct. For example, in the Wine
ontology we have that

NonConsumableThing ≡ ¬ConsumableThing (14)
If the statement ConsumableThing(SevreEtMaineMuscadet)
is not true, then we cannot infer that NonConsum-
ableThing(SevreEtMaineMuscadet) is true. The reason is
that inference in OWL-DL is based on the open world
assumption (OWA) and thus negation as failure does not
apply.

In OWL-DL, a class C1 might also be declared to be
the union of classes C and D. Based on classification,
this implies that both C and D are subclasses of C1.

Thus, the type inference on the union relationship can
be performed using the subClassOf construct. The same
holds for intersection. A class C1 might be declared
to be the intersection of classes C and D. Based on
classification, this implies that C1 is a subclass of both C
and D, and therefore type inference for the intersection
can be performed based on these subclass relationships.

Additionally, a class C1 might be declared to be disjoint
with another class C2, which indicates that the two classes
do not have any individuals in common. In SQL we treat
this case as the complement relationship.

Finally, OWL-DL allows the definition of enumeration
classes using the oneOf construct. The oneOf construct
enables a class C to be defined by exhaustively enumer-
ating its instances, {a1, a2, . . . , an}. The extent of the
defined class contains exactly the enumerated individuals,
not more or less. In our system where we make the unique
name assumption, the enumeration class corresponds to a
table that contains only the instances a1, a2, . . . , an. The
production rule of oneOf first inserts the instances into
table C. Then creates a trigger that discards any further
inserts into table C.

oneOf : C ≡ {a1, . . . , an} Ã

insert(C(a1)), . . . , insert(C(an))
when −C(x) if true then reject

For example, the TBox rule (3) in the introduction,
introduces an anonymous class which is an enumeration.
The anonymous class is translated into a table, and then
the production rule for the enumeration performs three
inserts on that table:

insert(cheninblanc pinotblanc sauvignonblanc(CheninBlanc))
insert(cheninblanc pinotblanc sauvignonblanc(PinotBlanc)
insert(cheninblanc pinotblanc sauvignonblanc(SauvignonBlanc)

and then defines the trigger
when −cheninblanc pinotblanc sauvignonblanc(x)
if ¬cheninblanc pinotblanc sauvignonblanc(x)
then reject

which causes any further inserts on that table to cause
the transaction in which they take place to abort. The
implementation of this trigger in PostgreSQL is illustrated
in Figure 1(c).

4

3.3 OWL-DL properties

In this section, we are going to examine how OWL-DL
properties and relationships between these properties are
translated into SQL.

An OWL property defines a binary predicate,
P (D,R), where D is called the domain and R the range
of the property P . There are two types of properties in
OWL-DL:

datatype properties are constructs whose domain is
an object class and range is a datatype

object properties are constructs whose both domain
and range is an object class

A datatype property with range R, states that the
value of the property, i.e. the range, comes from the
datatype R. Available datatypes in OWL-DL, include
RDF literals and XML Schema datatypes as defined
in [4]. The instances of a datatype class are members of
the sets defined for the equivalent XML Schema datatype
or set of RDF literals.

The SQL translation of a datatype property P (D,R) is
an SQL table P . The create table for property(P (D,R))
macro is used to define the table:

create table for datatype property(P (D,R)) :=
CREATE TABLE P
(domain VARCHAR, range sqlType(R)).

function sqlType(R) returns the SQL data type corre-
sponding to the OWL-DL datatype R.

The domain of a property P (D,R) is a class D. There-
fore, in our translation column domain of table P is of
type VARCHAR, since it represents the ids of individuals of
D. Additionally, domain is specified as a foreign key that
refers to column id of D. A trigger is defined to be exe-
cuted before each insertion of a tuple {x, y} on table P . If
the tuple {x} does not exist in table D then it is inserted
into D. Finally, a trigger is defined to ignore any inserts of
tuples that already exist. The production rule is as follows:

datatypeProperty : P (D,R) Ã

create table for property(P),
foreign key for property(P (D),D)
when −P (x, y) if true then D(x)
when −P (x, y) if P (x, y) then false

The foreign key for property(P (D),D) macro is defined
as:

foreign key for property(P (D),D) :=
ALTER TABLE P
ADD FOREIGN KEY (D)
REFERENCES D (id).

An object property links two classes. The production
rule for object properties is similar to the datatype prop-
erties rule. There are now two foreign key constraints and
the trigger executed before each insertion checks both the
domain value and the range value and propagate them
to the corresponding classes.

objectProperty : P (D,R) Ã

create table for object property(P),
foreign key for property(P (D),D)
foreign key for property(P (R), R)
when −P (x, y)

if true then D(x), R(y)
when −P (x, y) if P (x, y) then false

Properties can be functional and/or inverse func-
tional. A functional property P (D,R) can have only one
tuple {x, y} for each x in D, and an inverse functional can
have only one tuple {x, y} for each y in R. We translate
these restrictions into SQL as primary key constraints.
For example, in the Wine ontology property we have that:

⊤ ⊑ ∀hasFlavor.Wine (15)

⊤ ⊑ ∀hasFlavor−.WineFlavor (16)
⊤ ⊑6 1hasFlavor (17)

which means that the property hasFlavor with domain
Wine and range WineFlavor is functional, i.e. each Wine
can only have one WineFlavor. Therefore, we add a
primary key constraint on table hasFlavor on its domain
column. This constraint will not allow the same wine
to appear in the hasFlavor table twice, therefore it will
enforce the functional constraint on the property. The
production rule of a functional object property P will
create the table P for the property as follows:

CREATE TABLE P
(domain VARCHAR PRIMARY KEY, range VARCHAR).

If the property is inverse functional then the rule adds a
primary key constraint on the range column, and if it is
both functional and inverse functional the primary key is
defined on both domain and range.

Properties can also be transitive and/or symmetric.
For example, the locatedIn property in the Wine ontology
is transitive. This means that if we already know that lo-
catedIn(ChateauChevalBlancStEmilion,BordeauxRegion)
and locatedIn(BordeauxRegion,FrenchRegion),
then we can infer that locate-
dIn(ChateauChevalBlancStEmilion,FrenchRegion) is also
true.

The production rule for a transitive property P needs
to define a trigger to be executed after each insert of tuple
{x, y} in P . The rule will insert for each {y, z} existing
in P the tuple {x, z} and for each {z, x} in P the tuple
{z, y} will be inserted. The macro foreach must be used
in the production rule that performs these iterations:

foreach(z, P (y, z), P (x, z)) :=
FOR z IN (SELECT range FROM P
WHERE domain= y)

LOOP IF x, z NOT IN SELECT domain,range FROM P
THEN INSERT INTO P VALUES x, z

END IF; END LOOP;

The production rule is as follows:

TransitiveProperty : P ∈ P+ Ã

when +P (x, y) if true then
foreach(z, P (y, z), P (x, z)),
foreach(z, P (z, x), P (z, y))

If a property P is declared to be symmetric, then a rule
needs to be defined that will insert in P the tuple {y, x}
after an event inserts tuple {x, y} on P :

SymmetricProperty : P ≡ P− Ã

when +P (x, y) if true then P (y, x)

3.4 Semantic relationships between OWL-DL
properties

Like classes, OWL-DL properties can be related to one
another. For example, a property P might be declared to
be a subproperty of Q, which means that each tuple of P
is also a tuple of Q. For example, in the Wine ontology
hasFlavor is a subproperty of hasWineDescriptor:

hasFlavor ⊑ hasWineDescriptor
An SQL trigger is added on table P to specify that

after inserting any tuple {x, y} in P , then the tuple must
be inserted in Q. The production rule is as follows:

subPropertyOf : P ⊑ Q Ã

when +P (x, y) if true then Q(x, y)
A property P might be declared as the inverse of an-

other property Q. This declaration asserts that for each
tuple {x, y} in P , the inverse tuple {y, x} exists in Q, and
vice versa. An SQL trigger is added on table P to specify
that after each insertion on P the inverse tuple must be

5

inserted on Q, if it does not already exist. Note that in
our methodology, for each such property declaration two
inverseOf constructs are created: P ≡ Q− and Q ≡ P−.
The production rule for the inverseOf construct is :

inverseOf : P ≡ Q− Ã

when +P (x, y) if ¬Q(y, x) then Q(y, x)
Finally, a property P might be declared to be equivalent

to another property Q. In this case, an SQL trigger is
added on table P that after each insertion of tuple {x, y}
in P the trigger inserts the tuple on table Q, and vice
versa. The production rule is:

equivalentProperty : P ≡ Q Ã

when +P (x, y) if true then Q(x, y)
when +Q(x, y) if true then P (x, y)

3.5 Restrictions on Properties

Properties can be used to define restrictions on classes.
Each restriction on a property Pi(Di, Ri) forms an
anonymous class Si. A set of restrictions on multiple
properties P1(D1, R1), . . . , Pn(Dn, Rn) can be used to
define a named class C, which becomes a subclass of all
Si classes.

• The allValuesFrom restriction on property Pi requires
that for each instance x in Si and each tuple {x, y}
in Pi, y is a member of the class indicated by the
allValuesFrom clause. If y is not a member of the
particular class then it is inferred to be. Note that
the allValuesFrom restriction can be satisfied trivially if
there are no tuples for property Pi.
If each individual x of D is restricted to have all values
for property Pi from class C then this translates into
a trigger executed after an insertion of tuple x in table
D. If x is not associated with any value in table Pi,
then the restriction is satisfied. If a tuple {x, y} exists
in table Pi such that {y} is not a tuple of C, then the
trigger inserts tuple {y} in C.

allValuesFrom : D ⊑ ∀Pi.C Ã

when +D(x) if Pi(x, y) then C(y)
For example, based on TBox rule (6), we know that for
each individual x which has a tuple {x, y} in madeFrom-
Grape, then y is a WineGrape. Thus, based on ABox rule
(9) we can infer that PinotBlancGrape is a WineGrape.

• someValuesFrom requires for each x in Si at least one
tuple {x, y} of Pi exists with y a member of the class
indicated by the someValuesFrom restriction. For the
implementation of this restriction we could define that
for each insertion D(x) on the class we insert a tuple
{x, null} on Pi. However, this is not necessary since
the existence of the tuple {x, null} cannot be used for
any kind of inference. Thus the rule’s body is empty −.

someValuesFrom : D ⊑ ∃Pi.C Ã −
For example, based on the rules

Wine(TaylorPort) (18)
Wine ⊑ ∃locatedIn.Region (19)

we know that TaylorPort is locatedIn a Region, but we
cannot insert any tuples on table locatedIn since we
do not know the exact Region.

• cardinality, minCardinality, maxCardinality restrict the
number of tuples {x, y} in Pi an individual x of Si can
have. As in the previous restriction we could create a
rule that adds tuples {x, null} so that the cardinality
restriction is satisfied. However, these tuples cannot be
used for inference therefore the rule’s body is empty, e.g.

cardinality : C ⊑= nPi Ã −
• hasValue specifies that each individual x of Si has a tuple

{x, a} in Pi, where a is the value indicated by the has-
Value restriction. If a class D is specified to be a subclass

of Si, then each insert of tuple {x} on table D initiates
a trigger which inserts into table P the tuple {x, a}.

hasValue : D ⊑ ∃Pi : a Ã

when +D(x) if true then Pi(x, a)
For example, based on the TBox rule (11) we know
that each Loire wine is locatedIn LoireRegion. Thus,
when the ABox rule (7) is examined, the trigger will
insert tuple {SevreEtMaineMuscadet, LoireRegion} in
table locatedIn.

3.6 Complete and Partial Classes

Restrictions can be necessary (⊑) or necessary and
sufficient (≡). Named classes that have only necessary
conditions are partial or primitive classes. Those that
have at least one necessary and sufficient condition are
called complete or defined classes.

The necessary and sufficient restrictions for a named
class C need to be satisfied in order for an individual x to
be inferred to be of class C. Each restriction ri can either
be on a property, as we show in the previous section, and
thus forms an anonymous class Si, or it can be another
named class Di. Class C is then equivalent to the inter-
section of all Si and Di classes. The equivalentClass
construct specifies this intersection.

For example, TBox rule (2) specifies that WhiteLoire is a
class equivalent to the intersection of Loire and WhiteWine.
In this case, if there is an individual x which is both a
member of Loire and a member of WhiteWine, then it is go-
ing to be inferred to be a member of WhiteLoire. The SQL
translation should insert tuple {x} in table WhiteLoire.

To achieve this we would need a trigger which is
executed after a tuple {x} is inserted in table Loire. The
trigger would check if {x} is a tuple in WhiteWine and if
it is it would insert {x} in table WhiteLoire:

when +Loire(x) if WhiteWine(x) then WhiteLoire(x)

Additionally, we would need a similar trigger on table
WhiteWine. In this case, the trigger would check if tuple
{x} is in Loire and if it is then it would insert it in
WhiteLoire:

when +WhiteWine(x) if Loire(x) then WhiteLoire(x)

Thus, we see that for an equivalentClass construct we
need to create triggers for each class in the intersection.

The production rule for the equivalentClass construct
is:

equivalentClass : C ≡ C1 ⊓ C2 ⊓ . . . Cn Ã

rules(C,C1, C2 ⊓ . . . ⊓ Cn)
rules(C,C2, C1 ⊓ C3 ⊓ . . . ⊓ Cn)
rules(C,C3, C1 ⊓ C2 ⊓ C4 . . . ⊓ Cn)
. . .

rules(C,Cn, C1 ⊓ . . . ⊓ Cn−1)

Each Ci in the production rule can either be a restriction
on a property forming an anonymous class Si or a named
class Di, which implies the restriction C ⊑ Di.

The function rules(C,Ci, E1⊓. . . En) performs a logical
AND of the conditions that must be satisfied for Ci to
be true with the conditions that must be satisfied for the
intersection E1 ⊓ . . . En to be true. If all conditions are
satisfied then the function will insert a new tuple for C.
Each call to rules produces one AFTER trigger if Ci is
a named class, i.e. if Ci ≡ Di. The trigger is executed
after an insertion on Di. A call to rules produces one
AFTER trigger if Ci is either a hasValue or a minCardinality
restriction on property P . The trigger is performed
after an insertion on P . Finally a call to rules produces
two AFTER triggers if Ci is a someValuesFrom restriction
∃P.D. One trigger is executed after an insertion in D and
another after an insertion in P .

6

rules(C,Di, E1 ⊓ . . . Em) :=
when +Di(x) if cond(x,E1 ⊓ . . . Em) then C(x)

rules(C,P : {a}, E1 ⊓ . . . Em) :=
when +P (x,) if P (x, a), cond(x,E1 ⊓ . . . Em) then C(x)

rules(C,> nP,E1 ⊓ . . . Em) :=
when +P (x,) if count(P (x,)) > n, cond(x,E1 ⊓ . . . Em)

then C(x)rules(C,∃P.D,E1 ⊓ . . . Em) :=
when +D(x) if P (x, y),D(y), cond(x,E1 ⊓ . . . Em)

then C(x)
when +P (x,) if P (x, y),D(y), cond(x,E1 ⊓ . . . Em)

then C(x)
where the function cond is used to define the condition in
the triggers and it is defined as follows:

cond(x,D ⊓ E2 ⊓ . . . Em) := D(x), cond(E2 ⊓ . . . Em)
cond(x, P : {a} ⊓ E2 ⊓ . . . Em) := P (x, a), cond(E2 ⊓ . . . Em)
cond(x,∃P.D ⊓ E2 ⊓ . . . Em) := P (x, y),D(y),

cond(E2 ⊓ . . . Em)
cond(x,> nP ⊓ E2 ⊓ . . . Em) := count(P (x,)) > n,

cond(E2 ⊓ . . . Em)
cond(x, empty) := true

The keyword empty stands for any empty intersection
expression. It is used to specify the base case for the
recursive definition of cond. The function count(P (x,))
returns the number of tuples {x, y} in P for individial x.

For example, if we apply the above production rule
to the TBox rule (2), we have that C1 ≡ Loire and
C2 ≡ WhiteWine. The rule performs the following calls:

rules(WhiteLoire, Loire,WhiteWine)
rules(WhiteLoire,WhiteWine, Loire)

Regarding the first call, based on the definition of cond,
we have that cond(x,WhiteWine) := WhiteWine(x), true,
which is logically equivalent to WhiteWine(x). Thus, the
call generates:

when +Loire(x) if WhiteWine(x) then WhiteLoire(x)
Similarly, the second call to rules generates

rules(WhiteLoire,WhiteWine, Loire) :=
when +WhiteWine(x) if Loire(x) then WhiteLoire(x)

Thus, the production rule successfully generates the two
ECA rules we talked about in the beginning of this section.

As another example, we can examine the
TBox rule (1). In this case, C1 ≡ Wine and
C2 ≡ locatedIn : {LoireRegion}. The production rule
performs the following calls:

rules(Loire,Wine, locatedIn : {LoireRegion})
rules(Loire, locatedIn : {LoireRegion},Wine)

The first call examines that the hasValue restriction is
satisfied. It generates the ECA rule:

when +Wine(x) if locatedIn(x, LoireRegion) then Loire(x)
because

cond(x, locatedIn : {LoireRegion}) :=
locatedIn(x, LoireRegion)

The second call checks that both the hasValue and the
subClassOf restriction are satisfied. Note that in the first
call we do not need to examine the subClassOf restriction
because we know that it is already satisfied since the
trigger is performed after an insert on the super-class
Wine. The second rules call generates the ECA rule

when +locatedIn(x,) if
locatedIn(x, LoireRegion),Wine(x) then Loire(x)

because cond(x,Wine) := Wine(x). The complete
implementation of TBox rule (1) is presented in Figure 2.

Note that the cardinality and maxCardinality constructs
are not dealt with in the equivalentClass construct. The
reason is that due to the open world assumption we cannot
be certain about the cardinality of a property (except if the
property is functional). However, the equivalentClass
construct deals with the minCardinality restriction. Sim-

CREATE FUNCTION define Loire Wine()
RETURNS OPAQUE AS ’BEGIN

IF (EXISTS (SELECT domain FROM locatedIn
WHERE domain=NEW.id and range=‘LoireRegion’))
INSERT INTO Loire(id) VALUES (NEW.id);

END IF; END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER define Loire Wine
AFTER INSERT ON Wine
FOR EACH ROW EXECUTE PROCEDURE
define Loire Wine();

CREATE FUNCTION define Loire locatedIn()
RETURNS OPAQUE AS ’BEGIN

IF (EXISTS (SELECT domain FROM locatedIn
WHERE domain=NEW.id and range=‘LoireRegion’))

AND (EXISTS (SELECT id FROM Wine
WHERE id=NEW.id))
INSERT INTO Loire(id) VALUES (NEW.id);

END IF; END;’
LANGUAGE ’plpgsql’;

CREATE TRIGGER define Loire locatedIn
AFTER INSERT ON locatedIn
FOR EACH ROW EXECUTE PROCEDURE
define Loire Wine();

Figure 2: The Postgres trigger implement-
ing type inference for DL statement Loire ≡
Wine ⊓ locatedInt:{LoireRegion}

ilarly, the complementOf restriction is not examined,
because if we do not have information about an individual
we cannot be certain that the individual is not a member
of a class. For example, if we have a restriction C ⊑ ¬C1
in the equivalentClass construct, we cannot use it for infer-
ence, e.g. even if x is not a tuple in C1 that does not mean
that we can infer that it is in C. Similarly, we cannot make
any inference based on the allValuesFrom restriction there-
fore it is not considered in the equivalentClass construct.

3.7 Semantic relationships between individuals

OWL-DL does not use the Unique Name Assumption
(UNA) so individuals are not assumed to be distinct
unless we explicitly state that they are using the dif-
ferentFrom or AllDifferent constructs. The differentFrom
construct indicates that two individuals a1, a2 are different
from each other. The AllDifferent construct indicates that
all associated individuals are pairwise different. Finally,
OWL-DL includes the sameAs construct, which indicates
that one individual a1 refers to an existing individual a2,
i.e. the two individuals have the same identity.

In our SQL implementation, we do not support any of
these constructs since SQL makes the UNA.

4 Experimental Evaluation

In common with other rule based approaches, we demon-
strate the soundness of our approach by running a number
of benchmarks previously used. In the next subsection
we review the three benchmarks we have tested our
prototype system with, then in Section 4.2 describe how
SPARQL queries in the benchmarks may be translated
into queries over our relational schema. The following
three subsections then represent the results of running
the three benchmarks.

7

4.1 OWL-DL Reasoner Benchmarks

We have chosen three ontologies to test our system
on: The Lehigh University Ontology Benchmark
(LUBM) [16], the W3C Wine ontology [2] and the
University Ontology Benchmark (UOBM) [12].
These all pose significant, but different, type inference
challenges. LUBM requires only simple inference, and
comes with a data generator that can be used to create
ontologies with large numbers of individuals. This was
used to test the scalability of our approach. The Wine
ontology does not have many individuals but has a
complex TBox. We used this to test the inference capa-
bilities of SQOWL. Finally, UOBM has a large number of
individuals and a relatively complex ontology. We used
this to test how well our approach scaled on ontologies
with more complex inference rules. Other ontologies that
have been used to benchmark DL reasoning systems [14]
test their classification capabilities. As we are using
existing reasoners to perform ontology classification,
these ontologies are not relevant when testing our system.

LUBM and UOBM come with a set of queries and
results, which we used to test the soundness of our
approach. To test SQOWL against the Wine ontology, we
compared our inference results with those of Pellet [17],
the well established tableaux reasoner for SHOIN (D),
and used its results as the reference for what instances
should be inferred. Hence all three benchmarks could be
used to demonstrate the completeness and soundness of
our results.

The LUBM and UOBM queries are given in SPARQL.
This reflects the fact that the systems they were developed
for, DLDB2 and SOR respectively, have been designed in
such a way that queries are posed on the source ontology.
Our approach is different, in that we expect our database
to be used independently of the ontology, so our queries
are posed in SQL. In Section 4.2 we describe how we trans-
late SPARQL queries like those in LUBM and UOBM
into SQL queries appropriate for the schema we create.

The tests were carried out on a Windows Vista platform
with an Intel Centrino 2 processor running at 2.6 GHz and
4GB of RAM. The Java VM was allocated 800M. DLDB2
exists as part of Hawk version 3 and uses MySQL as the
RDBMS (we used version 5.1 for benchmarks), SQOWL
used Postgres) version 8.3 for benchmarks, and SOR uses
DB2 (Express 9.7 was used for the benchmarks).

4.2 Translating SPARQL queries into SQL

Queries in our are system are posed in the form of
SQL SELECT statements. In this section we describe
how we translate SPARQL queries from the LUBM and
UOBM benchmarks into SQL statements appropriate for
SQOWL.

Each rdf:type tuple maps to a table generated by
a OWL class, while the other triples map to the tables
generated by the respective OWL properties. To create
the required query we join these tables together. Any
literals in the SPARQL queries translate into literals in
the SQL query. For example, the SPARQL query from
the LUBM benchmark query 8:

SELECT DISTINCT ?X, ?Y, ?Z
WHERE {

?X rdf:type ub:Student .
?Y rdf:type ub:Department .
?X ub:memberOf ?Y .
?Y ub:subOrganizationOf <http://www.University0.edu> .
?X ub:emailAddress ?Z

}

translates into the following SELECT statement in
SQOWL:

SELECT DISTINCT s.id, d.id, e.range
FROM ub_student s,

JOIN ub_memberOf m ON p.id = m.domain
JOIN ub_department d ON d.id = m.range
JOIN ub_suborganizationof so ON d.id = so.range
JOIN ub_emailaddress e ON s.id = e.domain

WHERE so.range = ’http://www.University0.edu’;

4.3 LUBM

The LUBM ontology classifies individuals in a uni-
versity. These individuals may be members of staff,
publications, departments, research groups etc. Each
university contains about 100000 individuals and property
tuples. LUBM(1) contains one university, LUBM(2) two
universities, and so on.

SQOWL and SOR were able to answer all the LUBM
queries. DLDB2 failed on Q11 returning no results.
Tables 2 show the query response times for the fourteen
LUBM queries on LUBM(1) and LUBM(3) respectively.
As expected SQOWL and SOR exhibit much faster query
response times than DLDB2 because they materialise
their inference results at load time. The slightly faster
query response times for SQOWL over SOR are also
to be expected, as the materialised schema produced
by SQOWL avoids the many joins necessary to answer
queries in the SOR view-based approach.

4.4 The Wine Ontology

We chose the Wine ontology [2] because it is the well
known example OWL-DL ontology provided by the W3C,
and it since it includes an example of each type of OWL-
DL construct, type inference requires the processing of
all the OWL-DL constructors. There are no widely used
queries to test type inference for the Wine ontology, and
it does not lend itself to the sort of queries that are used
to test LUBM and UOBM. For these reasons we test
our results against the type inference calculated by the
tableaux reasoner Pellet, embedded in Protege 3.4.1 [18].

The queries used, which we call Q1 and Q2 respectively,
were:

SELECT DISTINCT ?X
WHERE {

?X rdf:type wine:WhiteLoire .
}

SELECT DISTINCT ?X
WHERE {

?X rdf:type wine:AmericanWine .
}

We checked the WhiteLoire class as we have used it in
our example throughout the report and the AmericanWine
class because it was used in [14].

Q1 Q2
SOR 1/2 16ms 24/24 15ms
SQOWL 2/2 0.5ms 24/24 0.5ms

Table 4: Wine Completeness and Soundness

The number of results for each query compared to the
results obtained from Pellet, as well as the time taken, are
shown in 4. Our system was able to correctly infer all the
WhiteLoire and AmericanWine instances. SOR could not
correctly infer one of the two WhiteLoire instances. The
difference in query result times is greater here than in
LUBM because of the greater complexity of the inference
required to answer the queries. SOR needs to make joins
for each restriction on a derived class that appears in
a query. This benchmark includes derived classes with

8

System Size Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14
DLDB2 LUBM(1) 706 841 539 912 788 18649 19652 128096 20246 19877 – 110 538 67
SOR LUBM(1) 4 47 3 30 9 16 7 114 58 3 4 7 3 15

LUBM(3) 112 3650 150 2205 219 120 210 874 2730 140 168 359 187 93
SQOWL LUBM(1) 8 12 4 14 6 2 11 30 33 5 2 4 1 2

LUBM(3) 35 46 23 53 20 6 36 67 150 24 2 3 5 6

Table 2: LUBM Query Answer Times (ms)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
DLDB2 100 82 100 100 0 0 0 0 0 83 0 20 56
SOR 100 100 100 100 100 100 100 100 100 100 100 100 64
SQOWL 100 100 100 100 100 98 100 99 100 88 97 100 99

Table 3: UOBM Query Completeness in percent

complex restrictions, and so more joins are required. All
our type inference results are materialised at load time
so we are able to directly query the relevant tables, hence
our very fast response times.

4.5 UOBM

The UOBM is an extension of the LUBM with a slightly
higher number of individuals but requiring significantly
more complex inference testing more of the OWL-DL
constructors [12]. There are two versions of the UOBM,
an OWL-DL version and an OWL-Lite version. We have
used the OWL-DL version for our tests.

We used the queries provided with UOBM to test
SQOWL. All results for systems tested were sound, but
DLDB2 was only able to answer three of the queries cor-
rectly as it is not able to perform as many type inference
tasks as SQOWL or SOR. The completeness results are
shown in Table 3. In the case of queries 13 and 8 SQOWL
misses one individual. This is an individual that was the
same as some other individual. This happens because
OWL-DL does not adopt the UNA. Our system does so
this discrepancy was to be expected. We are also missing
results from Q10 and Q11 for the same reason. We provide
a more complete answer to Q13 than SOR does as their
system does not handle minimum cardinality fully [19].

The query times for the thirteen UOBM queries are
shown in Table 5. We have not included query times for
DLDB2 as it provided complete answers for so few of the
queries. Once again our query times are faster than SOR.
The complexity of the inference required in UOBM is
somewhere between that of LUBM and Wine ontology so
the difference in times here is in line with expectations.

5 Related Work

DL reasoners come in a number of forms [3], those based
on tableaux algorithms are being the most common.
Tableaux based reasoners like Racer, FacT++ and Pellet
are very efficient at computing classification hierarchies
and checking the consistency of a knowledge base. How-
ever, the tableaux based approach is not suited to the
task of processing ontologies with large datasets (i.e. large
numbers of individuals), since the tableaux algorithm
uses a refutation procedure rather than a query answering
algorithm [8].

Rule based reasoners provide an alternative to the
tableaux based approach that is more promising for han-
dling large datasets. Some of the best known reasoners
are summarised in Table 6.

O-DEVICE [13] translates OWL rules into an in-
memory representation using the CLIPS production rules
system and the COOL OO language. It can process all
of OWL-Lite, and in addition the OWL-DL constructs

partial union of classes hasValue and class disjointedness.
It does not support oneOf, complementOf or data ranges.
The fact that the system is memory based provides fast
load and query times, but means that it does not scale
beyond tens of thousands of individuals. OWLIM [9]
also does its reasoning in memory. It takes rules already
defined for RDFS inference in the SAIL (Storage And In-
ference Layer) of Sesame [5], and adds support for a small
subset of OWL-DL constructs, up to the expressiveness of
Horn Logic. In common with O-DEVICE its reasoning is
fast, but it cannot reason of large numbers of individuals.

KAON2 [14] does reasoning by means of theorem
proving. The TBox is translated into first-order clauses,
which are executed on a disjunctive Datalog engine of
their own design to compute the inferred closure. KAON2
displays impressive load and query times but is unable to
handle nominals (i.e. hasValue and oneOf, labelled as
O in DL). DLog [11] adopts a similar approach, but uses
Prolog to answer queries on individuals that are stored in
an RDBMS. It performance characteristics are similar to
those of KAON2.

Those most closely related to our approach are
DLDB2 [15, 16] and SOR [19] (previously called Minerva)
in that they use an RDBMS as their rule engine. DLDB2
stores the rules inside the database as views and does
not materialise the inferred closure of the ontology at
load time. Tables are created for each atomic role and
class which are then populated with the individuals from
the ontology. A separate DL reasoner is used to classify
the ontology. The resulting TBox axioms are translated
into non-recursive Datalog rules that are translated in
SQL view create statements. DLDB2 enjoys very fast
load times because the inferred closure of the database
is not calculated at load time but its querying is slow.
An advantage of the system is that because the closure
is only calculated when queries are posed on the system,
updates and deletes can be performed on the system.

SOR [19] also uses a standard tableaux based DL
reasoner to first classify the ontology. It differs from
DLDB2 in that rules are kept outside the database and
the SQL statements created from the OWL-DL rules are
not used to create views but are rather executed at load
time materialise the inference results. This makes loading
slower but query processing faster. SOR uses a fixed
database schema that is not related to the ontology it is
processing but rather to the OWL-DL constructors the
system is modelling. For example, there are tables called
hasValue and someValuesFrom. Each derived class whose
restrictions include one of these constructors has an entry
in the relevant table. At query time joins are created over
these tables to provide the necessary reasoning capability.
Because the rules are kept outside the database, any addi-

9

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
SOR 600 280 1400 500 327 1216 608 265 5756 328 11248 561 1248
SQOWL 88 67 215 322 88 129 188 130 57 200 105 60 57

Table 5: UOBM Query Answer Times

Name DL reasoning Rules engine
O-DEVICE SHIQ + hasValue CLIPS rule engine
Dlog SHIQ Prolog
KOAN2 SHIQ Bespoke Datalog engine
OWLIM RDFS Bespoke + Sesame
DLDB2 SHOIN (D) classification, DLP except allValues type inference RDBMS (Views)
SOR SHOIN (D) classification, DLP type inference Java application
SQOWL SHOIN (D) RDBMS (Triggers)

Table 6: Rule based data reasoners

tions to the database necessitate a rerun of the reasoning.

6 Summary and Conclusions

We have described a method of translating an OWL-DL
ontology into an active database that can be queried
and updated independently of the source ontology. In
particular, we have implemented type inference for
OWL-DL in relational databases, and have produced a
prototype implementation that builds such type inference
into Postgres databases. This prototype implementation
has already been demonstrated to build databases that
allow faster execution of queries over the inferred data
than any other implementation we are aware of.

The current prototype is relatively crude in its genera-
tion of trigger statements, in that it does not attempt to
combine multiple triggers on one table into a single trigger
and function call. Such optimisation would substantially
improve the load times for data into our system.

At the moment we do not correctly handle deletes
and updates, since we do not propagate changes to data
onto any data that might have been inferred from the
data being changed. Although in some cases this would
have been a simple task to implement, the complexity of
removing inferred values from transitive properties means
this is still the subject of investigation.

7 Acknowledgements

The work reported in this report was funded by the
Systems Engineering for Autonomous Systems (SEAS)
Defence Technology Centre established by the UK
Ministry of Defence.

References

[1] Y. al Safadi et al. OWL Web Ontology Language
Overview, 2004. http://www.w3.org/TR/owl-features/.

[2] Y. al Safadi et al. The wine ontology, 2004.
www.w3.org/TR/owl-guide/wine.rdf.

[3] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi,
and P. F. Patel-Schneider. The Description Logic
Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

[4] P. Biron et al. XML Schema part 2: Datatypes second
edition. http://www.w3.org/TR/xmlschema-2, 2004.

[5] J. Broekstra, A. Kampman, and F. van Harmelen.
Sesame: A generic architecture for storing and querying
rdf and rdf schema. In International Semantic Web
Conference, pages 54–68, 2002.

[6] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker.
Description logic programs: combining logic programs
with description logic. In WWW, pages 48–57, 2003.

[7] I. Herman et al. Resource Description Framework (RDF),
2001. http://www.w3.org/RDF/.

[8] U. Hustadt and B. Motik. Description logics and disjunc-
tive datalog the story so far. In Description Logics, 2005.

[9] A. Kiryakov, D. Ognyanov, and D. Manov. Owlim -
a pragmatic semantic repository for OWL. In WISE
Workshops, pages 182–192, 2005.

[10] J. Lu, L. Ma, L. Zhang, J.-S. Brunner, C. Wang, Y. Pan,
and Y. Yu. Sor: A practical system for ontology storage,
reasoning and search. In VLDB, pages 1402–1405, 2007.

[11] G. Lukácsy and P. Szeredi. Efficient description logic rea-
soning in Prolog: the DLog system. Theory and Practice
of Logic Programming, 09(03):343–414, May 2009.

[12] L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu.
Towards a complete OWL ontology benchmark. In
ESWC, pages 125–139, 2006.

[13] G. Meditskos and N. Bassiliades. A rule-based object-
oriented OWL reasoner. IEEE Trans. Knowl. Data Eng.,
20(3):397–410, 2008.

[14] B. Motik and U. Sattler. A comparison of reasoning
techniques for querying large description logic aboxes. In
LPAR, pages 227–241, 2006.

[15] Z. Pan and J. Heflin. DLDB: Extending relational
databases to support semantic web queries. In PSSS,
2003.

[16] Z. Pan, X. Zhang, and J. Heflin. DLDB2: A scalable
multi-perspective semantic web repository. In Web
Intelligence, pages 489–495, 2008.

[17] Pellet. http://clarkparsia.com/pellet/.
[18] Protege. http://protege.stanford.edu/.
[19] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan.

Minerva: A scalable OWL ontology storage and inference
system. In ASWC, pages 429–443, 2006.

10

	Introduction
	The SQOWL Approach
	Production Rules
	OWL-DL classes and individuals
	Semantic relationships between OWL-DL classes
	OWL-DL properties
	Semantic relationships between OWL-DL properties
	Restrictions on Properties
	Complete and Partial Classes
	Semantic relationships between individuals

	Experimental Evaluation
	OWL-DL Reasoner Benchmarks
	Translating SPARQL queries into SQL
	LUBM
	The Wine Ontology
	UOBM

	Related Work
	Summary and Conclusions
	Acknowledgements

